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Dynamical Laws in Thermodynamics 

T. M a t o l c s i  

Abs trac t  

A theory of thermodynamics isproposed in which processes are time-dependent functions 
governed by a dynamical law (a system of differential equations), equilibrium is 
defined as a constant solution of the dynamical law, and the trend to equilibn'um is 
formulated as the asymptotic stability of equilibrium. 
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1. INTRODUCTION 
Thermodynamics is one of the most discussed areas of physics, because its 

formulation, especially the notion of entropy and the content of the second 
law, is not crystal clear. In the vast literature concerning thermodynamics, 
different points of view and newer approaches appear, which keep challenging 
researchers. 

In comparing thermodynamics with other theories of physics that are 
commonly accepted and well developed, we see an important difference: 
thermodynamics lacks a dynamical law, that is, (a system of) differential 
equations whose solution with given initial and surface conditions describe 
processes uniquely. 

More precisely, the Newtonian equation in classical mechanics, the 
Maxwell equations in electromagnetism, and the Schr6dinger equation in 
quantum mechanics are dynamical laws. Physical theories possessing dy- 
namical laws are firmly founded and have powerful applications. Thermo- 
dynamics in its present state is not such a theory. A body is left free, it falls 
- the process in time of falling is accurately described by mechanics. A hot 
body is left on the table, it cools - the process in time of cooling has not 
yet been described by thermodynamics. 

There have been attempts to establish dynamical laws in nonequilibrium 
thermodynamics, which in usual treatments include two theories: the theory 
of continuous media, which I shall call "continuum thermodynamics," and 
the theory of "nonequilibrium processes of homogeneous bodies." The bal- 
ances of mass, momentum, and energy in continuum thermodynamics (1, 2) 
are well formulated and (together with constitutive relations) make up a 

dynamical law: they are partial differential equations that determine pro- 
cesses from given initial and boundary conditions. In this sense continuum 
thermodynamics is also a complete theory. 

On the other hand, the theory of nonequilibrium processes of homoge- 
neous bodies is based on the notions of equilibrium theory and formulates 
only approximate equations near equilibrium ("linear phenomenological 
equations for the description of the state parameters. ''(3,4) ) Since the start- 
ing point is an equilibrium theory, that is, only equilibria are considered 
meaningful, such an approach would be acceptable only if it defined what 
nonequilibria are and which of them are near equilibrium. I think we have 
to proceed in the opposite direction: to define processes in general and to 
distinguish equilibria among them. 

To do so, we have to overcome the common objection that the ther- 
modynamical quantities (pressure, temperature, etc.) can be defined only 
in equilibrium. Of course, they can be measured with a reliable accuracy 
only "near equilibrium," that is, when they do not change too fast. But 
the same is true for other quantities in other branches of physics as well. 
How can we measure the instantaneous energy of a body moving irregularly 
and very quickly? Or the instantaneous value of the electric field in a light 
beam? The impossibility of such measurements does not refrain us from 
considering the quantities in question as physically meaningful. Note that 
no objection is raised to the Navier-Stokes equation, because it concerns 
nonequilibrium flows, and so the pressure in the equation must also be 
defined out of equilibrium and even far from equilibrium. 

We shall use the term "ordinary thermodynamics" for such a theory of 
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homogenous bodies in which thermodynamical quantities are supposed to 
be defined independently of processes. 

An essential property of processes in physics is that they are functions 
defined either in time (classical mechanics, quantum mechanics) or in 
space-time (electromagnetism and continuum thermodynamics). Processes 
in ordinary thermodynamics are time~lependent functions. Then we must 
have ordinary differential equations for determining processes in this theory. 

The trend to equilibrium (or irreversibility) and the stability of equilibrium 
are basic problems of thermodynamics. In ordinary thermostatics we try to 
solve this problem by a variational principle. (5,6~ However, we find that 
"Statics is a theory designed to avoid commitment to equation of motion yet 
determine directly (and alone) the figure of equilibrium and in the same 
time condition of stability for it . . . .  The variation principle is sufficient for 
its purposes, which is to solve a problem of statics; for dynamical ends it is 
useless."(7) 

For dynamical ends the theory of differential equations offers a powerful 
and suitable notion for describing the trend to equilibrium: asymptotic 
stability. A short survey of definitions and results of stability theory that are 
necessary for our purpose can be found in the Appendix. For further details 
we refer the reader to Ref. 8. 

