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CONVERGENCE AND ERROR PROPAGATION RESULTS ON A

LINEAR ITERATIVE UNFOLDING METHOD

ANDRÁS LÁSZLÓ∗

Abstract. Unfolding problems often arise in the context of statistical data analysis. Such prob-
lematics occur when the probability distribution of a physical quantity is to be measured, but it is
randomized (smeared) by some well understood process, such as a non-ideal detector response or a
well described physical phenomenon. In such case it is said that the original probability distribution
of interest is folded by a known response function. The reconstruction of the original probability
distribution from the measured one is called unfolding. That technically involves evaluation of the
non-bounded inverse of an integral operator over the space of L1 functions, which is known to be
an ill-posed problem. For the pertinent regularized operator inversion, we propose a linear iterative
formula and provide proof of convergence in a probability theory context. Furthermore, we provide
formulae for error estimates at finite iteration stopping order which are of utmost importance in
practical applications: the approximation error, the propagated statistical error, and the propagated
systematic error can be quantified. The arguments are based on the Riesz-Thorin theorem mapping
the original L1 problem to L2 space, and subsequent application of ordinary L2 spectral theory of op-
erators. A library implementation in C of the algorithm along with corresponding error propagation
is also provided. A numerical example also illustrates the method in operation.

Key words. unfolding; convergence; error propagation; probability theory; statistics; functional
analysis; Riesz-Thorin theorem
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1. Introduction. In analysis of experimental data one commonly faces the prob-
lem that the probability density function (pdf ) of a given physical quantity of interest
is to be measured, but some random physical process, such as the intrinsic behavior of
the measurement apparatus smears it. The reconstruction of the pertinent unknown
pdf of interest based on the observed smeared pdf and on the known response function
of the measurement procedure is called unfolding.

More specifically, one of the most common unfolding scenarios turning up in ex-
perimental data analysis is the following. Let x 7→ f(x) be the unknown pdf which we
intend to reconstruct, (y, x) 7→ ρ(y|x) be the known response function of the smearing
effect, and we assume that y 7→ g(y) =

∫

ρ(y|x) f(x) dx is the measured pdf after the
smearing effect, called folding. In practice, actually often only a statistical estimator
of g can be measured. Or, putting it differently, g often contains an additional error
term y 7→ e(y) originating from statistical counting and unaccounted systematic mea-
surement distortions, in which case one has y 7→ g(y) =

∫

ρ(y|x) f(x) dx + e(y) as the
measured pdf estimator. The task of unfolding is to provide some close estimate for
x 7→ f(x), given y 7→ g(y) and (y, x) 7→ ρ(y|x) along with some estimate on y 7→ e(y),
i.e. to solve the above linear integral equation. It is quite well known in the literature
that such a problem is numerically ill-posed. The primary reason for this is Banach’s
closed graph theorem: due to the pertinent theorem a generic folding operator maps
certain distant pdfs to close ones whose differences after the folding are shadowed
by the contribution of the measurement error term e. That quite well understood
phenomenon is summarized e.g. in [1, 2, 3, 4, 5, 6, 7, 8].

The problematics of unfolding can also be formulated using a language possi-
bly more familiar to statisticians [9, 10]. Let x1, . . . , xn be statistical instances of a
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probability variable x, i.e. independent identically distributed random variables, each
having the same but unknown pdf f . In the experimental setting, merely the random
variables yi = xi + εxi,i (i = 1, . . . , n) are observed, i.e. the original xi (i = 1, . . . , n)
random variables corrupted by an x-dependent, but otherwise independent identi-
cally distributed error variable εx, having a known x-dependent pdf εx 7→ ρ(εx + x|x)
for each fixed value of x as a condition. Given all these, the task of unfolding is
to provide an estimator for the pdf f of the undistorted probability variable x. In
some real experimental situation, it also happens that the individual observed samples
yi = xi + εxi,i (i = 1, . . . , n) are not published, only their pdf estimator g is made
available, for instance because there is some correction procedure on the pdf level, e.g.
for inefficiencies. Also, our model (y, x) 7→ ρ(y|x) for the response function might be
systematically inaccurate, for which inaccuracy only an upper bound might be known.
Therefore, often not the sample based observational model, but rather the previously
discussed pdf estimator based observational model is more practical to handle. But
whichever way the problem is formulated — based on individual samples or on pdfs
— the task remains to be ill-posed.

In order to overcome the ill-posedness of the unfolding problem, all the methods
use restrictions on the unknown pdf, and in some special cases properties of the
response function can also be used to improve the situation. For instance, in the field
of image or signal processing, the shape of the response function is translationally
invariant in an exact manner, i.e. for all x, y, z one has ρ(y|x + z) = ρ(y − z|x), and
thus the unfolding reduces to the problematics of deconvolution. In the language of
statistical samples, this would correspond to the observational model when yi = xi+εi
(i = 1, . . . , n) are observed, with independent identically distributed random variables
εi of a known distribution, not depending on x. Due to the applicational importance
of the special case of deconvolution problems, that branch has a whole stream of
literature [9, 10, 11, 12, 13, 14, 15, 16]. The statistical deconvolution methods heavily
rely on the applicability of convolution theorem for the Fourier transformed pdfs,
which is possible due to the translational invariance of the shape of the response
function, i.e. relies on the fact that the probability variables εi (i = 1, . . . , n) are
independent identically distributed and are independent from x. The ill-posedness of
the problem, similarly to the case of any generic unfolding method, is regularized by
finding and approximative solution. The optimal approximation is controlled by the
application of the minimax principle: for a given estimate of the true deconvolved pdf,
a loss (penalty) function is defined, and the minimum of the worst case expected loss is
looked for as a function of the regularization parameters. It is worth to note that most
of the advanced statistical deconvolution methods can work on unbinned samples, i.e.
they do not need an a priori histograming of the observed data. In Section 6 an
illustrative numerical unfolding toy model application is presented, which also tries to
clarify that in an experimental context more general approaches than deconvolution
are also needed in order to handle real measurement situations.

Also in the case of generic — i.e. non-deconvolution — unfolding problems a
regularization method must be applied [1, 3, 4, 5, 6, 7, 8, 16, 17, 18, 19] and an ap-
proximate solution of the folding integral equation within a reduced set of allowed pdfs
is searched for. The approximation is controlled by some regularization parameters
whose particular value brings in a certain degree of arbitrariness to the unfolded pdf
(approximation error), which is often difficult to quantify. There are basically three
main widespread ways in the literature addressing the problem of regularization.

(i) In certain data analysis problems a parametric ansatz for the unknown pdf f is



Convergence and error propagation results on a linear iterative unfolding method 3

justified. In that case, one can construct the folded version of f by the response
function ρ numerically, and that can be fitted to the observed folded pdf g, for
instance via a maximum likelihood method. Such method is used for instance in
inclusive particle identification in experimental high energy particle physics (see
for instance [20]). Due to the ill-posedness of the unfolding problem, one may
run into a situation in particular cases when the fit is insensitive to some details
of the parametrically given f . In other words: the log-likelihood function (χ2)
may be flat in the direction of certain parameters of the ansatz for f .

(ii) Bin-by-bin fitting of the histogramed f , such that when numerically folding it by
ρ the result gets close to the observed folded pdf g, e.g. in a maximum likelihood
sense. This is very similar to approach (i) with every bin amplitude of the
histogramed f being a fit parameter. This method is basically equivalent to the
naive inversion of the discretized folding operator as a matrix. Due to the ill-
posedness of the unfolding problem, this is not satisfactory in itself. The usual
procedure is to add some artificial penalty function to the log-likelihood function
(χ2) in order to suppress the large local gradients. If that is performed, the
method can deliver meaningful answers, but the introduced systematic bias by
the additional penalty function is difficult to quantify. In addition, similarly to
the method (i), the fit can be slightly insensitive to the details of f due to the ill-
posedness of the problem. The so called SVD methods [17] are implementations
of this idea.

(iii) There are also iterative methods which intend to approximate the true pdf
f , given the measured folded pdf g and the response function ρ. One of the
most popular and most promising methods is the method of convergent weights,
also called iterative Bayesian unfolding. It was first discovered and applied by
Richardson [21] and Lucy [22] for image processing. Later it was re-discovered
and applied to tomography problems by Shepp and Vardi [23], and by Kondor
[24]. The first serious mathematical scrutiny of the method was done by Mülthei
and Schorr [25, 26]. In the mid-90s d’Agostini re-discovered and popularized the
algorithm in the high energy physics community [18]. Recently, Zech [19] stud-
ied possible optimal iteration stopping criteria for the algorithm. One of the
main advantages of the method of convergent weights or Bayesian unfolding is,
that it takes into account the non-negativity and the unitness of the integral of
the true pdf f in an exact manner. Furthermore, if the measured folded pdf g
was a histogram, i.e. its values fluctuate according to Poisson counting statis-
tics, then the iterative approximants to f have increasing likelihood [25], i.e. the
algorithm is a realization of a maximum-likelihood approximation. Most unfor-
tunately, despite of the research efforts [25], there are no results stating that
the method is convergent, although numerical evidence suggests its convergent
nature. Moreover, there are no exact error propagation formulae available.

