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Abstract Single-component nonrelativistic dissipative fluids are treated independently of reference frames
and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations
and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields
of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are
the time- and spacelike components of the third-order mass–momentum–energy density-flux four-tensor. The
corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-
equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition
and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid.
The continuity-Fourier–Navier–Stokes equations are obtained almost in the traditional form if the flow of the
fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of
the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule.

Keywords Material frame-indifference · Objectivity · Galilean relativity

1 Introduction

The concept of absolute, motion-independent time is the result of our experience on the surface of the Earth,
where the motions are slow and there is an apparently fixed background reference frame. However, the space
is relative also in this case; it is different for different observers: The so-called nonrelativistic space–time is
Galilean relativistic. With the help of the notions of special relativistic space–time, the heuristic concepts of
our everyday experience can be clarified and an exact mathematical model of Galilean relativistic space–time
can be formulated [1–7].

In spite of our seemingly self-confident knowledge about slow motions of everyday life, such kind of
exact space–time model is unavoidable to formulate and handle fundamental physical principles. If a physical
phenomena happen without interacting with an observer, then one may find useful an adequate mathematical
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model, where this independent existence is reflected. Furthermore, considering the tempestuous history of
concepts about space and time, this kind of model seems to be unavoidable.

Themathematical notions in a physical theory are not simple tools, they are the building blocks, thematerial
of the whole building. The shape and flexibility of blocks contribute to the stability of the construction. With
properly formed blocks one can spare the mortar of imagination for a better use: for the design of the building
and for other conceptual questions. A good example of the importance of proper building material may be
elimination of space coordinates in classical field theories with the help of more abstract notions of vectors and
tensors. Coordinate-free concepts improve the focus on fundamental notions and are also helpful to develop
better calculation methods in engineering.

The goal of this work is to show that reference frame independent treatment leads to consistent and
reasonable results in case of fluids, that is reference frames may be avoided. This work is also an argument
why reference frames should be avoided, and it provides tools how they can be eliminated, similarly to
coordinates, from theories of continua. Our example is single-component fluid mechanics in this case.

Time is absolute in Galilean relativistic space–time, it is the same for different observers, in other words, it
is independent of reference frames. In the following the adjective absolute will be used in this sense for other
reference frame free physical quantities, too. Other similar concepts, like objective or covariant, are mostly
avoided.

There are two points where our treatment is simplified. First, it has been long known that space and time are
not vector spaces but better represented by affine spaces, because none of them have a canonical center [1–3].
In this work the affine character of Galilean space–time is not crucial; therefore we use a vector representation
for it. Second, we do not deal with the exact mathematical representation of physical units; nevertheless, it is
interesting both from conceptual and practical points of view [8–10]. The definition of the complete space–time
model is given in the “Appendix.”

Absolute time is not a subspace of the Galilean relativistic space–time. This is the critical, hidden problem
of the usual superficial representations of Galilean relativistic space–time. At first it seems to be less important
than the mentioned center and unit dependencies. However, if we represent space–time by a Cartesian product
of the one-dimensional time and three-dimensional space, or even worse by R

4, our theory is unavoidably
reference frame dependent. The proper representation of the absolute time has consequences. One of them
is that in nonrelativistic physical theories space–time four-covectors cannot be identified with four-vectors
and they transform differently when the reference frame changes. An other consequence is that the trace of a
second-order space–time four-tensor or a four-cotensor does not exist; only a mixed four-tensor has a trace.
In this respect the Galilean relativistic space–time is not a specific low speed limit of special relativistic or
general relativistic ones. The operations with space–time quantities are different from the usual relativistic
operations and require care despite familiarity in special or general relativistic calculations. For example, here
some components of four-quantities, and not only the complete quantity, may be reference frame independent:
The timelike component of a vector and the spacelike component of a covector are absolute.

Several problematic aspects of nonrelativistic physics are due to inappropriate space–time models:

1. Principle of objectivity This principle formulates a simple and evident (looking) property, postulating that
the material must be independent of a reference frame; therefore physical quantities, laws, equations of
motions and material functions should be given accordingly. In the usual formulations of the principle,
a certain invariance is required for vectors and tensors in the three-dimensional space. The restriction
to three dimensions is due to the absolute time. For point masses one expects invariance for Galilean
transformations related to inertial reference frames. For continua this is not enough; therefore invariance
under rigid body motions of the reference frame is required. This most accepted formulation is due to
Walter Noll ([11–15], see also in [16]). From a space–time point of view the formulation of material frame
indifference of Noll is incomplete, because several physical quantities are four-tensors [17].
One of the most important physical quantities from objectivity point of view is the finite elastic defor-

mation. One can define infinite number of deformation measures that are objective in the sense of Noll,
and even more that are not. It is remarkable that space–time requirements distinguish a single concept of
deformation [18–20], which turned out to be advantageous from other points of view, too [21–25].

2. Principle of material frame indifferenceModeling ofmaterial properties requires that not only the physical
quantities but the constitutive functions should be independent of reference frames. However, here one
should distinguish between an external observer and the material itself. It is clear that the motion of an
external observer cannot play a role in material properties. On the other hand, a prescribed noninertial
motion, e.g., rotation, of the continuum may require inertial terms in the evolution equations and also in
the constitutive relations. This is one of the crucial aspects of formulating material frame indifference.
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The principle and also its formulation initiated a long and unfinished discussion among those who are
interested in the fundamental aspects of continuum physics. Here we give an incomplete list of the most
important looking related works [26–52].

With the help of the Galilean relativistic space–time model one can show that a formal invariance of
the constitutive functions (independency of the angular velocity of a rotating reference frame) is a wrong
requirement, because reference frame independency is not always invariance; sometimes it requires that
the characteristics of the relative motion appear in the transformation rules [53], as it is evident in case of
Galilean transformations. A better approach is requiring that material properties have to be formulated in
a local rest frame of the continuum [29,49–52].

3. Flow-frames The rest frame of a continuum is not a unique concept. According to Howard Brenner, the
velocities in the mass, momentum and energy balances are not evidently the same [54–63]. This idea
has a long history [64–66], and it is analogous to the problem of flow-frames in case of relativistic fluids
[67,68]. What is the velocity, the rest frame of a fluid? What defines the motion from a physical point of
view? The mass, the momentum, the energy or something else? Do we have a choice? In the usual fluid
equations the velocities are relative velocities; therefore one must consider the role of the space–time to
get a reliable answer.

4. Compatibility with special relativity One may like to see the correspondence of physical quantities of
Galilean relativistic fluids and special relativistic fluids beyond the usual comparison of relative quantities.
In special relativity the basic quantity is the covariant second-order energy–momentumdensity four-tensor.
The energy is the time–timelike part of this tensor, and the transformation properties of the energy are
consequences of this fact. What could be a similar physical quantity in Galilean relativity?

5. The origin of transformation rules The energy, e.g., the kinetic energy, when expressed by the relative
velocity is definitely relative and frame dependent. Is there an objective physical quantity behind the
energy?Dowe know the transformation rules of the nonrelativistic energy?What about the transformation
rules of other physical quantities, represented by second-order tensors or covectors?

A particular aspect of objectivity is postulating the Galilean invariance of the evolution equations.
Without space–time considerations this is the only way to obtain the proper transformation rules of
physical quantities. In case of continua the system of balances is expected to be Galilean invariant [69–
71].

6. Compatibility with kinetic theory The consistency with statistical physics more properly with kinetic the-
ory raises some questions, too. For example, momentum series expansion of kinetic theory is informative
regarding transformation rules of macroscopic quantities [69,70]. Moreover, the method of derivation
of continuum equations (by Chapman–Enskog or momentum series expansion) is informative regarding
the thermodynamics of fluids. For example, the internal energy is determined in a close relation with the
pressure. Is there an aspect in phenomenological continuum physics, where the hierarchical structure of
momentum equations seems to be natural? On the other hand, at the same time, nonrelativistic kinetic
theory is considered as reference frame dependent, mostly due to macroscopic, phenomenological con-
siderations (e.g., transformation properties of the heat flux [70]). This is a fundamental contradiction with
general aspects of relativistic theories.

7. Thermodynamics One may think that thermodynamic relations are inherently absolute, because they
express directly properties of materials. Covariance of thermodynamic relations is expected in the rela-
tivistic case; this is an important question since the birth of relativity theory (see the problemof temperature
of moving bodies, e.g., in [72]). Interestingly, in the nonrelativistic theory this question is rarely treated
(but see e.g., [73–75]). The Galilean covariance of thermodynamical relations is not evident. Therefore
it is not clear whether the Gibbs relation is independent of reference frames or not. One may expect also
that dissipation is absolute and cannot depend on the motion of an external observer.

8. Natural philosophy Finally we emphasize that space–time formulation of a theory reorganizes our attitude
to some fundamental concepts. In the framework of the Galilean relativistic space–time model reference
frames, including inertial reference frames, are secondary, derived concepts. They are not fundamental
and moreover should be avoided in case of general problems, contrary to the common belief [76,77].

In the followingwe show that most of thesementioned problematic aspects can be resolved for an important
class of materials. We give a reference frame independent theory of single-component dissipative Galilean
relativistic fluids starting with the absolute basic fields, their balances, the thermodynamic relations and finally
calculating the entropy production. Along the absolute treatment the usual relative formulas and the corre-
sponding transformation rules are calculated, together with the conditions that lead to the relative continuity-
Navier–Stokes–Fourier system of equations.
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In this work a particular version of abstract indexes of Penrose [78] is introduced that hopefully contributes
to the transparency of the reference frame freemeaning of the equations of Galilean relativistic fluidmechanics.
Three different indexes are introduced. The four-vectors and tensors of the Galilean relativistic space–time are
denoted by upper a, b, c, . . . indexes and the covectors and cotensors by lower a, b, c, . . . indexes. Overlined
indexes from the beginning of the alphabet, ā, b̄, c̄, . . ., denote spacelike four-vectors or spacelike parts of four-
tensors, when positioned upper and spacelike four-covectors or four-cotensor components when positioned
lower. It is important that the upper or lower position of the a, b, c, . . . indexes is fixed, they cannot be pulled
or pushed up or down, because there is no canonical, observer-independent identification between vectors
and covectors. On the one hand the position of spacelike ā, b̄, c̄, . . . indexes can be changed, because of the
Euclidean structure of space vectors. The indexes of the usual relative vectors and tensors, those that are related
either to the fluid or to the external reference frame, are denoted distinctively by i, j, k, l, . . .. These indexes are
used whenever a single relative vector (typically the relative velocity) is present in the formula. The space–time
model, the calculation rules and the notation are explained in the Appendices. The following sections require
the detailed knowledge of “Appendix A,” where the foundations of the Galilean relativistic space–time model
are given and also of “Appendix B,” where the most important calculation rules are derived and summarized.

