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THERMODYNAMICALLY CONSISTENT
GRADIENT ELASTICITY WITH

AN INTERNAL VARIABLE

Peter Ván

Abstract. The role of thermodynamics in continuum mechanics and the
derivation of proper constitutive relations is a topic discussed in Rational
Mechanics. The classical literature did not use the accumulated knowledge
of thermostatics and was very critical of the heuristic methods of irreversible
thermodynamics. In this paper, a small strain gradient elasticity theory is con-
structed with memory effects and dissipation. The method is nonequilibrium
thermodynamics with internal variables; therefore, the constitutive relations
are compatible with thermodynamics by construction. The thermostatic Gibbs
relation is introduced for elastic bodies with a single tensorial internal vari-
able. The thermodynamic potentials are first-order weakly nonlocal, and the
entropy production is calculated. The constitutive functions and the evolu-
tion equation of the internal variable are then constructed. The second law
analysis has shown a contribution of gradient terms to the stress, also without
dissipation.

1. Introduction

Rational mechanics was developed with a sharp criticism of the mathematics
used in continuum mechanics [67, 68]. However, the criticism went far beyond
some suggested methodological improvements. A complete reorganisation of fun-
damental aspects was proposed from two main points of view: the representation of
spacetime and the representation of thermodynamic principles. In the following, we
survey these aspects and argue that methods of nonequilibrium thermodynamics
are under the principles of continuum mechanics in general and with elasticity in
particular. In [75] small strain linear elasticity was analysed, and the most impor-
tant aspects were summarised. In the following, after the discussion of objectivity
and thermodynamic aspects, we extend these previous results and obtain a dis-
sipative gradient theory of small strain elasticity with a weakly nonlocal internal
variable.
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2. Objectivity

Objectivity is the concept of spacetime representation of physical quantities
and laws. Spacetime representation is particularly important in nonrelativistic
continuum mechanics and closely related to the principle of material frame indiffer-
ence [22], a concept whose mathematical formulation was developed by Noll. This
formulation requires transformation rules between reference frames [54]. Later on,
Noll’s deeper analysis led to a mathematical structure based on affine spaces, but
without a detailed spacetime model [55–57]. In a complete spacetime formulation,
the physical quantities, their governing differential equations as well as the consti-
tutive functions can be given in an absolute form, that is, without any reference
frames and independently of the flow of the material [43]. In this framework, a
physical theory is reference frame independent by construction. However, a com-
plete formulation meets conceptual difficulties, including the simplest possible case
of one-component simple fluids. One of the key difficulties is to establish a frame
independent concept of energy, because kinetic energy, including the density of
kinetic energy of a one-component simple fluid, 𝐾 = 𝜌𝑣2

2 , cannot be frame in-
dependent, being defined by the relative velocity. Therefore, it is zero when the
reference frame is fixed to the fluid and not zero in any other reference frame.
An absolute formulation requires the use of four quantities, spacetime vectors and
tensors, also in a nonrelativistic framework, where the time is absolute, and space
is relative. Therefore, a spatial, three-dimensional space vector or tensor cannot
be frame independent, whereas a four-dimensional spacetime vector or tensor can.
This observation appears indirectly in the transformation rule based definition by
Noll, too [44]. In a complete spacetime formulation, transformation rules are not
parts of the definition of objectivity and can be avoided completely [73]. Then
the frame independence of the Gibbs relation and the entropy production can be
proved. This formulation is compatible with the related concepts of Rational Ex-
tended Thermodynamics [52, 63, 79] and also with special relativity [78]. The
consequences of spacetime formulation for kinematics lead to a generalisation that
does not require the existence of a stress-free, relaxed state of any continua in a
finite deformation theory [26].

It is remarkable that the formalism of four quantities is not always necessary
and can be safely avoided. It is also important to understand how far we can
go with the help of our customary three-dimensional vectors and tensors. The
following aspects of nonrelativistic spacetime are to be considered:

∙ The four vector representation of physical quantities makes it inevitable
that the density of an extensive physical quantity, 𝜌𝑒𝑥𝑡 and its current
density, jext, are parts of the same absolute four quantity. This is also ap-
parent in a nonrelativistic, more properly Galilean relativistic framework.
For example, conductive and convective current densities, j𝑐𝑜𝑛𝑑 and 𝜌𝑒𝑥𝑡v,
are related with the formula j𝑡𝑜𝑡 = j𝑐𝑜𝑛𝑑 + 𝜌𝑒𝑥𝑡v. This is the transforma-
tion rule between comoving and laboratory frames of the spatial part of a
four vector, where the timelike component is the density, and the spacelike
component is the current density in a particular reference frame.
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∙ Spacetime derivatives are four covectors. Spacelike components of four
covectors are absolute, but timelike components transform, and they differ
depending on reference frames. For example, the relation of a local, partial
time derivative in a laboratory frame, 𝜕𝑡, to a substantial time derivative,
𝑑
𝑑𝑡 , of the form 𝑑

𝑑𝑡 = 𝜕𝑡 + v · ∇ is a transformation rule of the timelike
component of the spacetime derivative between a laboratory reference
frame and a reference frame comoving with the fluid. Then, the gradients
are spacelike covectors and do not transform at all. This fact is well hidden
using Noll’s definition.

A consequence of these observations is that gradient dependent constitutive
functions are frame independent, but one should be careful with time derivatives.
It is also easy to comprehend that a balance is a four divergence and, therefore,
frame independent.