The purposes of the present paper are to introduce a complete dynamical 
law (system of differential equations) in ordinary thermodynamics and to 
find conditions assuring the trend to equilibrium (asymptotic stability). 

To illustrate the way to establish a working theory based on ordinary 
differential equations, let us look briefly at classical mechanics. 

2. THE DYNAMICAL LAWS IN CLASSICAL MECHANICS 
The fundamental principle of classical mechanics is Newton's second 

axiom: the product of mass and acceleration equals force, m a -- f. However, 
this is only a general framework that must be (1) correctly interpreted and 
(2) adapted to special cases, because in this form it is suitable and sufficient 
only for point masses. The other cases are spinning particles, bodies with 
variable mass (rockets), and rigid bodies. 

A process of a point mass is (r, v), the space-time position and velocity 
as a function of time. If the point mass exists under an external action, 
then the action is described by a force f that depends on (r, v), and so we 
have the dynamical equation 

mi '  = f(r ,  v). (1) 

In general, we do not stress (and it is not obvious from the vague form 
m a = f) that the force does not depend on den'vatives of (r, v), although 
this is a fundamental fact. We say that force is a functional of processes by 
saying that force is given by a constitutive relation. 

Equation (1) is a single vector equation for the pair (r, v) of vector 
functions. Hence it is not sufficient for determining processes from initial 
values. Another equation is to be established in addition. Fortunately, we 
need not look for it yet. Since velocity is the derivative of position, the trivial 
equation 

i. = v (2) 

supplements (1); together they form a complete dynamical law. 
I emphasize that in a correct interpretation Eq. (1) is a dynamical law, 

that is, a differential equation, and it is not the definition of force. 
let us now consider a rocket. Its process is (m,  r, v), the mass, space- 

time position, and velocity as a function of time, and the dynamical law 
has the form 

m =h(m, r, v), i '=v,  

m~' = f (m ,  r, v) + rhw(m,  r, v), 

(3) 

where f is the external force, h is the time rate of fuel decrease, and w is 
the relative velocity of the burnt material leaving the rocket, all three given 
by constitutive relations. 

In a similar way we can consider several point masses, spinning particles, 
and rockets together, interacting among themselves, and then rigid bodies, 
point masses under constraints, etc. First we have to determine what a 
process is (which uniquely characterizes what happens) and then establish 
as many differential equations as necessary for unique solutions with 
given initial values. 

We see that there is no general form of the Newtonian equation, and there 
is no axiom that would give such a general form. The only tacit general 
principle in mechanics is that we must have sufficiently many differential 
equations - we shall call them here the "dynamical laws of mechanics" - 
for a unique description of the processes. 

3. THE FIILKr LAW IN THERMODYNAMICS 
The usual first law of ordinary thermodynamics can be considered as a 

counterpart of Newton's second axiom. (9) The first law says that the time 
rate of internal energy change equals the sum of work and heat. This 
statement, too, must be (1) correctly interpreted and (2) adapted to special 
cases, because in this form it is suitable only for the simplest bodies that 
participate only in mechanical and thermal interactions. Material interaction 
(diffusion, chemical reaction) and electromagnetic interaction also change 
the internal energy (for example, hydrochloric acid dissolving in water, 
burning, and electric currents raise the temperature, i.e., cause an increase 
in the internal energy). 

Let us begin the treatise of ordinary thermodynamics with the simplest 
body, as we begin mechanics, with a point mass. The simplest thermody- 
namical body participating only in mechanical and thermal interaction is 
characterized by two quantities: the specific volume v and the temperature 
T. In other words, a process is (v, T) as a function of time. 

We accept that we are given the specific internal energy e, work w, and 
heat q by constitutive relations as functionals of the processes, e = e (v, T), 
w = w (v, T), q -- q (v, T), and the first law, 

b = w + q, (4) 

is valid. The first law is not a definition of internal energy or work or 
heat. Usually one utilizes the first law for omitting the heat from the list 
of quantities given by constitutive relations (10) ; however, doing so deprives it 
of being a counterpart of the Newtonian equation, which serves to describe 
processes and not omit the force from the list of quantities. 