2 Balances and their Galilean transformations

The fundamental balances of special relativistic fluids are expressed by four-divergences of the four-densities of
the extensive physical quantities. In nonrelativistic physics these four-densities and four-divergences are hidden,
behind the usual relative formulation: The change of the extensive quantity is due to the local and simultaneous
change inside the considered spatial region (timelike part) and the outward or inward flow (spacelike part). In
the following we derive the usual relative forms of the balances in a Galilean relativistic framework. Therefore,
we express the four-vector field Aa with the help of its relative parts due to the four-velocity field of the fluid
ua , introducing its u-form, Aa = Aua + Aā , into the balance

∂a Aa = Du A + A∂aua + ∂a Aā = Du A + A∇āua + ∇ā Aā = 0, (1)

where a is a space–time index and ā is the spacelike index. A = τa Aa and Aā = π ā
b Ab are the timelike and

u-spacelike parts of Aa , and Du = ua∂a and ∇ā = δ b
ā ∂b are the u-timelike and spacelike parts of space–

time derivation ∂a (see “Appendix A”). The absolute balance, (1), is expressed by the u-relative parts of the
four-vector Aa and four-covector ∂a .

A relative velocity field plays a central role in the local and substantial relative balances of a fluid. This
velocity is the relative velocity of the fluid and an inertial observer; therefore it is the difference of the four-
velocity of the fluid, ua , and the constant four-velocity field of an inertial external observer, u′a = const..
The local form of the balance (1) is obtained with the u′-form of the derivative and the four-vector field of the
physical quantity:

∂a Aa = Du′ A + A∂au′a + ∂a A′ā = Du′ A + ∇ā A′ā = 0. (2)

The substantial form of the balance (1) is obtained by substituting the four-velocity of the fluid, ua , with
the relative velocity of the fluid to the observer, vā = ua − u′a :

∂a Aa = Du A + A∂aua + ∂a Aā = Du A + A∇āvā + ∇ā Aā = 0, (3)

because ua = ua − u′a + u′a = vā + u′a and u′a = constant. In the local balances the time derivative is
denoted as Du′ = ∂t , in the substantial ones one may use a different notation, Du = dt , or the traditional dot,
therefore Du A = dt A = Ȧ.

In the followingwe apply a distinct notation, the indexes i, j, k, for spacelike relative vectors and covectors,
in formulas related to an external observer. Both the local and the substantial balances (2) and (3) can be written
this way. The relative form of the local balance is

∂t A + ∇i A′i = 0, (4)

and the substantial follows as

Ȧ + A∇iv
i + ∇i Ai = 0. (5)



Galilean relativistic fluid mechanics 589

It is easy to check that local balances can be obtained from substantial ones and vice versa with the Galilean
transformation rules of covectors and vectors ∂t = d

dt
− vi∇i , and A′i = Ai + Avi (see “Appendix B”).

The substantial and local forms of the absolute balance depend on the components of the four-derivative
and the four-vector splitted by the four-velocities of the fluid, ua , and the external observer, u′a . It is important
to remember that the velocity field of the observer is given, the velocity field of the fluid is to be determined, we
are looking for differential equations to determine it. The absolute equations are independent of any observer
[51].

The fundamental physical information is given by the four-vector Aa , its four-divergence and by the velocity
field of themedium, ua . Up to now,we did not say anything about the physicalmeaning of the four-velocity field
of the medium.Wewill see that the interpretation of the four-velocity field of the fluid requires thermodynamic
considerations.

However, first of all we should find the space–time representation of the physical quantities like mass,
momentum, energy, heat flux, etc. We will see that actually we do not have several quantities; in Galilean
relativity there is one, single, absolute physical quantity that characterizes a single-component fluid.

2.1 Tensor or cotensor of how many orders?

In special relativistic fluid mechanics the physical quantities may be scalars, four-vectors and also higher-
order objects, like the second-order energy–momentum tensor. It is straightforward to assume that in Galilean
relativistic space–time an analogous quantity exists like mass–momentum or energy–momentum.

However, Galilean relativistic space–time is a more restricted framework than the special relativistic one,
because the space–time vectors and covectors are related only by the linear structure; there is no Euclidean
or pseudo-Euclidean structure on the space–time level which would admit their identification. Therefore, the
divergence of a four-covector or four-cotensor field does not exist independently of a reference frame. Similarly,
there are no symmetric or antisymmetric parts of mixed four-tensors independently of reference frames.

On the other hand, the observed empirical, space–time-related properties of relative physical quantities
are reflected in their transformation properties. In case of a reference and flow-frame-independent Galilean
relativistic theory these transformation properties can be deduced; they are consequences of the properties
of space–time quantities. This theoretical framework must be harmonized with the empirical knowledge. For
example, if the Galilean transformation rule of a physical quantity is like the transformation rule of the position,
then this quantity may be a spacelike part of a four-vector. In this identification process the energy plays a
distinguished role. Onemay come to the idea that the relation of kinetic, internal and total energies is a Galilean
transformation rule. The total energy is the sum of internal and kinetic energies: From the point of view of
a comoving reference frame, fixed to the flow of the medium, the energy is the internal energy, but for an
external, inertial observer the kinetic energy has to be added. In a continuum the relation of the total energy
density eT and the density of the internal energy eb is the following:

eT = eb + ρ

2
v2, (6)

due to two reference frames having relative velocity vi .
These preliminary considerations outline the framework toward understanding the relation of energy density

and the space–time structure. In “Appendix B” we have calculated the transformation rules of four-vectors,
four-covectors and different second-order tensors. Scrutinizing the derived formulas one can observe that a
quadratic relative velocity in a transformation rule requires at least second-order tensors. The time–timelike
component of a second-order four-tensor, the space–spacelike component of a second-order four-cotensor
and the time–spacelike or space–timelike component of a mixed second-order tensor transform quadratically
with the relative velocity. However, the existence of balance form evolution equation restricts the possible
choices, e.g., a second-order four-cotensor field does not have a divergence in Galilean relativistic space–time,
and therefore cannot have a balance. However, energy may be also related to higher-order tensors, like the
time–timelike component of a third order,M ⊗ M

∗ ⊗ M
∗-valued mixed tensor field.

A further physical requirement is the compatibility to kinetic theory of gases. In the usual nonrelativistic
theory the internal energy is the trace of the second-order central momentum of the one particle probability
distribution function by the relative velocity [70,79]. Kinetic theory determines the energy in this respect,
using also the ideal gas equation of state. From a space–time point of view an energy connected to the space–
spacelike component of a second-order four-tensor is not sufficient, because the energy balance requires energy
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flux, this way an additional tensorial order. In a Galilean relativistic continuum theory based on a second-order
four-tensor (the mass–momentum density tensor) one must introduce an independent, vectorial energy balance
for the internal energy; therefore (6) cannot be obtained as a transformation rule [80]. Onemay conclude that in
order to fulfill all these requirements, anM⊗M⊗M-valued, third-order tensor field emerges. The components
of the four-divergence of this quantity must give the fundamental balances of mass, momentum and energy
together. In the next sections we will show that such a basic physical quantity leads to a consistent theory.

Astonishingly, one may obtain a rather similar theory assuming that the basic physical quantity is the
above-mentioned third-order mixed tensor field. In both cases, the transformation rules are the same and the
entropy production is obtained in the same form (after a long calculation). The compatibility with the usual
energy concept of kinetic theory compels us to consider in this paper a third-order four-tensor as the basic
physical quantity of a Galilean relativistic theory of single-component fluids.

Looking back to the relation (6) of total, internal and kinetic energies one may wonder about expected
properties of transformation rules. Considering a third reference frame, it is easy to see that the formula (6)
is not a transitive rule. Our idea of an energy transformation rule is seemingly wrong. In the following we
will see that transitivity may be expected; our formula (6) is an oversimplified version of a more complicated
relation.

3 The mass–momentum–energy density-flux tensor and the related transformation rules

According to the previous section, our basic physical quantity will be a third-order four-tensor field , Zabc :
M → M ⊗ M ∨ M, that we will call the mass–momentum–energy density-flux third-order four-tensor of a
single-component fluid. The reason of the nomination will be clear after the deduction of the transformation
formulas and the balances. In the following we assume that the tensor field is symmetric in the second and
third order, as it is indicated by the symbol ∨. In the following we do not explicitly denote this symmetry,
Zabc = Zacb; only we refer to it if necessary. This tensor can be written in the following general u-form, with
the components obtained by the four-velocity ua :

Zabc = zbcua + zābc

=
(
ρubuc + pb̄uc + ub pc̄ + eb̄c̄

)
ua +

(
j āubuc + Pāb̄uc + Pāc̄ub + qāb̄c̄

)
, (7)

where

zbc = τa Zabc, (8)

zābc = π ā
d Zdbc. (9)

These components are the second-order four-tensor of densities and the tensor of fluxes or current densities,
that is zbc is the mass–momentum–energy density tensor and zābc is the diffusion–pressure–heat flux tensor.
τa is the time evaluation, and π ā

b is the u-projection for taking the u-spacelike parts of vectors.
The further notations are:

– ρ = τbτczbc = τaτbτc Zabc is the time–time–timelike part of the mass–momentum–energy density-flux
tensor, the mass density or density.

– pb̄ = π b̄
dτczdc = τaπ b̄

dτc Zadc is the time–time–spacelike part of the mass–momentum–energy density-
flux tensor, the momentum density. Because of the symmetry of Zabc it is equal to the time–space–timelike
part, pc̄ = τbπ

c̄
d zbd .

– eb̄c̄ = π b̄
dπ c̄

ezde = τaπ b̄
dπ c̄

e Zade is the energy density tensor, the time–space–spacelike part of Zabc.
– j ā = π ā

dτbτc Zdbc is the (self)diffusion flux, the space–time–timelike part of Zabc.

– Pāb̄ = π ā
dπ b̄

eτc Zdec is the pressure, the space–time–spacelike part of Zabc. Because of the symmetry of
the third-order tensor it is equal to Pāc̄ = π ā

dτbπ
c̄
e Zdbe.

– qāb̄c̄ = π ā
dπ b̄

eπ
c̄
f Zde f is the heat flux tensor, the space–space–spacelike part of Zabc.

The usual energy density and heat flux can be introduced according to the kinetic theory reducing the order
of the corresponding tensors by two:

– e = 1
2eā

ā is the energy density,
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– qā = 1
2qāb̄

b̄
is the heat flux.

All these quantities are definedwith the help of the velocity field of themedium, ua . So they are independent
of any external observers.

3.1 Transformation rules of time- and spacelike parts

The time- and spacelike components of a physical quantity obtained by an inertial observer of constant four-
velocity u′a are relative quantities. The Galilean transformation rule of a physical quantity means expressing
these relative quantities with the aid of the components corresponding to the four-velocity ua . In “Appendix B”
the transformation rules of first- and second-order tensors are calculated by splitting the u-form of the tensors
with the four-velocity u′a . The same procedure can be applied for the third-order mass–momentum–energy
density-flux tensor. In transformation formulas the relative velocity of the fluid to the observer, vā = ua − u′a ,
appears naturally.

