Application of MWPC based muography in geophysics, experiments and planning

Author: Boglárka Abigél Stefán ${ }^{1,2}$
Gergő Hamar¹, László Balázs ${ }^{1,2}$, Gergely Surányi ${ }^{1}$, and Dezső Varga¹

REGARD

1. HUN-REN Wigner Research Centre for Physics
2. Eötvös Loránd University, Faculty of Science, Department of Geophysics and Space Science

Muography in geophysics: model validation and optimization

Author: Boglárka Abigél Stefán ${ }^{1,2}$
Gergő Hamar¹, László Balázs 1,2

REGARD

RMKI ELTE COLlaboration

1. HUN-REN Wigner Research Centre for Physics
2. Eötvös Loránd University, Faculty of Science, Department of Geophysics and Space Science

Table of contents

- Introduction
- Muography
- The Innovative Gaseous Detector R\&D Group
- Data processing for direct problem
- Results
- Direct problem models
- Direct problem model for public detector geometry
- Esztramos mine
- Simple geology models (half ball, ball full of water/air)
- Janossy pitsystem
- Conclusion

Muography

1911: Victor Hess: Cosmic ray
Primarily and secondary particles
1936:C. D. Anderson: muon identification
1970: L.Alvarez: first muography experiment
Its characteristics :

- wide energy spectrum
- slow energy loss (Bethe-Bloch formula-> $\Delta E \sim \rho l$)

- The energy loss is proportional to the density of the rock and the trajectory length in the rock
The muonfield: $\mathrm{F}=N /(t \Omega A)$
Muon flux on ground roughly: $F=F_{0} \cos ^{2} \vartheta \quad\left(100 / \mathrm{sec} / \mathrm{m}^{2}\right)$
Muography uses cosmic muons to image the internal density structure of large objects.

Muography application

- Vulcanology
- Archaeology application
- Speleology
- Structural analysis

Results of Neapolis measurements ${ }^{3}$

- Monitoring
- Mining

3D density tomography of Omuroyama scoria cone ${ }^{4}$

Simulate data of uranium deposit

The Innovative Gaseous Detector R\&D Group

Country	Mining	Target
Finland	Kemi chromium mine	granite and bedrock localization $(2.3-$ $3.3 \mathrm{~g} / \mathrm{cm} 3 ; 2.65 \mathrm{~g} / \mathrm{cm} 3)$
Hungary	Janossy pit system	test site, hidden inhomogeneous
Hungary	Királylaki tunnel	unknown caves, hidden inhomogeneous
Hungary	Esztramos tunnels	well-tunneled hill, unknown caves?
Hungary	Underneath the Castle of Buda	expected covered medieval tunnels
Italy	Castello di Mussomeli	mediavel tunnels
Japan	Sakurajima Muography Observatory	vulcanology

464	
465 Event 33600, 2018-04-27_08:06:33, dt : 389590	
466
467
468 ..xxxxXXX...
 XXXX ...
XX..XXX...................................
471XXXXX................X.XXX1..........XXXX..........................
472 Adc: 288883725	
473 THP: $T=+19.75$ OC, $H=39.0 \times, P=972.8$ mbar, Thpid: 0	
474 Counter: +1 (95)	
475 Pattern: Triggered on:001111000000 (ok)	

A new research group has recently been set up, the High-Energy Geophysics Research Group.

Data processing

Direct problem models

$\mathrm{N}=\mathrm{F} t \Omega A_{\text {eff }}$

Equidistant model

$$
\begin{aligned}
& s_{x}=\tan \left(\alpha_{x}\right), \quad s_{y}=\tan \left(\alpha_{y}\right) \\
& A_{e f f}=\left(L_{x}-h s_{x}+2\left(N_{K}-K\right) a s_{x}\right) \\
& \left(L_{y}-h s_{y}+2\left(N_{K}-K\right) a s_{y}\right) \frac{1}{\sqrt{1+s_{x}^{2}+s_{y}^{2}}} \eta
\end{aligned}
$$

Slice: $\boldsymbol{s}_{\boldsymbol{y}}=\mathbf{0}$
Extended equidistant model in 1D

- $l_{x}\left(s_{x}\right)=$

$$
\begin{aligned}
& \left\{\begin{array}{cc}
L-h\left|s_{x}\right|+2\left(N_{K}-K\right) a\left|s_{x}\right|, & \left|s_{x}\right|<L / h \\
\left(L-(K-1) a\left|s_{x}\right|\right)+\left(N_{K}-K\right) a\left|s_{x}\right|, & L / h<\left|s_{x}\right|<L /(K a) \\
\left(N_{K}-(K-1)\right)\left(L-(K-1) a\left|s_{x}\right|\right), & L /(K a)<\left|s_{x}\right|<L /((K-1) a) \\
0, & \left|s_{x}\right|>L /((K-1) a)
\end{array}\right. \\
& \boldsymbol{\eta}\left(K_{T}\right)=\left\{\begin{array}{cc}
1, & K_{T}>K \\
\eta_{\text {Chamber }}^{K}, & K_{T}==K
\end{array}\right. \\
&
\end{aligned}
$$