I think we correctly interpret the first law by regarding it as a dynamical 
law, that is, as a differential equation for (v,  T). As in mechanics, where 
it is stated that force does not depend on acceleration, here it is assumed 
that the dependence of e, w ,  and q on (v, T) excludes higher-order 
den'vatives, so the more precise form 

e(v, T)" = w ( v ,  T) + q(v ,  T) (5) 
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of (4) [where e (v,  T)" denotes the function t ---+ (d/dt)e(v( t) ,  T(t))] 
shows clearly that we have a first-order implicit differential equation for 
(v, T). 

However, the first law is only a single differential equation for the two 
quantities v and T. So we should have another equation, too. To find the 
missing equation, we turn to continuum mechanics. 

4. ANAIDGIES WITH CONTINUUM TIIERMODYNAMICS 
A process of a medium consisting of identical, spinless, chargeless particles 

is a field (u, v, T), that is, the velocity, specific volume, and temperature 
as a function defined in space-time. The balances of mass, momentum, and 
energy yield the partial differential equations 

D,v = vV-u,  Dou =-vV'P, 

Due = - v  ( a :Vu  + V ' k ) ,  

(6) 

where Du denotes the "substantial time derivative" with respect to the velocity 
field u, the body force and body heat are taken to be zero, and P, e, k 
are the pressure tensor, the specific internal energy, and the heating flux, 
respectively, given by constitutive relations as functionals of (u, v, T). 

The process (u, v, T) can be determined, at least in theory, from ini- 
tial and surface values by these balance equations that form a complete 
dynamical law. 

What is the relation between continuum thermodynamics and ordinary 
thermodynamics? The latter theory considers the bodies as homogeneous, 
that is, all quantities depend only on time, not on space. Let us insert the 
conditions Vu  = O, Vv = O, VT = O, Ve = O, VP = O, V k  = 0 into 
the equations of continuum thermodynamics. We find that the quantities do 
not depend on time either, that is, nothing happens. There ~" no nonconstant 
homogeneous process. Ordinary thermodynamics cannot be obtained from 
continuum thermodynamics as a special case. Perhaps one could even say, 
then, that the theory of homogeneous bodies is meaningless, because it 
is an experimental fact as well that bodies out of equilibrium are never 
homogeneous; for example, the temperature of a cooling body is always 
lower on the surface than in the interior of the body. However, we also 
know that a rigid body does not exist: all bodies are deformed under 
forces. Still, certain bodies in certain circumstances can be considered as 
rigid. The rigid body model is simple, much simpler than the model of 
deformable bodies, and it is suitable for many purposes. Similarly, ordinary 
thermodynamics offers simpler models than continuum thermodynamics, 
and they are applicable for a large class of phenomena. 

The main condition of the applicability of ordinary thermodynamics is 
that the inner motion of the body is insignificant. From the point of view of 
continuum thermodynamics, this means that u is taken to be constant, and 
thus the balance of momentum becomes uninteresting. Of course, if u was 
constant, indeed, then v would be constant in time, but we wish to keep v 
variable. So u is not constant; it is only considered as constant. To solve the 
problems, let us argue as follows. According to momentum balance, u is 
determined by V-P, which is given as a functional of (u, v, T). According 
to mass balance, the change of v is determined by V.u.  Consequently, the 
change of v is determined indirectly by P, that is, by (u, v, T) through a 
constitutive relation. If we want to eliminate u, we have to provide a direct 
constitutive relation for the change of v. This is proposed to be done in 
ordinary thermodynamics. 

A process of a continuous medium is (u, v, T) as a function of space- 
time. A process of a homogeneous body is (v, T) as a function of time. 

The balance equations determine (u, v, T) from initial and surface 
values. The energy balance corresponds clearly to the usual first law of 
ordinary thermodynamics. The momentum balance has no counterpart in 
ordinary thermodynamics. A counterpart of mass balance will supplement the 
first law to form a complete system of dynamical equations. The substantial 
time derivatives Duv and Due are to be replaced by ordinary time derivatives 
b and e, and so the correspondence is schemed as follows: 

O,v = v V ' u ,  # = f  
Duu = - v V ' P ,  
Due =-v(P:Vu+ V'k) ,  b = w + q .  

