
ar
X

iv
:1

71
0.

04
20

4v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

0 
O

ct
 2

01
7

WEAKLY NONLOCAL NONEQUILIBRIUM

THERMODYNAMICS: THE CAHN-HILLIARD EQUATION

P. VÁN1,2,3

Abstract. The Cahn-Hilliard and Ginzburg-Landau (Allen-Cahn) equations
are derived from the second law. The intuitive approach by separation of full
divergences is supported by a more rigorous method, based on Liu procedure
and a constitutive entropy flux. Thermodynamic considerations eliminate the
necessity of variational techniques and explain the role of functional deriva-
tives.

1. Introduction

In continuum theories the extension of classical, well known evolution equations
is one of the most exciting theoretical question, where several, completely differ-
ent approaches compete. When compared to the kinetic theory or nonequilibrium
statistical physics the advantage of pure phenomenological ideas is their univer-
sality. This way one can analyse the consequences of general requirements, like
the basic balances and the second law of thermodynamics without assuming and
introducing particular microscopic structures or mechanisms [1, 2, 3]. In this re-
spect the so called phase-field theories are particularly interesting, because there
the influence of microstructure is introduced mostly indirectly, through fluctuating
field quantities. The apparent universality of these descriptions is often attributed
either to second order phase transitions or background linear instabilities (see e.g.
[4, 5]). On the other hand, from a continuum point of view the obtained macro-
scopic models are weakly nonlocal extensions of the simplest evolution equations.
For example the extension of a relaxation dynamics of a single internal variable
leads to the Ginzburg-Landau (Allen-Cahn) equation [6, 7, 8, 9], or the exten-
sion of a diffusion-Fourier dynamics results in the Cahn-Hilliard equation [10]. In
phase-field models the role of the second law is rarely constructive, it is used more
restrictively. Thermostatics is based on free energy and entropy appears only when
thermal phenomena is considered [11, 12, 13, 14], or sometimes when dissipation
is calculated (e.g. [15, 16]). Some more elaborated analyses introduce extra en-
tropy flux [17, 2]. The weakly nonlocal extension is due to variational techniques
applied together with local equilibrium based thermodynamic considerations [16].
In phase-field theories the second law compatibility in the weakly nonlocal sense,
for the higher order spatial derivatives is rarely mentioned, and then it is restricted
to the Ginzburg-Landau theory. The case of the Cahn-Hilliard equation the large
constitutive state space leads to technical difficulties.

However, for more complicated constraints, like the classical balances of contin-
uum mechanics of solids, a simple variational approach may become problematic.
The conceptual problem is the doubled theoretical structure. Usually the relaxation
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dynamics is introduced without a referring to nonequilibrium thermodynamics (e.g.
[18]). The methodology can be extended and combined to complete and productive
theories, like GENERIC [19, 20, 21, 15], where a clear separation of dissipative
and nondissipative parts of the dynamics is based on a bracket formalism with
functional derivatives for weak nonlocality. That can keep strict thermodynamic
compatibility far beyond the usual phase-field approaches.

This doubled theoretical structure is due to a lack of a resolution of an interesting
and ancient question regarding the origin of evolution equations of physics1. Should
we separate the ideal world from the real one or is there a common origin of nondis-
sipative and dissipative dynamics? There are two evident strategies to answer this
question in a modern context. One either try to extend the variational principles
to dissipative dynamics or derive the nondissipative evolution from the second law.
The historical roots of the first approach are going back to Helmholtz [23] and to
a strategy to overcome some strict mathematical conditions [24, 25]. In order to
obtain dissipative evolution and parabolic partial differential equations from vari-
ational principles one need to use some inconventional methods [26, 27, 28, 29].
However, in most cases the doubled theoretical structure is preserved in a modified
form [30].

The other possibility is pioneered in nonequilibrium thermodynamics, where a
deeper mathematical consistency indicated that the second law can be sufficient to
derive evolution equations. Anyway, a nondissipative evolution is a special dissi-
pative one, where the dissipation is zero. There exist an intuitive and a rigorous
treatment for weakly nonlocal theories, where the constitutive functions depend
on the derivatives of the state variables [31, 32, 33]. The intuitive technique, the
identification of the entropy flux by separation of full divergences, appears indepen-
dently in many papers and books [10, 34, 35, 36, 2, 37]. The rigorous treatments
are the Coleman-Noll and the Liu procedures [38, 39], together with a strict in-
terpretation of the second law [40, 41]. This rigorous methods are equivalent [42]
and interpret the second law as a constrained inequality, where the identification
of independent variables and the constitutive state space are the key aspects for
handling differential equations as constraints.