$$
A_{e f f}=l_{x} L_{y} \frac{1}{\sqrt{1+s_{x}^{2}}} \eta
$$

Direct problem models

$\mathrm{N}=\mathrm{F} t \Omega A_{\text {eff }}$

Equidistant model

$$
\begin{aligned}
& s_{x}=\tan \left(\alpha_{x}\right), \quad s_{y}=\tan \left(\alpha_{y}\right) \\
& A_{e f f}=\left(L_{x}-h s_{x}+2\left(N_{K}-K\right) a s_{x}\right) \\
& \left(L_{y}-h s_{y}+2\left(N_{K}-K\right) a s_{y}\right) \frac{1}{\sqrt{1+s_{x}^{2}+s_{y}^{2}}} \eta
\end{aligned}
$$

Slice: $\boldsymbol{s}_{\boldsymbol{y}}=\mathbf{0}$
Extended equidistant model in 1D

- $l_{x}\left(s_{x}\right)=$

$$
\begin{aligned}
& \left\{\begin{array}{cc}
L-h\left|s_{x}\right|+2\left(N_{K}-K\right) a\left|s_{x}\right|, & \left|s_{x}\right|<L / h \\
\left(L-(K-1) a\left|s_{x}\right|\right)+\left(N_{K}-K\right) a\left|s_{x}\right|, & L / h<\left|s_{x}\right|<L /(K a) \\
\left(N_{K}-(K-1)\right)\left(L-(K-1) a\left|s_{x}\right|\right), & L /(K a)<\left|s_{x}\right|<L /((K-1) a) \\
0, & \left|s_{x}\right|>L /((K-1) a)
\end{array}\right. \\
& \boldsymbol{\eta}\left(K_{T}\right)=\left\{\begin{array}{cc}
1, & K_{T}>K \\
\eta_{\text {Chamber }}^{K}, & K_{T}==K
\end{array}\right. \\
&
\end{aligned}
$$

$$
A_{e f f}=l_{x} L_{y} \frac{1}{\sqrt{1+s_{x}^{2}}} \eta
$$

Direct problem model for general detector geometry

- Different approach was used
- What happen to the chamber position from the perspective of incoming muons? \rightarrow Shifted
- So I can calculate how many chambers the muon has passed in a given area through
- The intersection of the chambers in 2D = how many chambers detected the given angle of the muons in the intersection area

$$
\begin{aligned}
& S_{x_{i}}=Z_{i} s_{x}, \quad S_{y_{i}}=Z_{i} s_{y}, \quad i=1, \ldots N_{K}
\end{aligned}
$$

$$
\begin{aligned}
& \eta(x, y)=\left\{\begin{array}{lr}
1, & K_{T}>K \\
\eta_{\text {Chamber }}^{K}, & K_{T}=K \\
0 &
\end{array}\right. \\
& A_{e f f}=\int_{\mathrm{X}_{1_{1}}+\mathrm{S}_{\mathrm{x}_{1}}}^{\mathrm{X}_{\mathrm{N}_{N_{K}}}+\mathrm{S}_{\mathrm{X}_{N_{k}}}} \int_{{Y_{1}}_{1}+\mathrm{S}_{y_{1}}}^{Y_{2_{N_{K}}}+\mathrm{S}_{y_{N_{k}}}} \eta(x, y) d y d x \frac{1}{\sqrt{1+s_{x}^{2}+s_{y}^{2}}}
\end{aligned}
$$

Direct problem model for general detector geometry

Efficiency map shifted chambers [1]

- Different approach was used
- What happen to the chamber position from the perspective of incoming muons? \rightarrow Shifted
- So I can calculate how many chambers the muon has passed in a given area through
- The intersection of the chambers in 2D = how many chambers detected the given angle of the muons in the intersection area

$$
\begin{aligned}
& S_{x_{i}}=Z_{i} s_{x}, \quad S_{y_{i}}=Z_{i} s_{y}, \quad i=1, \ldots N_{K}
\end{aligned}
$$

$$
\begin{aligned}
& \eta(x, y)=\left\{\begin{array}{lr}
1, & K_{T}>K \\
\eta_{\text {Chamber }}^{K}, & K_{T}==K \\
0 &
\end{array}\right. \\
& A_{e f f}=\int_{\mathrm{X}_{1_{1}}+\mathrm{S}_{\mathrm{x}_{1}}}^{\mathrm{X}_{2_{N_{K}}}+\mathrm{S}_{\mathrm{x}_{N_{k}}}} \int_{{Y_{1}}_{1}+\mathrm{S}_{y_{1}}}^{Y_{2_{N_{K}}}+\mathrm{S}_{y_{N_{k}}}} \eta(x, y) d y d x \frac{1}{\sqrt{1+s_{x}^{2}+s_{y}^{2}}}
\end{aligned}
$$

Esztramos mine

- No active mining in the mine = stable surface
- Active exploration in the mine (more details in Rábóczki Bence's presentation)
- A domestic measurement area
- The target: comparison of the result from measurement with homogeneous model with original surface

Number of Tracks calculated [1]
 Number of Tracks measured [1]

Number of Tracks difference (calculated-measured) [1]

Number of Tracks difference with rel. scatter normalized [1]

$$
\delta \sigma=\left(N_{C}-N_{M}\right) / \sqrt{N_{M}}
$$

Simple model : flat surface with an anomaleous sphere

- Different geology situtations become possibly to search by this method
- We can review many questions with given series of measurement
e.g.: What kind type of detector should we use in a measurement?