(7) 

According to this paper, we suggest accepting tha t f  - called "springing" 
- can be given by a constitutive relation as a functional of (v, T), f = 
f (v, T). In this way we get two differential equations, 

=f(v, r), 

e(v, r)" = w ( v ,  T) + q(v ,  T), 
(8) 

for determining the two quantities v and T. They form a dynamical law 
in ordinary thermodynam~. 

"Springing" expresses some visco-elastic properties. Its physical meaning 
will be clarified in Sec. 6. 

5. THE FORMATIVE LAWS 
Usually several conditions are imposed on forces in mechanics. One of 

them is Newton's well-known action-reaction principle; the others are used 
in general tacitly, without being formulated as principles, although they are 
of vital importance. Here are some of them: 

(1) The interaction force of two point masses depends only on the relative 
position of the point masses and is parallel to the relative position 
vector (this ensures conservation of angular momentum). 

(2) The interaction force between two spinning particles depends only 
on the relative position and the relative velocity of the particles. 

(3) The torque acting on a spinning particle is always orthogonal to the 
spin of the particle. 

We call such conditions imposed on the constitutive relations the "for- 
mative laws of mechanics." 

It is not surprising, then, that we meet similar conditions, called the 
"formative laws," in ordinary thermodynamics, too. 

Up to now we have spoken about bodies and processes of a body. The 
processes of a body originate from interactions of the body with its environ- 
ment or with other bodies. It is useful to distinguish between a body and a 
system: the latter is a body and its environment together or several bodies 
and their environments together. The same body under different circum- 
stances is a part of different systems. Dealing with the processes of a body 
we have to take into consideration the system to which the body belongs. 
This is so in mechanics as well. 

Let us examine the simplest system: a body under the action of an 
environment with given constant temperature Ta and pressure pa. The 
formative laws for such a system are formulated as follows. 

322 



T. Matolcsi 

All the functionals in question are supposed to be continuously differ- 
entiable functions. The customary (ambiguous, but useful) notations will 
be applied in which v, T, etc., denote both functions of time and possible 
values of such functions which are variables of the constitutive relations. 

A.I: Besides the specific internal energy e, the pressure p (which plays a 
fundamental role in connection with constitutive relations, as is clarified 
below) characterizes the body. Both are given as functions defined on a 
connected open set of points (v, T), called the "constitutive domain": 
e = e(v, Z) ,p  = p(v ,  T), and (11) 

De~aT > O, ap/av < o, (ae/av +p)ap /aT  > O. (9) 

A,2: Springing, work, mad heat characterize the interaction between the 
body and the environment. They are functions of (v, T) that depend on 
v implicitly through p; they depend on the ambient pressure Pa and the 
ambient temperature Ta: 

f = f (p ,  Z, pa, Za), 

w = w ( p ,  T, Pa, Ta), (10) 

q = q ( p ,  T, pa, Ta). 

A.3: Work is proportional to springing: 

w = -z f ,  (11) 

where z : z ( p ,  T,p~, Za) is such that 

z(p~, Ta, Pa, Za) =p~ (12) 

[if the pressure and temperature of the body are near the pressure and 
temperature, respectively, of the environment (i.e., near equilibrium, as 
we shall see), then we require that working nearly coincides with the 
classical -pf(= -pie).] Evidently we can write z = p + r, where 
r = r (p ,  T,pa, T,,) and r(pa, Ta,Pa, Ta) = O. 

A.4: If the temperature and pressure of the body coincide with those of the 
environment, then springing and heat (and work, because of the previous 
condition) are zero: 

f(Pa, Ta, p~, Za) : O, 

q(p~,  T,, pa, Ta) =0. 
(13) 

A.5: (1) If q is identically zero, then springing does not depend on 
Ta, f  = f (p ,T ,pa) ,  and f(pa,T,pa) = 0 for all T. (2) If f is 

identically zero, then heating does not depend on Pa, q = q ( P ,  T, Ta), 
and q ( p ,  Ta, Ta) = 0 for allp. 

