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Abstract

A four dimensional treatment of nonrelativistic space-time gives a nat-

ural frame to deal with objective time derivatives. In this framework some

well known objective time derivatives of continuum mechanics appear as

Lie-derivatives. Their coordinatized forms depends on the tensorial prop-

erties of the relevant physical quantities. We calculate the particular forms

of objective time derivatives for scalars, vectors, covectors and different

second order tensors from the point of view of a rotating observer. The

relation of substantial, material and objective time derivatives is treated.

1 Introduction

Objectivity plays a fundamental role in continuum physics. Its usual definition
is based on time-dependent Euclidean transformations. Some problems arise
from it which mainly concern quantities containing derivatives; they take their
origin from the fact that objectivity is defined for three-dimensional vectors but
differentiation – with respect to time and space together – results in a four-
dimensional covector. Using a four-dimensional setting, we have extended the
notion of objectivity [1] which puts the objectivity of material time derivatives
into new light.

More closely, ∂0 + v · ∇ is usually considered to be material time derivation.
This applied to scalars results in scalars but applied to an objective vector
does not result in an objective vector; that is why it is usually stated that
this operation is not objective. One of the most important aspects of our four-
dimensional treatment is the existence of a covariant derivation in nonrelativistic
space-time which results in that the correct form of material time derivation for
vectors depends on the observer. For a rotating observer the material time
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derivative is ∂0 + v · ∇ + Ω where Ω is the angular velocity (vorticity) of the
observer.

From a mathematical point of view, Ω is a component of the four-dimensional
Christoffel symbols corresponding to the observer. In the usual three-dimensional
treatment four-dimensional Christoffel symbols cannot appear. As a conse-
quence, one looks for ‘objective time derivatives’ in such a way that ∂0 +v ·∇ is
supplemented by some terms for getting an objective operation which does not
involve Christoffel symbols and contains only partial derivatives. This is how
one obtains the ‘lower convected time derivative’, the ‘upper convected time
derivative’ and the Jaumann or ‘corotational time derivative’, as it is written in
several textbooks and monographs of continuum mechanics (e.g. [2, 3, 4]) and
especially of rheology (e.g. [5, 6]). The corotational time derivative was first
introduced by Jaumann [7], and the convected derivatives by Oldroyd [8].

In the present paper we investigate these derivatives from a four-dimensional
point of view. For getting a convenient insight in their physical meaning, we
apply a coordinate-free formulation of nonrelativistic space-time.

In the second section we shortly summarize the essentials of the space-time
model. In the third section we introduce the observers and space-time split-
tings on the example of rigid observer. Then continuous media is treated. A
four dimensional version of the material manifold is a general observer in our
absolute framework. At the fifth section we give the material time derivatives
of the physical quantities of different tensorial order. Finally a summary and a
discussion of the results follows.

2 Fundamentals of nonrelativistic space-time

model

In this section some notions and results of the nonrelativistic space-time model
as a mathematical structure [9, 10] will be recapitulated.

2.1 The structure of nonrelativistic space-time model

A nonrelativistic space-time model consists of
– the space-time M which is a four-dimensional oriented affine space over

the vector space M,
– the absolute time I which is a one-dimensional oriented affine space over

the vector space I (measure line of time periods),
– the time evaluation τ : M → I which is an affine surjection over the linear

map τ : M → I,
– the measure line of distances D which is a one dimensional oriented vector

space,
– the Euclidean structure · : E × E → D ⊗ D which is a positive definite

symmetric bilinear map where

E := Kerτ ⊂ M
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is the (three-dimensional) linear subspace of spacelike vectors.
The time-lapse between the world points x and y is τ(x) − τ(y) = τ (x − y).

Two world points are simultaneous if the time-lapse between them is zero. The
difference of two simultaneous world points is a spacelike vector. The essential
elements of the model are visualized on figure 1.

M

I

t

t

xE

Figure 1: Nonrelativistic space-time model

The length of the spacelike vector q is |q| :=
√

q · q.
The dual of M, denoted by M∗, is the vector space of linear maps M → R.

Elements of M∗ are called covectors.
In a similar way, the dual of E is E∗.
If K ∈ M∗, i.e. K : M → R is a linear map, then its restriction to E, is an

element of E∗, denoted by K · i which we call the absolute spacelike component
of K.

Note the important fact that the Euclidean structure allows us the identi-
fication E∗ ≡ E

D⊗D
. On the other hand, no similar identification is possible

for M∗ because there is no Euclidean or pseudo-Euclidean structure in M. (In
coordinates: an element q of E is coordinatized as qi for i = 1, 2, 3 and qi = qi

can be written. On the other hand, an element x of M, x /∈ E is coordinatized
as xα for α = 0, 1, 2, 3 and xα is not meaningful. Moreover, an element K of
M∗ is coordinatized as Kα for α = 0, 1, 2, 3 and Kα = Kα can be written for
α = 1, 2, 3 but K0 is not meaningful.)

These features of vectors and covectors are consequences of the fact that
time is not embedded in space-time. This property of the model eliminates
such unphysical possibilities as the ”angle” of space and time. As a result the
careful distinction of space-time vectors and covectors is essential: there is no
canonical way to identify them.
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2.2 Differentiation

The affine structure of space-time implies the existence of an absolute differen-
tiation (in the language of manifolds: a distinguished covariant differentiation).

If V is a finite dimensional affine space over the vector space V, then a map
A : M → V is differentiable at x if there is a linear map (DA)(x) : M → V –
the derivative of A at x – such that

lim
y→x

A(y) − A(x) − (DA)(x)(y − x)

||y − x|| = 0

where || || is an arbitrary norm on M (all norms on the finite dimensional vector
space M are equivalent).