In the following, the application of these simple rules ensures that we obtain
frame independent theories with the usual tools of three-dimensional tensor analy-
sis. The simple but not customary four-dimensional affine spaces of nonrelativistic
spacetime are not necessary; one can focus on the main subject of the paper – the
formulation of thermodynamic principles.

3. Second law of thermodynamics

Rational mechanics considers the second law as a foundation of constitutive
modelling in continuum mechanics. However, concepts from thermostatics, like the
Gibbs relation with differentials, were abandoned, and the convenient and simple
methods of classical irreversible thermodynamics with thermodynamic fluxes and
forces are mostly rejected as mathematically inexact [66]. The criticism was well
deserved since obscure concepts cannot lead far, and the development of irreversible
thermodynamics slowed down. Despite many efforts, classical irreversible thermo-
dynamics was unable to enter into the realm of continuum mechanics. The studies
of the most critical challenges, time and space nonlocalities, that is, rheology and
gradient theories, do not use irreversible thermodynamics, except some notable but
not influential results [11, 36–38, 85]. The breakthrough of the last fifty years,
Extended Thermodynamics, was the result of ideas from kinetic theory and much
less the consequence of a rigorous rational methodology [34,40]. The rigorous ap-
proach encountered the inadequate formulation of objectivity, chose kinetic theory
as a basis and established the concept of objectivity rejecting the definition by
Noll [50,52,53].

On the other hand, the rigorous mathematical approach did not result in the
expected general and universal theory extending the modelling power of contin-
uum theories but effectively blocked some research directions, in particular to-
ward weakly nonlocal extensions. In their influential paper, Coleman and Gurtin
proved that weakly nonlocal internal variables are incompatible with the second
law [13] and, in another paper, Gurtin argued that gradient elasticity is incompati-
ble with the second law [27]. Therefore, theories of spatial interactions were devel-
oped in a different direction, mostly without the direct constructive application of
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thermodynamic principles [1,2,7,9,15,20,21,48,59,83] or with the help of brand
new concepts, like phase fields [60, 61], interstitial working, extra fluxes [18, 19]
or microforce balance [28,29,31]. In these theories, the importance of the second
law varies, but, in general, does not play a constructive role. The big idea of the
principle-based rational approach has encountered difficulties with the complicated
memory functional material models and faced mathematical problems, because the
constitutive theory leads to unavoidable and physically unacceptable instabilities
in gradient elasticity [17,33,51].

However, one may realise that the problem with rational methodology is not the
use of mathematics, but the rigid attitude of finding the correct physical starting
points. The conditions of a theorem are to be scrutinised from a physical point of
view and modified if necessary. For example, the rigorous methods of second law
analysis, the Coleman-Noll and Liu procedures [14,42], can be extended to obtain
weakly nonlocal constitutive functions with three conditions:

∙ The entropy flux is a constitutive quantity, and it is not always equal to
the heat flux divided by temperature.

∙ The spatial derivative of a constraint can be considered as an additional
constraint, depending on the structure of the constitutive state space.

∙ Thermodynamics fluxes and forces are available concepts for solving the
entropy inequality.

The first condition, the idea of treating the entropy flux as a constitutive quan-
tity originated from the work by Müller [49] and was later refined by Verhás and
Nyíri [58,84]. It is also a spacetime question, since entropy density and entropy flux
are parts of the same objective physical quantity, the entropy four vector. Then one
can show that classical irreversible thermodynamics is a first-order weakly nonlocal
constitutive theory with balances as constraints and the thermodynamic flux-force
system appears naturally [69]. The extended Coleman–Noll and Liu procedures are
applicable for checking the second law compatibility of weakly nonlocal continuum
theories [12, 70] and can be applied for constructing new ones or unifying inde-
pendent looking theoretical developments, like internal variables with generalised
continua or phase field evolution [5,72,74,76,81].

Also, the Gibbs relation of thermostatics is a source of information that should
be understood; otherwise, we neglect the related accumulated experience from
physics and chemistry. The critical aspect here is the extension of the concept
of extensivity in situations where its original definition is seemingly not applicable,
for example to elasticity and gradient effects. These are the topics of the next
sections.

4. Thermostatics of elasticity

In the following, we use index notation in a small strain theory, where the strain
is denoted by 𝜀𝑖𝑗 . Here the indices are spatial and upper-lower index pairs denote
summation, e.g. 𝜀𝑖𝑖 is the trace of the strain tensor. The indices are abstract,
that is, they do not denote any coordinates, only the tensorial properties of the
spatial physical quantities in the three-dimensional vector space of the position.
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The distinction of upper-lower indices is not always essential, because the three-
dimensional relative space is endowed with the Euclidean metric, and one may
therefore identify vectors with covectors. This kind of abstract index notation was
introduced by Penrose in relativity theories [62], and its use and advantage in
nonrelativistic (i.e. Galilean relativistic) spacetime were explained in [73].