The (mass)density, ρ, is a Galilean scalar; it is invariant:

ρ′ = τaτbτc Zabc = ρ. (10)

The momentum density and the mass density are components of an absolute four-vector; therefore the
momentum density transforms like the spatial component of a four-vector:

p′b̄ = π ′b̄
d τczdc = π ′b̄

dτc(ρuduc + pd̄uc + ud pc̄ + ed̄c̄) = (δb̄
d̄

− u′bτd)(ρud + pd̄)

= pb̄ + ρvb̄. (11)

The (self)diffusion flux transforms like the momentum density, because together with mass density they
are components of a four-vector, too:

j ′ā = j ā + ρvā . (12)

The energy density is not a Galilean scalar:

e′ = δb̄c̄

2
π ′b̄

dπ ′c̄
ezde = δb̄c̄

2
(δb̄

d̄
− u′bτd)(δc̄

ē − u′cτe)
(
ρudue + pd̄ue + ud pē + ed̄ē

)

= δb̄c̄

2

(
ρvb̄vc̄ + pb̄vc̄ + vb̄ pc̄ + eb̄c̄

)
= e + pāvā + ρ

2
vāvā . (13)

The transformation rule of the pressure tensor is:

P ′āb̄ = π ′ā
dπ ′b̄

eτc Zdec = (δā
d̄

− u′aτd)(δb̄
ē − u′bτe)

(
ρudue + pd̄ue + ud j ē + Pd̄ē

)

= Pāb̄ + pb̄vā + j āvb̄ + ρvāvb̄. (14)

The most complicated transformation rule belongs to the heat flux:

q ′ā = δb̄c̄

2
q ′āb̄c̄ = δb̄c̄

2
π ′ā

dπ ′b̄
eπ

′c̄
f Zde f

= δb̄c̄

2
(δā

d̄
− u′aτd)(δb̄

ē − u′bτe)(δ
c̄
f̄
− u′cτ f )

((
ρueu f + pēu f + ue p f̄ + eē f̄

)
ud

+
(

j d̄ueu f + Pd̄ēu f + Pd̄ f̄ ue + qd̄ē f̄
))

= qā + (e + pb̄v
b̄ + ρ

2
vb̄v

b̄)vā + Pāb̄vb̄ + j ā vb̄vb̄

2
. (15)
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Finally, we summarize these rules with the help of the usual 3-index notation:

ρ′ = ρ, (16)

p′i = pi + ρvi , (17)

j ′i = j i + ρvi , (18)

e′ = e + piv
i + ρ

2
v2, (19)

P ′ik = Pik + ρvivk + pkvi + j ivk, (20)

q ′i = qi + vi
(

e + pkv
k + ρ

2
v2

)
+ Pikvk + j i v

2

2
, (21)

Two unusual quantities appeared in our reference frame free approach. One of them is the conductive
current density of the mass, j ā , the (self)diffusion flux. The other one is the momentum density, pā . One can
reveal their role with the help of the absolute and relative balances of the fluid.

4 The fundamental balance of single-component fluids and its components

The balances of mass, momentum and energy are the components derived from the divergence of the mass–
momentum–energy density-flux tensor. The u-form of the divergence is:

∂a Zabc = ∂a

(
zbcua + zābc

)
= żbc + zbc∂aua + ∂azābc

= (ρ̇uc + ρu̇c + ṗc̄)ub + (ρu̇b + ṗb̄)uc + pb̄u̇c + pc̄u̇b + ėb̄c̄

+
(
ρubuc + pb̄uc + ub pc̄ + eb̄c̄

)
∂aua + ubuc∂a j ā + j āuc∂aub + j āub∂auc

+ Pāb̄∂auc + uc∂a Pāb̄ + Pāc̄∂aub + ub∂a Pāc̄ + ∂aqāb̄c̄ = 0bc. (22)

Here the dot denotes the u-time derivative: ua∂a( ) = Du( ) = ()̇. The timelike part of the mass–
momentum–energy balance (22) is the mass–momentum balance:

τc∂a Zabc = ρ̇ub + ρu̇b + ṗb̄ + (ρub + pb̄)∂aua + ua∂a j ā + j ā∂aub + ∂a Pāb̄ = 0b. (23)

The timelike part of the mass–momentum balance (the time–timelike part of the mass–momentum–energy
balance) is the mass balance:

τbτc∂a Zabc = ρ̇ + ρ∂aua + ∂a j ā = 0, (24)

The u-spacelike part of (23) is the momentum balance:

π b̄
dτc∂a Zadc = ρu̇b + ṗb̄ + pb̄∂aua + j ā∂aub + ∂a Pāb̄ = 0b̄. (25)

The balance of energy is the u-space–spacelike part of themass–momentum–energy balance,more properly
the trace of that:

δb̄c̄

2
π b̄

dπ c̄
e∂a Zade = δb̄c̄

2

(
ėb̄c̄ + eb̄c̄∂aua + pb̄u̇c + pc̄u̇b + Pāb̄∂auc + Pāc̄∂aub + ∂aqāb̄c̄

)

= ė + e∂aua + pb̄u̇b + Pā
b̄
∂aub + ∂aqā = 0. (26)

One may obtain the substantial form of the balances (24), (25) and (26) by using the relative velocity
vā = ua − u′a of the fluid to the inertial reference frame. With the usual three-index notation they are

ρ̇ + ρ∂iv
i + ∂i j i = 0, (27)

ṗi + pk∂kv
k + ρv̇i + j k∂kv

i + ∂k Pki = 0i , (28)

ė + e∂iv
i + ∂i q

i + pi v̇
i + Pik∂ivk = 0. (29)
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These are the mass, momentum and energy balances of the fluid. The same expressions are obtained if
the transformation rules (16) are applied to exchange the inertial reference frame related u′-quantities with
medium-related u-quantities in the local balances. The underlined terms indicate the differences between the
usual balances of fluids (see, e.g., [81,82]) and the ones above. In these terms two additional quantities appear,
the (self)diffusion flux, j i , and the momentum density pi . They do not appear in the usual relative treatments,
and the question is whether we could find any general physical reason to determine or eliminate them. The
usual closure procedure, prescribing constitutive functions for the pressure tensor, Pāb̄, and the heat flux,
qā , is insufficient; further conditions are necessary to close the system of equations. To this end one should
investigate the thermodynamics of fluids from the point of view of Galilean relativistic space–time.

5 Thermostatics of motion or thermostatodynamics

The title of the section reflects the paradoxical dilemma of thermodynamics (or thermostatics?) considering
the motion-related mechanical properties. The literature of thermodynamics rarely introduces velocity as a
state variable. In rational continuum mechanical investigations this possibility is forbidden, because the usual
theory does not consider classical thermodynamics as a meaningful starting point. Moreover, according to
the usual formulation of the principle of material frame indifference relative velocity cannot be a variable in
constitutive functions (see, e.g., [83], p. 43). From the point of view of Galilean relativity these statements
require further analysis [17].

5.1 Absolute relations

Our fundamental point of view is that classical “equilibrium” thermodynamics is actually time dependent:
it is the homogeneous, discrete counterpart of irreversible thermodynamics.1 Moreover, the thermodynamic
relations of relativistic kinetic theory can be instructive. The essential aspects are treated in [86,87].

The entropy density is a four-vector field, whose u-form is Sa = sua + sā , with the timelike component,
the entropy density, s = τasa and the u-spacelike component, the entropy flux sā = πa

b Sb. The entropy density
is the function of the mass–momentum–energy density: s = s(zbc). This is an absolute relation and does not
depend neither on a reference frame nor on the velocity field of themedium ua , because both the entropy density
and the density tensor of the extensives, s and zab, are absolute. The derivative of s is the symmetric second-
order four-cotensor of the thermodynamic intensives, the chemical potential–thermovelocity–temperature four-
cotensor, and denoted by Ybc in the following. Therefore, ds

dzbc = Ybc. This derivative is the Gibbs relation,
and in the following, it is treated by differentials according to thermodynamic tradition:

ds = Ybcdzbc. (30)

The u-form of the chemical potential–thermovelocity–temperature cotensor is:

Ybc = Ybτc + Ybēπ
ē

c = (yτb + yd̄π d̄
b )τc + (yēτb + yd̄ēπ

d̄
b )π ē

c . (31)

If the tensor zbc is split to components according to (7), then

– y is the intensive quantity related to the mass density,
– yb̄ is the intensive quantity belonging to the momentum density pb̄,

– yb̄c̄ is the intensive quantity related to the energy density tensor eb̄c̄ .

One can pull closer the treatment to the usual approach assuming

yb̄c̄ = β

2
δb̄c̄ (32)

1 In this respect the book of Tamás Matolcsi is clear and instructive [84], introducing evolution equations and also the relation
of the second law and asymptotic stability of the equilibrium. Matolcsi [84] settles and extends the issues that were started, e.g.,
by Truesdell and Bharatha [85].
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In this case

y b̄
b̄

= δb̄c̄ yb̄c̄ = 3

2
β. (33)

Then the physical quantities are

– the reciprocal temperature, β:

β = 1

T
= 1

6
δb̄c̄δ e

c̄ δ d
b̄

Yde = 2

3
y b̄

b̄
. (34)

– The chemical potential μ is related to the entropic intensive of the mass density:

μ = −T ubucYbc = −T y. (35)

– Finally, thermovelocity is defined with the help of the momentum density related intensive

wb̄ = −2T ucδ d
b̄

Ydc = −2T yb̄. (36)

Therefore the u-form of the absolute Gibbs relation (30) can be calculated as:

ds = Ybcdzbc = −β

(
μτbτc + 1

2
(wd̄π d̄

b τc + wēπ
ē

c τb) − 1

2
yd̄ēπ

d̄
b π ē

c

)

×
(

ubucdρ + ρucdub + ρubduc + ucdpb̄ + pb̄duc + ubdpc̄ + pc̄dub + deb̄c̄
)

= −β
(
μdρ + ρwb̄dub + wb̄dpb̄ − pb̄dub − de

)
(37)

With the help of the u-split quantities finally the following form is obtained:

de = T ds + μdρ + wādpā + (ρwā − pā)dua . (38)

This formula is analogous to the relativistic Gibbs relation suggested in [86–88], where the compatibility
with kinetic theory is considered. The enthalpy in the relativistic case is substituted by the mass density here.

The Legendre transformation of the entropy density four-vector defines the conjugated entropy, S̃a :

Sa − Ybc Zabc = S̃a . (39)

Let us give the u-form of the conjugated entropy in the following form

S̃a = βp(ua + r ā), (40)

where τar ā = 0. Then the absolute timelike part of the four-vector equation (39), the extensivity relation is

s + βμρ + βwb̄ pb̄ − βe = βp. (41)

This expression defines the thermostatodynamic (thermostatic) pressure, p. The u-spacelike part, the entropy
flux, is obtained with the help of the u-projection, π ā

b:

sā + βμj ā + β Pāb̄wb̄ − βqā = βpr ā . (42)

The extensivity relation (41) and the Gibb relation (38) together result in the Gibbs–Duhem relation:

βdp = −hdβ + ρd(βμ) + pād(βwā) − β(ρwā − pā)dua, (43)

where h = e + p is the enthalpy density.
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5.2 Equation of state

The u-form of the absolute Gibbs relation, (38), may be interpreted by taking into account that the relative
intensives T, μ, wā, ρwā − pā are functions of the relative densities (s, ρ, pa, ua). Therefore, one of the
second-order mixed partial derivatives of the internal energy e leads to the following Maxwell relation:

∂wā

∂ub
= ∂2e

∂ub∂pā
= ∂2e

∂pb̄∂ua
= ∂(ρwā − pā)

∂pb̄
. (44)

This is a partial differential equation for wā , whose general solution is

wā = pā

ρ
+ Aāc̄

(
uc − ûc + pc̄

ρ

)
, (45)

where Aāc̄(ρ, s) and the four-velocity ûc(ρ, s) ∈ V (1) are arbitrary functions of ρ and s. The above equation
of state demonstrates that the dependence of the thermovelocity on the momentum density pā is restricted.
The equation of state is very simple if Aāc̄ = 0āc̄. In this case

pā = ρwā . (46)

In the following we will call this relation momentum condition.