In principle weak nonlocality can be both in time and space, that is the con-
stitutive functions may depend both on time and space derivatives. However, in
the following we use the terminology only for the spatial case if not mentioned
otherwise. This is the safe approach because we want to avoid spacetime related
objectivity questions: spatial derivatives in nonrelativistic space-time are frame
independent [43].

The first applications of the strict mathematical requirements of the second law
led to blockingly restrictive results. Coleman and Gurtin has proved that for inter-
nal variables only local evolution is possible [44], and Gurtin has shown that in case
of pure elasticity there is no weakly nonlocal extension [45]. These results effec-
tively prevented to understand the universal background of the Ginzburg-Landau
(Allen-Cahn) equation and phase-field theories in general. The thermodynamic in-
vestigations of higher grade fluids and solids was slowed down. Additional concepts
were necessary to circumvent the restrictive conditions.

1That question goes back at least to the greek philosophers Platon and Aristotle, see and
overview in [22].
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These concepts are very different. For example interstitial work generalizes the
energy balance [46], the configurational forces generalize the energy and momentum
balances [1, 47], and the virtual power is based on a kinematic interpretation of
internal variables and a related modification of the energy balance [48, 49, 50,
51].2 These interpretational issues elevated further communication barriers, and the
pitchforking of thermodynamic theories continued 3. In principle all these extension
are capable to construct reasonable conditions and lead to very similar results.

Here, in this paper we argue that there is a minimal set of assumptions – it
is essentially the second law – that can generate the Ginzburg-Landau and Cahn-
Hilliard type evolution without any further ado. Moreover, the second law can
be applied at two levels. The mentioned sophisticated exploitation procedures of
Coleman-Noll and Liu can be applied when the blocking barriers are removed: one
need to treat the entropy current density as a constitutive quantity and prolong the
constraints according to the nonlocality level of the state space. From this point
of view the Cahn-Hilliard evolution is particularly instructive, because there the
rigorous methods are seemingly hopeless. They are either restricted to check the
thermodynamic compatibility of the already derived equations [17] or the obtained
conditions are not direct and too complicated for practical applications [52, 53]. At
the same time we will show that the intuitive method of separation of full diver-
gences leads essentially to the same results. This is the classical tool of irreversible
thermodynamics [35], the method used originally by Cahn and Hilliard [10] and it
is the approach of Gerard Maugin for weakly nonlocal internal variables [36, 54].
Thermodynamic concepts can be used to unite dissipative and nondissipative evo-
lution.

2. Variational derivation of Ginzburg-Landau and Cahn-Hilliard
equations

In both cases we are looking for the evolution equation of a single scalar internal
variable without any constraint in a continuum at rest. In the first case without
any additional conditions or constraints for the internal variables, and in the second
case with a balance form evolution as a constraint. Here we survey the traditional
derivation of both equations which is a characteristic mixture of variational and
thermodynamical ideas.

Let us denote ξ the scalar field. The Helmholtz free energy density, f , depends
on this variable and its gradient: f(ξ, ∂iξ). For the sake of simplicity we assume
the following square gradient form, a Ginzburg–Landau free energy function:

f(ξ, ∂iξ) = f0(ξ) + γ∂iξ∂
iξ/2, (1)

where γ is a nonnegative material parameter, which is scalar for isotropic continua.
f0 is the classical, local part of the free energy, that may have particular forms,
if ξ is an order parameter of a second order phase transition. ∂ξ denotes the
gradient of ξ and we apply Einstein’s summation convention and abstract indices,
i, j, k ∈ {1, 2, 3}.4.

2The phase-fields themselves have their particular interpretation contexts like order parameters,
interfacial free energy, diffuse interface, etc ... These all are disguising the general conditions and
the universal background.

3This is somehow deeply related to the situation described in the first chapter of [36]. The
specialization is a logical consequence.

4Please note, these are abstract indices without coordinates [55].