As a consequence of the structure of our space-time model, the partial time
derivative of A : M → V makes no sense. On the other hand, the spacelike
derivative of A is meaningful because the spacelike vectors form a linear subspace
in M: (∇A)(x) is the derivative of the function E → V , q 7→ A(x + q) at zero.
It is evident then that (∇A)(x) is the restriction of the linear map (DA)(x) onto
E. The transpose of a linear map A : M → V is the linear map A∗ : V∗ → M∗

defined by A∗w := w◦A for w ∈ V∗. Then, using the customary identification
of linear maps as tensors, we can consider

DA(x) ∈ V ⊗ M∗, (DA)∗(x) ∈ M∗ ⊗ V

and
x · (DA)∗(x) := DA(x)x ∈ V, (DA)∗(x)w ∈ M∗

for x ∈ M and w ∈ V∗.
Accordingly,

(∇A)(x) ∈ V ⊗ E∗, (∇A)∗(x) ∈ E∗ ⊗ V, (1)

q · (∇A)∗(x) := (∇A)(x)q ∈ V, (∇A)∗(x)w ∈ E∗

for q ∈ E and w ∈ V∗.
In particular,

– the derivative of a scalar field f : M → R is a covector field, Df(x) ∈ M∗,

• its spacelike derivative is a spacelike covector field, ∇f(x) ∈ E∗;

– the derivative of a vector field C : M → M is a mixed tensor field,
(DC)(x) ∈ M ⊗ M∗ whose transpose is (DC)∗(x) ∈ M∗ ⊗ M,

• its spacelike derivative is a mixed tensor field, (∇C)(x) ∈ M⊗E∗ whose
transpose is (∇C)∗(x) ∈ E∗ ⊗ M,

– the spacelike derivative of a spacelike vector field c : M → E is a mixed
spacelike tensor field, (∇c)(x) ∈ E ⊗ E∗ whose transpose is (∇c)∗(x) ∈
E∗ ⊗ E.

4



– the derivative of a covector field K : M → M∗ is a cotensor field,
(DK)(x) ∈ M∗ ⊗ M∗ whose transpose is (DK)∗(x) ∈ M∗ ⊗ M∗.

Note that both the derivative of a covector field and its transpose are in
M∗ ⊗ M∗. Thus, we can define the antisymmetric derivative of K,

(D ∧K)(x) := (DK)∗(x) − (DK)(x).

On the contrary, the antisymmetric derivative of a vector field C : M → M,
in general, does not make sense. The antisymmetric spacelike derivative of
a spacelike vector field c : M → E∗, however, can be defined because the
identification E∗ ≡ E

D⊗D
implies E⊗ E∗ ≡ E∗ ⊗ E, so we can put

(∇ ∧ c)(x) := (∇c)∗(x) − (∇c)(x).

3 Observers

3.1 Absolute velocity

The history of a classical masspoint is described by a world line function, a
twice continuously differentiable function r : I → M such that τ(r(t)) = t for
all t ∈ I. A world line is the range of a world line function; a world line is a
curve in M .

If r is a world line function, then τ (ṙ(t)) = 1. That is why we call the
elements of the set

V (1) :=

{

u ∈ M

I

∣

∣

∣

∣

τ (u) = 1

}

absolute velocities. V (1) is a three dimensional affine space over E
I
.

3.2 Rigid observers

An observer, from a physical point of view, is a ‘continuous set of material
points’. Such a ‘continuous body’ can be characterized by assigning to any
world point the absolute velocity of the particle at that point, i.e. by an absolute
velocity field. Thus we accept that an observer is a smooth map

U : M → V (1).

The integral curves of U are world lines, representing the histories of the
material points that the observer is constituted of. Thus it is quite evident that
a maximal integral curve of U is a space point of the observer. The set of the
maximal integral curves is the space of the observer, briefly the U-space.

Keep in mind the most important – but trivial – fact concerning observers:
a space point of an observer is a curve in space-time.

Observers and their spaces are well defined simple and straightforward no-
tions. The spaces of different observers are evidently different.
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Figure 2: Observers and observer spaces

For an observer U, we denote by qx the world line function whose range is
the U-space point containing the world point x, i.e.

dqx(t)

dt
= U(qx(t)), qx(τ(x)) = x.

U is rigid if the distance of any two of its space points is time independent:
given x, y arbitrarily, then |qx(t) − qy(t)| = |qx(s) − qy(s)| for all instants t, s.

It can be shown ([10], Chapter I.4) that the observer U is rigid if and only
if for all t, to ∈ I there is a rotation R(t, to) in E such that

qxo+q(t) − qxo
(t) = R(t, to)q (τ(xo) = to,q ∈ E). (2)

Then putting Ṙ(t, to) := ∂R(t,to)
∂t

,

Ω(t) := Ṙ(t, to)R(t, to)
−1 ∈ E⊗ E∗

I

is independent of to; it is the angular velocity of the rigid observer at the instant
t. It is easy to show that Ω(t) is antisymmetric, moreover,

U(x + q) − U(x) = Ω(τ(x))q (x ∈ M,q ∈ E), (3)

which implies that ∇U(x) = Ω(τ(x)): the spacelike derivative of the rigid ob-
server is its angular velocity which is a spacelike antisymmetric tensor.

Since the spacelike derivative of U is antisymmetric, we have ∇U(x) =
− 1

2 (∇∧U)(x). This supports that later (20) is considered as the angular velocity
of an arbitrary (non-necessarily rigid) continuum.

An important particular rigid observer is the inertial observer, when

U(x) = const.

therefore R is the identity of E and ∇U(x) = 0.
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3.3 Splitting of space-time by rigid observers

Let us consider an observer U. For every world point x there is a unique U-
space point (world line, representing a point of the observer) containing x (the
range of the world line function qx). Accordingly, the observer perceives the
world point x as a couple of its absolute instant τ(x) and the corresponding
U-space point. We say that the observer splits space-time into the Cartesian
product of time and U-space.

Since U-space is not a simple mathematical object, in general, the splitting of
space-time by U is not simple either. To overcome this uneasiness, we consider
vectorized splittings in which U-space is represented by E as follows.