Deformation or strain cannot be extensive thermodynamic state variables in the
classical sense. They are locally defined quantities, but homogeneous deformation of
a finite volume continuum body depends on the shape of the body. Therefore, ther-
modynamic potentials of the complete body do not reflect material properties. In
some thermodynamic books the Gibbs relation for elasticity appears as an analogon
of the fluid Gibbs relation, but specific volume is substituted by strain [39,47,85].
Other handbooks about continuum mechanics do not consider homogeneous bodies
at all [47], even when considering thermodynamic requirements [4,30,65]. How-
ever, strain is a local concept by definition and it is not necessary to start from
quantities of the whole body in a continuum thermodynamic approach. The basic
question here is the separation of the local strain from local rotation and the local
Riemanian metric, which is responsible for the energy changes in the body [26].
Starting from local expressions, one can build up extensivity from this direction [6].
In the following we will introduce only small strains, where these problems can be
solved relatively easily. Then the specific entropy, s, of elastic bodies is the function
of the internal energy, 𝑒, and the strain, 𝜀𝑖𝑗 , a second order symmetric tensor. Its
partial derivatives are:

(4.1) s = s(e, 𝜀𝑖𝑗),
𝜕s

𝜕e
=

1

𝑇
,

𝜕s

𝜕𝜀𝑖𝑗
= −v

𝜎𝑖𝑗

𝑇
,

where 𝜎𝑖𝑗 is the thermostatic stress, v is the specific volume and 𝑇 is the tempera-
ture. Therefore, the Gibbs relation is written as

(4.2) de = 𝑇 ds+ v𝜎𝑖𝑗d𝜀
𝑖𝑗 .

The first order Euler homogeneity is ensured by introducing the chemical po-
tential, 𝜇, as

(4.3) 𝜇 := e− 𝑇 s− v𝜎𝑖𝑗𝜀
𝑖𝑗 .

Then it is easy to obtain the particular expressions with densities as well:

d𝜌𝑒 = 𝑇 d𝜌𝑠 + 𝜎𝑖𝑗d𝜀
𝑖𝑗 +

(︁
𝜇+

𝜎𝑖𝑗𝜀
𝑖𝑗

𝜌

)︁
d𝜌,(4.4)

𝜌𝑒 = 𝑇𝜌𝑠 + 𝜎𝑖𝑗𝜀
𝑖𝑗 + 𝜇𝜌,

where 𝜌 = 1/v is the density, 𝜌𝑒 = 𝜌𝑒 is the internal energy density, and 𝜌𝑠 = 𝜌𝑠
is the entropy density. It is easy to prove these expressions according to (4.2) and
(4.3). Density changes are also not negligible in case of small strains. The quantities
for the entire elastic body are calculated by multiplying the strain with the mass of
the body 𝑀 and then 𝑀𝜀𝑖𝑗 will be the bulk, body-related extensive thermodynamic
state variable if it is interpretable. Chemical potential is rarely introduced explicitly
in continuum mechanics because mass exchange usually does not play a role. One
can convert the previous expressions with the help of free energy density, 𝑓 , defined
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by the following Legendre transformation: 𝑓 = 𝜌𝑒 − 𝑇𝜌𝑠 = 𝜎𝑖𝑗𝜀
𝑖𝑗 + 𝜇𝜌, and then

the Gibbs relation for densities (4.4) can be written as

(4.5) d𝑓 = −𝜌𝑠d𝑇 + 𝜎𝑖𝑗d𝜀
𝑖𝑗 +

𝑓

𝜌
d𝜌, → 𝜌d

𝑓

𝜌
= −𝜌𝑠d𝑇 + 𝜎𝑖𝑗d𝜀

𝑖𝑗 .

Seemingly there is no need for chemical potential at all. It is substituted by the
specific free energy on the left-hand side of the previous expression. One can avoid
the use of entropy and chemical potential starting from free energy in thermody-
namical considerations of continuum mechanics [6,10,30], where one should take
care of the variables of the previous functions. For example, free energy density
has the natural variables: temperature, 𝑇 , strain 𝜀𝑖𝑗 and density 𝜌, as is appar-
ent from the first Gibbs relation of (4.5). With the classical thermodynamical,
differential-based representation of the Gibbs relation one can keep the flexibility
of classical thermodynamics when changing the variables. One can see that with
specific quantities the number of variables is reduced; while the free energy density
is a function of three variables, 𝑓(𝑇, 𝜀𝑖𝑗 , 𝜌), the specific free energy is the function
of two, only, 𝑓

𝜌 (𝑇, 𝜀
𝑖𝑗). This is the consequence of extensivity, the first-order Euler

homogeneity of the entropy of homogeneous bodies, here considered directly for
locally defined specific quantities and densities [6].

For ideal elastic bodies, elastic energy is to be subtracted from the internal
energy. Then, one may have two basic choices. In the following, the specific quan-
tities are preferred, and specific elastic energy is therefore to be subtracted from
the specific internal energy, and the specific entropy is given in the following form

𝑠(𝑒, 𝜀𝑖𝑗) = 𝑠
(︁
𝑒− 𝜇𝜀𝑖𝑗𝜀𝑖𝑗 −

𝜆

2
(𝜀𝑖𝑖)

2
)︁
,

where the Lamé coefficients are �̂� = 𝜌𝜇 and �̂� = 𝜌𝜆, because 𝜌𝑒𝑙𝑎 = �̂�𝜀𝑖𝑗𝜀𝑖𝑗+ �̂�
2 (𝜀

𝑖𝑖)2

is the density of the elastic energy. Using the definition of temperature as the
derivative of the entropy in (4.1), and assuming constant 𝜇, 𝜆 parameters, one
obtains, that

(4.6) 𝜎𝑖𝑗 = 2�̂�𝜀𝑖𝑗 + �̂�𝜀𝑘𝑘𝛿
𝑖𝑗 .

Here the elastic moduli 𝜇 and 𝜆 are nonnegative because of the concavity of the
entropy. By 𝛿𝑖𝑗 we denote the Kronecker delta, the identity tensor with abstract
index notation. A consequence of this calculation is that the Lamé coefficients are
proportional to the density.

