Application of MWPC based muography in geophysics, experiments and planning

Author: Boglárka Abigél Stefán^{1,2} Gergő Hamar¹, László Balázs^{1,2}, Gergely Surányi¹, and Dezső Varga¹

RMKI ELTE Collaboration on Gaseous Detector Research and Development

REGARD

- ELTE EÖTVÖS LORÁND TUDOMÁNYEGYETEM
- 1. HUN-REN Wigner Research Centre for Physics
- 2. Eötvös Loránd University, Faculty of Science, Department of Geophysics and Space Science

Muography in geophysics: model validation and optimization

Author: Boglárka Abigél Stefán^{1,2} Gergő Hamar¹, László Balázs ^{1,2}

EÖTVÖS LORÁND TUDOMÁNYEGYETEM

- 1. HUN-REN Wigner Research Centre for Physics
- 2. Eötvös Loránd University, Faculty of Science, Department of Geophysics and Space Science

RMKI ELTE Collaboration on Gaseous Detector Research and Development

Table of contents

Introduction

- Muography
- The Innovative Gaseous Detector R&D Group
- Data processing for direct problem
- Results
 - Direct problem models
 - Direct problem model for public detector geometry
 - Esztramos mine
 - Simple geology models (half ball, ball full of water/air)
 - Janossy pitsystem
- Conclusion

Muography

1911: Victor Hess: Cosmic ray

Primarily and secondary particles

1936: C. D. Anderson: muon identification

1970: L.Alvarez: first muography experiment

Its characteristics :

- wide energy spectrum
- slow energy loss (Bethe-Bloch formula-> $\Delta E \sim \rho l$)
- The energy loss is proportional to the density of the rock and the trajectory length in the rock

The muonfield: $F = N/(t\Omega A)$

Muon flux on ground roughly: $F = F_0 \cos^2 \vartheta$ (100/ sec/m²)

Muography uses cosmic muons to image the internal density structure of large objects.

Muography application

d

h

Archeology measurements in the Khufu's Pyramid⁵

q

- Vulcanology
- Archaeology application
- Speleology
- Structural analysis
- Monitoring
- Mining

Results of Neapolis measurements³

3D density tomography of Omuroyama scoria cone⁴

Simulate data of uranium deposit⁶

The Innovative Gaseous Detector R&D Group

Country	Mining	Target		
Finland	Kemi chromium mine	granite and bedrock localization (2.3- 3.3g/cm3; 2.65g/cm3)		
Hungary	Janossy pit system	test site, hidden inhomogeneous		
Hungary	Királylaki tunnel	unknown caves, hidden inhomogeneous		
Hungary	Esztramos tunnels	well-tunneled hill, unknown caves?		
Hungary	Underneath the Castle of Buda	expected covered medieval tunnels		
Italy	Castello di Mussomeli	mediavel tunnels		
Japan	Sakurajima Muography Observatory	vulcanology		

A new research group has recently been set up, the High-Energy Geophysics Research Group.

Underground measurement arrangement

464							
465 Event 33000 ,	2018-04-27_08:0	6:33 , dt : 3	89590				
466							
467							
468)	(XXX	XXX		
469		XXX)	XXX				
470	XXXX	XX				.XXXXX	
471XXXXX		.X)	XXXXXXX	
472 Adc : 2888	3725 3208	2289	2810 2091				
473 THP : T= +19	.75 oC, H= 39.0%,	P= 972.0 mBar	, ThpId: 0				
474 Counter :	+1 (95)						
475 Pattern :	Triggered on :	0011110	00000	(ok)			
176		/					
							5
				An e	vent		J.

Direct problem model for general detector geometry

- Different approach was used
- What happen to the chamber position from the perspective of incoming muons? Shifted
- So I can calculate how many chambers the muon has passed in a given area through
- The intersection of the chambers in 2D = how many chambers detected the given angle of the muons in the intersection area

$$S_{x_{i}} = Z_{i}S_{x}, \qquad S_{y_{i}} = Z_{i}S_{y}, \qquad i = 1, \dots N_{K}$$

$$K_{T}(x, y) = \sum_{i}^{N_{K}} \begin{cases} 1, \qquad (X_{1_{i}} + S_{x_{i}}) \leq x \leq (X_{2_{i}} + S_{x_{i}}) \text{ és } (Y_{1_{i}} + S_{y_{i}}) \\ 0 \end{cases} \leq y \leq (Y_{2_{i}} + S_{y_{i}})$$

$$\eta(x, y) = \begin{cases} 1, \qquad K_{T} > K \\ \eta_{Chamber}, \qquad K_{T} == K \end{cases}$$

$$A_{eff} = \int_{X_{1_{1}} + S_{x_{1}}}^{X_{2_{N_{K}}} + S_{x_{N_{k}}}} \int_{Y_{1_{1}} + S_{y_{1}}}^{Y_{2_{N_{K}}} + S_{y_{N_{k}}}} \eta(x, y) \, dy \, dx \, \frac{1}{\sqrt{1 + s_{x}^{2} + s_{y}^{2}}} \end{cases}$$
8.