Let U be a rigid observer and let o be a world point, conceived as a chosen
‘origin’ in space-time. Then a space point of the observer will be represented
by the spacelike vector which is the difference between o and the simultaneous
world point of the space point in question. More closely, the U-space point
(world line) containing the world point x will be represented by qx(τ(o))−o. To
get explicitly how qx(τ(o))−o depends on x, let us put xo := o, q := qx(τ(o))−o
and t = τ(x) in (2) (then τ(o) = to) and take into account that qqx(to)(τ(x)) = x;
in this way we obtain the vectorized splitting in the form

H : M → I × E, x 7→
(

τ(x),R(τ(x))−1
(

x − qo(τ(x))
)

. (4)

Here and in the sequel, for the sake of brevity, R(t) := R(t, to).

M H

P H=

E

I

-1

M DH

DP H (P)=(D )

E

I

-1

O

Figure 3: Splitting of space-time

The observer splits M, too, by the derivative of this space-time splitting.
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Differentiating R(τ(x))−1 by x we get −R(τ(x))−1Ṙ(τ(x))R(τ(x))−1
τ , tak-

ing into account q̇o(τ(x)) = U(qo(τ(x)) and the basic properties of world line
functions we find that the vectorized splitting has the derivative

DH(x) =

(

τ

R(τ(x))−1 (1− U(x) ⊗ τ )

)

: M → I × E (5)

where 1 is the identity of M.
Note that restricting DH(x) onto E, we obtain ∇H(x) = (0,R(τ(x))−1);

further we omit the zero component, thus we consider that

∇H(x) = R(τ(x))−1 : E → E.

The inverse of the splitting is

H−1 =: P : I × E → M, (t,q) 7→ qo(t) + R(t)q, (6)

whose partial derivatives are obtained easily:

∂0P (t,q) :=
∂P (t,q)

∂t
= U(qo(t)) + Ṙ(t)q = U(P (t,q)), (7)

∇P (t,q) :=
∂P (t,q)

∂q
= R(t). (8)

The derivative of P is the couple of the partial derivatives. Differentiating
the equality H(P (t,q)) = (t,q), we deduce

(

∂0P, ∇P

)

= (DH(P ))−1. (9)

3.4 Relative form of absolute physical quantities

Using the splitting of M and M, a rigid observer U represents physical quantities
– functions defined in space-time – as functions defined in time and U-space.
The splitting of the space-time functions gives their U-relative form, the usual
field quantities defined on time and space.

The U-relative form of a scalar field f : M → R is

f
U

: I × E → R, (t,q) 7→ f(P (t,q)), (10)

briefly: f
U

= f(P ).
The U-relative form of a vector field C : M → M is

C
U

: I × E → I× E, (t,q) 7→ DH(P (t,q))C(P (t,q)).

Using (5) and an abbreviated notation, we have

C
U

=

(

τC(P )
R−1

(

C(P ) − U(P )τC(P )
)

)

(11)
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In particular, a spacelike vector field c : M → E has the U-relative form
(the trivial zero component omitted)

c
U

= R−1c(P ). (12)

Similarly, a spacelike tensor field f : M → E ⊗ E∗ has the U-relative form

f
U

= R−1f(P )R. (13)

The U-relative form of a covector field K : M → M∗ is

K
U

:=
(

(DH(P ))−1
)∗

K(P ) = K(P )(DH(P ))−1 : I × E → I∗ × E∗;

by (9), (7) and (8), we find

K
U

= K(P ) ·
(

∂0P, ∇P

)

=

(

K(P ) ·U(P ), (K(P ) · i)R
)

(14)

(recall that K · i denotes the absolute spacelike component of K, the restriction
of K onto E). Note that the spacelike component can be written in the form
R−1(K(P ) · i), too, because for an orthogonal map we have R∗ = R−1.

As a consequence one may calculate the U-relative form of second order
tensors easily. For example, a mixed tensor field F : M → E ⊗ M∗ has the
U-relative form

F
U

=

(

R−1F(P ) ·U(P ),R−1(F(P ) · i)R
)

. (15)

3.5 Relative form of absolute derivatives

The derivative Df of a scalar field f is a covector field, thus its U-relative form
is

(Df)
U

= Df(P ) ·
(

∂0P, ∇P

)

=

(

∂0fU
, ∇f

U

)

. (16)

The derivative Dc of a spacelike vector field c is a mixed tensor field, so
differentiating (12) and applying (15), we get

(Dc)
U

=

(

(∂0 + Ω
U
)c

U
, ∇c

U

)

(17)

where
Ω

U
:= R−1ΩR = R−1Ṙ (18)

is the relative form of the angular velocity of the observer.
As a consequence,

(∇c)
U

= ∇c
U
. (19)
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4 Continuous media

A continuum, from a physical point of view, is a ‘continuous set of material
points’. The history of such a ‘continuous body’ can be described by an absolute
velocity field u : M → V (1) which is supposed to be twice differentiable.

Note that both an observer and a continuum are given by an absolute veloc-
ity field. Keep in mind that majuscule U will refer to an observer (an ‘observing
body’), minuscule u will refer to a continuum (a ‘body to be observed’). An
observer is mostly supposed to be rigid, a continuum is never rigid. An ob-
server has no other property besides its velocity field, a continuum has other
characteristics, too: density, stress, temperature, etc.

4.1 Velocity fields

Recall that V (1) is an affine space over E
I
, thus

– the derivative of an absolute velocity field u : M → V (1) is a mixed tensor
field, (Du)(x) ∈ E

I
⊗ M∗ having the transpose (Du)∗(x) ∈ M∗ ⊗ E

I
.

– the spacelike derivative of u is a mixed spacelike tensor field, (∇u)(x) ∈
E
I
⊗ E∗ having the transpose (∇u)∗(x) ∈ E∗ ⊗ E

I
.

In view of the identification E∗ ≡ E
D⊗D

, both (∇u)(x) and (∇u)∗(x) are

considered to be in E⊗E
I⊗D⊗D

, thus the antisymmetric spacelike derivative of u

makes sense, too:

(∇∧ u)(x) := (∇u)∗(x) − (∇u)(x).