We have seen that specific quantities are the most straightforward starting
points for constructing thermodynamic potentials in continua. In the following, we
further develop this observation.

5. Thermostatics of gradient elasticity with a gradient internal variable

The basic problem of using gradients of physical quantities as thermodynamic
state variables is a shape dependence similar to that in case of deformation. After
the previous considerations it is straightforward to introduce the necessary modi-
fications and extend the elastic Gibbs relation. Now the specific entropy depends
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on the internal energy, the strain gradient, 𝜕𝑘𝜀𝑖𝑗 , and an internal variable 𝜉𝑖𝑗 and
its gradient 𝜕𝑘𝜉𝑖𝑗 ; therefore, s = s(e, 𝜀𝑖𝑗 , 𝜕𝑘𝜀

𝑖𝑗 , 𝜉𝑖𝑗 , 𝜕𝑘𝜉
𝑖𝑗). Let us denote the partial

derivatives of the entropy as

𝜕s

𝜕e
=

1

𝑇
,

𝜕s

𝜕𝜀𝑖𝑗
= −v

𝜎𝑖𝑗

𝑇
,

𝜕s

𝜕(𝜕𝑘𝜀𝑖𝑗)
= v

𝑆𝑘
𝑖𝑗

𝑇
,

𝜕s

𝜕𝜉𝑖𝑗
= v𝑦𝑖𝑗

𝜕s

𝜕(𝜕𝑘𝜉𝑖𝑗)
= v𝑌 𝑘

𝑖𝑗 .

The physical quantities here denoted by 𝑆𝑘
𝑖𝑗 , 𝑦𝑖𝑗 , 𝑌

𝑘
𝑖𝑗 are particular intensive ther-

modynamic state functions in analogy with thermostatic terminology. We will see
that some of the properties of usual intensive quantities are preserved. The corre-
sponding Gibbs relation is written as

(5.1) de = 𝑇 ds+ v𝜎𝑖𝑗d𝜀
𝑖𝑗 − v𝑆𝑘

𝑖𝑗d𝜕𝑘𝜀
𝑖𝑗 − v𝑇𝑦𝑖𝑗d𝜉

𝑖𝑗 − v𝑇𝑌 𝑘
𝑖𝑗d𝜕𝑘𝜉

𝑖𝑗 .

This will be our basic formula for the second law inequality and constructing a
thermodynamic compatible evolution equation for 𝜉𝑖𝑗 and constitutive function for
the stress and heat flux. The explicit appearance of temperature in the definition
of the internal variable related intensive quantities is not fundamental, it expresses
our traditional expectation that the strain directly contributes to the energy, as
we have seen in (4.6), but the internal variable may influence the entropy more
directly.

6. Entropy production of gradient elasticity with a weakly nonlocal
internal variable

The entropy inequality is conditional. The fundamental balances are the con-
ditions for the entropy inequality. In our case they are the conservation of mass,
the conservation of momentum and the conservation of energy. The continuity
equation for the conservation of mass is written as

(6.1) �̇�+ 𝜌𝜕𝑖𝑣
𝑖 = 0,

where the dot denotes the substantial, comoving time derivative, that is, �̇� =
𝜕𝑡𝜌 + 𝑣𝑖𝜕𝑖𝜌. By 𝜕𝑡 and 𝜕𝑖 we denote the partial time derivative and the gradi-
ent, respectively, and by 𝑣𝑖 we denote the velocity field of the continuum, defined
in the usual way as mass and momentum flow [82]. The balance of momentum is

𝜌�̇�𝑖 − 𝜕𝑗 �̃�
𝑖𝑗 = 0𝑖,

where �̃�𝑖𝑗 is the stress tensor. The conservation of the moment of momentum is
assumed; therefore, the stress is symmetric, �̃�𝑖𝑗 = �̃�𝑗𝑖. Note that the stress in
the momentum balance can be different from the static stress 𝜎𝑖𝑗 , given as the
derivative of the entropy function in (4.1) and for ideal elasticity in particular in
(4.6). The balance of internal energy follows as (see, e.g. [32])

(6.2) 𝜌�̇�+ 𝜕𝑖𝑞
𝑖 = �̃�𝑖𝑗𝜕𝑖𝑣𝑗 ,

where 𝑞𝑖 is the heat flux, the conductive current density of the internal energy. It
is different from the energy flux 𝑞𝑖 = 𝑞𝑖 − �̃�𝑖𝑗𝑣𝑗 , the conductive current density of
the total energy. The antisymmetric part of the velocity gradient tensor, which is
the curl of the velocity field, does not play a role here, because of the symmetry of
the stress.
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The fourth condition that must be considered is the small strain version of the
compatibility condition, that is,

(6.3) �̇�𝑖𝑗 = 1
2 (𝜕

𝑖𝑣𝑗 + 𝜕𝑗𝑣𝑖).

The substantial time derivative of the strain is the symmetric part of the velocity
gradient.

The last condition is less evident, and it is the evolution equation of the internal
variable, expressed explicitly as

𝜉𝑖𝑗 = 𝑓 𝑖𝑗(e, 𝜀𝑖𝑗 , 𝜕𝑘𝜀
𝑖𝑗 , 𝜉𝑖𝑗 , 𝜕𝑘𝜉

𝑖𝑗).

This condition expresses that the evolution equation of the internal variable is
unknown and is to be determined constitutively, with the help of the second law.
The restriction from the second law is universal, independent of the particular
material structure which defines the internal variable, and this possibility is the
most important consequence of recent thermodynamic investigations.