In case of a consistent method the approximation error should converge to zero
when the regularization parameters are relaxed. In case of an iterative method, an
approximating sequence (fN )N∈N0

to the unknown f is constructed and the regular-
ization parameter is merely the iteration stopping order Nmax, i.e. a threshold index
in the approximating sequence. When an iterative unfolding method is consistent, the
approximation error, i.e. the distance of fN to the true unknown f must converge to
zero with increasing number of iterations N . Although the above consistency prop-
erty is an obvious minimal requirement for any unfolding method, often this is not
easy to show analytically.
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In a previous paper [1] we proposed a linear iterative unfolding method, discussed
its pros and cons in comparison to other techniques, provided detailed description from
the practical point of view for experimentalists, along with providing a set of relevant
application examples. In the present paper we provide formal mathematical proofs
for the claims therein for the proposed unfolding method:

(i) proof of consistency, i.e. that the approximation error converges to zero with
increasing number of iterations,

(ii) explicit formula for the approximation error at finite iteration order,
(iii) explicit formula for the propagated statistical errors on the unfolded pdf at finite

iteration order given the statistical errors of the measured folded pdf,
(iv) explicit formula for the propagated systematic errors on the unfolded pdf at

finite iteration order given the systematic errors of the measured folded pdf or
of the response function.

Because of (ii)–(iv) the competing error terms become calculable, and therefore these
can be used to define an optimal iteration stopping criterion. In addition, the pertinent
error terms can be determined at this optimum. The quantification of these are of
utmost importance when presenting unfolded experimental results, and is generally
an unresolved task for other widely used unfolding methods. The key mathematical
ingredient of the proofs are mapping our originally L1 problem to the L2 space using
Riesz-Thorin theorem, and using spectral representation of the operators therein.
The actual iteration formula is formally motivated by a preconditioned Neumann-
Landweber-Richardson series, but these are not automatically convergent in case of
L1 problems: our specific preconditioning makes the iteration convergent in the L1

setting, given some quite generic conditions. The proposed method also does not rely
on an inherent discretization of the pdfs: it does work also in the continuum limit or
with any type of density estimators.1

The obtained results can be particularly interesting as the proposed method can
be considered as the “linearized” version of the method of convergent weights or
iterative Bayesian unfolding [18, 19, 21, 22, 23, 24, 25, 26]. By understanding the
convergence conditions and error propagation for the proposed method, the studies
of Mülthei and Schorr [25] could eventually be completed on the Bayesian iteration,
which would be a significant improvement in the field.

The paper is organized as follows: in Section 2 the problem of unfolding is intro-
duced in a mathematically rigorous way, and the basic properties of generic folding
operators are discussed. In Section 3 our proposed unfolding method is introduced
and proofs are provided for its above listed properties. In Section 4 we generalize a
bit our results for the case of probability measures which are not described by pdfs.
In Section 5 we restrict our results to the special case when the unfolding problem is
discrete: this presentation may be better understood by statisticians or experimental
physicists not specialized in functional analysis. In Section 6 a concrete numerical
example is shown. Finally, in Section 7 we summarize.

2. Mathematical properties of folding operators and the unfolding. In
the text we shall abbreviate by pdf the notion of probability density function, by cpdf
the notion of conditional probability density function. We shall rely on the usual
terminology in functional analysis and measure theory [27, 28]. As such, the notion of
Lebesgue almost everywhere or Lebesgue almost every, shall be abbreviated by a.e.

1Some unfolding methods rely on an inherent discretization of pdfs in the problem, and use the
assumed discretization as an implicit regularization. Our method does not use such trick.
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Let X and Y be finite dimensional real vector spaces equipped with the Lebesgue
measure — unique up to a global positive normalization factor. Let L1(X) and L1(Y )
denote the Banach spaces of X → C and Y → C Lebesgue integrable function equiv-
alence classes, respectively, where the equivalence of functions is defined by being a.e.
equal. As usual in functional analysis texts, we shall call these function equivalence
classes simply functions. We shall also use the notion of essential bound for such a
function which is the smallest upper bound valid a.e.

Definition 2.1. Let ρ : Y × X → R
+
0 , (y, x) 7→ ρ(y|x) be a cpdf over the

product space Y ×X, i.e. a non-negative Lebesgue measurable function which satisfies
∀x ∈ X :

∫

ρ(y|x) dy = 1. Then, the linear operator

Aρ : L1(X) → L1(Y ), (x 7→ f(x)) 7→
(

y 7→
∫

ρ(y|x) f(x) dx
)

(2.1)

is called the folding operator by ρ, where the function ρ is called the response function
of the folding.

Remark 2.1. The following basic properties of folding operators are direct con-
sequences of the definition.
(i) A possible usual generalization of the notion of folding operator is when ineffi-

ciencies are also allowed, i.e. the less restrictive condition ∀x ∈ X :
∫

ρ(y|x) dy ≤
1 is required for the response function ρ of the folding operator Aρ. The results
throughout the paper are also valid for that case.

(ii) By Fubini’s theorem, a folding is a well defined linear operator.
(iii) It is also quite evident [2] that such operator is continuous in the L1 opera-

tor norm (i.e. in probabilistic sense), moreover ‖Aρ‖L1(X)→L1(Y ) = 1, while
‖Aρ‖L1(X)→L1(Y ) ≤ 1 whenever inefficiencies are allowed.

It is seen that such a folding operator Aρ is quite well behaved: it is linear and is
continuous in the probabilistic sense, i.e. close pdfs are mapped to close pdfs in the
L1 sense [1].

A quite important class of folding operators are convolutions, in which case the
shape of the response function is translationally invariant.

Definition 2.2. A folding operator Aρ is called convolution whenever the re-
sponse function ρ is translationally invariant in the sense that Y = X and ∀x, y, z ∈
X : ρ(y|x+ z) = ρ(y − z|x).

Remark 2.2. The following properties of convolution operators are well-known
results [2, 29, 30].
(i) In case a folding operator Aρ is a convolution, the response function ρ may be

expressed by the single pdf η := ρ(·|0) in the form ∀x, y ∈ X : ρ(y|x) = η(y−x).
The alternative notation η ⋆ f := Aρf is often used in such case (f ∈ L1(X)).
Note that convolution is commutative, i.e. one has η ⋆ f = f ⋆ η for all η, f ∈
L1(X).

(ii) A convolution operator is not onto, and its image is not closed.
(iii) The image of a convolution operator is dense if and only if the Fourier transform

of the convolver function is nowhere zero (Wiener’s approximation theorem).
(iv) A convolution operator is one-to-one if and only if the Fourier transform of the

convolver function is a.e. nonzero.
(v) Consequently, the inverse of a convolution operator, whenever exists, cannot be

continuous. This is because a convolution is everywhere defined on the closed
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set L1(X), it is continuous, and therefore it has closed graph by Banach’s closed
graph theorem; but since the inverse operator’s domain is not closed, again by
Banach’s closed graph theorem, it cannot be continuous.

Since the convolution operators form a quite large example class of folding oper-
ators, we can state that a generic folding operator’s inverse, whenever exists, is not
continuous. This finding is often referred to as: the inversion of a generic folding
operator is ill-posed. The argument goes as follows: we have an unknown pdf f , a
known response function ρ, and a measured pdf g = Aρf + e where e represents a
small measurement error term. Then, when one would set A−1

ρ g = f+A−1
ρ e, the error

term e contains modes not in the domain of A−1
ρ in which case A−1

ρ e is not mean-
ingful, or when approximated numerically, this term shall diverge. Note that even if
all modes of e were in the domain of A−1

ρ , the smallness of A−1
ρ e is not guaranteed

even though e is small. The ill-posedness of a generic unfolding problem may also be
stated as: if f1 and f2 are distant pdfs, then g1 := Aρf1 + e1 and g2 := Aρf2 + e2
may be close pdfs, i.e. we lose discrimination power on pdfs after a folding [1]. The
presented argument also warns us against relying solely on the so called closure test
when verifying an unfolding algorithm: whenever some unfolding method gives some
estimate f̂ for the unknown pdf f , it is usually argued that Aρf̂ ≈ Aρf confirms the

validity of the estimate f̂ . Clearly, in the light of our observations this is not enough,
as f̂ may be still far from f in the probabilistic distance.

Due to the ill-posedness of the unfolding problem, any unfolding method needs
to use some kind of regularization: some assumption on the original (unknown) pdf,
and a way to search for an approximative solution depending on some regularization
parameters. Furthermore, the convergence to the original pdf when relaxing these
parameters can usually be only achieved in some weak sense, not in the probabilistic
norm of L1(X). The most commonly applied unfolding strategies are summarized in
[1, 3, 4, 5, 6, 7, 8, 16, 17, 18, 19].

3. A linear iterative unfolding method. Since the folding equation Eq.(2.1)
is linear, it is quite natural to try applying some iterative inversion methods known in
functional analysis, when approximating the true solution f . One such self-suggesting
method is Neumann series [27, 28] which guarantees that whenever for a continuous
linear operator A over a Banach space one has ‖I−A‖ < 1 (I being the identity oper-
ator), then A−1 =

∑∞
n=0(I −A)n where the convergence holds in the operator norm.