A.6: The dynamical law in the notations introduced above takes the form 

ie = [ ( p ,  T, pa, Ta), 

e(v,  T)" = w ( p ,  T, pa, Ta) + q ( p ,  T, pa, Ta), (14) 

p : p(v ,  T). 

Definition. A constant solution of the above dynamical equation is called 
an "equilibrium process." 

Observe that if there is a volume value v0 such that (Vo, Ta) is in 
the constitutive domain and p (Vo, Ta) = Pa, then the constant function 
(Vo, Ta) is an equilibrium process. 

6. AN EXAMPLE 
Newton's heating law 

q = - ~ ( T  - Ta) (13 > 0 is a given constant) (15) 

is a well-known constitutive relation satisfying the conditions listed in A.1 
to A.5. The simplest springing can be written in a similar form: 

f = 8 (p  - P a )  (8  > 0 is a given constant). (16) 

The larger the pressure difference, the faster the volume changes. The smaller 
the 8, the more slowly the volume changes. From a physical point of view 
the more viscous the body and its environment, the more slowly the volume 
changes. Hence 8 is something similar to the inverse of viscosity. 

Besides these constitutive relations, let us suppose that z = p ,  that is, 

w = - p f ( :  -pie). (17) 

Furthermore, let e and p be arbitrary (of course, subjected to the conditions 
listed in A.1). 

With the notations 

c := ae/aT, n := ~e/av, (18) 

the dynamical equations are written in the form 

b : 8 (p  - P a ) ,  

: l [ - ( n  +p)13(p -Pa) -fJ(T-Ta)], (19) 
C 

p : p ( v , T ) ,  n : p ( v , T ) ,  c = c ( v , T ) .  

We are interested in the trend to equilibrium: does the above dynamical 
law describe the everyday phenomenon that a body takes on the temperature 
and the pressure of its environment? In mathematical terms, Is an equilib- 
rium process (Vo, T,,) asymptotically stable? Recall that asymptotic stability 
implies l i~-- ,oo[v(t) ,  T( t ) ]  = (v0, Ta) for every process (v, T) in a 
neighborhood of ( Vo, Ta ) . 

Proposition: If (Vo, Ta) is an equilibrium process of the dynamical Eq. 
(19), then it is asymptotically stable. 

PROOF: The linearization of the right-hand side of the differential equations 
yields the matrix 

- ao rg  
p(V+pa)S/]t - [ (V+pa)8~+fJ] /  ' (20) 
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where 

8p 
p :=-~v-v (Vo, T,,) > O, 7 : :  c(vo, To) > o, 

~)P "v ~ : = ' ~ (  0, Ta), V :=n(vo,  Ta), (V + p a ) ~  >_ 0. 

It is easy to check that the eigenvalues of (20) are negative. 

(21) 

7. THE SECOND LAW 

For special cases of heat and springing we obtained asymptotic stability. 
However, asymptotic stability does not follow from our general assumptions; 
namely, the formative laws permit negative 13 and negative tS, and then 
asymptotic stability fails. 

The positivity of 13 reflects the well-known fact that "heat flows from 
hot to cold"; the positivity of ~5 has a similar evident meaning: a body 
expands if its pressure exceeds that of the environment. We should like 
to formulate a general condition that assures such "irreversibility," that is, 
roughly speaking, that excludes negative 13 and negative 8. 

In this way we arrive at the second law, which is a crucial point of 
thermodynamics. It was previously based on the notion of entropy which 
has no crystal clear meaning. Some have tried to eliminate entropy; the 
latest axiomatic foundations formulate the second law with the aid of cycles 
considered as primitive concepts./12) Unfortunately, I cannot see an applica- 
tion of such a second law to a system described by the proposed dynamical 
equations. Namely, the system has no nonconstant cyclic processes. The no- 
tion of cycles is a delicate matter. In general, to realize a cycle of a body, 
we have to change the system several times, for example, put the body in an 
environment of given temperature supplying some "amount of heat," then 
make an adiabatic isolation letting the body work, and then put the body 
in a new environment, etc. Moreover, a body that is not of the simplest type 
has very few cyclic processes. For instance, how can we realize a cycle of a 
diffusing or chemically reacting medium? How can we make cycles such as 
"flour with water - paste - flour with water" and "paste - pastry - paste"? 