4 P. VÁN1,2,3

Then, following the usual arguments, one assumes, that the rate of ξ in a body
with volume V is negatively proportional to the change of the free energy, denoted
by δ:

d

dt

∫

V

ξdV = −lδ

∫

V

f(ξ, ∂iξ)dV. (2)

Assuming that this equality is valid for any V we obtain the general Ginzburg–
Landau (Allen-Cahn) equation in the following form:

∂tξ = −l
δf

δξ
= −l

[

∂ξf − ∂i
(

∂∂iξf
)]

. (3)

Here ∂t is the partial time derivative, δ
δξ

in the functional derivative, and l is a

material parameter. With the square gradient free energy, (1), one arrives at the
classical form of the equation:

∂tξ = −l
[

∂ξf0 − γ∂i
iξ
)]

. (4)

The second most important basic example of phase-field theories is the Cahn–
Hilliard equation, used for modelling phase transitions in solid media. Usually it
is introduced as a dynamic equation of a conserved order parameter [4]. Therefore
now we are looking for a balance form evolution of an internal variable. Then
one may assume a derivation by classical irreversible thermodynamics, where in
the thermodynamic force the gradient of the internal variable is substituted by a
functional derivative, assuming a nonlocal interaction. The variational origin can
be less argumented in this case. Therefore, denoting by ji the current density of ξ,
the balance is written as

∂tξ + ∂ij
i = 0. (5)

Then, according to classical irreversible thermodynamics the thermodynamic
flux is the gradient of the corresponding intensive quantity, Aξ. Without thermal
interaction this intensive quantity is the partial derivative of the free energy by ξ,
that is Aξ = ∂f

∂ξ
. Therefore the constitutive equation for the flux is

ji = −κ∂iAξ. (6)

In case of a weakly nonlocal free energy, f(ξ, ∂iξ), the partial derivative, is to be

substituted by a functional derivative, Âξ =
δf
δξ
. Then we obtain the Cahn-Hilliard

equation for the evolution of the internal variable as

∂tξ − ∂i
(

κ∂iÂξ

)

= ∂tξ − ∂i
(

κ∂i
[

∂ξf − ∂i
(

∂∂iξf
)])

= 0. (7)

These derivations are remarkably simple and sound from a physical point of view
also when developed in a more detailed form. On the other hand they combine a
variational extremum principle with a frame theory of nonequilibrium thermody-
namics. In the next section we will see, that variational considerations are not
necessary at all, and they role is simply a separation of surface and bulk contribu-
tions for the entropy.

First we will investigate the Ginzburg-Landau equation.
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3. The thermodynamic origin of the Ginzburg-Landau (Allen-Cahn)
equation

3.1. Separation of full divergences. With this intuitive method one constructs
the entropy balance by introducing the constraints through the time derivative of
the entropy density and then identify an entropy flux by separating full divergences
in the expression. This idea was used independently by in several works [10, 2, 37],
but as a method was introduced in classical irreversible thermodynamics, where
the starting point is the Gibbs relation for the classical extensives [34, 35, 26].
Gerard Maugin applied the approach in several cases, including internal variables
[36, 56, 54, 57].

Let us assume that the evolution equation of the internal variable ξ is written in
a general form as

∂tξ = F. (8)

As we can see one does not fix the domain of the right hand side yet. The starting
point is a first order weakly nonlocal entropy density, s(ξ, ∂iξ), like free energy
density in the previous section. Now we investigate the entropy balance. It is more
convenient then with free energy, however, there is no conceptual difference, it is
only a question of convenience. The relation of the two approaches and a more
systematic background with complete continuum mechanics on material manifolds
is developed e.g. in [57].

Let us calculate the time derivative of the entropy density and separate the full
divergences with Leibnitz rule:

∂ts(ξ, ∂iξ) = ∂ξs∂tξ + ∂∂iξs∂tiξ = −∂ξsF − ∂∂iξs∂iF =

− ∂i (F∂∂iξs) + F (−∂ξs+ ∂i(∂∂iξs)) . (9)

Therefore the entropy flux is identified as

J i = F∂∂iξs, (10)

and the entropy production is

∂ts+ ∂iJ
i = Σ = F (−∂ξs+ ∂i(∂∂iξs)) ≥ 0. (11)

One can see, that the entropy inequality can be solved with the identification of
thermodynamic fluxes and forces and assuming a linear relationship between them

F = l (−∂ξs+ ∂i(∂∂iξs)) , (12)

where l > 0 is a material relaxation coefficient. The complete evolution of ξ will be
given by an entropic Ginzburg-Landau equation:

∂tξ = l (−∂ξs+ ∂i(∂∂iξs)) . (13)

One may observe that natural boundary conditions emerge assuming a zero entropy
flux. These are convenient for numerical solutions and effectively substitute the
natural boundary conditions of variational principles [2, 57].