That convergence requirement, however, cannot be satisfied in case of a probability
theory folding operator because for such an operator one has ‖I − Aρ‖L1→L1 = 2 as
shown in [2]. The Richardson iteration, based on similar requirements, does not work
for the same reason. An other evident choice would be the Landweber iteration [31]
known in the theory of Fredholm integral equations [27, 28]. This assumes, in first
place, that the unknown function f and the result of the folding g resides in the space
of square integrable functions L2(X), furthermore that the response function ρ satis-

fies the regularity condition
∫ ∫ ∣

∣ρ(y|x)
∣

∣

2
dy dx < ∞. The latter regularity condition,

unfortunately, is violated in case of a generic cpdf, on the contrary to the common
belief in the literature.2

Despite of the fact that neither the Neumann series, nor the Richardson iteration,

2It is evidently seen that this regularity condition does not hold for any convolution. It is also
seen at the price of some calculation that this situation cannot be repaired by a compactification
mapping, i.e. if we map the support set of our pdfs and response function into a compact region of
Y and X.
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nor the Landweber iteration can be directly applied to an unfolding problem, they
provide a possible starting point. Motivated by these algorithms we proposed a linear
iterative unfolding method for a probability theory context, i.e. for the L1 space [1].
The section is continued by recalling notions necessary for studying the pertinent
algorithm.

In the followings we shall denote by Lp(X) the Banach space of X → C functions
[27, 28] which are Lebesgue integrable of the p-th power (1 ≤ p ≤ ∞). The special
case L∞(X) for p = ∞ is defined as the Banach space of the X → C essentially
bounded functions with their norm being the essential bound.

Remark 3.1. The argumentation in the followings relies on some known results.
(i) The Riesz-Thorin theorem [32] states that if 1 ≤ q ≤ r ≤ ∞ and F ⊂ Lq(X) ∩

Lr(X) is a dense linear subspace in both Lq(X) and Lr(X), furthermore a linear
operator T : F → Lq(X)∩Lr(X) is bounded both in the Lq(X) and Lr(X) norm,
then for all q ≤ p ≤ r values F ⊂ Lp(X), it is dense in Lp(X), T [F ] ⊂ Lp(X)
and T is bounded in the Lp(X) norm. Thus, T is uniquely extendable as an
Lp(X) → Lp(X) bounded linear operator. In addition we have that

‖T ‖Lp→Lp ≤ max (‖T ‖Lq→Lq , ‖T ‖Lr→Lr )(3.1)

holds for the operator norms.
(ii) An important consequence of the Riesz-Thorin theorem is that a convolution

operator η ⋆ (·) by a function η ∈ L1(X) is well defined and continuous in
Lp(X) for all 1 ≤ p ≤ ∞ and its operator norm is bounded by ‖η‖L1. This
obviously holds for the p = 1 and p = ∞ case due to Hölder’s inequality, and
then it is implied for all 1 < p < ∞ as well by the pertinent theorem. As
a consequence, using the commutativity of convolution, it also follows that if
ϕ ∈ Lp(X) and η ∈ L1(X) then ϕ ⋆ η ∈ Lp(X), i.e. pdfs may be mapped into
Lp(X) via convolution by pdfs integrable on the p-th power.

(iii) We shall use in the followings the spectral representation [28] of normal operators
over complex separable Hilbert spaces. Let T be a normal operator over the
pertinent space, i.e. a densely defined linear operator with closed graph, satisfying
T ∗T = TT ∗, (·)∗ being the adjoint. Then there exists a unique projection valued
measure P over the Borel sets of the spectrum set of T , Sp(T ), such that

T =

∫

λ∈Sp(T )

λdP (λ)(3.2)

holds, where the integral is defined in the weak sense. That is, for all elements
f, g in the Hilbert space one has a complex valued Borel measure 〈f, P (·)g〉 such
that

〈f, T g〉 =
∫

λ∈Sp(T )

λ d 〈f, P (λ)g〉 .(3.3)

In addition, one has that if M is a polynomial, then M(T ) is also normal oper-
ator, furthermore

M(T ) =

∫

λ∈Sp(T )

M(λ) dP (λ)(3.4)

is satisfied in the same sense.
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Throughout the argumentation we will need the notion of transpose folding which
is introduced below.

Definition 3.1. If Aρ is a folding operator such that the response function ρ(·|x)
is square-integrable for all x ∈ X, then for all k ∈ L2(Y ) the expression

AT
ρ k :=

(

x 7→
∫

k(y) ρ(y|x) dy
)

(3.5)

is meaningful and defines a linear map from L2(Y ) to the Lebesgue measurable func-
tions X → C. We call the linear operator AT

ρ the transpose folding.

3.1. The iterative approximation . Equipped with the listed notions, we can
introduce the following approximating sequence for solution of the unfolding problem.
Let g = Aρf be our unfolding problem where f is to be determined, with g and ρ

being known. We try to approximate the solution in the form:

Kρ := sup
x∈X

∫ ∫

ρ(y|z) ρ(y|x) dy dz,

f0 := K−1
ρ AT

ρ g,

fN+1 := fN +
(

f0 −K−1
ρ AT

ρ AρfN
)

(N ∈ N0).(3.6)

This is, formally, the iterative expression for Neumann series after preconditioning by
K−1

ρ AT
ρ , i.e. for the composite operator K−1

ρ AT
ρ Aρ.

3.2. Convergence conditions. The following theorem shows that under quite
generic conditions the approximating sequence (fN )N∈N0

in terms of Eq.(3.6) is well-
defined and converges to f whenever Aρ is one-to-one, and it converges to the closest
possible function to f whenever Aρ is not one-to-one.

Theorem 3.2. (Convergence) Let Aρ be a folding operator and assume that its
response function ρ has the property that for all x ∈ X the function ρ(·|x) is square-
integrable, furthermore Kρ < ∞. Assume that the unknown pdf f in the unfolding
problem g = Aρf is square-integrable. Then:
(i) For any compact set U ⊂ X:

lim
N→∞

1

Volume(U)

∫

x∈U

(

f − PKer(Aρ)f − fN
)

(x) dx = 0,(3.7)

where PKer(Aρ) is the L2 orthogonal projection onto the kernel set of Aρ.
(ii) We have that

lim
N→∞

∥

∥f − PKer(Aρ)f − fN
∥

∥

L2 = 0(3.8)

and the convergence is monotone.
Proof. It is seen that whenever the regularity condition ∀x ∈ X : ρ(·|x) ∈ L2(Y )

holds, the function

α : X ×X → R
+
0 , (z, x) 7→ α(z, x) :=

∫

ρ(y|z)ρ(y|x) dy(3.9)



Convergence and error propagation results on a linear iterative unfolding method 9

is well defined. By construction, it is symmetric, i.e. ∀z, x ∈ X : α(z, x) = α(x, z).
Furthermore, because of Kρ < ∞ and symmetricity,

sup
x∈X

∫

z∈X

α(z, x) dz = sup
z∈X

∫

x∈X

α(z, x) dx = Kρ < ∞(3.10)

holds. With this, we see that the operator AT
ρ Aρ is well defined as L1(X) → L1(X)

and is bounded, its L1 → L1 operator norm being Kρ. This is because for any
f ∈ L1(X)

∥

∥AT
ρ Aρf

∥

∥

L1 =

∫
∣

∣

∣

∣

∫

α(z, x)f(x) dx

∣

∣

∣

∣

dz

≤
∫ ∫

α(z, x) |f(x)| dxdz =

∫
(
∫

α(z, x) dz

)

|f(x)| dx

≤ sup
x∈X

(
∫

z∈X

α(z, x) dz

)
∫

x∈X

|f(x)| dx = Kρ ‖f‖L1(3.11)

due to of monotonicity of integration, Fubini’s theorem and Hölder’s inequality. It is
also seen that the operator AT

ρ Aρ is well defined as L∞(X) → L∞(X) and is bounded,
its L∞ → L∞ operator norm being Kρ. That is because for any f ∈ L∞(X)

∥

∥AT
ρAρf

∥

∥

L∞
= sup

z∈X

∣

∣

∣

∣

∫

α(z, x)f(x) dx

∣

∣

∣

∣

≤ sup
z∈X

∫

α(z, x) |f(x)| dx ≤ sup
z∈X

(
∫

α(z, x) dx sup
x∈X

|f(x)|
)

= sup
z∈X

(
∫

x∈X

α(z, x) dx

)

sup
x∈X

|f(x)| = Kρ ‖f‖L∞(3.12)

due to monotonicity of integration and Hölder’s inequality.
Now, using Riesz-Thorin theorem we have that the operator AT

ρAρ is well-defined
as L2(X) → L2(X) and is bounded, its L2 → L2 operator norm being bound by Kρ.
It is also easily seen that for any f ∈ L2(X) one has

〈

f,AT
ρ Aρf

〉

= 〈Aρf,Aρf〉 ≥ 0,
therefore it is a self adjoint and positive operator in L2(X). Thus, its spectrum lies
within the interval [0,Kρ]. For brevity, we introduce the notation A := K−1

ρ AT
ρ Aρ for

the re-normalized composite folding operator.
Let us observe that the iterative formula Eq.(3.6) may also be written in the

series expansion form fN =
∑N

n=0(I − A)nf0 where we have that f0 = Af , f being
the unknown pdf. This form is particularly useful because then we see by induction
that

∑N
n=0(I − A)nA = I − (I − A)N+1, i.e. we have the explicit formula f − fN =

(I −A)N+1f for the residual term.
By the observed properties of A it is quite evident that Sp(A) ⊂ [0, 1]. Thus,

there exists a unique projection valued measure P on the Borel sets of [0, 1] such that

A =

∫

λ∈[0,1]

