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Muography
1911: Victor Hess: Cosmic ray
Primarily and secondary particles
1936:C. D. Anderson: muon identification
1970: L.Alvarez: first muography experiment
Its characteristics :

» wide energy spectrum

» slow energy loss (Bethe-Bloch formula->AE~pl)

Cosmic rays?

» The energy loss is proportional to the density of the rock and the
trajectory length in the rock

The muonfield: F = N/(tQA)
Muon flux on ground roughly: F= F_ cos?9 (100/ sec/m?2)

Muography uses cosmic muons to image the internal density structure
of large objects.




Muography application

vV v v v VvV Y

Vulcanology
Archaeology application
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The Innovative Gaseous Detector R&D Group

Finland Kemi chromium mine granite and bedrock
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A new research group has recently been set up,
the High-Energy Geophysics Research Group.




Data proceSS] ng Colors of arrows:

» Data processing

» Error propagation
Number of tracks > Measurement planning

Detector and
measurement
parameters (for
unit time)

Questions about
planning:
» Detector type Average density-model/

Determination of Surface geometry
anomalies;
Missing rock-length

* Detector position
* Measure time
» Sensitivity




Direct problem models

Simple model:
Number of Tracks difference
with rel. s¢atter normalized |(K=6) [1]
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Direct problem model for general detector g

muon
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Track map of shifted chambers [1]
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» Different approach was used

What happen to the chamber position from the pe
incoming muons? —Shifted

» So | can calculate how many chambers the muon hg
given area through

» The intersection of the chambers in 2D = how many
detected the given angle of the muons in the interse
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Direct problem model for general detector g
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» Different approach was used

What happen to the chamber position from the pe
incoming muons? —Shifted

» So | can calculate how many chambers the muon hg
given area through

» The intersection of the chambers in 2D = how many
detected the given angle of the muons in the interse
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Esztramos mine

» No active mining in
the mine = stable
surface

» Active exploration in
the mine (more details
in Rabdczki Bence’s
presentation)

» A domestic
measurement area

» The target:
comparison of the
result from
measurement with
homogeneous model
with original surface

Results of Esztramos mine
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Simple model : flat surface with an anomaleo

sphere

» Different geology situtations become possibly to search by
this method

» We can review many questions with given series of
measurement
e.g.: What kind type of detector should we use in a
measurement?

How long have we to measure in a position?

Which setup can optimal ?

What type of anomaly can we detect?
» Ground model: flat surface, homogeneous, p, = 2.4 g/cm3
» Dector type= Mtl2, Position[0,0,-9]m, Inc=0° and Rot=0"

Sphere: Position [0,0,-3]m, Radius=1m, pspere = 1 g/cm?
(water) and psppere = 0 g/cm? (air)

flat surface

P.ohere(OM,0m,-3m)
rsph.ere= im




Flat Surface: Sphere (air) under the surface: Sphere (water) under the surface:
Number of trackings Number of trackings Number of trackings




Results of sphere under the surface

Sphere (air) under the surface: Sphere (water) under the surface:
Sigma Difference [1/day] Sigma Difference [1/day]
8 8
NW NE 7 NW NE 7
8 6 L 6
5 5
4 4
60 =(N¢c—Ny)/yNu + N¢ 3 3
2 2
SW SE 1 SwW SE 1
0 0
Sphere (air) under the surface: Sphere (water) under the surface:
Necessary measuretime [day] Necessary measuretime [day]
100 100
NwW NE NW NE
10 10
t = Ogeparation/00  for unit time!
1 1
SW SE SwW SE

0.1 0.1




Test site: Janossy pit system

» Janossy pit system: simple geometry ->
main goals: particle physics
measurements

» 3floors: 1. 1 tunnelat -10 m (0°)

2. 2 tunnel at -20 m (0°, 180°)

3. 3 tunnelat-30m (0°, 120°,
240°)

» Mts8 detector: position: 3. floor 1.
tunnel, 156.5cm from the end of the
tunnel; Inc=-45°; Rot=-90°

» Ground model: flat surface, (NOT jet
the original surface); homogeneous,

P = 2.2 g/cm3 £

Geology model: Shape of the tunnels
was approched with cylinders. prynners =
0g/cm3

Janossy pitsystem geometry!

<

Janossy pit system

references axis

flat surface

1.floor

2.floor

detect
“o 3.floor




Results of Janossy pit system

Flat Surface Model: Janossy pit:
Number of tracks [1] Number of tracks [1]
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Conclusion

| set up a model that can be used for general geometry.
It can be used to investigate theoretical and practical issues.
| have used this method successfully for 3 geological models.

It can be seen that measurement times can be estimated, detector type
testing is possible, and measurement positions can be compared.
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Janossy pit: Necessary measuretime [day]

Track map of shifted chambers [1]
(Azimuth=225° Zenith=65.05°)

~ Thank you for your
. attention!
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Detector types
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Simple geology model: flat surface with half
anomaly on the surface

» Ground model: flat surface, homogeneous, p, = 2.4 g/cm3
» Anomaly: half ball on the surface (Position[0,0,0]m, r=1m)
Dector type=Mtl2 ,Position[0,0,-6]m, Inc=0" and Rot=0°




Simple geology model: flat surface with sphe
anomaly on the surface

Results of half sphere on the surface

Flat Surface: Number of tracks [1] Negative half sphere on the surface:
Number of tracks [1]
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Negative half sphere on the surface: Negative half sphere on the surface:
Sigma Difference [1/hour] Necessary measuretime [hour]
1.1
NW NE 0.9
0.8
0.7 . 10
0.6
0.5
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0.3
SW SE 0.2 SW SE
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0.1




Esztramos mine

Acceptancy results of Esztramos mine
]

Acceptancy calculated [dm 2] Acceptancy measured [dm
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Flux results of Esztramos mine

Flux calculated [m‘zs‘l srad 1 ]

Flux measured
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