According to the end of Subsection 3.2, we can interpret

−1

2
(∇ ∧ u)(x) (20)

as the angular velocity (vorticity) of the continuum at the world point x.
Now let us consider a rigid observer U which ‘observes’ the continuum u.

We deduce from (11) that the U-relative form of u is

u
U
(t,q) =

(

1
v

U
(t,q)

)

(21)

where
v

U
= R−1

(

u(P ) − U(P )
)

(22)

is the U-relative velocity field.
Then we derive that

∇v
U

= R−1
(

(∇u)(P )∇P − (∇U)(P )∇P
)

(23)

from which, taking into account that ∇u is a spacelike tensor and using (8) and
(13), we have

(∇u)
U

= ∇v
U

+ Ω
U

or (∇u)∗
U

= (∇v
U

)∗ − Ω
U
. (24)
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4.2 The flow of a continuum

A velocity field u, by the solution of differential equation ẋ = u(x), generates a
flow, the map

I× M → M, (t, x) 7→ Υt(x)

such that
dΥt(x)

dt
= u(Υt(x)), Υ0(x) = x. (25)

Thus, t 7→ Υt−τ(x)(x) is a world line function of u, describing the history of
a particle of the continuum.

It is well known from the theory of differential equations [11] that for any
fixed t the map M → M , x 7→ Υt(x) is a twice differentiable bijection whose
inverse is twice differentiable, too (it is a diffeomorphism). Consequently, its

derivative DΥt(x) := dΥt(x)
dx

is a linear bijection M → M (an element of M ⊗
M∗). Note that DΥ0(x) is the identity of M.

The order of differentiations can be interchanged, thus

dDΥt(x)

dt
|t=0 = Du(x). (26)

The customary notions regarding the kinematics of the continuum are con-
nected to the U-relative form of the flow. According to the previous general
case a rigid observer splits the flow of the continuum into the duration t of the
motion, the time elapsed from the initial instant, and the motion function χt

[12], the relative position of the particles of the continuum in the space of the
rigid observer:

(Υt)U : I × E → I × E, (t,X) 7→ DH(P (t,X))Υt(P (t,X)).

With the customary and shortened notation one can get

(Υt)U(t,X) = (τ (Υt),R
−1(Υt − Uτ (Υt))) =: (t, χt(X)).

The spacelike part of the domain of the U-relative flow is called reference
configuration, because χ0(X) = X as a consequence of the second formula of
(25). Let us note that the spacelike component of the flow, the motion function,
is a relative notion, depends on the observer [13]. Similarly, the usual concepts of
body and material manifold of continuum physics (see e.g. [12, 14]) are relative,
too.

5 Time derivatives

In this section we consider a continuum having the absolute velocity field u.

11



5.1 Material time derivative

Let a physical quantity be described by A : M → V where V is a finite dimen-
sional affine space. The function t 7→ A(Υt(x)) is the change in time of the
quantity along an integral curve i.e. at a particle of the continuum. We have
by the chain rule that

dA(Υt(x))

dt
|t=0 = DA(x) · u(x) = u(x) · (DA)∗(x) =: (DuA)(x).

It is a matter of course that we call DuA = (DA)·u the material time deriva-
tive of A with respect to u. Clearly, this is an absolute object, not depending
on any observer.

The U-relative form of the material time derivative of a scalar field f : M →
R is obtained by (16) and (21):

(Duf)
U

=(Df · u)
U

= (Df)
U
· (u)

U
=

=(∂0 + v
U
· ∇)f

U
.

The U-relative form of the material time derivative of a spacelike vector field
c : M → E is obtained by (17) and (21):

(Duc)U =
(

Dc · u
)

U

= (Dc)
U
· (u)

U
=

=(∂0 + Ω
U

+ v
U
· ∇) c

U
. (27)

We emphasize that material time differentiation is absolute (objective), does
not depend on any observer and its correct relative form by a rigid observer
for absolute spacelike vector fields is ∂0 + Ω

U
+ v

U
· ∇. We repeat for a clear

distinction: the non-objective ∂0 +v
U
·∇ is not the relative form of the material

time differentiation for spacelike vector fields [1].

5.2 Traditional convected time derivatives

5.2.1 Upper convected time derivative

Now we have to make a remark. Let N be an affine space and let H : M → N be
a diffeomorphism. Then the vector field C : M → M is sent by H to the vector
field N → N, y 7→ DH(y)C(H−1(y)). This formula is applied when defining
the split form (11) of a vector field and offers itself for the flow generated by
the velocity field, H replaced with Υ−1

t .
Thus, instead of t 7→ C(Υt(x)), it seems preferable to consider

t 7→ (DΥt(x))−1C(Υt(x)) as the change in time of the vector field along a
particle of the continuum. Since

d(DΥt(x))−1

dt
= −(DΥt(x))−1 dDΥt(x)

dt
(DΥt(x))−1,

so

d(DΥt(x))−1C(Υt(x))

dt

∣

∣

∣

∣

t=0

= u(x) · (DC)∗(x) − C(x) · (Du)∗(x) =: (LuC)(x).

(28)

12



M H

M

N

NDH

C DHé éC H-1

Figure 4: Pull-back of a vector to the material manifold

We mention that LuC is known in differential geometry as the Lie derivative
of C by u [15].

The first term of the Lie derivative is just the material time derivative.
For a spacelike vector field c : M → E we have

Luc = Duc − c · (∇u)∗. (29)

The U-relative form of the Lie derivative of the spacelike vector field c is

(Luc)U =(∂0 + Ω
U

+ v
U
· ∇)c

U
− c

U
· ((∇v

U
)∗ − Ω

U
) =

=(∂0 + v
U
· ∇)c

U
− c

U
· (∇v

U
)∗ (30)

which is exactly the known form of the upper convected time derivative.
Thus, the upper convected time derivative of a spacelike vector field is just

its Lie derivative by the velocity field of the continuum.