5.3 The transformation rules of thermodynamic relations

The entropy density and the entropy flux are time- and spacelike components of the entropy four-vector. The
components according to an external inertial observer with constant u′a four-velocity lead to the corresponding
transformation rules between the comoving reference frame and an inertial laboratory one:

s′ = s, s′i = si + svi . (47)

Here vā = ua − u′a is the relative velocity field.
The general transformation rules of four-vectors in (88) and the representation of S̃a in (40) result in

p′ = p and r ′i = r i + vi . (48)

The components of the absolute chemical potential–thermovelocity–temperature four-cotensor, Yab, are
transformed according to (107) of “Appendix B”:

β ′ = β, (49)

w′i = wi + vi , (50)

μ′ = μ − wiv
i − v2

2
. (51)

It is worth to analyze thermovelocity with more details. The spacelike part of a second-order cotensor is
absolute: yāb = δ c

ā Ycb = yāτb + yāc̄π
c

b . Its u′-timelike component is

y ′̄
a = yābu′b = yā + yāc̄(u

′c − uc), (52)

Therefore, for the thermovelocity one obtains with the help of (32) and (36):

w′̄
a = wā − δāc̄(u

′c − uc) = wā + vā, (53)

Written with relative indexes this is the transformation rule (50).
The extensivity relation is absolute and therefore Galilean invariant, because it is the absolute timelike part

of an four-vector equation:

e′ + p − T s − μ′ρ − w′
i p′i = e + p − T s − μρ − wi pi = 0. (54)
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That can be verified also directly with the derived particular transformation rules of the physical quantities. A
similar calculation shows that the entropy flux transforms as a space vector.

s′i = β(q ′i − μ′ j ′i − P ′i jw′
j + pr ′i ) = β(qi − μj i − Pi jw j + pri ) + svi = si + svi , (55)

where the previously derived transformation rules of β, qi , μ, j i , Pi j , wi , p és r i were applied.
Finally, the Gibbs relation (38) is Galilean invariant, too, because it is obtained applying a cotensor to a

tensor differential,

de − T ds − μdρ − widpi − (ρwi − pi )dv
i = de′ − T ds − μ′dρ − w′

idp′i − (ρw′
i − p′

i )dv̂
i , (56)

where vā = ua − u′a and v̂ā = ua − u′′a are the relative velocities of the medium with respect to inertial
observers with constant u′ and u′′ four-velocities. The last term of the Gibbs relation is Galilean invariant in
itself, like the T ds term, because ρwi − pi = ρw′

i − p′
i and dvi = d v̂i .

6 Absolute entropy production

With the u-forms of the Gibbs relation and the entropy flux, (38) and (42), the entropy balance can be expressed
as:

∂a Sa = ṡ + s∂aua + ∂asā

= β ė − βμρ̇ − βwā ṗā + β(pā − ρwā)u̇a + s∂aua

+ ∂a

(
βqā − βμj ā − β Pāb̄wb̄ + βpr ā

)
. (57)

Substituting the balances of mass, momentum and energy, (24), (25) and (26), then using also the Gibbs–
Duhem relation (43), one obtains that

∂a Sa = (s − βe + βμρ + βwā pā)∂aua + qā∂aβ − j ā∂a(βμ)

− β Pā
b̄
∂a(ub + wb̄) + βwā j b̄∂bua − Pāb̄wb̄∂āβ + βp∂ar ā + r ā∂a(βp)

=
(
ρr ā − j ā

) (
∂a(βμ) − βwb̄∂aub

)

+
(

qā − hr ā − (Pāb̄ − r ā pb̄)wb̄ + pra
)

∂aβ

− β
(

Pā
b̄

− r ā pb̄ − pδā
b̄

)
∂a(ub + wb̄) + βp∂a(r ā − wā)

=
(
ρr ā − j ā

)
∂a

(
β

(
μ + w2

2

))

+
(

qā − er ā − (Pāb̄ − r ā pb̄)wb̄ − (ρr ā − j ā)
w2

2

)
∂aβ

− β
(

Pā
b̄
− j āwb̄ − r ā(pb̄ − ρwb̄) − pδā

b̄

)
∂(ub + wb̄) + βp∂a(r ā − wā) ≥ 0. (58)

This inequality of the absolute entropy production is the second law of Galilean relativistic single-
component fluids. This is a quadratic expression. The first term expresses the diffusion-related dissipation;
the constitutive quantity is the (self)diffusion flux, j ā . In the second part of the product there is the gradient
of the chemical potential divided by the temperature. The second term is the thermal part of the dissipation,
where the constitutive quantity is the heat flux, qā . The gradient of the reciprocal temperature, ∂aβ, is the
thermodynamic force. The third term is related to mechanical dissipation, with the pressure tensor, Pāb̄, as
constitutive quantity, and with the gradient of a velocity as thermodynamic force. The relevant velocity is the
sum of the ua four-velocity and the wā thermovelocity. Let us observe that ua appears explicitly only here, in
the velocity gradient part of the dissipation. The fourth term is new. Here r ā can be the constitutive quantity.

Therefore the inequality of the absolute entropy production seems to be solvable in the sense that in
every term there is a constitutive quantity; therefore one can introduce thermodynamic fluxes and forces
and assume a linear relationship with positive definite coupling between them. However, the thermodynamic
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conditions alone do not close the system of balances. Enumerating the variables one can conclude that there
is no differential equation either for the momentum or for the velocity of the continuum. The thermovelocity
should be determined or fixed, too. Let us recognize here that up to know we did give any physical condition
that would connect ua to the medium; therefore the physical meaning of the velocity field of the fluid is not
known yet.

7 What is the velocity of a fluid?

For the sake of simplicity in the following we do not investigate the last term of the entropy production;
therefore the spacelike part of the conjugated entropy is considered parallel to the thermovelocity, as it is
customary in special relativistic kinetic theory. In particular our assumption is that

r ā = wā . (59)

Then the entropy production simplifies to the following form:

∂a Sa =
(
ρwā − j ā

)
∂a

(
μ

T
+ w2

2T

)

+
(

qā − wā(e − pb̄wb̄) − (ρwā − j ā)
w2

2
− Pāb̄wb̄

)
∂a

1

T

− 1

T

(
Pā

b̄
− j āwb̄ − wā(pb̄ − ρwb̄) − pδā

b̄

)
∂a(ub + wb̄) ≥ 0. (60)

How could we reduce the number of unknowns to obtain a closed system of equations? In addition to the
usual system of basic variables, the density, the internal energy density and the velocity field, ρ, ua, e, we have
two other fields: the momentum density and the thermovelocity, pā and wā . We have already discussed the
equation of state for the thermovelocity. On the other hand up to know we did not fix what is the meaning of
the four-velocity of the fluid. This choice, the physical definition of the fluid velocity is the flow-frame.

There are several possibilities. We may fix the velocity field ua to one of the extensive quantities of the
fluids, e.g., to the mass ( j ā = 0), to the energy (qā = 0) and also to the momentum density (pā = 0), but it
can be fixed by other, more complicated ways, too. With the previous definitions relative velocity is the flow
of the mass, energy or momentum related to an external observer. An example of more complicated choices is
mixture of energy and particle(mass) flow [88]. The different choices are not equivalent from a practical point
of view. Looking at the above expression of the entropy production one may recognize that a simple form of
constitutive functions is obtained fixing the four-velocity of the fluid to the thermovelocity, that is wā = 0.
This flow-frame is called thermo-flow.

The entropy production with thermo-flow is the following:

∂a Sa = − j ā∂a
μ

T
+ qā∂a

1

T
− 1

T

(
Pā

b̄
− pδā

b̄

)
∂aub ≥ 0. (61)

If the momentum condition equation of state, (46), is applied, thenwā = 0ā is the consequence of pā = 0ā .
Therefore in this case a thermo-flow is necessarily a momentum flow, too.

A fluid, defined with thermo- and momentum flows, is called classical fluid. Then the substantial mass,
momentum and energy balances become simpler, too:

ρ̇ + ρ∂iv
i + ∂i j i = 0, (62)

ρv̇i + j k∂kv
i + ∂k Pki = 0i , (63)

ė + e∂iv
i + ∂i q

i + Pik∂ivk = 0, (64)

and the entropy production is

∂a Sa = − j i∂i
μ

T
+ qi∂i

1

T
− 1

T

(
Pi j − pδi j

)
∂iv j ≥ 0. (65)
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Table 1 Thermodynamic forces and fluxes

Diffusion Thermal Mechanical

Force −∂i
μ
T ∂i

1
T ∂i v j

Flux j i qi − 1
T

(
Pi j − pδi j

)

For classical fluids the velocity-dependent Gibb relation, (38), reduces to the usual form

de = T ds + μdρ. (66)

In case of inertial observers w′
i = vi and p′i = ρvi , therefore ρw′i − p′i = 0. As a consequence, the

transformed form of the Gibbs relation, (56), becomes

de′ = T ds + μ′dρ + vid(ρvi ). (67)

Similarly the extensivity relation, (41),

e′ + p = T s + μ′ρ + ρv2 (68)

can be written in the form

e + p = T s + μρ. (69)

These formulas showwell that for classical fluids, the so-called total energy density is the u′-energy density
e′ corresponding to the inertial reference frame, and the u-energy density e is the internal energy. They are
related by the transformation rule (6). Similarly, in the transformation rule of chemical potential, μ′ = μ− v2

2 ,
we could call μ′ as total and μ as internal chemical potential. In the customary extensivity relation the term
of the kinetic energy is merged into pressure, instead of chemical potential. In fluid mechanics the extensivity
relation appears as Bernoulli equation with the so-called dynamic pressure.

The u′-form of the entropy flux of classical fluids provides the total entropy flux:

s′i = 1

T

(
q ′i − μ′ j ′i − P ′ikvk + pvi

)
, (70)

and the u-form is the internal entropy flux:

si = 1

T

(
qi − μj i

)
, (71)

The entropy production, (65), can be also calculated with the help of the relative balances and thermody-
namic relations, (62)–(64), (66), (69) and (71).

The corresponding thermodynamic forces and fluxes are given in Table 1.
According to the representation theorems of isotropic functions [89], for isotropic fluids the linear rela-

tionship between the thermodynamic fluxes and forces results in the following constitutive functions

j i = −ξ∂i
μ

T
+ χ1∂i

1

T
, (72)

qi = −χ2∂i
μ

T
+ λ∂i

1

T
, (73)

Pi j = pδi j − ηv∂kv
kδi j − η

(
∂ ivk + ∂kv

i − 2

3
∂kv

kδi j
)

. (74)

Here ξ is the (self)diffusion coefficient, χ1 and χ2 are the (self)Soret–Dufour coefficients, λ is the thermo-
dynamic coefficient of heat conduction (λF = T 2λ is the Fourier heat conduction coefficient), ηv and η are
the volume and shear viscosities.