We prefer the opinion that the second law is to be a restriction on the 
constitutive relations. To find a convenient setting, let us study the working 
- v P : V u  and the heating - v V . k  in the energy balance of continuum 
thermodynamics. According to experience, we can decompose the pressure 
tensor into two parts: elastic and viscous, P = E + V. Both E and V are 
given by constitutive relations. We conceive that - v E : V u  and - v V : V u  are 
"reversible" and "irreversible" parts of work. Similarly, we are convinced by 
experience that heat, too, can be decomposed into reversible and irreversible 
parts. A decomposition is suggested by usual treatments of continuous media: 
- V . k  = - T V . k / T  - (k/T) �9 VT. 

The Clansius-Duhem inequality in the simplest case is equivalent to 

k 
- V:Vu - ~ �9 VT _> 0, (22) 

which has a clear meaning: the sum of the irreversible parts of work and 
heat is non-negative. 

A straightforward analogy of - (k /T)  �9 VT in ordinary thermodynamics 
is - (q/T) (T - Ta), which we accept as the irreversible part of heat. 
We encounter some difficulties regarding work, because in ordinary thermo- 
dynamics the inner motion of bodies is not taken into account, and the 

irreversible part of work in continuum thermodynamics concerns just the 
inner motion. Let us argue as follows. Work is strongly related to the volume 
change; the larger the difference between the pressures of the body and its 
environment, the faster the volume changes; the faster the volume changes, 
the more intensive the inner motion. The kinetic energy of the inner motion 
dissipates into internal energy. Thus the irreversible part of work, which is 
strongly related to the dissipated inner motion, seems to be proportional to 
work and the pressure difference. Therefore, impelled also by the form of 
irreversible heat, we accept - (w/p)  (p -Pa )  as the irreversible part of 
work in ordinary thermodynamics. 

Now I formulate the second/aw as a restriction imposed on the consti- 
tutive relations: 

_ W(p -Pa) - q ( T - T a )  > 0. (23) 
p 

More precisely, the following is required. 

A.7: Work and heat satisfy 

w ( p ,  T, Pa, Ta) 

P 
(P --Pa) 

_ q ( P ,  T, pa, Ta) (T-Ta)  > 0  (24) 
T 

and, excluding the trivial case w = 0, q = 0, equality holds if and only if 

(1) T = Ta in the case when w is identically zero. 
(2) p = Pa in the case when q is identically gem. 
(3) T = Ta andp =Pa in the case when neither w nor q is identically 

zero. 

The dynamical law (14) (which includes the first law), the formative 
laws (9) to (13), and the second law (24) (which are restrictions on the 
constitutive relations), that is, conditions A.1 to A.7, form a set of axioms 
for the simplest systems in ordinary thermodynamics. 

8. TREND TO EQUILIBRIUM 
Now we can state satisfactory theorems on the asymptotic stability of 

equilibrium processes. The reader is advised to consult the Appendix. 

(1) If neither f nor q is zero, the formative law A.2, together with 
Lagrange's mean value theorem, yield 

f = d ( p  -Pa)  + j ( T  - Ta), 

q = - i ( p  -Pa)  - b ( T - T a ) ,  
(25) 

where d , j , i, b are supposed to be continuous functions of ( P , Pa , T, Ta ) , 
d = d(p ,pa,  T, Ta), etc. 

Then the second law has the form 

p(P --pa)2 + [p + T](P-Pa)(T-Ta) 
+ b ( T - T a ) 2  >_0, (26) 

and equality holds if and only ifp =Pa, T = Ta. It is not difficult to see 
that this implies that the matrix 
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1 ( ~ + ~ a _ a ) )  

1 t [3 

is positive semidefinite, in particular, 8 > 0, [3 > 0, where 

(27) 

6 : =  d(p,, Ta, p,, Ta), 

!.: = i(p. ,  T,,, Pa, Ta), 

1"1 : = I ( P . ,  Ta,Pa, T~), 

13 : :  b(p~, T.,pa, T.). 
(28) 

It is straightforward to assume that in a neighborhood of an equilibrium 
process (Vo, Ta), the dependence of springing on T - Ta is of less order 
than the dependence on p -Pa, and the dependence of heat on p -Pa is 
of less order than the dependence on T - Ta. Thus the assumptions of the 
following proposition do not seem too difficult to accept. 