3.2. Ginzburg-Landau equation: a more rigorous derivation. The method
is simple and clear, this is the advantage. The disadvantage is that one cannot
fix the constitutive quantities and the constitutive state space in advance, it is
determined along the calculations, therefore the results are not unique and require
a verification by more rigorous methodology.
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In this case one should assume a second order weakly nonlocal state space,
spanned by the internal variable field, ξ, and its first and second derivatives, ∂iξ
and ∂ijξ.

We distinguish the

– space of basic variables, spanned by ξ,
– the consititutive state space, spanned by (ξ, ∂iξ, ∂ijξ),
– and the constitutive functions are s, J i and F .

Then the so called process direction space [41, 58] is spanned by the higher
derivatives of the constitutive state space, (∂tξ, ∂tiξ, ∂tijξ, ∂ijkξ). We can observe,
that now these derivatives are not independent, both the evolution equation, (8),
and also its derivative

∂tiξ + ∂iF = 0i, (14)

defines a relation in the process direction and constitutive state spaces. Therefore
both the evolution equation of ξ and also its gradient are constraints for the entropy
inequality.

In order to apply Liu procedure we introduce the Lagrange-Farkas multipliers,
λ and Λi, for the equations (8) and (14) respectively. Then the application of Liu
procedure leads to

0 ≤ ∂ts+ ∂iJ
i − λ (∂tξ + F )− Λi (∂tiξ + ∂iF ) =

= ∂ξs ∂tξ + ∂∂iξs ∂itξ + ∂∂ijξs ∂ijtξ + ∂ξJ
i ∂iξ + ∂∂jξJ

i ∂ijξ + ∂∂jkξJ
i ∂ijkξ−

− λ (∂tξ + F )− Λi
(

∂tiξ + ∂ξF ∂iξ + ∂∂jξF ∂ijξ + ∂∂jkξF ∂ijkξ
)

=

= (∂ξs− λ) ∂tξ +
(

∂∂iξs− Λi
)

∂itξ + ∂∂ijξs ∂ijtξ+

+
(

∂∂jkξJ
i − Λi∂∂jkξF

)

∂ijka+ ∂ξJ
i ∂iξ + ∂∂jξJ

i ∂ijξ−

− Λi
(

∂ξf ∂iξ + ∂∂jξf ∂ijξ
)

− λF. (15)

The multipliers of the underlined partial derivatives, the members of the process
direction space, give the Liu equations as

∂tξ : ∂ξs = λ, (16)

∂itξ : ∂∂iξs = Λi, (17)

∂ijtξ : ∂∂ijξs = 0ij , (18)

∂ijkξ : ∂∂(jkξJ
i) = Λ(i∂∂jk)ξf. (19)

The first two equations determine the Lagrange–Farkas multipliers as the deriva-
tives of the entropy, a solution of the third one gives that the entropy is independent
on the second gradient of the state variable, ξ. Therefore the Lagrange–Farkas mul-
tiplier, Λi, is also independent of this variable. In the last equation the indexed
parenthesis indicate the symmetric part. The last equation can be integrated as

J i(ξ, ∂iξ, ∂ijξ) = ∂∂iξs(ξ, ∂iξ) F (ξ, ∂iξ, ∂ijξ) + Ji(ξ, ∂iξ). (20)

Here the extra entropy current density, Ji, is an arbitrary constitutive function
of the indicated variables and we did not restrict the Liu condition to the symmetric
part of the expression. This is a complete solution of the Liu equations, (16)–(19).
Considering these results, the dissipation inequality is reduced to the following
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form:

0 ≤ ∂iJ
i +

[

∂i(∂∂iξs)− ∂ξs
]

F. (21)

Assuming that the extra entropy flux, Ji, is zero, we obtain a product of unde-
termined constitutive quantity and the derivatives of the entropy, the same thermo-
dynamic force-flux system as in (11). The classical linear solution of the inequality
results in

F = l
[

∂i(∂∂iξs)− ∂ξs
]

, l > 0. (22)

Therefore the evolution equation of an internal variable in a second order weakly
nonlocal constitutive state space will be the Ginzburg-Landau equation:

∂tξ = l
[

∂ξs− ∂i(∂∂iξs)
]

. (23)

This result is a consequence of the second law, independently of any microscopic
interpretation. If the entropy density has a square gradient form, (1), [59, 60, 61,
62], we obtain the classical form of the equation if γ is constant. The concavity of
the entropy requires γ > 0.