The (62)–(64) system of basic balances, together with (72), (73) and the (74) constitutive functions, is a
closed system of equations, and with the notable exception of the (self)diffusion flux, it is identical with the
usual continuity-Fourier–Navier–Stokes system of equations. Our derivation shows that the (self)diffusion flux
cannot be eliminated simply by flow-frame choice; other conditions are necessary.
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8 Summary

Nonrelativistic, more properly, Galilean relativistic single-component dissipative fluids were treated indepen-
dently of reference frames and flow-frames. The particular conditions leading to the usual relative, reference
frame dependent continuity-Fourier–Navier–Stokes system of equations were given. The reference frame free
theory is based on the Galilean relativistic space–time model of Matolcsi [4,5,90]. Our treatment here uses
mostly vector spaces and introduces an adapted abstract index formalism.

It was required that usual relative physical quantities must be components of absolute ones, and that the
tensorial properties should be in harmony with the momentum series expansion of the kinetic theory. The
analysis of these requirements leads to our basic physical quantity, to a third-order, partially symmetric four-
tensor, called themass–momentum–energy density-flux tensor of the fluid. The four-divergence of this quantity
is a second-order four-tensor differential equation representing unitedly the reference frame independent form
of the mass, momentum and energy balances. With the help of a four-velocity field the mass balance emerges
as the time–timelike component and the momentum balance as the time–spacelike component and also as the
space–timelike component according to the symmetry. The energy balance is the trace of the space–spacelike
component of the absolute balance.

The Galilean transformation rules of the particular relative physical quantities and balances were derived.
One of the consequences of the theory is that the usual relation between the internal, kinetic and total energies
appears as a transformation rule.Thederived transformation rule of the energydensity, (19), ismoregeneral than
the usual expression with internal, total and kinetic energies (6), because of the presence of (self)momentum
density. The transformation rules of the physical quantities are transitive.

Regarding thermodynamics our basic assumption was that the entropy density depends on the mass–
momentum–energy density. This is an absolute statement, independent of reference frames and flow-frames.
The derivative of the entropy density provides the second-order four-cotensor of intensive quantities, the abso-
lute temperature–thermovelocity–chemical potential cotensor. The intensive pair of the momentum density,
the thermovelocity, appears in the u-form of the Gibbs relation, too. The equations of states of the relative
intensives are not independent of each other, due to the absolute background. The equality of second-order
mixed partial derivatives of the motion-related intensive quantities, the corresponding Maxwell relation, can
be solved and restricts the form of the thermovelocity equation of state.

The particular relative form of the entropy flux follows from the basic assumptions; therefore the four-
divergence of the entropy four-vector, that is the absolute entropy production, can be calculated. There is
a freedom to fix the flow-frame of a fluid to the mass (Eckart flow-frame), to the energy (Landau-Lifsic
flow-frame) or by other, different manners.

The particular form of the entropy production reveals that the most convenient choice of the flow-frame
is to fix it to the temperature and eliminate the thermovelocity. This is thermo-flow. Therefore the momentum
density is zero, too, because of the thermovelocity equation of state. With this condition we almost obtain
the usual form of the entropy production. The deviation comes from the presence of the (self)diffusion terms.
(Self)diffusion cannot be eliminated by changing the flow-frame if we want to keep the usual form of the other
terms.

9 Discussion

The presented investigations reformulate classical theory fluid dynamics in a self-consistent and simple frame-
work. Aspects of validation come from the relation to open problems and other theories. The relation to special
relativistic fluids, kinetic theory and the possibility of self-diffusion is discussed here.

9.1 Relativistic fluids

The primarymotivation of this work is originated in recent result of relativistic thermodynamics and dissipative
relativistic fluid dynamics [67,68,72,86–88,97–99]. Beyond reference and flow-frame independence the main
question is the expected stability of simple materials under simple environmental conditions. Without this
fundamental stability property physical phenomena may not be reproduced [93]. The physical–mathematical
representation of this stability is thermodynamics. The concepts and the structure of thermodynamics can be
understood from this point of view [84,94–96]. This approach to thermodynamics is also a benchmark, a
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tool of verification of a thermodynamic theory. Galilean relativistic fluids are like special relativistic fluids in
this respect, and we expect that the homogeneous equilibrium be asymptotically stable without any additional
conditions beyond the thermodynamic requirements [67,97]. For our systemof equations of fluids the following
statement can be proved.

Equations (62)–(64) and (72)–(74) are generic stable, that is their homogeneous equilibrium is linearly
stable, if thermodynamic stability is fulfilled (entropy density is concave), the transport coefficients are non-
negative (second law) and the following inequality is true:

ξ
∂

∂ρ

μ

T
− λ

∂

∂e

1

T
+ (χ1 + χ2)

∂

∂e

μ

T
≥ 0. (75)

Here the first two terms and the coefficient of the third term is nonnegative because of thermodynamic condi-
tions, but the partial derivative of the last term may lead to the violation of the inequality.

9.2 Kinetic theory

A possible alternative representing the basic field of the continuum in a Galilean relativistic space–time is a
third-order mixed tensor field, instead of third-order tensor field presented here. Then one obtains the same
relative balances with the same transformation rules. Then the second-order spatial component of the density
four-tensor will be the mass density, instead of the energy. However, the covariant parts of the mixed tensor
are not compatible with the usual system of equations obtained from momentum series expansion in kinetic
theory.

9.3 Extra mass flux

We have seen above that the existence of an extra mass flux, i.e., mass flux being different than momentum
density, is not simply a choice reference or flow-frame in a Galilean relativistic framework. The detailed
conditions are best summarized in [91]. However, the system of equations (62)–(64) and (72)–(74) is different
than their equations, the system of Brenner (see, e.g., [62]). The recent investigations of our equations in [92]
concluded that the conservation of four-moment of momentum, and in particular the time–timelike component
of the second-order tensorial four-balance, requires that the conductive mass flux has to be equal to the
momentum density in any reference frame. This is the requirement of locally conserved center of mass, the
conservation of booster. Therefore, in single-component dissipative fluids booster conservation seemingly
excludes the possibility of extra mass flux. This way it is possible to identify more properly the conditions
of different moment density and mass current density. One possibility is the existence of internal booster.
However, in case of single-component weakly nonlocal fluids, where thermodynamic potentials may depend
on gradient of density, booster conservation does not exclude extra mass flux, as it is shown in the example of
[92].
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Appendix A: Galilean relativistic space–time

The mathematical structure of the Galilean relativistic space–time is

1. M space–time is an oriented four-dimensional affine space of the world points or events x ∈ M , over the
four-dimensional vector space of space–time vectors xa ∈ M. There are noEuclidean of pseudo-Euclidean
structures onM: the length of a space–time vector does not exist.

2. I time is a one-dimensional oriented affine space of instants t ∈ I , over the one-dimensional vector space
of durations t ∈ I.

3. τ : M → I is the timing, an affine surjection over the linear mapping τa : M → I, the time evaluation.
4. D is the measure line of distances, which is a one-dimensional oriented affine space.
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Fig. 1 The relation of Galilean relativistic space, time and space–time

5. δāb̄ : E × E → D ⊗ D Euclidean structure is a symmetric bilinear mapping, where E := K er(τa) ⊂ M

is the three-dimensional vector space of space vectors.

The empirical–axiomatic foundation of this Galilean relativistic space–time is given in [90], where the
axioms are related to clear observations and measurements. This structure was given first in [100] and further
elaborated in [5]. Similar structures were suggested also in [3,101].

The duration between the events x, y ∈ M is calculated by τ(x) − τ(y) = τa xa , where xa = x − y. Two
events are simultaneous if the duration between them is zero. The difference between two simultaneous events
is a spacelike vector, an element of E. Those vectors that are not spacelike are called timelike.

The dual of M, the vector space of the M → R linear mappings, is denoted by M
∗. The elements of M∗

are called four-covectors and are denoted by lower indexes. Similarly, the dual of E is E∗, and their elements,
the spacelike vectors and covectors, are denoted by overlined upper or lower indexes xā ∈ E, xā ∈ E

∗,
respectively. The length of a spacelike vector is ‖x‖ =

√
xāδāb̄x b̄.

There is a canonical identification of E and E∗, due to the Euclidean structure. However,M andM∗ cannot
be identified for lack of Euclidean or pseudo-Euclidean structures: Timelike space–time vectors do not have a
length.

The most important elements of the model are shown in Fig. 1. Time evaluation and timing introduce a
foliation of space–time: the sequence of spacelike subspaces of simultaneous events.

We use an abstract index notation of vectors and covectors. a, b, c, d, e, f, g indexes are used for absolute
physical quantities in the four-dimensional space–time. The indexes are abstract in the sense that do not refer
to a particular coordinate system or reference frame; they denote the tensorial properties of the different space–
time-related physical quantities [78]. Upper indexes are used for vectorial (contravariant), the lower indexes
for covectorial (covariant) physical quantities. The i, j, k, l, m indexes always refer to tensorial components
of usual three-dimensional relative physical quantities as seen in an inertial reference frame. These indexes
indicate the presence of two absolute velocity fields, here the velocity fields of the inertial observer and that
of the fluid, and can be rewritten with absolute indexes, where the corresponding four-velocities are explicitly
written. We will work with a space–time notation, but for the interpretation of the traditional forms of the
equations and the transformation formulas of Galilean transformations the later indexes are used.

The vector space E of spacelike vectors is a subspace ofM, and its canonical embedding is denoted by δa
b̄
.

Therefore if xā ∈ E, then δa
b̄
x b̄ ∈ M is nothing else but xā as the element ofM.

If xa is a covector, that is a linear mapping xa : M → R, then its restriction to E is an element of E∗
denoted by xā . The corresponding projection of the restriction is denoted by δ a

b̄
∈ Lin(M∗,E∗), therefore

δ b
ā xb = xā .

This projection δ a
b̄

∈ Lin(M∗,E∗) is the dual (transpose) of the canonical embedding δa
b̄

∈ Lin(E,M).

The identification of E and E∗ by the Euclidean structure is given by δāb̄ and its inverse δāb̄, as xā = δāb̄x b̄ and

xā = δāb̄xb̄. However, one cannot introduce a canonical identification of M and M
∗, because of the absence

of an Euclidean or pseudo-Euclidean structure.
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The above system of notations of vectors and covectors introduces a convenient formal tool of handling
the space–time without embedded time.

Splittings

The existence of a mass point in space–time is given by world line functions that map time into space–time
r : I → M . The structure of Galilean relativistic space–time requires that τ(r(t)) = t . Therefore the time
derivative of a world line function at an instant is a four-vector ua with the following property: τaua = 1.
The projection to E along an ua of gives the u-spacelike component of a vectorial physical quantity. This
u-projection is π(u)ā

b = δa
b − uaτb : M → E, where δa

b is the identity ofM.
The four-velocities may play an other role: They can map duration into space–time vector ua : I →

M, t �→ uat .
Let us enumerate the four basic mappings of space–time vectors:

– τa : M → I,
– ua : I → M,
– π(u)ā

b = δa
b − uaτb : M → E,

– δa
b̄

: E → M,

The corresponding mappings between dual spaces are:

– τa : I∗ → M
∗,

– ua : M∗ → I
∗,

– π(u) b̄
a : E∗ → M

∗,
– δ a

b̄
: M∗ → E

∗.
The next identities follow from the definition

τaua = 1, τaδa
b̄

= 0b̄, π(u)b̄
aua = (δb

a − ubτa)ua = 0b̄ π(u)ā
bδ

b
c̄ = δā

c̄. (76)

One can see also that δ a
c̄ π b̄

a (u) = δ b̄
c̄ , and τauc + π b̄

a (u)δ c
b̄

= δ c
a ; therefore π(u) b̄

a δ c
b̄

= δ c
a . Let us observe

that the second and last equalities of (76) result in τa xā = 0 and π(u)ā
bx b̄ = xā .

