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DECOMPOSITION OF PRODUCTS OF SYMPLECTIC
GROUP REPRESENTATIONS

T. MATOLCSI

Group representations play an important roie in modern physics.
Recent developments require to consider group representations in a wider
sense than usual.

A general definition of group representation is based on the notion
of categories. A category consists of objects and morphisms satisfying
some axioms. We are concerned, in our applications, with so called
concrete categories whose objects are sets with a certain structure and the
morphisms are mappings related to the structure (“preserving” it in some
sense). An isomorphism is a bijective map whose inverse is also a morphism;
an automorphism of an object is an isomorphism of the object onto itself. .
The automorphisms of an object X form a group under the composition
of maps; we denote this group by Aut (X). One generally defines the
notion of subobjects in concrete categories in a natural way and it has an
intrinsic meaning that a subobject is invariant for an automorphism; hence
we do not give here the precise and convenient definition of subobjects
and invariant subobjects in category theory; it is done in [1]. For further
details on category theory we refer to [3].
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Definition. Let % be a concrete category. A representation of a
group G on an object X of % is a group homomorphism

A: G-> Aut(X), ¢ |—>Ag.
The representation is faithful if it is injective.

The representation is irreducible if there is no non-trivial subobject
invariant for the representation, i.e., if a subobject is invariant under all

A . then it is invariant under all automorphisms as well.

Two representations of the same group G, 4 on X and B on Y, X
and Y being objects of ¥, are equivalent if there is an isomorphism
i: X—> Y such that ioAg=Bgoi for all g€ G.

If G is a topological group and the structure of X contains a
topology, too, and the map GX X > X, (g, x)— Ag(x) is continuous,
we call the representation continuous.

If G is a Lie group and the structure of X contains a differentiable
sturcture too, and the map GX X~ X, (g, x)— 4 g(x) is differentiable,
we call the representation differentiable.

Taking different categories we get different types of representations.
For example:

1. Linear representations: the objects are the complex linear vector
spaces and the morphisms are the linear maps.

2. Unitary representations: the objects are the Hilbert spaces and
the morphisms are the contractions.

3. Topological transformation group: the objects are the topological
spaces and the morphisms are the continuous maps, and we consider
continuous representations of topological groups.

4. Lie transformation groups: the objects are differentiable mani-
folds and the morphisms are differentiable maps, and we consider differ-
entiable representations of Lie groups; we shall call them Lie representa-
tions. Let us see more closely this last type of representations. In customary
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literature one speaks about “actions” of Lie groups and one uses the
notions “effective’” and “transitive”’. Now we can see that an action in this
sense is a representation, effective actions are precisely the faithful
representations and transitive actions are irreducible representations; an
irreducible representation is a transitive action if the group of diffeomor-
phisms of the manifold in question form a transitive transformation group;
such differentiable manifolds can be called homogeneous.

Let G be a Lie group and let H be a closed subgroup of G. Then
the canonical left action of G on G /H is called the canonical Lie
representation of G induced by H and is denoted by LC/H The
following are well-known:

1. A transitive Lie representation of a Lie group is equivalent to a
canonical one.

2. Let H, and H, be closed subgroups of the Lie group G; then

G G/H
L and LM ape equivalent if and only if H, and H, are

conjugate subgroups.

3. An orbit of a Lie transformation group can be equipped with a
differentiable structure such that the action of the group on the orbit is
a transitive Lie transformation group, in other words, a Lie representation
of a Lie group can be decomposed into disjoint union of transitive Lie
representations.

Let A! and A2 be two Lie representations of the Lie group G
on the manifolds M, and M,, respectively; then the product Al x A2
of the two representations are the one given on M; X M, by

(A1 X A), (xy, %)) = (4, (), A} (X))

Proposition 1. Let G be a Lie group, let H, and H, be closed
subgroups of G. There are canonical bijections among the sets
G
{orbits of G in L Hy X LG/H2 },

{orbits of H, in LG/H‘},
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G/IH
{orbits of H, in L / 23,

G GIH, .

Proof. Let P be an orbitof G in L My LG/H2. Since L 1y is
transitive, we can find an element x of G /H2 such that (Hl,x)eP.
The stabilizator of H, € G /H1 is H,, thus if (Hl, y) is another

. GH
element of P then there isan A€ Hl such that Lh/ 2x)=y. Asa
consequence, the map

G
{orbits of G in LE1x LMy,

- {orbits of H, in LG/HZ}

P>iL ™2 (x): heH |, (H,,x)€ P}

is well-defined and we easily check that it is bijective.

G
Proposition 2. Let P be an orbit of G in L1 x L2, Then

there exists a closed subgroup H of G such that the Lie representation
of G on P isequivalent to L¢'" and HcC H ,H, contains a subgroup
conjugate to H.

Proof. The stabilizator of a point (H,,x)€ P is clearly a subgroup
of H,, and the stabilizator of a point (z,H,) is a subgroup of H,.

Now we shall consider a special type of representations; they can be
used in classical mechanics.

A closed two-form with constant rank on a differentiable manifold
is called presymplectic; it is symplectic if it has maximal rank. A symplectic
manifold is a pair (M, w) where M is a differentiable manifold and w
is a symplectic form on M. We introduce a category whose objects are
symplectic manifolds and morphisms from (M, w) into (M', w') are
differentiable maps F: M > M’ such that F*w' is a presymplectic form,
and w — F*w' is a presymplectic form as well, whose rank is the difference
of the rank of w and F*w'. As a consequence, the isomorphisms from
(M, w) into (M*,w') are the symplectic diffeomorphisms i.e., diffeo-
morphisms F: M > M* for which F*w'= w holds.