The entropy balance expresses the second law in the form of the following
conditional inequality

𝜌�̇�+ 𝜕𝑖𝐽
𝑖 = Σ > 0,

where the above conditions, (6.1)–(6.3), are to be considered in the simplest pos-
sible way, by direct substitution. Then the calculation of the entropy production
is straightforward if the entropy flux is identified. For that purpose, the classical
method of irrversible thermodynamics is applied [16]. The generalisation to the
weakly nonlocal, gradient dependent case is straightforward, see, e.g. [5,74]. The
direct application of the Gibbs relation (5.1) requires using only the balance of the
internal energy (6.2) and the compatibility condition (6.3). The balance of mo-
mentum is considered through the internal energy, and the continuity equation is
not necessary because of the use of substantial derivatives and conductive fluxes.
This simplification, common in fluid mechanics, considers comoving quantities, sep-
arating the changes in various fields due to the motion of the continuum from the
changes of material origin. The whole procedure also the entropy production are
absolute, reference frame and flow-frame independent. A more detailed explana-
tion of the related objectivity issues was given in the introduction and [73]. The
extension of those calculations for the present case is straightforward:

𝜌�̇�(𝑒, 𝜀𝑖𝑗 , 𝜕𝑘𝜀
𝑖𝑗 , 𝜉𝑖𝑗 , 𝜕𝑘𝜉

𝑖𝑗) =
𝜌�̇�

𝑇
− 𝜌

𝜌𝑇
𝜎𝑖𝑗 �̇�

𝑖𝑗 +
𝑆𝑘
𝑖𝑗

𝑇
(𝜕𝑘𝜀

𝑖𝑗 )̇ + 𝑦𝑖𝑗𝜉
𝑖𝑗 + 𝑌 𝑘

𝑖𝑗(𝜕𝑘𝜉
𝑖𝑗 )̇

= −𝜕𝑘

(︁𝑞𝑘 − 𝑆𝑘
𝑖𝑗 �̇�

𝑖𝑗

𝑇
− 𝑌 𝑘

𝑖𝑗𝜉
𝑖𝑗
)︁
+ 𝜕𝑘

(︁ 1

𝑇

)︁
(𝑞𝑘 − 𝑆𝑘

𝑖𝑗 �̇�
𝑖𝑗)

− ˙𝜀𝑖𝑗
𝑇

(𝜎𝑖𝑗 + 𝜕𝑘𝑆
𝑘𝑖𝑗) +

𝜕𝑗𝑣𝑖
𝑇

(�̃�𝑖𝑗 − 𝑆𝑗
𝑘𝑙𝜕

𝑖𝜀𝑘𝑙 − 𝑇𝑌 𝑗
𝑘𝑙𝜕

𝑖𝜉𝑘𝑙)

+ 𝑓 𝑖𝑗(𝑦𝑖𝑗 − 𝜕𝑘𝑌
𝑘
𝑖𝑗) > 0.

Here we can identify the entropy flux as 𝐽𝑘 =
𝑞𝑘−𝑆𝑘

𝑖𝑗 �̇�
𝑖𝑗−𝑇𝑌 𝑘

𝑖𝑗𝜉
𝑖𝑗

𝑇 , and a modified
heat flux with an extra term 𝑞𝑘 = 𝑞𝑘 − 𝑆𝑘

𝑖𝑗 �̇�
𝑖𝑗 . Introducing the compatibility
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condition, (6.3), one obtains for the entropy balance:

𝜌�̇�+ 𝜕𝑘

(︁𝑞𝑘 − 𝑆𝑘
𝑖𝑗 �̇�

𝑖𝑗 − 𝑇𝑌 𝑘
𝑖𝑗𝜉

𝑖𝑗

𝑇

)︁
= (𝑞𝑘 − 𝑆𝑘

𝑖𝑗 �̇�
𝑖𝑗)𝜕𝑘

(︁ 1

𝑇

)︁
+

˙𝜀𝑖𝑗
𝑇

(�̃�(𝑖𝑗) − 𝜎𝑖𝑗 − 𝜕𝑘𝑆
𝑘𝑖𝑗 − 𝑆

(𝑖
𝑘𝑙𝜕

𝑗)𝜀𝑘𝑙 − 𝑌
(𝑖
𝑘𝑙 𝜕

𝑗)𝜉𝑘𝑙)

+
𝜕[𝑗𝑣𝑖]

𝑇
(�̃�[𝑖𝑗] − 𝑆

[𝑗
𝑘𝑙𝜕

𝑖]𝜀𝑘𝑙 − 𝑇𝑌
[𝑗
𝑘𝑙 𝜕

𝑖]𝜉𝑘𝑙) + 𝑓 𝑖𝑗(𝑦𝑖𝑗 − 𝜕𝑘𝑌
𝑘
𝑖𝑗) > 0.

Here (..) denotes the symmetric part of the corresponding tensorial components
and [..] denotes the antisymmetric one. In the calculation we used, the substantial
and spatial derivatives do not commute, and the following identity was applied

(𝜕𝑘𝜉
𝑖𝑗 )̇ = 𝜕𝑘𝜉

𝑖𝑗 − 𝜕𝑘𝑣
𝑙𝜕𝑙𝜉

𝑖𝑗 .