5.2.2 Lower convected time derivatives

An argument similar to that in the previous Subsection yields that, instead
of t 7→ K(Υt(x)), it seems preferable to consider t 7→ (DΥt(x))∗K(Υt(x)) as
the change in time of the covector field K : M → M∗ along a particle of the
continuum. Then we find

d(DΥt(x))∗K(Υt(x))

dt

∣

∣

∣

∣

t=0

= u(x)(DK)∗(x) + (Du)∗(x)K(x) =: (LuK)(x)

(31)
We mention that LuK is known in differential geometry as the Lie derivative

of K by u.
The first term of the Lie derivative is just the material time derivative.

13



Recall that (Du)∗(x) is in M∗⊗ E
I
, therefore the second term can be written

in the form (Du)∗(x)K(x) · i where K(x) · i is the absolute spacelike part of the
covector field. As a consequence, taking the absolute spacelike part of (31) and
putting k := K · i for the sake of brevity, we have

(Luk) · i = Duk + (∇u)∗k. (32)

The U-relative form of the spacelike part of the Lie derivative of k is
(

Luk) · i
)

U

=(∂0 + Ω
U

+ v
U
· ∇)k

U
+ ((∇v

U
)∗ − Ω

U
)k

U
= (33)

=(∂0 + v
U
· ∇)k

U
+ (∇v

U
)∗ · k

U
(34)

which is exactly the known form of the lower convected time derivative.
Thus, the lower convected time derivative of a the spacelike part of a covector

field is just its Lie derivative by the velocity field of the continuum.

5.2.3 Jaumann derivative

According to the identification E∗ ≡ E
D⊗D

, a spacelike vector field can be con-
sidered as a covector field and vice versa. Thus, we can form both the lower
convected time derivative and the upper convected time derivative of a spacelike
vector field c. In this way we obtain the Jaumann derivative:

Juc :=
1

2
(Luc + (Luc

∗) · i) = Duc +
∇∧ u

2
c (35)

whose relative form, according to an observer U, is

(Juc)
U

= (∂0 + v
U
· ∇)c

U
+

∇ ∧ v
U

2
c
U

.

The Jaumann derivative, alternatively, is called the ‘corotational time deriva-
tive’ because it is usually stated that the Jaumann derivative is the time deriva-
tive with respect to an observer corotating with the continuum.

The Jaumann derivative, however, is an absolute object, i.e. independent of
any observers, so we have to give a sense to the above statement, if possible.

First of all note, that a rigid observer cannot corotate totally with the con-
tinuum because the angular velocity of a rigid observer depends only on time
(is the same for all simultaneous world points) whereas the angular velocity
of a (non-rigid) continuum depends on space-time (is different, in general, for
simultaneous space-time points).

Choosing a single particle of the continuum, we can define a rigid observer
corotating with the continuum around this particle only, in other words, the
space origin of the observer is that particle and it has angular velocity equalling
the angular velocity of the continuum at that particle. More closely, choosing
a single particle of the continuum described by the world line function t 7→
ro(t) := Υt−τ(o)(o) for a given world point o, we put

Ωo(t) := − (∇∧ u)(ro(t))

2
(36)
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and the rigid observer corotating with the continuum around the chosen particle
will be

Uo(x) := u(ro(τ(x))) + Ωo(τ(x))(x − ro(τ(x)). (37)

The rotation of this observer is obtained as the solution of the differential
equation Ṙo = ΩoRo with the initial value R(τ(o)) = idE.

Then for a spacelike vector field c we find by (12) that

∂0cUo

= −R−1
o ṘoR

−1
o c(Po) + R−1

o (Dc)(Po) ·U(Po) = −(Ωoc)Uo

+ (DUo
c)

Uo

and (see (35))

(Juc)
Uo

= (Duc)Uo

+

(∇ ∧ u

2
c

)

Uo

. (38)

According to our choice, Po(t,0) = ro(t) (see (6)), thus (36) and Uo(ro(t)) =
u(ro(t)) result in

∂0cUo

(t,0) = (Juc)
Uo

(t,0) : (39)

– the partial time derivative of the Uo-relative form
– the Uo-relative form of the Jaumann derivative

of a spacelike vector field are equal at the given particle around which the
observer corotates with the continuum.

6 Relative forms of Lie derivatives

In the previous sections we have given upper and lower convected derivatives
as relative forms of Lie derivatives of spacelike vectors and covectors. Further
considerations in continuum physics require Lie derivatives of non-spacelike vec-
tors, covectors and various tensors as well; they will be treated in this section in
a concise form. Relative forms will be given, too. As sometimes the notation of
dual fields and transposes can be confusing we give the final formulas also with
indexes, for the sake of easier readability. The U-relative forms are defined by
the splittings (5) and (9) for the contravariant and covariant components of the
fields respectively as it was show in section (3.4).

For example the U-relative velocity field (22) of the continuum is written
with U-relative quantities and with an indexed form, as

u
U

=

(

1
v

U

)

, uα =

(

u0

ui

)

where u0 = 1. The Greek indexes are denoting four-vectors and the Roman
indexes three vectors, e.g. α = {0, 1, 2, 3} and i ∈ {1, 2, 3}. We should keep
in mind that although the indexed formulas are providing a simple algorithmic
method of the calculations, they are always referring to relative quantities.
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6.1 Scalar fields

The U-relative form of a scalar field f : M → R was defined in (10) as f
U

=
f(P ). The Lie derivative of f corresponds to its material time derivative and the
U-relative form of the material time derivative corresponds to the substantial
derivative of the U-relative form of the scalar field

Luf =

(

d

dt
f(Υt)

∣

∣

∣

∣

t=0

)

U

= (Duf)
U

= (Df)
U
· u

U

= (∂0f, ∇f)

(

1
v

U

)

= ∂0f + v
U
· ∇f. (40)

With and index notation we can write

ḟ := uα∇αf = ∂0f + ui∂if.

where the dot denotes the substantial derivative.