4. The thermodynamic origin of the Cahn–Hilliard equation

4.1. Separation of full divergences. In this case the internal variable ξ is con-
servative, its evolution equation has a balance form

∂tξ + ∂ij
i = 0, (24)

where ji is the current density of ξ. Now the constitutive functions are the entropy,
its current density and the flux of the state variable: s, J i and ji. When looking at
the equation (7) we can observe, that we need at least a fourth order weakly nonlo-
cal state space. In case of the Coleman-Noll or Liu procedures the large number of
composite derivatives, and the resulted nonlinearity in the process direction vari-
ables, encumbers to find explicit solutions of the inequality. However, the simple
separation of the full divergences in the entropy balance gives the expected result.

Let us assume, that the entropy density depends on the state variable and also
on its gradient, s(ξ, ∂iξ). Let us calculate its time derivative, and substitute the
balance, (24), as a constraint:

∂ts(ξ, ∂iξ) = ∂ξs∂tξ + ∂∂iξs∂tiξ = −∂ξs∂ij
i − ∂∂iξs∂ikj

k =

− ∂i
(

∂ξsj
i
)

+ ∂i (∂ξs) j
i − ∂i

(

∂∂iξs∂kj
k
)

+ ∂i (∂∂iξs) ∂kj
k =

− ∂i
[

∂ξsj
i + ∂∂iξs∂kj

k − ∂k (∂∂kξs) j
i
]

+ ∂i (∂ξs− ∂k (∂∂kξs)) j
i (25)

Therefore the entropy can be identified as

J i = (∂ξs− ∂k (∂∂kξs)) j
i + ∂∂iξs∂kj

k, (26)

and the entropy production is

Σ = ∂i (∂ξs− ∂k (∂∂kξs)) j
i ≥ 0. (27)

One can see, that the solution of this inequality is easy with the identification of the
thermodynamic force by the gradient of ∂i (∂ξs− ∂k (∂∂kξs)), and the thermody-
namic flux as the current density of the internal variable, ji. For isotropic materials
the coefficient is a scalar and we obtain the constitutive equation, (6):

ji = −κ∂i (∂ξs− ∂k (∂∂kξs)) , (28)
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where κ > 0, because of the second law. Substituting this expression into the
balance (24) we obtain the Cahn-Hilliard equation:

∂tξ − ∂i
[

κ∂i (∂ξs− ∂k (∂∂kξs))
]

= 0. (29)

However, let us recognize that (28) requires that the internal variable flux is a third
order weakly nonlocal function, depending on the variables (ξ, ∂iξ, ∂ijξ, ∂ijkξ).

4.2. Cahn-Hilliard equation: a more rigorous derivation. Here we should
start from a fourth order weakly nonlocal constitutive state space for a systematic
analysis. Therefore, the

– space of basic variables is spanned by ξ,
– the consititutive state space is spanned by (ξ, ∂iξ, ∂ijξ, ∂ijkξ, ∂ijklξ, ).
– The constitutive functions are s, J i and ji.

In order to apply the Liu procedure we introduce the Lagrange-Farkas multipliers
λ for the balance of ξ, (24), and Λj for the gradient of (24):

∂tjξ + ∂ijj
i = 0. (30)

With a fourth order weakly nonlocal state space one may wonder, whether higher
order spatial derivatives of the constraint should be applied. E.g. Cimmelli argues
that the consistent evaluation of the second law in this case requires the third and
fourth derivatives as constraints, too [63]. However, one can prove that in that
case the constructive character of the derivation is lost. Therefore, let us calculate
the constrained inequality, with the Lagrange-Farkas multipliers, as in the previous
section, but now with different constraints and in a larger state space.