λdP (λ)(3.13)

in the weak sense. This implies that for any h ∈ L2(X) we have

〈h, f − fN 〉 =
∫

λ∈[0,1]

(1− λ)N+1 d 〈h, P (λ)f〉

=

∫

λ∈{0}

(1− λ)N+1 d 〈h, P (λ)f〉+
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∫

λ∈]0,1]

(1− λ)N+1 d 〈h, P (λ)f〉 .(3.14)

Since
∫

λ∈{0}
(1 − λ)N+1 dP (λ) = PKer(Aρ) for all N ∈ N0, we arrive at the identity

〈

h, f − PKer(Aρ)f − fN
〉

=

∫

λ∈]0,1]

(1− λ)N+1 d 〈h, P (λ)f〉 ,(3.15)

and by the monotonicity of integration

∣

∣

〈

h, f − PKer(Aρ)f − fN
〉∣

∣ ≤
∫

λ∈]0,1]

|1− λ|N+1 d |〈h, P (λ)f〉|(3.16)

also holds, where the symbol | · | when applied to complex valued measures denotes
variation, which is analogous to absolute value of complex valued functions. The
measure 〈h, P (·)f〉 on [0, 1] has finite variation and the function sequence λ 7→ (1 −
λ)N+1 (N ∈ N0) is bounded independently of N and converges pointwise to zero
on ]0, 1], therefore by Lebesgue’s theorem of dominated convergence [27, 28] we have
that the sequence of integrals converges to zero. Thus, the first part of the theorem
is proved by setting h := 1

Volume(U) χU
.

The second part of the theorem is proved by observing that

∥

∥f − PKer(Aρ)f − fN
∥

∥

2

L2 =
〈

f,
(

(I −A)N+1 − PKer(Aρ)

)2
f
〉

=

∫

λ∈]0,1]

(1− λ)2N+2 d 〈f, P (λ)f〉(3.17)

where 〈f, P (·)f〉 is a non-negative valued finite measure and the integrand which
is also non-negative, has a bound independent of N , furthermore it monotonically
decreases at each point to zero with increasing N . Therefore, by Lebesgue’s theorem
of dominated convergence and by the monotonicity of integration we have that the
pertinent expression converges to zero with increasingN in a monotonically decreasing
way.

Remark 3.2. The following remarks clarify the meaning of Theorem 3.2 in the
context of a probability theory setting.
(i) For any folding operator Aρ the response function may be conditioned to have

the regularity condition ∀x ∈ X : ρ(·|x) ∈ L2(X) by convolving it with a square-
integrable pdf η whose Fourier transform is nowhere vanishing. Namely, one
can solve the modified problem η ⋆ g = Aη⋆ρf for f instead of the original form
g = Aρf . In that way, the transpose folding operator can always be made well-
defined. When such a treatment is applied, the iteration modifies as

Kη⋆ρ := sup
x∈X

∫ ∫

(η ⋆ ρ)(y|z) (η ⋆ ρ)(y|x) dy dz,

f0 := K−1
η⋆ρA

T
η⋆ρ η ⋆ g,

fN+1 := fN +
(

f0 −K−1
η⋆ρA

T
η⋆ρAη⋆ρfN

)

(N ∈ N0).(3.18)

with the very same convergence properties as in the previous theorem.
(ii) The regularity condition Kρ < ∞ (or Kη⋆ρ < ∞) holds for a quite large class

of response functions in a probability theory context. Namely, it is easy to check
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that if Aρ is a convolution, then Kρ = 1. For other practical cases, this condition
may be checked numerically as done in [1]. It is shown e.g. that for the response
function of particle energy measurement with a typical calorimeter device, one
has Kρ ≈ 1.4. Also the response function of particle momentum measurement
using bending in magnetic field has the pertinent regularity property.

(iii) The regularity condition for the unknown pdf f , i.e. that it has to be square-
integrable, holds for a quite generic class of pdfs. This is automatic for instance
for any pdf which is known to be essentially bounded.

(iv) When the convergence condition is satisfied, it is seen that if Aρ is one-to-
one, the approximating functions (fN)N∈N0

converge to the original unknown pdf
f . When Aρ is not one-to-one, then (fN)N∈N0

converge to the closest possible
function f − PKer(Aρ)f .

(v) The meaning of convergence result (i) in the context of probability theory is that
the approximating functions (fN )N∈N0

converge in the sense that the probability
of each compact set U ⊂ X is restored to the maximum possible extent, but
the rate of convergence might be different for different sets. When the pdfs are
measured or modeled by histograms, as usual in statistical data processing, this
means binwise convergence of the restored histograms, the convergence rate being
possibly different for different histogram bins. The more global convergence result
(ii) does not have a direct probability theory interpretation, but shall have a role
in the estimation of approximation error at finite iteration order N .

(vi) Note that whenever our pdfs are modeled by histograms, the operation of his-
togram binning may also be regarded as part of the folding operator as described
in [1], and thus it is wise to include its effect in the folding operator Aρ. This
might be done for instance by modeling the true (unknown) pdf f and its iterative
approximates fN as histograms binned on much wider domain with larger bin-
ning density than the measured pdf g. In such approximation the folding operator
Aρ may be thought of as a real matrix which is not square.

3.3. Estimation of approximation error . The convergence result means
that the residual term (approximation error) f − PKer(Aρ)f − fN of the approxi-
mating sequence defined by Eq.(3.6) decreases to zero with increased iteration order
N in the sense that it decreases to zero when averaged over any compact set, i.e. we
have binwise convergence in the language of histograms. However, it would be very
useful to quantify the approximation error at finite N in order to define some stop-
ping criterion. To achieve this, we need to recall a result from the theory of projection
valued measures.

Remark 3.3. Let P be a projection valued measure of some separable Hilbert
space over the Borel sets of C. Then, whenever α and β are C → C measurable
functions, while h and f are elements of the Hilbert space, one has

∣

∣

∣

∣

∫

λ∈C

α(λ)β(λ) d 〈h, P (λ)f〉
∣

∣

∣

∣

≤
√

∫

λ∈C

|α(λ)|2 d 〈h, P (λ)h〉
√

∫

λ∈C

|β(λ)|2 d 〈f, P (λ)f〉(3.19)

and the same inequality also holds when α and β are interchanged [28]. This upper
bound is in the analogy of the Cauchy-Schwarz inequality.

The following theorem helps to quantify the approximation error at a finite iter-
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ation order N ∈ N0.

Theorem 3.3. (Approximation error) Take the iterative solution for the unfold-
ing problem as in Eq.(3.6) and assume that the convergence conditions of Theorem 3.2
hold. Then, the distance of an N -th iterate fN from the closest possible function to
the true unfolded pdf f in the average over a compact set U ⊂ X has the following
upper bounds:
(i) One has

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

(

f − PKer(Aρ)f − fN
)

(x) dx

∣

∣

∣

∣

≤ 1
√

Volume(U)

∥

∥f − PKer(Aρ)f − fN
∥

∥

L2 .(3.20)

(ii) Similarly, when Ker(Aρ) is not projected out:

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

(f − fN) (x) dx

∣

∣

∣

∣

≤ 1
√

Volume(U)
‖f − fN‖L2 .(3.21)

(iii) In addition,

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

(

f − PKer(Aρ)f − fN
)

(x) dx

∣

∣

∣

∣

≤
∥

∥f − PKer(Aρ)f
∥

∥

L2

∥

∥ξ
U
− PKer(Aρ)ξU − ξ

U,N

∥

∥

L2(3.22)

is valid, where ξ
U
:= 1

Volume(U)χU
and ξ

U,N
is the N -th iterative approximation

of ξ
U

in terms of Eq.(3.6). Namely, ξ
U,0

:= K−1
ρ AT

ρ ξU and ξ
U,N+1

:= ξ
U,N

+
(

ξ
U,0 −K−1

ρ AT
ρ AρξU,N

)

.
(iv) Similarly, one has

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

(f − fN) (x) dx

∣

∣

∣

∣

≤ ‖f‖L2

∥

∥ξ
U
− ξ

U,N

∥

∥

L2(3.23)

when Ker(Aρ) is not projected out.
(v) The identity

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

(f − fN) (x) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

(

ξ
U
− ξ

U,N

)

(x) f(x) dx

∣

∣

∣

∣

(3.24)

also holds.
Proof. These are direct consequence of spectral representation of the operator

A := K−1
ρ AT

ρAρ as in the proof of Theorem 3.2 from which

∣

∣

〈

h, f − PKer(Aρ)f − fN
〉
∣

∣ =

∣

∣

∣

∣

∣

∫

λ∈]0,1]

1 (1− λ)N+1 d 〈h, P (λ)f〉
∣

∣

∣

∣

∣
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≤
√

∫

λ∈]0,1]

|1|2 d 〈h, P (λ)h〉
√

∫

λ∈]0,1]

|(1− λ)N+1|2 d 〈f, P (λ)f〉

(3.25)

and

∣

∣

〈

h, f − PKer(Aρ)f − fN
〉∣

∣ =

∣

∣

∣

∣

∣

∫

λ∈]0,1]

1 (1− λ)N+1 d 〈h, P (λ)f〉
∣

∣

∣

∣

∣

≤
√

∫

λ∈]0,1]

|1|2 d 〈f, P (λ)f〉
√

∫

λ∈]0,1]

|(1− λ)N+1|2 d 〈h, P (λ)h〉

(3.26)

follows with arbitrary h ∈ L2(X). These may be rewritten as:

∣

∣

〈

h, f − PKer(Aρ)f − fN
〉
∣

∣

≤
∥

∥h− PKer(Aρ)h
∥

∥

L2

∥

∥

(

(I −A)N+1 − PKer(Aρ)

)

f
∥

∥

L2(3.27)

and

∣

∣

〈

h, f − PKer(Aρ)f − fN
〉
∣

∣

≤
∥

∥f − PKer(Aρ)f
∥

∥

L2

∥

∥

(

(I −A)N+1 − PKer(Aρ)

)

h
∥

∥

L2 .(3.28)

Then by using the fact that
(

(I −A)N+1 − PKer(Aρ)

)

f = f − PKer(Aρ)f − fN and
(

(I −A)N+1 − PKer(Aρ)

)

h = h − PKer(Aρ)h − hN where hN is the iterative approxi-
mation of h in terms of Eq.(3.6), we see that

∣

∣

〈

h, f − PKer(Aρ)f − fN
〉
∣

∣

≤
∥

∥h− PKer(Aρ)h
∥

∥

L2

∥

∥f − PKer(Aρ)f − fN
∥

∥

L2(3.29)

and

∣

∣

〈

h, f − PKer(Aρ)f − fN
〉∣

∣

≤
∥

∥f − PKer(Aρ)f
∥

∥

L2

∥

∥h− PKer(Aρ)h− hN

∥

∥

L2 .(3.30)

By using
∥

∥h− PKer(Aρ)h
∥

∥

L2 ≤ ‖h‖L2 and setting h := 1
Volume(U)χU

we have proved

(i) and (iii).
Quite obviously, the same argument can be repeated with the projection operator

PKer(Aρ) excluded from the equations, which proves (ii) and (iv).
Point (v) is proved by observing that for any h ∈ L2(X) one has 〈h, f − fN〉 =

〈

h, (I −A)N+1f
〉

, since f − fN = (I − A)N+1f . Due to the self-adjointness of the

composite folding operator A, one has that 〈h, f − fN 〉 =
〈

(I −A)N+1h, f
〉

. Since
the identity (I−A)N+1h = h−hN holds, one arrives at 〈h, f − fN 〉 = 〈h− hN , f〉 and
thus |〈h, f − fN 〉| = |〈h− hN , f〉| is valid. Then, (v) is proved by simply substituting
h := ξ

U
.

Remark 3.4. The following remarks clarify the usability of Theorem 3.3.
(i) By statement (i) and (ii) it is implied that the residual error averaged over a

compact set U ⊂ X scales as 1√
Volume(U)

. In the language of histograms it means

that it scales as one per square root of the histogram bin size.
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(ii) The upper bounds (i), (iii) decrease monotonically to zero with increasing N .
The upper bounds (ii) and (iv) decrease monotonically to the corresponding
limits 1√

Volume(U)

∥

∥PKer(Aρ)f
∥

∥

L2 and ‖f‖L2

∥

∥PKer(Aρ)ξU
∥

∥

L2 , respectively. Since
∥

∥ξ
U
− ξ

U,N

∥

∥

L2 is fully calculable, upper bound (iv) can be used to test whether
the inverse of Aρ exists, i.e. whether PKer(Aρ) = 0 holds, or if not, it may be
used to quantify the contribution of the irrecoverable part PKer(Aρ)f .

(iii) Via spectral representation it is easy to see that ‖fN‖L2 converges to the limit
∥

∥f − PKer(Aρ)f
∥

∥

L2 in a monotonically increasing way, i.e. may be used to ap-
proximate this unknown coefficient from below.

(iv) Again via using spectral representation, one can see that with fixed N and M >

N , the expressions ‖fM − fN‖L2 and
∥

∥ξ
U,M

− ξ
U,N

∥

∥

L2 tend to the corresponding

limits
∥

∥f − PKer(Aρ)f − fN
∥

∥

L2 and
∥

∥ξ
U
− PKer(Aρ)ξU − ξ

U,N

∥

∥

L2 with increasing
M , respectively, in a monotonically increasing way. Therefore, they can be used
for approximation of these unknown coefficients from below.

(v) As a consequence, the approximation error may be estimated for a fixed iteration
order N in the following way. For any ε > 0 there exists an iteration index
threshold Mε,N > N such that for all M > Mε,N

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

(

f − PKer(Aρ)f − fN
)

(x) dx

∣

∣

∣

∣

≤ 1
√

Volume(U)
(1 + ε) ‖fM − fN‖L2(3.31)

is valid. In addition, a closer, U -dependent estimate may be calculated: for any
ε > 0 there exists an iteration index threshold Mε,U,N > N for which for all
M > Mε,U,N the upper bound

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

(

f − PKer(Aρ)f − fN
)

(x) dx

∣

∣

∣

∣

≤ (1 + ε) ‖fM‖L2

∥

∥ξ
U,M

− ξ
U,N

∥

∥

L2(3.32)

holds. Alternatively,
∣

∣

∣

∣

1

Volume(U)

∫

x∈U

(f − fN) (x) dx

∣

∣

∣

∣

≤ (1 + ε) ‖fM‖L2

∥

∥ξ
U
− ξ

U,N

∥

∥

L2(3.33)

is also valid whenever Aρ is known to be one-to-one, which expression is slightly
cheaper to calculate.

(vi) The identity (v) is particularly useful. In order to constructively evaluate it, one
needs to use the fact that the sequence (fN)N∈N0 converges to f − PKer(Aρ)f in
the L2 sense. Thus, whenever Aρ is invertible, it converges to f in the L2 sense.
In that case, the identity (v) can be rewritten as

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

(f − fN ) (x) dx

∣

∣

∣

∣

= lim
M→∞

∣

∣

∣

∣

∫

(

ξ
U
− ξ

U,N

)

(x) fM (x) dx

∣

∣

∣

∣

.(3.34)

Technically, the right side of this identity may be approximated by the integral
∣

∣

∫ (

ξ
U
− ξ

U,N

)

(x) fM (x) dx
∣

∣ with large enough M . For large N , even M := N

may be used for evaluation of this expression.
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3.4. Estimation of statistical error . Armed with the approximation error
estimates of Theorem 3.3 one can construct penalty functions which define optimal
stopping criterion of the iteration, and one can quantify the error of the approximation
at finite iteration order which decreases with increasing iteration order.

In practice, however, the unfolding problem g = Aρf +e may also contain a small
statistical error term e whose expectation value is zero, its exact value is unknown,
but an estimate to the behavior of the random variable e(x) for each x ∈ X is
available. Normally, the statistical covariance matrix Cov(e) is known along with
the measured pdf g and the known response function ρ. If, for instance, g was a
result of a measurement in the form of a histogram, then Cov(e) = Cov(g) will be
nothing but the diagonal matrix composed of the histogram bin entries. The question
naturally arises: how can one quantify the propagated statistical error of the N -th
iterative approximation of f , i.e. of fN . In the followings we show an exact formula
for the case when g is measured as a histogram, i.e. when g can be regarded as an
n-component vector of real probability variables with known covariance.

Remark 3.5. The following simple facts in probability theory will aid the argu-
mentation of the statistical error propagation.
(i) If v is a n-component vector of real probability variables, then its covariance

Cov(v) is an n × n real symmetric positive matrix. Therefore, for any m ≥ n

there exists (not necessarily uniquely) a real n×m matrix Err(v) such that

Cov(v) = Err(v)Err(v)T(3.35)

holds, the symbol (·)T denoting matrix transpose. Indeed, because of realness,
symmetricity and positivity of Cov(v) there exists uniquely a real symmetric pos-
itive n× n matrix satisfying Eq.(3.35), the square-root of Cov(v), and therefore
Err(v) =

√

Cov(v) may be chosen. Then, this may be extended to be n × m

(m ≥ n) by zeros without affecting Eq.(3.35). In some special cases, however,
there also exists such n×m (m ≤ n) real matrix Err(v) such that Eq.(3.35) still
holds.

(ii) If v is an n-component vector of real probability variables and M is a real m×n

matrix, then the standard error propagation formula

Cov(Mv) = MCov(v)MT(3.36)

holds.
(iii) As a consequence of the previous observations, one can express the standard

error propagation formula also in the form

Err(Mv) = MErr(v)(3.37)

where Err(v) is any real n×n matrix satisfying Eq.(3.35), and the resulting real
m× n matrix Err(Mv) shall obey Err(Mv)Err(Mv)T = Cov(Mv).

(iv) In our unfolding problem the N -th iterative approximation of f , i.e. fN , may be
expressed in the form

fN =

(

N
∑

n=0

(

I −K−1
ρ AT

ρAρ

)n

)

K−1
ρ AT

ρ g(3.38)

which is manifestly linear in the measured pdf g. This fact may be used in
order to construct statistical error propagation formula in terms of the previous
observations.
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Armed with these equalities, we are ready to state the statistical error propagation
formula for our unfolding method.

Theorem 3.4. (Statistical error) Take the iterative solution for the unfolding
problem as in Eq.(3.6) and assume that the convergence conditions of Theorem 3.2
hold. Let Cov(g) be the n × n statistical covariance matrix of the measured pdf g,
where g is given in the form of an n-bin histogram. If f and fN is modeled as an
m-bin histogram, then the m×m covariance matrix of fN , Cov(fN ), may be obtained
by the following iterative formula along with fN :

E0 := K−1
ρ AT

ρ Err(g),

EN+1 := EN +
(

E0 −K−1
ρ AT

ρ AρEN

)

(N ∈ N0)(3.39)

where ENEN
T = Cov(fN ) holds for each N .