6.2 Vector fields

According to (11), the U-relative form of a vector field C : M → M is given as

C
U

= DH(P )C(P ) =:

(

c0

c

)

.

Here we have introduced a convenient notation for the timelike and spacelike
components, c0 and c respectively. Therefore, the Lie derivative of the vector
field according to (28) is

(LuC)
U

=

(

d

dt
(DΥt)

−1C(Υt)

∣

∣

∣

∣

t=0

)

U

= (DC)
U

u
U
− (Du)

U
C

U
.

Moreover, for rigid observers the corresponding U-relative form of the deriva-
tives, can be calculated by partial derivation in the objective combination, as in
(30). The angular velocity of the observer (the Christoffel symbols) do not play
a role. Therefore the result of the calculations can be written in a simple form

(LuC)
U

= (∂uC
U
)u

U
− (∂uu

U
)C

U
=

=

(

∂0c
0

∇c0

∂0c ∇c

)(

1
v

U

)

−
(

0 0

∂0vU
∇v

U

)(

c0

c

)

=

=

(

ċ0

ċ− c · ∇v
U
− c0∂0vU

)

. (41)

Hence,

(LuC)α = uβ∂βCα − Cβ∂βuα =

(

∂0c
0 + uj∂jc

0

∂0c
i + uj∂jc

i − cj∂ju
i − c0∂0u

i

)

=

(

ċ0

ċi − cj∂ju
i − c0∂0u

i

)
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In the special case when the vector field is the velocity field of the continuum
C = u, we get that Luu = 0. The change of the velocity of the continuum is
constant when related to the continuum.

We can repeat our previous results with our simpler notation and get the
upper convected time derivative as a Lie derivative of a spacelike vector field
c : M → E as (30) substituting the c0 = 0 condition into the formulas above

Luc =

(

0
ċ − c · (∇v

U
)∗

)

,

that is

(LuC)α =

(

0
ċi − cj∂ju

i

)

.

Here we did not omit the trivial zero component. Let us emphasize again, the
results above are written in a form that is similar to the usual indexed notation,
however, the meaning of the symbols are different and the results are observer
dependent. E.g. ∂0 corresponds to the usual partial time derivative and ∇ to the
usual coordinatized spacelike derivations only in case of inertial observers. From
the observer independent, absolute forms one can always calculate the particular
observer dependent splittings as we have seen for rigid observers above.

6.3 Covector fields

We introduce the following notation for the U-relative form of a covector field
K : M → M∗, according to (14), as

K
U

= ((DH(P ))−1)∗K(P ) =: (k0,k).

The U-relative form the Lie derivative is (31)

(LuK)
U

=

(

d

dt
(DΥt)

∗K(Υt)

∣

∣

∣

∣

t=0

)

U

= (DuKU
)u

U
+ (DuuU

)∗K
U

=

(

∂0k0 ∇k0

∂0k ∇k

)(

1
v

U

)

+ (k0,k)

(

0 0

∂0vU
∇v

U

)

= (k̇0 + k · ∂0vU
, k̇ + k · (∇v

U
). (42)

Hence,

(LuK)α = uβ∂βKα + Kβ∂αuβ

= (∂0k0 + uj∂jk0 + kj∂0u
j, ∂0ki + uj∂jki + kj∂iu

j)

= (k̇0 + kj∂0u
j, k̇i + kj∂iu

j).

One can get the Lie derivative of a spacelike covector field k : M → E∗

substituting k0 = 0 into the formulas above

Luk = (k · ∂0vU
, k̇ + k · (∇v

U
),
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that is
(Luk)i = (kj∂0u

j , k̇i + kj∂iu
j).

Therefore one can see, that the U-relative form of the Lie derivative of a
spacelike covector field in not spacelike. The lower convected time derivative is
the spacelike component of the Lie derivative of a spacelike covector field.

6.4 Second order tensor fields

Similarly, the U-relative form of a tensor field T : M → M⊗M can be written
as

T
U

= DH(P )DH(P )T(P ) =:

(

t00 ta

tb t

)

∈ (I × E) ⊗ (I × E).

The components of T
U

can be calculated according to the definition of the
observer splittings (11), one can apply (5) to both components of the tensorial
product. We may recognize, that only the time-timelike component of the sec-
ond order contravariant tensor is independent on the observer t00 = ττT. The
U-relative form of the Lie derivative of T expressed by the relative quantities is

(LuT)
U

=

(

d

dt
(DΥt)

−1(DΥt)
−1T(Υt)

∣

∣

∣

∣

t=0

)

U

=

= (DuTU
)u

U
− (DuuU

)T
U
− T

U
(DuuU

)∗ =

=

(

ṫ00 ṫa − t00∂0vU
− ta · ∇v

U

ṫb − t00∂0vU
− tb · ∇v

U
ṫ− ∂0vU

ta − tb∂0vU
− t · (∇v

U
)∗ − (∇v

U
) · t

)

.

(43)

With the indexed notation we get

(LuT )αβ = uγ∂γtαβ − tγβ∂γuα − tαγ∂γuβ = (44)

=

(

ṫ00 ṫ0j − t00∂0u
j − t0k∂kuj

ṫi0 − t00∂0u
i − tk0∂kui ṫij − t0j∂0u

i − tkj∂kui − ti0∂0u
j − tik∂kuj

)

.

If T is space-spacelike, we substitute t00 = 0, ta = 0 and tb = 0 into the
previous formula. The U-relative form of the Lie derivative of a space-spacelike
second order tensor is space-spacelike and we can get the upper convected deriva-
tive of the three dimensional second order tensor.