Here 𝜎(𝑖𝑗)
𝑎𝑛 = �̃�(𝑖𝑗)−𝜎𝑖𝑗−𝜕𝑘𝑆

𝑘𝑖𝑗−𝑆
(𝑖
𝑘𝑙𝜕

𝑗)𝜀𝑘𝑙−𝑌
(𝑖
𝑘𝑙 𝜕

𝑗)𝜉𝑘𝑙 is the symmetric anelastic
stress. This expression is the extension of the usual viscous stress, 𝜎𝑖𝑗

𝑣𝑖𝑠𝑐 = �̃�𝑖𝑗−𝜎𝑖𝑗 .
The additional anelastic terms are due to the internal variable and the gradient of
the strain. We can see that weak nonlocality leads to couple-stresses both from
the strain and internal variable gradients. We will call 𝜎[𝑖𝑗]

𝑎𝑛 = �̃�[𝑖𝑗] − 𝑆
[𝑗
𝑘𝑙𝜕

𝑖]𝜀𝑘𝑙 −
𝑇𝑌

[𝑗
𝑘𝑙 𝜕

𝑖]𝜉𝑘𝑙 anelastic couple-stress.
The heat flux, 𝑞𝑖, the dynamic stress, �̃�𝑖𝑗 , and the evolution equation of the

internal variable, 𝑓 𝑖𝑗 , are material dependent constitutive quantities. The entropy
inequality determines their functional form. The simplest solution is to assume that
𝑞𝑖, 𝜎𝑖𝑗

𝑎𝑛 and 𝑓 𝑖𝑗 are linear functions of their multipliers in the entropy inequality,
that is, we can introduce thermodynamic fluxes and forces, as shown in Table 1.

Table 1. Thermodynamic fluxes and forces of weakly nonlocal
anelastic solids.

Thermal Mechanical Couple Internal

Fluxes 𝑞𝑖 𝜎
(𝑖𝑗)
𝑎𝑛 𝜎

[𝑖𝑗]
𝑎𝑛 𝑓 𝑖𝑗

Forces 𝜕𝑖
(︀
1
𝑇

)︀
�̇�𝑖𝑗

𝑇

𝜔[𝑗𝑖]

𝑇 =
𝜕[𝑗𝑣𝑖]
𝑇 𝑦𝑖𝑗 − 𝜕𝑘𝑌

𝑘
𝑖𝑗

The identification of thermodynamic fluxes and forces must be based on their
mathematical properties. Originally, for simple materials, thermodynamic forces
have a gradient form, and thermodynamic fluxes are related to conductive current
densities (called fluxes) of the balance form constraints [69]. In general, thermo-
dynamic fluxes are to be related to constitutive functions, while thermodynamic
forces are given operators, functions on the constitutive state space. Therefore,
mechanical stress is not a force in a thermodynamical sense; it is a thermodynamic
flux related to momentum transport in the material. From a physical point of view,
thermodynamic fluxes are better considered characterising the deviation from lo-
cal equilibrium and thermodynamic forces are to be considered as generalisations
of gradients, their particular form being influenced by various constraints and the
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structure of the state space. For example, in our case, the thermodynamic force for
the internal interaction, related to the internal variable 𝜉𝑖𝑗 , is a complete partial
functional derivative of the entropy density by the internal variable:

𝑦𝑖𝑗 − 𝜕𝑘𝑌
𝑘
𝑖𝑗 = 𝜌

𝜕𝑠

𝜕𝜉𝑖𝑗
− 𝜕𝑘

(︁
𝜌

𝜕𝑠

𝜕(𝜕𝑘𝜉𝑖𝑗)

)︁
=

𝛿(𝜌𝑠)

𝛿𝜉𝑖𝑗
(e, 𝜀𝑖𝑗 , 𝜕𝑘𝜀

𝑖𝑗 , 𝜉𝑖𝑗 , 𝜕𝑘𝜉
𝑖𝑗).

Assuming that the constitutive functions are smooth and isotropic, the general
solution to the entropy inequality follows from the Lagrange mean value theorem
in the following form

𝑞𝑖 = Λ𝜕𝑖
1

𝑇
,

𝜎⟨𝑖𝑗⟩
𝑎𝑛 = 𝑙11�̇�

⟨𝑖𝑗⟩ + 𝑙12
(︀
𝑦⟨𝑖𝑗⟩ − 𝜕𝑘𝑌

𝑘
⟨𝑖𝑗⟩

)︀
𝜉⟨𝑖𝑗⟩ = 𝑙21�̇�

⟨𝑖𝑗⟩ + 𝑙22
(︀
𝑦⟨𝑖𝑗⟩ − 𝜕𝑘𝑌

𝑘
⟨𝑖𝑗⟩

)︀
(6.4)

(𝜎𝑎𝑛)
𝑘
𝑘 = 𝑘11�̇�

𝑘
𝑘 + 𝑘12

(︀
𝑦𝑘𝑘 − 𝜕𝑙𝑌

𝑙𝑘
𝑘

)︀
𝜉𝑘𝑘 = 𝑘21�̇�

𝑘
𝑘 + 𝑘22

(︀
𝑦𝑘𝑘 − 𝜕𝑙𝑌

𝑙𝑘
𝑘

)︀
.(6.5)

𝜎[𝑖𝑗]
𝑎𝑛 = 𝑚11𝜔

𝑖𝑗 +𝑚12

(︀
𝑦[𝑖𝑗] − 𝜕𝑘𝑌

𝑘
[𝑖𝑗]