Proof. This is a simple consequence of the linearity of the unfolding method
Eq.(3.6), and of Remark 3.5 (iv) combined with (iii) and then re-expressing it via
iterative form.

Remark 3.6. The following remarks add some pieces of information about the
practical usage of the statistical error propagation theorem.
(i) If the measured pdf g is a histogram, then each component obeys Poisson dis-

tribution, and thus Cov(g) = diag(g). Furthermore a real n× n matrix Err(g),
satisfying Err(g)Err(g)T = Cov(g), may be constructed by taking the componen-
twise square-root of diag(g). This can directly be used in calculation of E0 in
Theorem 3.4.

(ii) If f is modeled as a histogram with m bins then for each iteration order N the
real matrix EN is of m×n type, i.e. Cov(fN ) = ENEN

T shall be of m×m type.
(iii) The square-root of the diagonal elements of the covariance matrix Cov(fN ) give

the exact statistical errors of fN which then may be used to define an iteration
stopping criterion, for instance the sum of the statistical errors may be required
to be under a predefined threshold. One should not forget, however, that this un-
folding method —just as any other unfolding method— introduces pretty strong
correlations and thus the non-diagonal elements of Cov(fN ) also play an im-
portant role when describing the characteristics of the statistical fluctuations of
fN .

3.5. Estimation of systematic error . It was shown that in case of a statisti-
cal unfolding problem of the form g = Aρf+e the quantification of the two competing
error terms is possible: close upper bound to the convergent approximation error term
was given, whereas exact error propagation formula to the divergent statistical error
term was shown. A combination, such as the sum of these terms, may be considered
as penalty function and the iteration may be stopped when the penalty function is
minimal, furthermore these terms may be quantified at this optimal iteration order
with the shown formulae. In practice, however, one often faces the problem of sys-
tematic errors whenever the measured pdf contains some systematic distortion not
accounted for in our model of response function, or equivalently, whenever our model
of response function is slightly inaccurate. Formally we may write in such case that
the actually measured pdf is g + δg = A(ρ+δρ)f + e where δρ is the deviation of the
true response function ρ+ δρ from our model response function ρ. Since by definition
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g = Aρf+e would be the measured pdf in the absence of δρ, one arrives at the relation
δg = Aδρf between δg and δρ. When applying the iterative solution Eq.(3.6) using ρ

to the actually measured pdf g+ δg, the N -th iterative estimate of the true unknown
pdf f shall contain a propagated contribution δfN which needs to be quantified. In
experimental practice, the systematic error of the actually measured pdf is given in
terms of some close upper estimate sg for which |δg| ≤ sg holds, or similarly as a
close upper estimate sρ for which |δρ| ≤ sρ is valid. Our aim is to provide some upper
estimate to |δfN | based on sg or sρ, for any given iteration order N ∈ N0. For this,
let us introduce the following normalization factors

Cρ,sg :=

√

∫

(

K−1
ρ AT

ρ sg
)2

(x) dx(3.40)

if the systematic errors are known in terms of sg, and

Dρ,sρ :=

√

sup
x∈X

∫ ∫

(

K−1
ρ AT

ρ sρ
)

(y|z)
(

K−1
ρ AT

ρ sρ
)

(y|x) dy dz(3.41)

if the systematic errors are known in terms of sρ.

Theorem 3.5. (Systematic error) Take the iterative solution for the unfolding
problem as in Eq.(3.6) and assume that the conditions of convergence hold. Then, the
following upper bounds are valid on the systematic deviation δfN of the N -th iterative
approximation of f , fN .

(i) For the average of δfN over any compact set U ⊂ X one has

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

δfN (x) dx

∣

∣

∣

∣

≤
∥

∥Ξ
U,N

∥

∥

L2 Cρ,sg(3.42)

where ξ
U
:= 1

Volume(U)χU
and Ξ

U,N
is defined by the iteration

Ξ
U,0

:= ξ
U
,

Ξ
U,N+1

= Ξ
U,N

+
(

Ξ
U,0

−K−1
ρ AT

ρ AρΞU,N

)

(N ∈ N0).(3.43)

(ii) Alternatively,

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

δfN(x) dx

∣

∣

∣

∣

≤
∥

∥Ξ
U,N

∥

∥

L2 Dρ,sρ ‖f‖L2 .(3.44)

(iii) The upper bound

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

δfN (x) dx

∣

∣

∣

∣

≤
∫

∣

∣K−1
ρ AρΞU,N

∣

∣ (y) sg(y) dy(3.45)

also holds.
(iv) Alternatively,

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

δfN(x) dx

∣

∣

∣

∣

≤
∫

(

K−1
ρ AT

sρ

∣

∣AρΞU,N

∣

∣

)

(x) |f | (x) dx.(3.46)
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(v) More specifically,
∣

∣

∣

∣

1

Volume(U)

∫

x∈U

δfN (x) dx

∣

∣

∣

∣

≤ ‖f‖L1 sup
x∈X

(

K−1
ρ AT

sρ

∣

∣AρΞU,N

∣

∣

)

(x).(3.47)

Here, whenever f was a pdf, then ‖f‖L1 = 1 automatically holds.
Proof. We begin the proof by recalling that because of Eq.(3.38) and its modified

form

fN + δfN =

(

N
∑

n=0

(

I −K−1
ρ AT

ρAρ

)n

)

K−1
ρ AT

ρ (g + δg)(3.48)

in presence of systematic distortions, we have that

δfN =

(

N
∑

n=0

(

I −K−1
ρ AT

ρAρ

)n

)

K−1
ρ AT

ρ δg(3.49)

holds, where δg is the unaccounted systematic distortion of the measured pdf, which
is related to the unaccounted systematic distortion of the response function δρ by
δg = Aδρf .

Again, we use the notation A := K−1
ρ AT

ρAρ and use its spectral representation as
in the proof of Theorem 3.2. With this, one has

〈h, δfN〉 =
∫

λ∈[0,1]

1

N
∑

n=0

(1− λ)n d
〈

h, P (λ)K−1
ρ AT

ρ δg
〉

(3.50)

for any h ∈ L2(X). From that, using Remark 3.3 we arrive at

|〈h, δfN〉|

≤

√

√

√

√

∫

λ∈[0,1]

∣

∣

∣

∣

∣

N
∑

n=0

(1− λ)n

∣

∣

∣

∣

∣

2

d 〈h, P (λ)h〉
√

∫

λ∈[0,1]

|1|2 d
〈

K−1
ρ AT

ρ δg, P (λ)K−1
ρ AT

ρ δg
〉

=

∥

∥

∥

∥

∥

N
∑

n=0

(I −A)nh

∥

∥

∥

∥

∥

L2

∥

∥K−1
ρ AT

ρ δg
∥

∥

L2

= ‖HN‖L2

∥

∥K−1
ρ AT

ρ δg
∥

∥

L2(3.51)

where the notation HN :=
∑N

n=0(I − A)nh was introduced. It is quite evident that
HN may be calculated using the iterative form

H0 := h,

HN+1 := HN + (H0 −AHN )
(N ∈ N0)(3.52)

in order to evaluate ‖HN‖L2 .
An upper bound for

∥

∥K−1
ρ AT

ρ δg
∥

∥

L2 may be readily constructed using the inequal-
ity

∥

∥K−1
ρ AT

ρ δg
∥

∥

2

L2 ≤
∥

∥K−1
ρ AT

ρ sg
∥

∥

2

L2 = C2
ρ,sg(3.53)
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which is seen to hold using Fubini’s theorem and monotonicity of integration, where
non-negativity of ρ and sg is tacitly assumed as previously.

Now, by setting h := ξ
U
, part (i) of the theorem is proved.

Part (ii) may be proved by using the relation δg = Aδρf which implies that

∥

∥K−1
ρ AT

ρ δg
∥

∥

2

L2 =
∥

∥K−1
ρ AT

ρAδρf
∥

∥

2

L2 ≤
∥

∥K−1
ρ AT

ρAsρf
∥

∥

2

L2(3.54)

again because of Fubini’s theorem and monotonicity of integration, where one should
note that ρ, sρ and f is assumed to be non-negative as previously. Then, we see that

∥

∥K−1
ρ AT

ρAsρf
∥

∥

2

L2 =
〈

f,K−1
ρ AT

sρAρK
−1
ρ AT

ρ Asρf
〉

≤ ‖f‖2L2

∥

∥K−1
ρ AT

sρAρK
−1
ρ AT

ρAsρ

∥

∥

L2→L2(3.55)

holds. Realizing that the L2 operator norm of the positive self adjoint operator
K−1

ρ AT
sρAρK

−1
ρ AT

ρ Asρ can be bound via the Riesz-Thorin theorem similarly as for

K−1
ρ AT

ρAρ in proof of Theorem 3.2 we conclude that the pertinent operator norm is
bound by D2

ρ,sρ.