Lu

(

0 0
0 t

)

=

(

0 0

0 ṫ− t · (∇v
U

)∗ − (∇v
U

) · t

)

. (45)

6.5 Second order cotensor fields

The U-relative form of a cotensor field W : M → M∗ ⊗ M∗ can be written as

W
U

= (DH(P )−1)∗(DH(P )−1)∗W(P ) =:

(

w00 wa

wb w

)

∈ (I∗×E∗)⊗ (I∗×E∗).
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The detailed form of W
U

can be calculated according to the definition of the
observer splittings (9). The U-relative form of the Lie derivative of W expressed
by the relative quantities is

(LuW)
U

=

(

d

dt
DΥtDΥtW(Υt)

∣

∣

∣

∣

t=0

)

U

= (46)

= (DuWU
)u

U
+ (DuuU

)∗W
U

+ W
U
(DuuU

) =

=

(

ẇ00 + ∂0vU
(wa + wb) ẇa + ∇v

U
·wa + ∂0vU

· w
ẇb + ∇v

U
·wb + w · ∂0vU

ẇ + w · (∇v
U

) + (∇v
U

)∗ · w

)

.

With the indexed notation we get

(LuW )αβ = uγ∂γWαβ + Wγβ∂αuγ + Wαγ∂βuγ

=

(

ẇ00 + wk0∂0u
k + w0k∂0u

k ẇ0j + wkj∂0u
k + w0k∂ju

k

ẇi0 + wk0∂iu
k + wik∂0u

k ẇij + wkj∂iu
k + wik∂ju

k

)

.

If W is space-spacelike, we can substitute w00 = 0, wa = 0 and wb =
0 into the previous formula. The U-relative form of the Lie derivative of a
space-spacelike second order cotensor is not space-spacelike. Its space-spacelike
component is the lower convected derivative of the space-spacelike component
of W.

(Luw)
u

= Lu

(

0 0
0 w

)

=

(

0 w · ∂0vU

w · ∂0vU
ẇ + (∇v

U
)∗ ·w + w · (∇v

U
)

)

. (47)

6.6 Second order mixed tensor fields

The U-relative form of a mixed field A : M → M ⊗ M∗ can be written as

A
U

= ((DH)(P ))((DH(P ))−1)∗A(P ) =:

(

A0
0 aa

ab a

)

∈ (I × E) ⊗ (I∗ × E∗).

The detailed form of A
U

can be calculated according to the definitions of
the observer splittings (5) and (9). The U-relative form of the Lie derivative of
A can be expressed by the relative quantities as

(LuA)
U

=

(

d

dt
(DΥt)

−1DΥtA(Υt)

∣

∣

∣

∣

t=0

)

U

(48)

= (DuAU
)u

U
− (DuuU

)A
U

+ A
U

(DuuU
) =

=

(

Ȧ0
0 + aa · ∂0vU

ȧa + aa · ∇v
U

=
ȧb − A0

0∂0vU
− ab · ∇v

U
+ a · ∂0vU

ȧ− ∂0vU
· ab + a · (∇v

U
) − (∇v

U
) · a

)

.

With the indexed notation we get

(LuA)α
β = uγ∂γAα

β − ∂γuαAγ
β + ∂βuγAα

γ = (49)

=

(

ȧ0
0 + a0

k∂0u
k ȧ0

j + a0
k∂ju

k

ȧi
0 − a0

0∂0u
i − ak

0∂kui + ai
k∂0u

k ȧi
j − a0

j∂0u
i − ak

j ∂kui + ai
k∂ju

k

)

.
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If A is space-spacelike, we can get the proper formula by substituting a0
0 = 0,

aa = 0 and ab = 0 into (48). The U-relative form of the Lie derivative of a
space-spacelike second order cotensor is not space-spacelike in general.

(Lua)
u

= Lu

(

0 0
0 a

)

=

(

0 0
ai

k∂0u
k ȧi

j − ak
j ∂kui + ai

k∂ju
k

)

. (50)

7 Summary

In this paper we investigated objective time derivatives of continuum physics
in a four-dimensional setting. Our analysis was based on a reference frame
independent nonrelativistic space-time model in which time is not embedded
into space-time.

Within this space-time model a definition of objectivity (frame indepen-
dence) was introduced by the use of absolute objects – four-vectors, covectors,
tensors etc. – not referring to any observer. Of course, observers are defined in
this theory, and detailed formulae are given, how space-time is split into time
and space by a rotating observer and how absolute objects are split into time-
and spacelike components.

Considering continuous media, we have defined material time differentiation
in an absolute form (not depending on observers). Its correct relative form
corresponding to a rotating observer U is the substantial differentiation ∂0 +
vU · ∇ only for scalars; for spacelike vectors it is ∂0 + ΩU + vU · ∇.

The four-dimensional Lie derivatives of scalars, vectors, covectors, second
order tensors, cotensors and mixed tensors were calculated together with their
usual relative forms. For the calculation we have introduced a simplified for-
malism exploiting that in the Lie derivatives the Christoffel symbols of the
coordinatization do not appear. We have found that in some cases the Lie
derivatives correspond to well known objective time derivatives. For example,
the Lie derivative of spacelike vectors is the upper convected time derivative,
the spacelike component of the Lie derivative of covectors is the lower convected
time derivative, etc... The four-dimensional treatment was essential because the
Lie derivative of covectors is not spacelike in general.

8 Discussion

Notions of differential geometry (as e.g. Lie derivatives or Christoffel symbols)
are tools of formulating the general principles of continuum mechanics [16] and
are also important in modeling the microstructure [17, 18]. In most of the re-
lated investigations the geometry is related only to the three dimensional space,
as the time dependence is introduced in a trivial way, space-time is considered to
be the Cartesian product of space and time. Some recent treatments introduce
non-relativistic space-time with geometrical notions, as a simple fibre bundle
[19]. The space-time model of our paper is the simplest possible one, with
the same structure. However, our researches show, that the four-dimensional
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structure cannot be avoided with any reference to e.g. ’instantanous transfor-
mations’. The few existing four-dimensional treatments (e.g. [20, 21, 22]) do
not consider the problem of objectivity and objective time derivatives. In a
previous paper we have argued, that objectivity cannot be formulated properly
in three dimension, because the proper transformation of physical quantities
between time dependent (e.g. rotating) reference frames require the use of four-
dimensional Christoffel symbols [1].