These relations are summarized by the following diagrams:

E

π(u)ā
b←−−→

δa
b̄

M

τa−→←−
ua

I, E
∗

δ a
b̄←−−→

π(u) ā
b

M
∗ ua−→←−

τa

I
∗.

The upper lines of the above diagrams give the splittings of a vector and a covector into time- and spacelike
parts.

u-form of a vector

A four-vector can be split into components with respect to an ua four-velocity and can be reconstructed with
the help of these u-components. If Aa is a four-vector, its timelike part is A = τa Aa and its u-spacelike part is
A(u)ā = π(u)ā

b Ab. The timelike part of a vector does not depend on u; therefore it is absolute. The spacelike
part depends on the four-velocity of the splitting. The reconstruction is simply

Aa = Aua + A(u)ā . (77)

This formula will be called the u-form of the vector.
The timelike part of an arbitrary four-velocity is 1. The spacelike part of ua by an other velocity u′a ,

π(u′)ā
bub = (δa

b − u′aτb)u
b = ua − u′a = vā,

is the relative velocity of ua related to u′a . In particular the relative velocity of ua with respect to itself is zero.
The extensive quantities together with their fluxes are natural four-vectors in Galilean relativistic space–

time. The densities of extensive quantities are four-vector fields. The timelike part of an extensive four-vector
density is the density; an u-spacelike part is the flux. The timelike parts of the four-densities are independent
of any splitting velocity; their u-spacelike parts are not. We will see that u-independency means Galilean
invariance.
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u-form of a covector

Covectors can be split into u-timelike and spacelike parts and can be reconstructed with the help of these
u-components. A covector Ba can be written as

Ba = B(u)τa + π(u) b̄
a Bb̄. (78)

where B = ua Ba and Bā = δ b
ā Bb.

Here Bā , the spacelike part of Ba , appears differently than the spacelike part of vectors in (77). One should
pay attention that π(u) b̄

a cannot be decomposed additively; more properly ub Bb̄ is not meaningful, because

Bb̄ ∈ E
∗ and E

∗ is not a subset ofM∗. Therefore the convenient regrouping Ba = B(u)τa + Bā − τaub̄ Bb̄ =
(B(u) − ub Bb̄)τa + Bā of the above formula is strictly speaking incorrect. However, the spacelike + timelike
composition is very transparent and also helpful in the calculations. The advantage of transparent calculations
is larger than the possibility of mistakes; therefore we will use this convenient decomposition, with and extra
care for the presence of both parts of π(u) b̄

a in the formulas.
The space–time derivative, ∂a , is a covector. It can be written with its u-timelike and spacelike components

as

∂a = τa Du + π(u) b̄
a ∇b̄ = (Du − u b∇b̄)τa + ∇ā, (79)

where Du = ua∂a is the u-timelike derivative and ∇ā is the spacelike derivative. The spacelike derivative is
absolute.

u-form of a tensor

The u-form of the second-order tensor T ab ∈ M ⊗ M is the following

T ab = taub + tab̄ = uatb + t āb = tuaub + uat b̄ + t āub + t āb̄, (80)

where

– t = τaτbT ab is the time–timelike part of T ab. It is absolute, independent of ua .
– t ā = π(u)ā

bT bcτc is the space–timelike part of T ab, and t b̄ = τcT caπ(u) b̄
a is the time–spacelike part.

– t āb̄ = π(u)ā
cT cdπ(u) b̄

d is the space–spacelike part of the tensor.
– ta = τbT ab and tb = τaT ab. The tensor T ab itself is independent of ua ; therefore its left and right timelike

parts are absolute. If T ab is symmetric, then τbT ab = τbT ba = ta .
– tab̄ = π(u)b̄

cT ac and t āb = π(u)ā
cT cb are the left and right spacelike parts of T ab.

u-form of a mixed tensor

The u-form of the second-order mixed tensor Qa
b ∈ M ⊗ M

∗ is:

Qa
b = qaτb + π(u) c̄

b qa
c̄ = quaτb + qāτb + uaπ(u) c̄

b qc̄ + qā
c̄π(u) c̄

b

=
(

ua(q − ucqc̄) + qā − qā
c̄uc

)
τb + qb̄ua + qā

b̄
, (81)

where

– q = ubτa Qa
b, is the time–timelike part of Qa

b,
– qā = ubπ(u)ā

c Qc
b, is the space–timelike part of Qa

b,
– qb̄ = τaδ c

b̄
Qa

c, is the time–spacelike part of the mixed Qa
b tensor. This part is u independent, therefore

absolute,
– qā

b̄
= π(u)ā

cδ
d

b̄
Qc

d , is the space–spacelike part of Qa
b,

– qa = ub Qa
b, is the co-timelike part of Qa

b,
– qa

b̄
= δc

b̄
Qa

c is the co-spacelike part part of the mixed tensor. It is absolute.

The symmetry of a mixed tensor cannot be interpreted u independently.
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u-form of a cotensor

The u-form of the second-order cotensor Rab ∈ M
∗ ⊗ M

∗ is:

Rab = raτb + rac̄π(u) c̄
b = τarb + rc̄bπ(u) c̄

a

= rτaτb + rc̄π(u) c̄
a τb + rc̄τaπ(u) c̄

b + rc̄d̄π(u) c̄
b π(u) d̄

a

=
(

r − 2rc̄uc + rc̄d̄ucud
)

τaτb +
(

rb̄ − rb̄d̄ud
)

τa +
(

rā − rād̄ud
)

τb + rāb̄, (82)

where

– r = uaub Rab, is the time–timelike part of the Rab cotensor,
– rā = δ c

ā ub Rcb, is the space–timelike part of Rab, and rb̄ = δ c
b̄

ua Rac, is the time–spacelike part,

– rāb̄ = δ c
ā δ d

b̄
Rcd , is the space–spacelike part of the Rab cotensor. This is the u-independent part.

– ra = ub Rab and rb = ua Rab are the left and right co-timelike parts of Rab. If the cotensor is symmetric,
then ub Rab = ub Rba .

– rab̄ = δ c
b̄

Rac and rāb = δ c
ā Rcb are the u-independent left and right co-spacelike parts of the Rab cotensor.

Appendix B: Observers and Galilean transformations

The mathematical structure of the Galilean relativistic space–time model reflects exactly our everyday expe-
rience that time passes independently of the observer, but the space, the environment composed by the things
around us, depends on the observer. Time is absolute; space is relative. The relativity is characterized by
observers. An observer is a smooth four-velocity field on the space–time (see [5]); it is not necessarily global.
An inertial observer is a constant four-velocity field.

Previously we have given the splitting of vectors, covectors and tensors by a four-velocity. Absolute
physical quantities are vector fields, covector fields, tensor fields, etc., that is they are vector, covector, tensor,
etc., valued functions interpreted on the space–time. The splitting of the fields is local, by the local observer
velocity. For example if Aa : M → M is a vector field and ua : M → V (1) is an observer, then at the world
point x the Aa(x) vector is reconstructed from its time- and ua(x)-spacelike parts.

Aa(x) = A(x)ua(x) + Aā(x). (83)

Keeping in mind that here everything is related to a world point, one can omit x in the notation, and then our
previous formulas are all valid.

Now we analyze the relation of time- and spacelike parts of the same absolute physical quantity by two
different four-velocities. In a space–time model these transformation rules can be derived.

In the following we need the projections by the two different four-velocities, u and u′. Then it is simpler if
we miss the explicit notation of the velocities, denoting the u- and u′-projections by π ā

b and π ′ā
b, respectively.

Vectors

We have seen that the time and u-spacelike parts of a vector Aa by an observer ua are A = τa Aa and
Aā = π ā

b Ab, respectively. The nonrelativistic physical theories are built on these kinds of relative quantities,
unaware of the deeper space–time aspects. Two different ua and u′a four-velocities may result in different
time- and spacelike parts:

Aa u≺
(

A
Aā

)
, Aa u′

≺
(

A′
A′ā

)
,

where
u≺ denotes the splitting by ua . The u- and u′-forms of the physical quantity express the absolute four-

vector with the help of its time- and spacelike parts.
The transformation rules give the relative quantities according to an observer with the relative quantities of

an other observer. In particular A′ and A′ā are given as a function of A and Aā and the relative velocity. In our
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space–time model these transformation rules can be calculated by splitting the u-form of a physical quantity,
which is Aa = Aua + Aā in this case, by an other observer u′a . Then the u′-timelike part of a vector

A′ = τa Aa = τa(Aua + Aā) = A, (84)

is the same and does not transform, that is Galilean invariant. This is not too surprising, because the function
of the splitting, the time evaluation, does not depend on the velocities. The u′-spacelike part of Aa is

A′ā =π ′ā
b Ab = (

δa
b − u′aτb

) (
Aub + Ab̄

)
= Aua + Aā − Au′a

= Aā + A(ua − u′a) = Aā + Avā, (85)

where we have denoted the relative velocity ua related to u′a as

vā = ua − u′a . (86)

The above formula is the transformation rule of the spacelike component of a four-vector. We give it also with
relative indexes

A′i = Ai + Avi . (87)

This is exactly the well-known Galilean transformation. (85) and (87) are the same equations written with
different notations. Let us remember that the three-indexes i, j, k ∈ {1, 2, 3} refer to the presence of two
four-velocities in the formula, and the equation requires the presence of two observers. With this notation
the absolute quantities and formulas are strictly distinguished from the usual 1+3-dimensional forms, and the
space–time-based and Galilean transformation-based ways of thinking are separated.

The complete transformation rule is
(

A′
A′i

)
=

(
A

Ai + Avi

)
. (88)

In particular the transformation rule of four-velocities can be deduced directly. The splitting of a four-velocity
by itself is

ua u≺
(
1
0ā

)
.

Therefore, the transformation rule of its spacelike part gives the expected relative velocity

π ′ā
bub = (δa

b − u′aτb)u
b = ua − u′a = vā, (89)

The complete transformation rule is:
(
1′
vi

)
=

(
1
0i

)
, (90)

where the left-hand side is ua from the point of view (in the time and space) of u′a and the right-hand side is
ua from the point of view (in the time and space) of itself. The meaning of this velocity transformation is that
observer ua is considered at rest according to itself, but is moving with the velocity vi for the observer u′a . Or,
at the other hand, we can say with the transformations terminology that the relative velocity vi for observer u′
is transformed to zero when we change to observer u. In contrast to (88) the dash is used only for the timelike
part, because of the accustomed notation of the relative velocity (vi would be v′i ).