0 ≤ ∂ts+ ∂iJ
i − λ

(

∂tξ + ∂ij
i
)

− Λj
(

∂tjξ + ∂ijj
i
)

=

= ∂ξs ∂tξ + ∂∂iξs ∂itξ + ∂∂ijξs ∂ijtξ + ∂∂ijkξs ∂ijktξ + ∂∂ijklξs ∂ijkltξ+

+ ∂ξJ
i ∂iξ + ∂∂jξJ

i ∂ijξ + ∂∂jkξJ
i ∂ijkξ + ∂∂jklξJ

i ∂ijklξ + ∂∂jklmξJ
i ∂ijklmξ+

− λ
(

∂tξ +
(

∂ξj
i
)

∂iξ +
(

∂∂jξj
i
)

∂ijξ +
(

∂∂jkξj
i
)

∂ijkξ+

+
(

∂∂jklξj
i
)

∂ijklξ +
(

∂∂jklmξj
i
)

∂ijklmξ
)

− Λn
(

∂ntξ + ∂n
(

∂ξj
i
)

∂iξ +
(

∂ξj
i
)

∂inξ + ∂n
(

∂∂jξj
i
)

∂ijξ +
(

∂∂jξj
i
)

∂ijnξ+

+∂n
(

∂∂jkξj
i
)

∂ijkξ +
(

∂∂jkξj
i
)

∂ijknξ + ∂n
(

∂∂jklξj
i
)

∂ijklξ+

+
(

∂∂jklξj
i
)

∂ijklnξ + ∂n
(

∂∂jklmξj
i
)

∂ijklmξ +
(

∂∂jklmξj
i
)

∂ijklmnξ
)

≥ 0

(31)

The multipliers of the partial time derivatives give the following Liu equations:

∂tξ : ∂ξs = λ, (32)

∂itξ : ∂∂iξs = Λi, (33)

∂ijtξ : ∂∂ijξs = 0ij , (34)

∂ijktξ : ∂∂ijkξs = 0ijk, (35)

∂ijlktξ : ∂∂ijklξs = 0ijkl, (36)

The first two equations give the Lagrange–Farkas multipliers as the derivatives
of the entropy, and a solution of the last three ones result in that the entropy
must depend only on the state variable and its gradient. Therefore the λ and Λi
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Lagrange–Farkas multipliers depend only on these variables, too. In summary the
entropy density and its derivatives are s = s(ξ, ∂iξ), ∂ξs = λ, and ∂∂iξs = Λi.

Let us investigate now the multipliers of the underlined sixth and fifth spatial
derivatives, the remaining members of the process direction space in the inequality:

∂ijklmnξ : ∂∂iξs∂∂jklmξj
n = 0ijklmn, (37)

∂ijklmξ : ∂∂ijklξJ
m = ∂ξs∂∂ijklξj

m + ∂∂nξs
(

∂n
[

∂∂ijklξj
m
]

+ δin∂∂jklξj
m
)

(38)

If the entropy is first order weakly nonlocal, then a solution of the first equation is

∂∂ijklξ

(

∂nj
i
)

= 0. (39)

The solution of the second equation will be the following expression for the entropy
flux

J i = ∂ξsj
i + ∂∂nξs∂nj

i + Ji(ξ, ∂iξ, ∂ijξ, ∂ijkξ), (40)

where the last term, the extra entropy flux, Ji, is only third order weakly nonlocal.
In this solution we have used the first of the indenties below:

∂∂ijklξ [∂nj
m] = ∂n

[

∂∂ijklξj
m
]

+ δin∂∂jklξj
m,

∂∂iklξ [∂nj
m] = ∂n [∂∂iklξj

m] + δin∂∂klξj
m,

∂∂ilξ [∂nj
m] = ∂n [∂∂ilξj

m] + δin∂∂lξj
m,

∂∂iξ [∂nj
m] = ∂n [∂∂iξj

m] + δin∂ξj
m. (41)

Using also the other identities of (41) and also the entropy flux, (40), the dissi-
pation inequality reduces to the following simple form:

∂ijklξ
(

∂∂jklξJ
i − ∂ξs∂∂jklξj

i − ∂∂mξs∂∂jklξ(∂mji)
)

+

∂ijkξ
(

∂∂jkξJ
i − ∂ξs∂∂jkξj

i − ∂∂mξs∂∂jkξ(∂mji)
)

+

∂ijξ
(

∂∂jξJ
i − ∂ξs∂∂jξj

i − ∂∂mξs∂∂jξ(∂mji)
)

+

∂iξ
(

∂ξJ
i − ∂ξs∂ξj

i − ∂∂mξs∂ξ∂mji
)

=

= ∂iJ
i + ∂i(∂ξs)j

i + ∂i(∂∂nξs)∂nj
i ≥ 0. (42)