Differentiable representations of Lie groups on objects of the above
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category are called symplectic representations. Thus if G is a Lie group
and A4 is a symplectic representation of G on (M, w) then Ag is a
symplectic diffeomorphism of (M, w). An other representation A’ of
G on (M',w') isequivalent to A if there is a symplectic diffeomorphism
F: M->M' such that Fo A, = A; o F for all g€ G. Products of
symplectic representations are defined as products of Lie representations.

Symplectic representations are similar to unitary representations in
many aspects (see [2]).

A symplectic representation is a Lie representation if we forget the
symplectic form (as a unitary representation is a linear representation if we
forget the scalar product), hence we can apply some results concerning the
differentiable representations. The most important is that a transitive
symplectic representation can be given on a coset space as well; however,
on the same coset space we can give a number of inequivalent repre-
sentations.

We can give a characterization of transitive symplectic representations
using left actions on coset spaces; another characterization can be found
in [4].

Proposition 3. Let G be a Lie group and let H be a connected
closed subgroup of G. Suppose S is aleft invariant presymplectic form
on G, ie, L;Q= 2 (g€ G) and Ker S is the Lie algebra of H
(considered as left invariant vector fields). Then one can give a symplectic
form w on G /H such that S is the pull-back of w by the canonical
surjection and the canonical left action of G on G | H preserves w, ie.,

it is a symplectic representation on G [H which will be denoted by
LG/H,Q'

Proof. The Lie algebra of H is a foliation on G, its folia are the
elements of G /H; hence there exists a symplectic form w on G/H
with the listed properties (see [4]).

. GIH,, G/H,, . .
Proposition 4. L By ng L9222 g equivalent if and only

if H and H, are conjugate subgroups, say H, = h~ lth, and R,:*SZ2 =
= Ql where R denotes the right action of G on itself.
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Proof. It is trivial that if the listed conditions are satisfied then the
two representations are equivalent.

Now, if the two representations are equivalent, then by the above
mentioned relation between symplectic representations and Lie repre-
sentations we know that H, and H, are conjugate subgroups and we
easily deduce the equality concerning §2, and £2; from the fact that the
equivalence of the two representations is established by a symplectic
diffeomorphism.

Proposition 5. If A s a transitive symplectic representation of G
and an A-isotropy subgroup H of G is connected then there is a left

invariant presymplectic form $ on G such that A is equivalent to
LG/H, Q .

Proposition 6. Let P be an orbit of a symplectic representation of
G on (M, w). Then the pull-back of w to P is a presymplectic form
invariant under the action of G on P.

Proof. The pull-back of w to P is clearly a two-form invariant
under the action of G on P. Since this action is transitive, the two-form
is necessarily of constant rank.

Remark. It is very important that the pull-back of w need not be
a symplectic form; hence, in general, a symplectic representation cannot
be decomposed into a disjoint union of transitive symplectic represen-
tations. This is an essential difference between symplectic representations
and unitary representations: unitary representations can be decomposed
into a direct integral (direct sum) of irreducible ones.

Examples. In physical applications one encounters the problem to
decompose the ’product’ of irreducible representations into a ’sum’ of
irreducible ones. The most common and well-known example is the reduc-
tion of the tensor products of irreducible representations of SO(3). On
the contrary, the product of transitive symplectic representations of SO(3)
cannot be decomposed into transitive symplectic representations. The
transitive symplectic representations of SO(3) can be labelled by non-
negative numbers in such a way that the representation corresponding to
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o> 0 is given on (Sg, w,_) where 53 is the sphere of radius o in R3

and w, for 0> 0 is the Lebesgue volume form multiplied by %. The

orbits of the symplectic representation A ’1'x 4°? can be labelled by the
elements of the interval (lo, — 0,1, 0, + 0,). The orbits corresponding
to |o, —o0,| and o, + 0, give symplectic representations of SO(3)

which are equivalent to 4'°17°2' and A°17°2 respectively. The other
orbits are diffeomorphic to SO(3), hence they are of three dimensions
and cannot be symplectic manifolds: the pull-back of the symplectic form

wol X W, to these orbits is only a presymplectic form.

The following simple examples exhibit different situations.

Let w be the canonical symplectic form on RZ, i.e., is given by
0 1)

the matrix (_ 1 0

Let A be a positive real number. Define the transitive symplectic
representations A and B* of the additive group R* = R? X R? on
(R?, w) by

Ay @) =X+ gy

Bl ap®)i=x+tM,  (x€R’ (a;,a,)€ R? XR?).

Then for different )\l and A, the symplectic representations Akl and

A™ as wellas B and B™? are inequivalent and only A° is equivalent
to BY.

Each orbit of A4 M X AA2 establishes a transitive symplectic repre-

. . . . A
sentation of R% X R? which is equivalent to A4 1t

. . A Ay . o
The symplectic representation A" ' X B"2 is transitive.

- 429 —



(1]

(2]

(3]

(4]

REFERENCES

T. Matolcsi, Representation of groups by automorphisms of
objects in a category, Acta Sci. Math., Szeged, 36 (1974), 249-257.

T. Matolcsi, Group representations in mechanics, Ann. Univ.
Sci. Budapest. Eétvés Sect. Math., 20 (1977), 71-85.

H. Schubert, Categories, Springer-Verlag, Berlin — Heidelberg —
New York, 1972.

J.M. Souriau, Structure des systemes dynamiques, Dunod,
Paris, 1970.

T. Matolcsi
Department of Analysis II of the Roland E&6tvds University, Mizeum krt. 6-8, H-1088 Budapest,

Hungary.

—430 -