Part (iii) is proved by using the self-adjointness of A and that the adjoint of AT
ρ

is Aρ. Due to that, for any h ∈ L2(X), one has

〈h, δfN〉 =
〈

K−1
ρ AρHN , δg

〉

(3.56)

with the previous notations. Due to the monotonicity of integration, then the identity
|〈h, δfN 〉| ≤

〈
∣

∣K−1
ρ AρHN

∣

∣ , sg
〉

is obtained, since |δg| ≤ sg holds. When setting
h := ξ

U
and correspondingly HN := Ξ

U,N
, this is nothing but (iii).

Part (iv) is proved by using Eq.(3.56) and δg = Aδρf , furthermore that the adjoint

of Aδρ is A
T
δρ. With that, one has 〈h, δfN〉 =

〈

K−1
ρ AT

δρAρHN , f
〉

. Using |δρ| ≤ sρ and

the monotonicity of integration, one arrives at |〈h, δfN 〉| ≤
〈

K−1
ρ AT

sρ |AρHN | , |f |
〉

.
The upper bound (iv) is obtained, whenever h := ξ

U
and HN := Ξ

U,N
is set.

Part (v) is a consequence of (iv), applying Hölder’s inequality, in addition.

Remark 3.7. The following remarks provide some more explanation about the
usability of the above results on upper estimation of the systematic errors of fN orig-
inating from the systematic errors of the measured pdf g or of the response function
ρ.
(i) For any given iteration order N ∈ N0 the upper estimate (i) of Theorem 3.5

bounds the systematic deviation of the unfolded pdf fN averaged over any com-
pact set, in a manifestly calculable way if the systematic errors of the measured
pdf are given. In the language of histograms this means that bin-by-bin upper
bound to the systematic error of the unfolded pdf is available in terms of the
systematic error of the measured pdf.

(ii) The upper estimate (ii) of Theorem 3.5 provides an alternative bound for the
same quantity for the case when the systematic errors are known in terms of the
systematic error of the response function. This, similarly to Theorem 3.3 (iv),
needs the unknown value of ‖f‖L2 which may be circumvented in the analogy of
Remark 3.4 (v). Namely, for any ε > 0 there exists an iteration index threshold
Mε ∈ N0 such that for all M > Mε one has

∣

∣

∣

∣

1

Volume(U)

∫

x∈U

δfN(x) dx

∣

∣

∣

∣
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≤
∥

∥Ξ
U,N

∥

∥

L2 Dρ,sρ (1 + ε) ‖fM‖L2(3.57)

whenever Aρ is one-to-one, because then in the light of Remark 3.4 (iii), ‖fM‖L2

as a function of M converges to ‖f‖L2 in a monotonically increasing way.
(iii) The right side of Eq.(3.46) may be approximated by

∫

(

K−1
ρ AT

sρ

∣

∣AρΞU,N

∣

∣

)

(x) |fM | (x) dx(3.58)

due to |f | = f and because fM converges to f as M → ∞ in the L2 sense,
whenever Aρ is invertible. For large N , the approximative formula with M := N

may be used.

4. Generalization to the context of probability measures. In rare cases
one faces the problem that the distributions in question cannot be described in terms
of pdfs, only in terms of probability measures instead.3 Such practical cases may
arise for instance when the folding operator represents kinematics of particle decays
[2]. Therefore, it is interesting to ask the question whether the iterative unfolding
method Eq.(3.6) applies in the framework of probability measures.

Remark 4.1. Let us recall some notions in measure theory [33].
(i) A complex measure F over X is a complex valued σ-additive set function on the

Borel σ-algebra of the subsets of X. The variation of the complex measure F

is the non-negative valued measure |F | defined by the requirement: for a Borel

set E the value of |F |(E) is the supremum of
∑K

k=0 |F (Ek)| for any splitting
E1, . . . , EK of E, i.e. for all such finite system of disjoint Borel sets E1, . . . , EK

whose union totals up to E. The measures with finite variation, i.e. which have
|F |(X) < ∞, form a Banach space with the norm being ‖F‖ := |F |(X). We
shall denote this space by M(X).

(ii) A probability measure F on X is a non-negative measure on the Borel σ-algebra
of X with the requirement F (X) = 1. Thus, quite naturally, a probability mea-
sure on X resides in M(X).

We continue with the formal definition of folding operators whose response func-
tion is described by a measure rather than a function.

Definition 4.1. A mapping Q : X → M(Y ), x 7→ Q(·|x) is called folding
measure if for every x ∈ X the measure Q(·|x) is a non-negative measure on Y with
Q(Y |x) = 1 (i.e. Q(·|x) is a probability measure for all x ∈ X), and for every Borel
set E in Y the function x 7→ Q(E|x) is measurable.

Remark 4.2. A possible usual generalization is when inefficiencies are also al-
lowed, i.e. the less restrictive condition Q(Y |x) ≤ 1 is required for all x ∈ X. The
results throughout this paper also holds for that case.

It follows from the definition that a folding measure Q may be viewed as a con-
ditional probability measure over the product space Y ×X . Quite evidently, if ρ is a
response function then Qρ(E|x) :=

∫

y∈E
ρ(y|x) dy defines a folding measure.

Definition 4.2. Let Q be a folding measure. Then, the linear map

AQ : M(X) → M(Y ), F 7→
(
∫

Q(·|x) dF (x)

)

(4.1)

3A measure is a set function of the subsets of the probability base space. A common example of
measures is the Dirac delta.
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is called the folding operator by Q.

Remark 4.3. The remarks below follow from the definition [2].

(i) A folding operator AQ is well-defined as for all points x ∈ X and Borel sets E of
Y the inequality Q(E|x) ≤ 1 holds, thus the function x 7→ Q(E|x) is integrable
by any measure with finite variation.

(ii) The monotonicity of integration implies that a folding operator is continuous
and ‖AQ‖M(X)→M(Y ) = 1, just as in the case of L1 theory. If inefficiencies are
allowed, ‖AQ‖M(X)→M(Y ) ≤ 1 holds.

(iii) The folding operators defined by folding measures is a generalization of the fold-
ing operators by response functions.

As in the L1 theory, the convolutions represent an important class of folding
operators.

Definition 4.3. A folding operator AQ is called a convolution if its folding
measure is translationally invariant in the sense that Y = X and for all x, z ∈ X and
Borel sets E one has Q(E|x+ z) = Q(E − z|x).

Remark 4.4. The followings are important properties of convolution operators
with measures [2].

(i) Whenever the folding operator AQ by a folding measure Q is a convolution, Q
may be expressed by a single probability measure R := Q(·|0) in the form of
Q(E|x) = R(E − x) for all x ∈ X and Borel set E. The alternative notation
R⋆F := AQF is often used in such case (F ∈ M(X)). Note that the convolution
is commutative, i.e. one has R ⋆ F = F ⋆ R for all R,F ∈ M(X).

(ii) Fourier transformation of measures in M(X) can also be defined and has similar
properties as in the L1 case, except that the Fourier transform functions do not
decay at infinity, i.e. the Riemann-Lebesgue lemma does not hold. Only the
boundedness of Fourier transforms are guaranteed.

(iii) Properties of convolution operators are similarly related to the Fourier transform
of the underlying probability measure, as in the L1 theory. For instance, a
convolution operator is one-to-one if and only if its Fourier transform is nonzero
almost everywhere.

(iv) It is easily seen that if ϕ ∈ L1(X) and F ∈ M(X), then ϕ ⋆ F is a function in
L1(X). Combining this with Remark 3.1 (ii) we conclude that if ϕ ∈ Lp(X) ∩
L1(X) then for all F ∈ M(X) the function ϕ⋆F ∈ Lp(X)∩L1(X) (1 ≤ p ≤ ∞).
That is, probability measures may be mapped into pdfs in Lp(X) via convolution
by a pdf integrable on the p-th power.

Armed with the introduced notions we may try to ask the question whether one
can generalize the results in Section 3 to probability measures.

Remark 4.5. The following results are generalization of the results in Section 3
for probability measures.

(i) The naive application of Neumann series fails to work similarly as in the L1

framework. This is because as proved in [2] one has ‖I −AQ‖M(X)→M(X) = 2

whenever Q({y}|y) = 0 for any point y — which is the generic case.
(ii) The convergence and error propagation results of Theorem 3.2, 3.3, 3.4, 3.5 may

be generalized in a similar manner to Remark 3.2 (i)-(ii). Namely, instead of the
original problem G = AQF one may consider the modified version η⋆G = Aη⋆QF

to be solved for F , where η is a square-integrable pdf whose Fourier transform is
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nowhere vanishing. In this case, the folding operator AQ is mapped to be a folding
operator by a response function Aη⋆Q instead, as we have η ⋆ AQF = Aη⋆QF

for any F ∈ M(X). Furthermore, for each x ∈ X the pdf η ⋆ Q(·|x) is square-
integrable. Then, the iteration

Kη⋆Q := sup
x∈X

∫ ∫

(η ⋆ Q)(y|z) (η ⋆ Q)(y|x) dy dµ(z),

F0 := K−1
η⋆QA

T
η⋆Q η ⋆ G,

FN+1 := FN +
(

F0 −K−1
η⋆QA

T
η⋆QAη⋆QFN

)

(N ∈ N0).(4.2)

obeys the very same convergence and error propagation properties as stated in
Theorem 3.2, 3.3, 3.4, 3.5, whenever Kη⋆Q < ∞ and when the unknown probabil-
ity measure F corresponds to a square-integrable pdf with respect to some a priori
given non-negative valued measure µ over X. This latter requirement means that
F = fµ needs to be satisfied with some non-negative measure µ over X and with
some µ-measurable function f : X → R

+
0 for which

∫

|f |2 (x) dµ(x) < ∞ needs
to hold.