How long have we to measure in a position?
Which setup can optimal ?
What type of anomaly can we detect?

- Ground model: flat surface, homogeneous, $\rho_{a}=2.4 \mathrm{~g} / \mathrm{cm}^{3}$
- Dector type= Mtl2, Position[0,0,-9]m, Inc=0 ${ }^{\circ}$ and Rot $=0^{\circ}$

Sphere: Position [0,0,-3]m, Radius=1m, $\rho_{\text {sphere }}=1 \mathrm{~g} / \mathrm{cm}^{3}$ (water) and $\rho_{\text {sphere }}=0 \mathrm{~g} / \mathrm{cm}^{3}$ (air)

10.

Results of sphere under the surface

Sphere (air) under the surface:
Sigma Difference [1/day]

Sphere (air) under the surface:
Necessary measuretime [day]

Sphere (water) under the surface:
Sigma Difference [1/day]

Sphere (water) under the surface:
Necessary measuretime [day]

Test site: Janossy pit system

Janossy pit system

- Janossy pit system: simple geometry -> main goals: particle physics measurements
- 3 floors: 1. 1 tunnel at $-10 \mathrm{~m}\left(0^{\circ}\right)$

2. 2 tunnel at $-20 \mathrm{~m}\left(0^{\circ}, 180^{\circ}\right)$
3. 3 tunnel at $-30 \mathrm{~m}\left(0^{\circ}, 120^{\circ}\right.$, 240°)

- Mts8 detector: position: 3. floor 1. tunnel, 156.5 cm from the end of the tunnel; Inc=-45 ; Rot=- 90°
- Ground model: flat surface, (NOT jet the original surface); homogeneous, $\rho_{a}=2.2 \mathrm{~g} / \mathrm{cm}^{3}$
Geology model: Shape of the tunnels was approched with cylinders. $\rho_{\text {tunnels }}=$ $0 \mathrm{~g} / \mathrm{cm}^{3}$

Janossy pitsystem geometry ${ }^{1}$

Flat Surface Model:
Number of tracks [1]

Sigma Difference [1/day]

Janossy pit:
Number of tracks [1]

Necessary measuretime [day]

Conclusion

- I set up a model that can be used for general geometry.
- It can be used to investigate theoretical and practical issues.
- I have used this method successfully for 3 geological models.
- It can be seen that measurement times can be estimated, detector type testing is possible, and measurement positions can be compared.

Acknowledgement

- I would like to express my special thanks of gratitude to WignerRCP, REGARD Group, Gergő Hamar and László Balázs.
- This project is supported by:

OTKA-FK135349, ELKH-KT-SA-88/2021, NKFIH-TKP2021-NKTA-10, KSZF-144/2023

Track map of shifted chambers [1]

Thank you for your attention!

References

https://rtl.hu/tudomany-tech/2023/08/18/janossy-lajos-kutato-labor-akna-foldalatti
2. https://home.cern/science/physics/cosmic-rays-particles-outer-space
3. https://www.nature.com/articles/s41598-023-32626-0?fromPaywallRec=true
4. https://link.springer.com/article/10.1007/s00445-022-01596-y/figures/9
5. https://www.nature.com/articles/s41467-023-36351-0
6. https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2018JB015626

Back up slides

Detector types

MWPC

Cathode

CCC

Simple geology model: flat surface with half sphere anomaly on the surface

- Ground model: flat surface, homogeneous, $\rho_{a}=2.4 \mathrm{~g} / \mathrm{cm}^{3}$
- Anomaly: half ball on the surface (Position[0,0,0]m, r=1m)

Dector type=Mtl2,Position[0,0,-6]m, Inc=0 ${ }^{\circ}$ and Rot= 0°

Simple geology model: anomaly on the surface

Flat Surface: Number of tracks [1]

Negative half sphere on the surface: Sigma Difference [1/hour]

Negative half sphere on the surface: Necessary measuretime [hour]

Esztramos mine

Acceptancy results of Esztramos mine

Acceptancy calculated [dm^{2}]

Acceptancy difference (calculated-measured) [dm^{2}]

Acceptancy measured [dm^{2}]

Acceptancy difference (calculated-measured)/measured [1]

Flux results of Esztramos mine

Flux measured
(calculated-measured) $\left[\mathrm{m}^{-2} \mathrm{~s}^{-1} \mathrm{srad}^{-1}\right]$