)︀
𝜉[𝑖𝑗] = 𝑚21𝜔

𝑖𝑗 +𝑚22

(︀
𝑦[𝑖𝑗] − 𝜕𝑘𝑌

𝑘
[𝑖𝑗]

)︀
.(6.6)

Here the representation theorems of isotropic functions were applied, that is, the
second order spatial tensors were divided into a traceless symmetric, which is de-
viatoric, trace, which is spherical, and the antisymmetric parts as is customary in
isotropic elasticity. Some of the material coefficients are well known. By Λ𝐹 = Λ/𝑇 2

we denote the Fourier heat conductivity coefficient, and 𝑙11 and 𝑘11 are the linear
viscoelastic coefficients of a Kelvin–Voigt body. The second law nonnegativity of
the entropy production requires the positive definiteness of the symmetric parts of
the coefficient matrices and therefore the following sign restrictions follow:

Λ, 𝑙11, 𝑙22, 𝑘11, 𝑘22, 𝑚11, 𝑚22 > 0,

(6.7) 𝑙11𝑙22 −
𝑙12 + 𝑙21

4
> 0, 𝑘11𝑘22 −

𝑘12 + 𝑘21
4

> 0, 𝑚11𝑚22 −
𝑚12 +𝑚21

4
> 0.

Equations (6.4) and (6.5) are the weakly nonlocal generalisation of the Kluitenberg–
Verhás body [3], the fundamental building block of thermodynamic rheology. The
difference is that here the thermodynamic forces and fluxes are gradient dependent.
It is important to remark that the symmetry of the Onsagerian coefficient matrices
cannot be required; therefore, 𝑙12 ̸= 𝑙21, 𝑘12 ̸= 𝑘21, 𝑚12 ̸= 𝑚21 in general, as is
experimentally observed in case of rock materials for the deviatoric and spherical
parts [41,45,46]. The coefficients are not necessarily constant, they may be state
dependent, and, in general, in a fully nonlinear case, they may depend on the
thermodynamic forces, too.
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6.1. Ideal anelastic materials. It is worth inspecting an important special
case of our continuum model, when the material is not dissipative. There are
several distinct possibilities. Let us assume now that the internal thermodynamic
force, 𝑦𝑖𝑗 − 𝜕𝑘𝑌

𝑘
𝑖𝑗 , heat flux and the anelestic stress are zero. Then the following

constitutive functions and field equations are to be considered:

(6.8) 𝑞𝑘 = 𝑆𝑘
𝑖𝑗 �̇�

𝑖𝑗 ,

�̃�𝑖𝑗 = 𝜎𝑖𝑗 + 𝜕𝑘𝑆
𝑘𝑖𝑗 + 𝑆𝑖

𝑘𝑙𝜕
𝑗𝜀𝑘𝑙 + 𝑇𝑌 𝑖

𝑘𝑙𝜕
𝑗𝜉𝑘𝑙

(6.9) 0 = 𝜌
𝜕𝑠

𝜕𝜉𝑖𝑗
− 𝜕𝑘

(︁
𝜌

𝜕𝑠

𝜕(𝜕𝑘𝜉𝑖𝑗)

)︁
=

𝛿(𝜌𝑠)

𝛿𝜉𝑖𝑗
.

In this case the continuum is not necessarily at rest, the rate of the strain is not
necessarily zero, as one can see from the constitutive equations (6.4)–(6.6) above.

A remarkable consequence of the fact that the heat flux is not zero is that by
substituting (6.8) into the balance of internal energy one can see the propagation
of internal energy connected to the strain changes, that is,

𝜌�̇�+ 𝜕𝑘(𝑆
𝑘
𝑖𝑗 �̇�

𝑖𝑗) = 0.

The internal energy is conserved because the mechanical power is zero. How-
ever, the momentum balance has the following form:

(6.10) 𝜌�̇�𝑖 − 𝜕𝑗(𝜎
𝑖𝑗 + 𝜕𝑘𝑆

𝑘𝑖𝑗 + 𝑆𝑖
𝑘𝑙𝜕

𝑗𝜀𝑘𝑙 + 𝑇𝑌 𝑖
𝑘𝑙𝜕

𝑗𝜉𝑘𝑙) = 0.

Moreover, considering (6.9) the internal variable related stress term can be con-
verted to force density and the equation transforms to

(6.11) 𝜌�̇�𝑖 − 𝜕𝑗(𝜎
𝑖𝑗 + 𝜕𝑘𝑆

𝑘𝑖𝑗 + 𝑆𝑖
𝑘𝑙𝜕

𝑗𝜀𝑘𝑙) = −𝜌∇𝑖
𝜉𝑠.

Here ∇𝜉𝑠 = 𝜕𝜉𝑘𝑙𝑠𝜕𝑖𝜉𝑘𝑙 + 𝜕(𝜕𝑗𝜉𝑘𝑙)𝑠𝜕
𝑖
𝑗𝜉

𝑘𝑙, the partial gradient of the specific en-
tropy, due to the internal variable. If the entropy is additively decomposed into
strain and internal variable dependent parts, that is, 𝑠(e, 𝜀𝑖𝑗 , 𝜕𝑘𝜀

𝑖𝑗 , 𝜉𝑖𝑗 , 𝜕𝑘𝜉
𝑖𝑗) =

𝑠𝑒𝑙𝑎(e, 𝜀
𝑖𝑗 , 𝜕𝑘𝜀

𝑖𝑗) + 𝑠𝑖𝑛𝑡(𝜉
𝑖𝑗 , 𝜕𝑘𝜉

𝑖𝑗), then the gradient of the second part, 𝑠𝑖𝑛𝑡, is a
force density because ∇𝑖

𝜉𝑠 = 𝜕𝑖𝑠𝑖𝑛𝑡.