In the above formulas of Galilean transformations there are two arbitrary velocity fields, and the formulas
are not related solely to inertial observers. Only the Galilean-invariant quantities are considered observer
independent, however not only those, but a combination of properly transformed quantities may be absolute,
whenever it is a component of an absolute space–time quantity. The timelike part of an absolute four-vector
physical quantity (the density of an extensive quantity) is Galilean invariant; its spacelike part (the current
density or flux) transforms; therefore it depends on the reference frame. However, the complete four-vector
is absolute. The same is valid also for the velocity, where the four-velocity is absolute, notwithstanding that
the timelike part seemingly does not contain physical information. Putting a physical theory in the space–time
model one can consistently decide what depends on the reference frame and what does not.
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Covectors

We have seen that the time- and spacelike parts of the covector Ba by the velocity ua are B = ua Ba and
Bā = δ b

ā Bb, respectively. These components are represented by lower indexes and horizontal mode of writing:

Ba
u≺ (B, Bā).

According to the previous section the transformation rules of the parts of Ba are obtained by splitting the
u-form of Ba using the velocity field u′a . For the timelike part it is

B ′ = u′a Ba = u′a(Bτa + π b̄
a Bb̄) = B − vā Bā, (91)

where identity (89) was applied. For the spacelike part one should use the identities (76):

B ′̄
a = δ b

ā Bb = δ b
ā (Bτb + π c̄

b Bc̄) = Bā . (92)

The complete transformation rule may be written with in the 1+3-dimensional form:

(B ′, B ′
i ) = (B − vi Bi , Bi ). (93)

A particular example is the space–time differentiation ∂a , which is a symbolic covector. Then we obtain
that:

(Du′, ∇′
i ) = (Du − vi∇i , ∇i ). (94)

If ua is the velocity field of a fluid, and u′a is that of an observer, the Du is the substantial time derivative,
vi is the relative velocity of an observer, related to the fluid and Du′ = Du − vi∇i . The relation between the
partial time derivative Du′ = ∂t , and the substantial time derivative Du = dt is ∂t = dt − vi∇i . It is worth to
compare the previous transformation rule-based derivation and the usual method (see, e.g., [81]).

Second-order tensors

An observer ua splits a second-order tensor, T ab, into a time–timelike part, t = τaτbT ab, into a time–
spacelike part t ā = π ā

cτbT cb, into a space–timelike part, t b̄ = τaπ b̄
cT ac, and into a space–spacelike part,

t āb̄ = π ā
cπ

b̄
d T cd . Therefore

T ab u≺
(

t t ā

t b̄ t āb̄

)
.

In general t ā = t b̄ and also t āb̄ = t b̄ā , because the symmetry of T ab was not assumed. The corresponding
transformation rules are calculated as follows. The time–timelike component is invariant

t ′ = τaτbT ab = t. (95)

The transformation rule of the time–spacelike and space–timelike components is like the transformation
rule of a space vector:

t ′ā = π ′ā
cτbT cb = (δa

c − u′aτc)(tu
c + t c̄) = tua − tu′a + t ā = t ā + tvā . (96)

For the space–spacelike component one obtains a more complicated formula:

t ′āb̄ = π ′ā
cπ

′b̄
d T cd = π ′ā

cπ
′b̄
d(tucud + t c̄ud + uct d̄ + t c̄d̄) =

= tvāvb̄ + t āvb̄ + t b̄vā + t āb̄. (97)

Here we have used (89).
The complete transformation rule can be written also with the usual notation:

(
t ′ t ′i
t ′ j t ′i j

)
=

(
t t i + tvi

t j + tv j t i j + t iv j + t jvi + tviv j

)
. (98)
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Mixed second-order tensors

The components of a second-order mixed tensor Qa
b by an observer ua observer are q = τaub Qa

b, the time–
timelike, qā = π ā

cub Qc
b, the space–timelike, qb̄ = τaδ d

b̄
Qa

d the time–spacelike and qā
b̄

= π ā
cδ

d
b̄

Qc
d the

space–spacelike components. That is

Qa
b

u≺
(

q qā

qb̄ qā
b̄

)
.

It is meaningless to speak about the symmetry of mixed second-order tensors. Only , eventually, the observer-
dependent split can be symmetric. This is also clear from the Galilean transformation rules, because the
time–spacelike and space–timelike parts transform differently. We obtain for the time–timelike component:

q ′ = τau′b Qa
b = u′b(qτb + π c̄

b qc̄) = q − vc̄qc̄. (99)

The time–spacelike component seems to be a three-vector, but does not transform. This can be understood
using the identities (76):

q ′̄
b

= τaδ c
b̄

Qa
c = δ c

b̄
(qτc + π d̄

c qd̄) = qb̄. (100)

The Galilean transformation rule for the space–timelike component is:

q ′ā = π ′ā
cu′b Qc

b = π ′ā
c(quc + qc̄ − ucvd̄qd̄ − qc̄

d̄
vd̄) = qā + qvā − vāvb̄qb̄ − qā

b̄
vb̄. (101)

Finally for the space–spacelike part one derives

q ′ā
b̄

= π ′ā
cδ

d
b̄

Qc
d = π ′ā

c(qb̄uc + qc̄
b̄
) = qā

b̄
+ vāqb̄. (102)

Here the usual identities were used. Then the complete transformation rule can be written as:
(

q ′ q ′
i

q ′ j q ′ j
i

)
=

(
q − vi qi qi

q j + v j (q − vkqk) − q j
kv

k q j
i + qiv

j

)
. (103)

Second-order cotensors

The components of the second-order cotensor Rab split by the observer ua are the r = uaub Rab time–timelike,
rā = δ c

ā ub Rcb space–timelike, rb̄ = uaδ d
b̄

Rad time–spacelike and the rāb̄ = δ c
ā δ d

b̄
Rcd space–spacelike parts.

That can be written in a matrix form as

Rab
u≺

(
r rā
rb̄ rāb̄

)
.

If Rab is not symmetric, rā = rb̄ and rāb̄ = rb̄ā . The calculation of the transformation rules of the components
is the following. For the time–timelike part one obtains:

r ′ = u′au′b Rab = u′au′b (
rτaτb + rc̄π

c̄
a τb + rc̄τaπ c̄

b + rc̄d̄π c̄
b π d̄

a

)

= u′a (
rτa + rc̄π

c̄
a − rc̄τavc̄ − rc̄d̄vc̄π d̄

a

)
= r − 2rc̄v

c + rc̄d̄vc̄vd̄ . (104)

The time–spacelike part transforms identically with the space–timelike part:

r ′̄
a = δ c

ā u′b Rcb = δ c
ā

(
rτc + rd̄π d̄

c − rd̄τcv
d̄ − rd̄ēv

ēπ d̄
c

)
= rā − rād̄vd̄ . (105)

The space–spacelike part is Galilean invariant

r ′
āb̄

= δ c
ā δ d

b̄
Rcd = rāb̄. (106)

Here the usual identities were applied, too. Finally the complete transformation rule is given in a matrix form:
(

r ′ r ′
i

r ′
j r ′

j i

)
=

(
r − 2vkrk + vkvlrkl ri − v j ri j

r j − vk t jk ri j

)
. (107)
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Hungarian)

19. Fülöp, T., Ván, P.: Kinematic quantities of finite elastic and plastic deformations. Math. Methods Appl. Sci. 35, 1825–1841
(2012). arXiv:1007.2892v1

20. Fülöp, T.: Objective Thermomechanics (2015). arXiv:1510.08038
21. Eckart, C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73(4),

373–382 (1948)
22. Bruhns,O.T., Xiao,H.,Mayers, A.: Constitutive inequalities for an isotropic elastic strain energy function based onHencky’s

logarithmic strain tensor. Proc. R. Soc. Lond. A 457, 2207–2226 (2001)
23. Horgan, C.O., Murphy, J.G.: A generalization of Hencky’s strain-energy density to model the large deformations of slightly

compressible solid rubbers. Mech. Mater. 79, 943–950 (2009)
24. Neff, P., Eidel, B., Osterbrink, F., Martin, R.: A Riemannian approach to strain measures in nonlinear elasticity. C. R. Acad.

Sci. 342, 254–257 (2014)
25. Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: Constitutive issues and

rank-one convexity. J. Elast. 1–92 (2014). arXiv:1403.4675
26. Zaremba, S.: Sur une forme perfectionnée de la théorie de la relaxation. Bull. Int. Acad. Sci. Crac. 124, 594–614 (1903)
27. Jaumann, G.: Geschlossenes System physikalischer und chemischer Differentialgesetze (I. Mitteilung). Sitzungsberichte

der kaiserliche Akademie der Wissenschaften in Wien CXVII(Mathematisch IIa), 385–528 (1911)
28. Oldroyd, J.G.: On the formulation of rheological equations of state. Proc. R. Soc. Lond. A 200, 523–541 (1949)
29. Müller, I.: On the frame dependence of stress and heat flux. Arch. Ration. Mech. Anal. 45, 241–250 (1972)
30. Edelen, D.G.B., McLennan, J.A.: Material indifference: a principle or a convenience. Int. J. Eng. Sci. 11, 813–817 (1973)
31. Bampi, F., Morro, A.: Objectivity and objective time derivatives in continuum physics. Found. Phys. 10(11/12), 905–920

(1980)
32. Murdoch, A.I.: On material frame-indifference, intrinsic spin and certain constitutive relations motivated by the kinetic

theory of gases. Arch. Ration. Mech. Anal. 83, 185–194 (1983)
33. Ryskin, G.: Misconception which led to the "material frame indifference" controversy. Phys. Rev. E 32(2), 1239–1240

(1985)
34. Ryskin, G.: Reply to “comments on the ‘material frame indifference’ controversy". Phys. Rev. E 36(9), 4526 (1987)
35. Speziale, C.G.: Comments on the “material frame indifference" controversy. Phys. Rev. E 36(9), 4522–4525 (1987)
36. Speziale, C.G.: A review of material frame-indifference in mechanics. Appl. Mech. Rev. 51(8), 489–504 (1998)
37. Svendsen, B., Bertram, A.: On frame-indifference and form-invariance in constitutive theory. Acta Mech. 132, 195–207

(1999)
38. Bertram, A., Svendsen, B.: On material objectivity and reduced constitutive equations. Arch. Mech. 53, 653–675 (2001)
39. Massoudi, M.: On the importance of material frame-indifference and lift forces in multiphase flow. Chem. Eng. Sci. 57,

3687–3701 (2002)
40. Murdoch, A.I.: Objectivity in classical continuum physics: a rationale for discarding the ‘principle of invariance under

superposed rigid body motions’ in favour of purely objective considerations. Contin. Mech. Thermodyn. 15, 309–320
(2003)

http://arxiv.org/abs/math-ph/0608065
http://arxiv.org/abs/1406.5888
www.math.cmu.edu/~wn0g/noll/FC
http://arxiv.org/abs/math-ph/0510037
http://arxiv.org/abs/1007.2892v1
http://arxiv.org/abs/1510.08038
http://arxiv.org/abs/1403.4675


Galilean relativistic fluid mechanics 609

41. Liu, I.-S.: OnEuclidean objectivity and the principle ofmaterial frame-indifference. Contin.Mech. Thermodyn. 16, 177–183
(2003)

42. Murdoch, A.I.: On criticism of the nature of objectivity in classical continuum physics. Contin. Mech. Thermodyn. 17,
135–148 (2005)

43. Liu, I.-S.: Further remarks on Euclidean objectivity and the principle of material frame-indifference. Contin. Mech. Ther-
modyn. 17, 125–133 (2005)

44. Yavari, A., Marsden, J.E., Ortiz, M.: On spatial and material covariant balance laws in elasticity. J. Math. Phys. 47, 042903
(2006)

45. Frewer, M.I.: More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech.
202(1–4), 213–246 (2009)

46. Mariano, P.M.: SO(3) invariance and covariance in mixtures of simple bodies. Int. J. Non-Linear Mech. 40, 1023–1030
(2005)

47. Mariano, P.M.: Geometry and balance of hyperstresses. Rendiconti dei Lincei Matematica Applicata 18, 311–331 (2007)
48. Mariano, P.M.: Cracks in complex bodies: covariance of tip balances. J. Nonlinear Sci. 18, 99–141 (2008)
49. Muschik, W.: Objectivity and frame indifference, revisited. Arch. Mech. 50, 541–547 (1998)
50. Muschik, W., Restuccia, L.: Changing the observer and moving materials in continuum physics: objectivity and frame-

indifference. Technische Mechanik 22(3), 152–160 (2002)
51. Muschik, W., Restuccia, L.: Systematic remarks on objectivity and frame-indifference, liquid crystal theory as an example.