Objective time derivatives appear mostly in rheology. As we have already
mentioned in the introduction, their construction is originally based on an ad-
hoc supplementation of the substantial time derivative [7, 23]. Contrary to the
fact that the best phenomenological models of rheology contain objective time
derivatives, an extensive experimental research showed that their applicability
is restricted and the comparison of the different rheological models demonstrate
essential differences [5, 6]. For example a model can give good viscometric func-
tions in case of simple shear, but fail to explain results of other experiments
related to the very same material. Let us remark that in a usual rheological
model the same objective time derivative is used for physical quantities of differ-
ent tensorial character (contrary to the well known facts that stress is a second
order tensor, strain is a second order mixed tensor).

That later point deserves closer attention, because according to our inves-
tigations the objective time derivatives of a physical quantity can be different
and depend on its tensorial properties. In three dimension the distinction of
vectors and covectors implicitly appears already in the original works of Ol-
droyd [8] introducing convected derivatives, later also by Lodge [24]. In the
basic books of rheology [5] and later developments as finite strain viscoelasticity
[25] the use of Lie derivatives (convected time derivatives) is a standard. How-
ever, the careful distinction of vectors and covectors is rare and is restricted to
three dimensions. For example in the investigations of Haupt and his coworkers
(see [2] and the references therein) upper and lower convected time derivatives
are connected to vectors and covectors, similarly as in our intrinsically four
dimensional investigations. However, as we have pointed out in section (2), in-
troducing the space-time model, in case of spacelike quantities there is a way
to identify the two quantities and therefore to transform a vector to a covec-
tor and back. Haupt and coworkers make this identification for the stress and
strain rate tensors requiring the invariance of the power. However, this cannot
be a general solution, there are objective time derivatives of physical quantities
of non mechanic origin, without the kind of physical duality expressed by the
power.

Continuum mechanics and rheology are not compatible regarding time deriva-
tives. In rheology - a mechanic theory of generalized fluids - objective time
derivatives are unavoidable. In material theories of modern mechanics - espe-
cially the ones based on the concept of material manifold (see e.g. [14, 26])
- only the substantial time derivative appear. Experience shows that there
is no need any of the objective derivatives of the deformation gradient χt in
finite strain mechanics with or without memory. However, in our frame the
objective time derivative of any second order tensor is seemingly different of
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the material time derivative (45), (47), (50). This apparent contradiction can
be easily explained recognizing that the motion-related physical quantities can
have special Lie derivatives. E.g. the deformation gradient field Ft = ∇χt(X)
is the U-relative spacelike form of the mixed four tensor field DΥt. Therefore
substituting it into the definition of the Lie derivative (48) we get

(LuA)
U

=

(

d(DΥt)
−1DΥtDΥt

dt
(Υt)

∣

∣

∣

∣

t=0

)

U

=

=

(

d

dt
DΥt(Υt)

∣

∣

∣

∣

t=0

)

U

= (DuuU
)(DΥt) (51)

for the space-spacelike part we easily get Ḟt = (∇v
U

) · Ft, giving the well
established relation of the velocity gradient and the material derivative of the
deformation gradient. An other important motion-related physical quantity is
the velocity and we have seen that its Lie derivative is zero. That can explain
why velocity cannot appear in material functions without referring to the usual
form-invariance arguments.

Our investigations are related to the principle of material frame indifference
through the new, four dimensional definition of objectivity. The problem re-
garding the proper formulation of frame independent material equations still
lacks a generally accepted solution and the related discussions are not settled
[27, 28, 29, 30]. A clear exposition of the problem is given e.g. by [31, 32].
The inevitable fact is that the traditional phenomenological formulation of the
above mentioned evident requirement [33, 12]- that the constitutive equations
characterizing the materials should be independent on the outer observer - are
paradoxically contradicting the results of the kinetic theory. There are opinions
that kinetic theory is not frame independent [34, 35], that material frame inde-
pendence is only an approximations [36] and that frame independence should
be redefined on the phenomenological level. One of the related attempt ex-
ploits the objectivity of the balance form equations of continuum physics [37].
An important step in this respect is the careful distinction of the related prin-
ciples and concepts is given by Svensen and Bertram [19, 13]. According to
their investigations there are three related concepts in this respect: Euclidean
frame-indifference (objectivity), form invariance of the material functions and
indifference with respect to superimposed rigid body motions. They have shown
that the validity of any two of these concepts automatically imply the third. Our
general opinion is that a four-dimensional, space-time formulation of objectivity
is unavoidable. That could explain both the results of kinetic theory [38, 39] and
shows clearly that in the original definition of objectivity only a spacelike part
of a space-time transformation was considered and four-dimensional Christoffel
symbols were neglected [1]. In this case the cited implication of Svendsen and
Bertram requires further investigations.

Finally let us point out three fields where we think that the consequences
of our basic mathematical investigation can be checked and can lead to further
understanding of new physical phenomena and formulation of new theories of
continuum physics
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– A proper objective time derivative depends on the tensorial properties of
the physical quantity. Objective time derivatives of vectors and covectors
are different. As a consequence one can expect that different physical
quantities (e.g. the mixed strain tensor and the stress cotensor) can have
different objective time derivatives in the very same rheological model.
Let us remark that for a good model construction a constructive ther-
modynamic theory could be essential (See e.g. the simple and instruc-
tive thermodynamic generalization of the corotational Jeffreys model by
Verhás [40].

– The objective time derivatives of a spacelike physical quantity is not nec-
essarily spacelike. Four-dimensional contributions and terms can be im-
portant. A good example can be, that the four-dimensional GENERIC
structure can lead to the concept of conductive mass current [41, 42, 4].

– Relativistic material theories beyond Newtonian fluids [43, 44, 45] cannot
be developed without a true definition of objectivity. The generalization of
our definition in case of relativistic space-time models is straightforward.
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