7. Concluding remarks: internal variables, phase fields and gravitation

Finally, we offer some general remarks.
∙ It is remarkable that according to the continuity equation and the com-

patibility condition, (6.3) and (6.1), the density and the strain are not
independent, because: �̇�

𝜌 = �̇�𝑖𝑖. Therefore, 𝜀𝑖𝑖 = ln 𝜌
𝜌0

, where 𝜌0 is con-
stant. However, thermostatics, with the definition of state variables and
thermodynamic potentials, precedes the calculation of entropy produc-
tion, and the continuity equation is a constraint there.

∙ The results of these heuristic calculations can be obtained with more rig-
orous methods, too. Regarding objectivity, see [24], where it was shown
that our framework–that is a first-order weakly nonlocal constitutive state
space with balance constraints–leads to the classical form of entropy pro-
duction.
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∙ Sometimes it is assumed that a gradient itself can be an internal variable
(see, e.g. [5,80]). Here it is shown that it can be misleading because sur-
face and bulk contributions differ, and evolution equation and boundary
conditions are affected.

∙ In a finite deformation framework, natural objective derivatives, such as
Lie derivatives, appear in the evolution of the internal variable (see, e.g.
[71]). Also, spatial interactions are influenced [6]. Our treatment here
did not introduce material manifolds, which should be a logical next step
in this research.

The most remarkable aspect of our treatment is the stress force relation of the
ideal solid, expressed in (6.10) and (6.11). According to the constitutive relations
(6.4)–(6.6) and in particular the sign restrictions of (6.7), the evolution of the
internal variable is relaxational and eventually becomes static. The developed static
structure satisfies (6.9). This behaviour is general, and it is independent of the
tensorial properties of the internal variable. Then the internal variable related
stresses are bulk, and all stress contributions may appear as force density in the
momentum balance. This is a natural, dynamic homogenisation process.

We have mentioned that, without the gradient contributions and couple-stress-
es, our treatment is reduced to the Kluitenberg–Verhás rheological body [3, 25,
64,79]. However, the previous considerations open up the possibility to generalise
the constitutive framework of continuum mechanics into various directions together
with the constructive approach of nonequilibrium thermodynamics. Weakly nonlo-
cal extension of the classical state variables, memory effects with internal variables
and the combination of memory effects and gradient effects offer a rich framework
of material modelling. For example, the previously mentioned stress-force rela-
tion for static internal variables shows the natural connection of microforce balance
based material models [23,28,31], and theories with internal variables. The ex-
tension considering spatial nonlocalities of the internal variables in a higher-order
weakly nonlocal state spaces leads to phase field theories [74,76]. Introducing a
second tensorial internal variable leads to dual internal variables and results in the
micromorphic theory [5,81].

The generalisation of the Fourier law, the heat conduction theory, is also
straightforward. It leads to experimentally confirmed effects in complex materi-
als at room temperature [8,82]. The connection between mechanical and thermal
effects in this framework of nonequilibrium thermodynamics is a source of experi-
mental and technological predictions [35].

Finally, I would like to mention one of the most striking consequences of the
internal variable approach, highlighting the importance of the fine details of weak
nonlocality and the requirement of extensivity. Let us assume that a part of the
internal energy is weakly nonlocal with a square gradient weak nonlocality with the
following Gibbs relation:

d𝑢 = 𝑇d𝑠− 𝑝d𝑣 = d𝑒− d𝜙− d
(︁𝜕𝑖𝜙𝜕𝑖𝜙

8𝜋𝐺𝜌

)︁
.
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With the previous methods of nonequilibrium thermodynamics, it is easy to show
that 𝜑 is the Newtonian gravitational potential and we obtain a dissipative theory
of gravity, which in the ideal case reduces to the usual one, where the field equation
for the gravitational potential 𝜑 is the Poisson equation: 𝜕𝑖

𝑖𝜑 = 4𝜑𝐺𝜌. However,
the general nondissipative dynamics is more general and also reproduces the field
equations of Modified Newtonian Dynamics (MOND) [77].
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ТЕРМОДИНАМИЧКИ КОНЗИСТЕНТНА ГРАДИJЕНТНА
ЕЛАСТИЧНОСТ СА УНУТРАШЊОМ ПРОМЕНЉИВОМ

Резиме. Улога термодинамике у механици континуума и извођење одго-
вараjућих конститутивних односа je важна проблематика у Рационалноj ме-
ханици. Класични радови мало су се ослањали на добиjене резултате о тер-
мостатицима и били су веома критични према хеуристичким методама ире-
верзибилне термодинамике. У овом раду jе заснована теориjа еластичности
градиjента малих деформациjа са ефектима памћења и дисипациjом. То jе ме-
тода нееквилибриjумске термодинамике са унутрашњим променљивим; према
томе, конститутивни односи су по конструкциjи компатибилни са термодина-
миком. Уводе се термостатске Гибсове релациjе за еластична тела са jедном
тензорском унутрашњом променљивом. Термодинамички потенциjали су пр-
вог реда слабо нелокални и израчунава се производња ентропиjе. Затим се
конструишу конститутивне функциjе и еволуциона jедначина унутрашње про-
менљиве. Анализа другог закона показала jе допринос, такође без дисипациjе,
градиjентних чланова у напону.
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