Then we can observe, that the last line of the above expression depends linearly on
the fourth spatial derivative of the internal variable, ∂ijklξ. The coefficents of this
term, ∂∂ijkξJ

i and ∂i(∂∂nξs)∂∂ijkξj
i, and also the remaining terms in the inequality

are all independent on the fourth spatial derivative itself, they are only third order
weakly nonlocal. Therefore the coefficient of ∂ijklξ must be zero in the inequality.
This is a repeated application of Liu procedure. Therefore:

∂ijklξ : ∂∂jklξJ
i = ∂n(∂∂nξ)∂∂jklξj

n. (43)

The solution of this equation for the extra entropy flux is

Ji = −∂n (∂∂iξs) j
n + Ĵi(ξ, ∂iξ, ∂ijξ). (44)

Here the remaining extra entropy flux, Ĵi is only second order weakly nonlocal.
Therefore the final form of the entropy flux is

J i = (∂ξs− ∂n(∂∂iξs)) j
n + (∂∂nξs)∂nj

i + Ĵ
i(ξ, ∂iξ, ∂ijξ), (45)



10 P. VÁN1,2,3

This concludes a complete solution of the Liu system of equations, (16)–(19). Con-
sidering all these conditions, and assuming a zero extra entropy flux, the dissipation
inequality reduces to the following simple expression:

0 ≤ ∂i
[

∂ξs− ∂n(∂∂nξs)
]

ji. (46)

(45) and (46) are identical with the expressions (26) and (27), that we have
obtained with the help of divergence separation method.

The product form of the inequality, (46), with the fourth order weakly nonlocal
constitutive ji as a multiplier is a flux-force system, where the constitutive state
space ensures a linear solution by Lagrange mean value theorem:

ji = −κ∂i (∂ξs− ∂k (∂∂kξs)) , (47)

Substituting this expression into the balance (24) we obtain the Cahn-Hilliard equa-
tion again:

∂tξ − ∂i
[

κ∂i (∂ξs− ∂k (∂∂kξs))
]

= 0. (48)

The particular case of first order weakly nonlocal state space leads to the diffu-
sive evolution of Classical Irreversible Thermodynamics [64]. This concludes the
thermodynamic derivation.

5. Discussion

In this paper we have seen that phase-field evolution equations can be derived
from the second law without variational considerations and functional derivatives.
The intuitive method of separation of divergences enlights that the background is
the separation of surface and bulk contributions. A more rigorous analysis with
the application of Liu procedure led essentially to the same results when a consti-
tutive entropy flux was applied with derivative constraints. This derivation of the
evolution equations is based only on general principles and therefore the obtained
Ginzburg-Landau and Cahn-Hilliard dynamics is universal.

Let us emphasize that the differences between the pure thermodynamic ap-
proaches are not fundamental. They are negligible when compared to the difficulties
of the doubled structures mentioned in the introduction. For example the simple
and elegant approach of Heida, Málek and Rajagopal is based on the separation of
divergences and the solution of the dissipation inequality. It is applied to obtain
coupled diffusive thermal dynamics of fluid mixtures including Korteweg fluids [37].
A more rigorous second law analysis, probably could lead to a justification of their
results. An independent but similar work of Giorgi emphasizes the universality of
the uniform thermodynamic derivation when compared to the configurational force
balance of Gurtin and the virtual power approach of Fremond [2].

On the other hand a less constructive but rigorous standpoint can lead to general
but complicated conditions. These conditions are nevertheless useful to improve a
heuristic ansatz and to check its validity [53]. A similarly instructive analysis is the
work of Pawlow, where the constitutive state space is first order weakly nonlocal
in time, the entropy flux is constitutive but Pawlow does not apply a derivative
prolongation of the constraints. Then the Liu equations cannot be solved in a
closed function form, and to obtain the particular Cahn-Hilliard dynamics requires
a further ad hoc restriction. However, the evolution equation of the Lagrange-
Farkas multiplier leads to the microforce balance of Gurtin [52]. That is, sacrificing
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the constructivity obscures the advantages of a uniform approach, but it still can
be well interpreted.

Here the thermodynamic methods are demonstrated with scalar internal vari-
ables. The generalization for vectors and tensors is straightforward, as well as
for classical thermodynamic variables and more complicated constraints (see e.g.
[65, 58, 66, 67]). We need to mention also, that time nonlocality, the treatment of
memory and inertial effects is a different matter. For such systems dual internal
variables are suitable for a uniform thermodynamic approach [68, 69, 70, 57].
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