Arch. Appl. Mech. 78(11), 837–854 (2008)
52. Muschik, W.: Is the heat flux density really non-objective? a glance back, 40 years later. Contin. Mech. Thermodyn. 24(24),

333–337 (2012)
53. Matolcsi, T., Gruber, T.: Spacetime without reference frames: An application to the kinetic theory. Int. J. Theor. Phys. 35(7),

1523–1539 (1996)
54. Brenner, H.: Kinematics of volume transport. Phys. A 349, 11–59 (2005)
55. Brenner, H.: Navier–Stokes revisited. Phys. A 349, 60–132 (2005)
56. Brenner, H.: Fluid mechanics revisited. Phys. A 370(2), 190–224 (2006)
57. Brenner, H.: Bi-velocity hydrodynamics: single-component fluids. Int. J. Eng. Sci. 47(9), 930–958 (2009)
58. Brenner, H.: Diffuse volume transport in fluids. Phys. A 389(19), 4026–4045 (2010)
59. Brenner, H.: Beyond Navier–Stokes. Int. J. Eng. Sci. 54, 67–98 (2012)
60. Brenner, H.: Steady-state heat conduction in a gas undergoing rigid-body rotation. Comparison of Navier–Stokes–Fourier

and bivelocity paradigms. Int. J. Eng. Sci. 70, 29–45 (2013)
61. Brenner, H.: Conduction-only transport phenomena in compressible bivelocity fluids: diffuse interfaces and Korteweg

stresses. Phys. Rev. E 89(4), 043020 (2014)
62. Bedeaux, D., Kjelstrup, S., Öttinger, H.C.: On a possible difference between the barycentric velocity and the velocity that

gives translational momentum in fluids. Phys. A 371(2), 177–187 (2006)
63. Öttinger, H.C.: Weakly and strongly consistent formulations of irreversible processes. Phys. Rev. Lett. 99(13), 130602(4)

(2007)
64. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, London (1959)
65. Dzyaloshinskii, I.E., Volovick, G.E.: Poisson brackets in condensed matter physics. Ann. Phys. 125(1), 67–97 (1980)
66. Klimontovich, Y.L.: On the need for and the possibility of a unified description of kinetic and hydrodynamic processes.

Theor. Math. Phys. 92(2), 909–921 (1992)
67. Ván, P.: Generic stability of dissipative non-relativistic and relativistic fluids. J. Stat. Mech. Theory Exp. (2009).

arXiv:0811.0257
68. Ván, P., Biró, T.: Dissipation flow-frames: particle, energy, thermometer. In: Pilotelli, M., Beretta, G. P. (eds) Proceedings

of the 12th Joint European Thermodynamics Conference, Brescia, pp. 546–551 (2013). Cartolibreria SNOOPY. ISBN
978-88-89252-22-2, arXiv:1305.3190

69. Ruggeri, T.: Galilean invariance and entropy principle for systems of balance laws. Contin. Mech. Thermodyn. 1(1), 3–20
(1989)

70. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics, vol 37, 2nd edn. Springer Tracts in Natural Philosophy.
Springer, New York (1998)

71. Ruggeri, T., Sugiyama, M.: Rational Extended Thermodynamics Beyond the Monatomic Gas. Springer, Berlin (2015)
72. Bíró, T.S., Ván, P.: About the temperature of moving bodies. EPL 89, 30001 (2010). arXiv:0905.1650v1
73. Kostädt, P., Liu, M.: Three ignored densities, frame-independent thermodynamics, and broken Galilean symmetry. Phys.

Rev. E 58, 5535 (1998)
74. Horváth, R.: A new interpretation of the kinetic energy concept. KLTE MFK Tudományos Közleményei 23, 29–33 (1997).

(in Hungarian)
75. Prix, R.: Variational description of multifluid hydrodynamics: uncharged fluids. Phys. Rev. D 69(4), 043001 (2004)
76. Lange, L.: On the Law of Inertia. Eur. Phys. J. H 39(2), 251–262 (2014)
77. Pfister, H.: Ludwig Lange on the law of inertia. Eur. Phys. J. H 39(2), 245–250 (2014)
78. Penrose, R.: The Road to Reality. Jonathan Cape, London (2004)
79. Liboff, R.L.: Kinetic Theory (Classical, Quantum, and Relativistic Descriptions). Prentice Hall, Englewood Cliffs (1990)
80. Matolcsi, T.: On material frame-indifference. Arch. Ration. Mech. Anal. 91(2), 99–118 (1986)
81. Gyarmati, I.: Non-equilibrium thermodynamics. Field theory and variational principles. Springer, Berlin (1970)
82. Gallavotti, G.: Foundations of Fluid Dynamics, vol. 172. Springer, Berlin (2002)
83. Jou, D., Casas-Vázquez, J., Lebon, G.: Extended Irreversible Thermodynamics. Springer Verlag, Berlin (1992). 3rd, revised

edition, 2001
84. Matolcsi, T.: Ordinary Thermodynamics. Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences),

Budapest (2005)
85. Truesdell, C., Bharatha, S.: Classical Thermodynamics as a Theory of Heat Engines. Springer, Berlin (1977)

http://arxiv.org/abs/0811.0257
http://arxiv.org/abs/1305.3190
http://arxiv.org/abs/0905.1650v1


610 P. Ván

86. Ván, P.: Kinetic equilibrium and relativistic thermodynamics. In: EPJ WEB of Conferences, vol. 13, p 07004 (2011).
arXiv:1102.0323

87. Ván, P., Biró, T.S.: First order and generic stable relativistic dissipative hydrodynamics. Phys. Lett. B 709(1–2), 106–110
(2012). arXiv:1109.0985 [nucl-th]

88. Ván, P., Biró, T.S.: Thermodynamics and flow-frames for dissipative relativistic fluids. In: Chacón-Acosta, G., Garcí-
Perciante, A.L., Sandoval-Villalbazo, A., (eds.) Plasma physics and relativistic fluids, vol. 1578. AIP Conference Proceed-
ings, pp. 114–121, 2014. Proceedings of theVLeopoldoGarcía–ColínMexicanMeeting onMathematical and Experimental
Physics, El Colegio Nacional, September 9–13, 2013. Mexico City. arXiv:1310.5976

89. Müller, I.: Thermodynamics. Pitman, Toronto (1985)
90. Matolcsi, T.: Models of Spacetime. ETTE (2015) (in Hungarian)
91. Öttinger, H.C., Struchtrup, H., Liu, M.: Inconsistency of a dissipative contribution to the mass flux in hydrodynamics. Phys.

Rev. E 80(5), 056303 (2009)
92. Ván, P., Pavelka, M., Grmela, M.: Extra mass flux in fluid mechanics (2015) arXiv:1510.03900
93. Prigogine, I., Stengers, I.: La nouvelle alliance: métamorphose de la science. Gallimard, Paris (1986)
94. Matolcsi, T.: Dynamical laws in thermodynamics. Phys. Essays 5(3), 320–327 (1992)
95. Ván, P.: Asymptotic stability and the second law in extended irreversible thermodynamics. In: Rionero, S., Ruggeri, T. (eds.)

7th Conference on Waves and Stability in Continuous Media, Bologna, Italy. October 4–9. 1993, volume 23 of Series on
Advances in Mathematics for Applied Sciences, pp. 384–389, Singapore-New Jersey-London-Hong Kong, October 1994.
Quaderno CNR - Gruppo nazionale per la Fisica Matematica, World Scientific

96. Ván, P.: Other dynamic laws in thermodynamics. Phys. Essays 8(4), 457–465 (1995)
97. Ván, P., Bíró, T.S.: Relativistic hydrodynamics—causality and stability. Eur. Phys. J. Spec. Top. 155, 201–212 (2008).

arXiv:0704.2039v2
98. Ván, P.: Internal energy in dissipative relativistic fluids. J. Mech. Mater. Struct. 3(6), 1161–1169 (2008). arXiv:0712.1437

[nucl-th]
99. Bíró, T.S., Molnár, E., Ván, P.: A thermodynamic approach to the relaxation of viscosity and thermal conductivity. Phys.

Rev. C 78, 014909 (2008). arXiv:0805.1061 [nucl-th]
100. Matolcsi, T.: A Concept of Mathematical Physics: Models for SpaceTime. Akadémiai Kiadó (Publishing House of the

Hungarian Academy of Sciences), Budapest (1984)
101. Carter, B., Chamel, N.: Covariant analysis of newtonian multi-fluid models for neutron stars I: Milne–Cartan structure and

variational formulation. Int. J. Mod. Phys. D 13(02), 291–325 (2004)

http://arxiv.org/abs/1102.0323
http://arxiv.org/abs/1109.0985
http://arxiv.org/abs/1310.5976
http://arxiv.org/abs/1510.03900
http://arxiv.org/abs/0704.2039v2
http://arxiv.org/abs/0712.1437
http://arxiv.org/abs/0805.1061

	Galilean relativistic fluid mechanics
	Abstract
	1 Introduction
	2 Balances and their Galilean transformations
	2.1 Tensor or cotensor of how many orders?

	3 The mass–momentum–energy density-flux tensor and the related transformation rules
	3.1 Transformation rules of time- and spacelike parts

	4 The fundamental balance of single-component fluids and its components
	5 Thermostatics of motion or thermostatodynamics
	5.1 Absolute relations
	5.2 Equation of state
	5.3 The transformation rules of thermodynamic relations

	6 Absolute entropy production
	7 What is the velocity of a fluid?
	8 Summary
	9 Discussion
	9.1 Relativistic fluids
	9.2 Kinetic theory
	9.3 Extra mass flux

	Acknowledgements
	Appendix A: Galilean relativistic space–time
	Appendix B: Observers and Galilean transformations
	References