The previous observations conclude that whenever the unknown distribution is
described by a pdf which is square-integrable with respect to some volume measure,
then the folding measure may be conditioned in a way that the iterative unfolding
Eq.(3.6) applies to it.

5. The discrete case. For better illustration, we specialize our results in Sec-
tion 3 and 4 to the case when the unknown probability distribution along with the
response function and the measured probability distribution is discrete. In that case
the measured pdf g and the unknown pdf f is a finite dimensional vector of non-
negative entries, and the folding operator Aρ is simply a finite dimensional matrix
with non-negative entries as well. Our equation to solve is then the matrix equation
g = Aρf for f , or in case of presence of measurement errors e, the matrix equation
g = Aρf+e. We also assume that the entries of f , Aρ and g are probabilities, i.e. they
are normalized such that

∑

i gi = 1,
∑

i fi = 1 and
∑

j (Aρ)ji = 1, or
∑

j (Aρ)ji ≤ 1
in case of presence of inefficiencies.

Then, the iterative solution of our discrete unfolding problem reads as

Kρ := max
i

∑

j

∑

k

(Aρ)ji (Aρ)jk ,

f0 := K−1
ρ AT

ρ g,

fN+1 := fN +
(

f0 −K−1
ρ AT

ρAρfN
)

(N ∈ N0).(5.1)

where AT
ρ is the matrix transpose of Aρ. A simple observation shows that Eq.(5.1) is

nothing but an iterative form of

Kρ := max
i

∑

j

∑

k

(Aρ)ji (Aρ)jk ,

fN :=

N
∑

n=0

(I −K−1
ρ AT

ρAρ)
nK−1

ρ AT
ρ g

(N ∈ N0).(5.2)
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I denoting the identity matrix. Due to the results of Section 3 and 4, the convergence
of this approximation is monotonic in the l2 vector norm, and also holds entrywise,
however with possibly quite different convergence rates for different vector entries.
Along with this, all the convergence and error propagation properties listed in Sec-
tion 3 and 4 hold, independently of the fineness of the discretization. This decoupling
from the discretization is quite important, as it shows that in the presented method
the discretization does not become an important ingredient of the regularization pro-
cedure itself in case when f , g and ρ are in reality continuum distributions, modelled
and measured as histograms.

6. Numerical example. In this section the performance of the proposed method
is illustrated on a numerical example. The example calculation is implemented via
the C library libunfold [34], also including the automatic approximation, statistical
and systematic error propagation formulae presented in the paper. The shown exam-
ple is also shipped with the pertinent library. The illustrative case was deliberately
chosen in a way when the response function is not translationally invariant, i.e. when
ordinary deconvolution methods are not sufficient.

Our simulated measurement scenario is the following. We would like to measure
the true pdf of a quantity, namely of the energy of produced charged particles in a high
energy particle collision experiment. This true pdf used in our toy Monte Carlo shall
be a parametrization of a real measurement at the LHC accelerator [35] at CERN. It
is of the form

E 7→ f(E) := χ
[0,∞[

(E) |E| (n− 1)(n− 2)

(nT )2

(

1 +
|E|
nT

)−n

(6.1)

with parameters n = 6.6 and T = 0.145GeV. The response function

(Emeasured, Etrue) 7→ ρ(Emeasured |Etrue)(6.2)

shall be such a cpdf that for each fixed value Etrue > 0 the pdf

Emeasured 7→ ρ(Emeasured |Etrue)(6.3)

shall be a Gaussian pdf with a mean of Etrue and standard deviation of a+
√
bEtrue+

cEtrue, with parameter values a = 0.150GeV, b = 0.7174GeV, c = 0.074. This
response function models the behavior of a calorimeter device used for the energy
measurement of particles, namely of the HCAL calorimeter [36] of the CMS experi-
ment at the LHC accelerator at CERN. In the simulated measurement scenario 104

Monte Carlo samples according to the pdf Eq.(6.1) was generated, and its corre-
sponding smeared response according to Eq.(6.2) was generated. These responses
were assumed to be collected with an inefficiency of

Emeasured 7→ 1

2

(

1 + tanh

(

Emeasured − E
∆

))

d(6.4)

with parameters E = 1GeV, ∆ = 1GeV and d = 0.05, i.e. with an inefficiency not
greater than 5% on the overall measurement domain. The collected responses were
histogramed, providing the measured pdf g with our non-ideal detector. By con-
struction, the statistical covariance matrix of the histogram g shall be diag(g). The
inefficiency profile Eq.(6.4) causing a systematic deviation of the measured pdf from
the folded pdf by Eq.(6.2), is assumed to be not known quantitatively and therefore
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is not corrected for. It is assumed, however, that an overall 5% upper bound to this
systematic deviation is known, being the systematic error of the measured pdf, i.e. one
has sg = 0.05 g. With these inputs, the linear iterative unfolding according to Eq.(3.6)
was performed. The approximation errors were quantified using Remark 3.4 (vi). The
propagated statistical errors were calculated according to Eq.(3.39). The propagated
systematic errors were quantified using Theorem 3.5 (iii). The iteration was stopped
when the combined statistical, approximation and systematic error exceeded a prede-
fined threshold of 7%. The result of the numerical test is shown in Fig. 1. Note, that
more optimalized stopping criteria can also be invented, using the estimates for the
approximation error, statistical error and systematic error. A natural candidate can
be a double-threshold criterion: the approximation error needs to be below a thresh-
old (sufficient shape restoration), whereas the combined statistical and systematic
error must stay below an upper bound (divergence regularization). Also, the iteration
might be stopped at the error optimum: at the minimum of the combined approxi-
mation, statistical and systematic error. Note, however, that one often might require
a better shape reconstruction at the expense of increased statistical and systematic
errors, as also seen in the shown example.

7. Concluding remarks. In this paper we presented mathematical proofs of
convergence and error propagation formulae for a linear iterative unfolding method
[1] in the probability theory context. It was shown that the pertinent method is con-
vergent in the ‘binwise’ sense under quite generic conditions, which does hold in case
of many practical applications. Furthermore, explicit formulae for the three important
error terms, the approximation error, the statistical error and the systematic errors
were derived. These can be used to define optimal iteration stopping criterion and
quantification of errors therein. The key element of the proofs is the Riesz-Thorin
theorem mapping the original L1 problem to L2 with a subsequent usage of spectral
theory of L2 operators. The typical use-cases of the method are those unfolding prob-
lems which cannot be handled by statistical deconvolution [9, 10], due to the absence
of translational invariance of the response function. The possibility for propagation
of the systematic errors is a special advantage, which deserves to be emphasized for
experimental applications.

The pertinent method is also available as a C numerical library [34]. Using that,
the method was demonstrated on a numerical example. The algorithm could be
included in the ROOUnfold package [37] in the future, or in the GNU Scientific
Library [38].

The present paper can serve also as a good motivation to perform similar conver-
gence and error propagation studies on an other iterative unfolding method [18, 19, 21,
22, 23, 24, 25, 26], also called the method of convergent weights or iterative Bayesian
unfolding. That method is non-linear and therefore is somewhat more complicated to
study, however can be more suitable for unfolding problems in probability theory as it
conserves the integral and non-negativity of probability density functions. Although
widely used and numerically very promising, so far little is known on the convergence
properties of that algorithm, and nothing is known about its error propagation. Our
proposed method can be considered as the “linearized” version of that method, and
thus the presented results are expected to provide clues also for the convergence and
error propagation properties of the method of convergent weights or iterative Bayesian
unfolding.

Acknowledgments. The author would like to thank to Tamás Matolcsi for valu-
able comments and for reading various versions of the manuscript, furthermore to
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Evolution of approximation, statistical and systematic bin probability errors
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Fig. 1. (Color online) Top left: illustration of the response function of our test example. The
color intensity indicates the probability density of the response function. Top right: illustration of
the unaccounted systematic distortion applied to the folded pdf in our test example. The solid curve
indicates the systematic distortion (an inefficiency, in our example) on the unfolded pdf, which is
assumed to be not exactly quantifiable, and therefore is not corrected for in the simulated measured
pdf. Only an upper bound for the systematic distortion, called to be the systematic error, is assumed
to be known for the simulated measured pdf. That is taken to be a constant 5% upper bound in
the example. Bottom left: the true input pdf (solid line), the simulated measured pdf (squares)
and the unfolded pdf (triangles) by the proposed method. The pdfs are shown together with their
bin-by-bin statistical errors (error bars), systematic errors (error bands), and approximation errors
(narrow error bands). Bottom right: evolution of the bin-by-bin maximum of the approximation
error (circles), statistical error (diamonds), and systematic error (flipped triangles) as a function
of the number of iterations. Note that the binwise approximation errors converge to zero, but not in
a monotonic manner, which explains the slight increase of that term after about 300 iterations. If
the iteration was continued, that term indeed converged to zero, but with several local minima, i.e.
“waves” or “jumps” are seen in the convergence curve. On the other hand, the binwise statistical
and systematic error term are seen simply to diverge, as expected. The competition of these three
error terms gives a possibility to define a stopping criterion.

Dezső Varga for discussions on the physical applications and on the relevance of error
propagation formulae, in particular for the systematic errors. This work was sup-
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