Direct problem model for general detector geometry

- Different approach was used
- What happen to the chamber position from the perspective of incoming muons? Shifted
- So I can calculate how many chambers the muon has passed in a given area through
- The intersection of the chambers in 2D = how many chambers detected the given angle of the muons in the intersection area

$$S_{x_{i}} = Z_{i}S_{x}, \qquad S_{y_{i}} = Z_{i}S_{y}, \qquad i = 1, \dots N_{K}$$

$$K_{T}(x, y) = \sum_{i}^{N_{K}} \begin{cases} 1, & (X_{1_{i}} + S_{x_{i}}) \leq x \leq (X_{2_{i}} + S_{x_{i}}) \text{ és } (Y_{1_{i}} + S_{y_{i}}) \leq y \leq (Y_{2_{i}} + S_{y_{i}}) \end{cases}$$

$$\eta(x, y) = \begin{cases} 1, & K_{T} > K \\ \eta_{Chamber}^{K}, & K_{T} = = K \end{cases}$$

$$A_{eff} = \int_{X_{1_{1}} + S_{x_{1}}}^{X_{2_{N_{K}}} + S_{x_{N_{k}}}} \int_{Y_{1_{1}} + S_{y_{1}}}^{Y_{2_{N_{K}}} + S_{y_{N_{k}}}} \eta(x, y) \, dy \, dx \frac{1}{\sqrt{1 + s_{x}^{2} + s_{y}^{2}}} \end{cases}$$
8.

Esztramos mine

- No active mining in the mine = stable surface
- Active exploration in the mine (more details in Rábóczki Bence's presentation)
- A domestic measurement area
- The target: comparison of the result from measurement with homogeneous model with original surface

Number of Tracks difference (calculated-measured) [1]

SW

2

0 -2

-4

-6

-8

ŚE

Simple model : flat surface with an anomaleous sphere

- Different geology situtations become possibly to search by this method
- We can review many questions with given series of measurement e.g.: What kind type of detector should we use in a measurement?

How long have we to measure in a position?

Which setup can optimal ?

What type of anomaly can we detect?

- Ground model: flat surface, homogeneous, $\rho_a = 2.4 \ g/cm^3$
 - Dector type= Mtl2, Position[0,0,-9]m, Inc=0° and Rot=0°

Sphere: Position [0,0,-3]m, Radius=1m, $\rho_{sphere} = 1 \ g/cm^3$ (water) and $\rho_{sphere} = 0 \ g/cm^3$ (air)

0.1

 $\delta\sigma = (N_c - N_M) / \sqrt{N_M + N_c}$

12.

Conclusion

- ▶ I set up a model that can be used for general geometry.
- It can be used to investigate theoretical and practical issues.
- ▶ I have used this method successfully for 3 geological models.
- It can be seen that measurement times can be estimated, detector type testing is possible, and measurement positions can be compared.

Acknowledgement

- I would like to express my special thanks of gratitude to WignerRCP, REGARD Group, Gergő Hamar and László Balázs.
- This project is supported by:
- OTKA-FK135349, ELKH-KT-SA-88/2021, NKFIH-TKP2021-NKTA-10, KSZF-144/2023

⁷ Thank you for your⁵ attention!

References

- 1. https://rtl.hu/tudomany-tech/2023/08/18/janossy-lajos-kutato-labor-akna-foldalatti
- 2. https://home.cern/science/physics/cosmic-rays-particles-outer-space
- 3. <u>https://www.nature.com/articles/s41598-023-32626-0?fromPaywallRec=true</u>
- 4. <u>https://link.springer.com/article/10.1007/s00445-022-01596-y/figures/9</u>
- 5. https://www.nature.com/articles/s41467-023-36351-0
- 6. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JB015626

Back up slides

Borehole measurement arrangement

Detector types

Simple geology model: flat surface with half sphere anomaly on the surface

- Ground model: flat surface, homogeneous, $\rho_a = 2.4 \ g/cm^3$
- Anomaly: half ball on the surface (Position[0,0,0]m, r=1m)

Dector type=Mtl2 ,Position[0,0,-6]m, Inc=0° and Rot=0°

Simple geology model: flat surface with sphere ball anomaly on the surface

0

0.1

Esztramos mine

NW

SW

NW

SŴ