Proposi t ion 1: If ~ > 0, [3 > 0, 1"1 = 0, t = 0, then an equilibrium 
process is asymptotically stable. 

PROOF: In this case the linearization of the right-hand side of the dynamical 
law coincides with the matrix in (20). 

(2) Because of the first relation in (9), a change of variables can be 
performed, at least locally; the specific internal energy e can be used as an 
independent variable instead of the temperature T. Then a process becomes 
(e, v) as a function of time, and the dynamical law (14) takes the form 

b = w ( p ,  T, pa, Ta) + q ( p ,  T, pa, Ta), 

b : f ( p ,  T, Pa, Ta), (29) 

p = p(e, v),  T : T(e, v). 

If T(e0, vo) = Ta, p(e0, v0) =Pa, then the constant function (e0, v0) 
is an equilibrium process. 

Let us take the classical case when (17) holds and a two times differen- 
tiable specific entropy s = s(e,  v) exists such that 

Ds/De : I/T, DsIDv : p/T. (30) 

As is well known, the second derivative of s is negative definite because 
of the relations in (9). Then the function 

L(e, v) := s(e, v) -e /Ta-pav/Ta (31) 

has a strict maximum at (eo, Vo), because its first derivative at (eo, vo) 
is zero, and its second derivative, being equal to the second derivative of s, 
is negative definite. Furthermore, the derivative of L along the differential 
Eq. (29) (with w = pf) is 

( 1 - + ) ( q + w ) + ( P - ~ a ) f  

W 
q ( T -  Ta) - (p -pa).  = - (32) 

According to (23), it has a strict minimum at (e0, Vo). Thus we have 
proved: 

Proposi t ion 2: Equilibrium processes in the classical case given by (17) 
and (30) are asymptotically stable. 

(3) If f : 0, that is, in the case of isochoric processes, we have b = 0, 
then w = 0 as well and for all specific volume values v0 the set H,, o := 
{iv,  T)Iv = Vo} is a one-dimensional submanffold (a line) invariant 
under the dynamical law. 

Proposition 3: For all Vo, (Vo, Ta) is an equilibrium process, asympto- 
tically stable with the condition Hvo. 

PROOF: With the aid of the parametrization T --+ (v0, T) of Hvo, the 
reduced dynamical law becomes 

C(Vo, T) q[ p(Vo, T), T, Pa, Ta] (33) 

for T, where c := De/DT > 0. The second law (24) reads as follows: 

- q [  p(vo,  T), T, pa, Ta](T- Ta) >0, (34) 

and equality holds if and only if T = Ta. 
The function L(T) := - ( T  - Ta) 2 is a Lyapunov function: as a 

function of T it has a strict maximum at Ta, and its derivative along the 
differential Eq. (33) is - 2 ( T -  Ta)(q/c), which, according to (34), has 
a strict minimum at Ta. 

(4) If q = 0, that is, in the case of adiabatic processes, the dynamical 
law takes the form 

=f ,  T = - [ ( n  +z)lc]f,  (35) 

where f = f(  p(v, T), T, pa, Ta), n = n(v, T) = (ae/Dv) (v, T), 
etc. 

In view of A.5, (Vo, To) is an equilibrium process if p(vo, To) =Pa. 
Because of the second relation in (9), there is a function v, at least locally, 
such that Vo = v(To). 

Let "s be the solution of the differential equation [which arises from 
the formal quotient of the two equations in (35)] 

d T  = n(v ,  T) + z [ p ( v ,  T ) ,  T,pa ,  Ta] (36) 
dv c(v, T )  

with the initial condition %(v(To)) = To. Then for all temperature 
values To, Hro := {(v, T)IT = '-s } (the adiabat passing through 
(v  (To), To) ) is a one-dimensional submanifold Ca curve) invariant under 
the dynamical law. 

Proposition 4: For all To, (v  (To), To ) is an equilibrium process, asymp- 
totically stable with condition HTo. 

PROOF: With the aid of the parametrization v --+ (v, % ( v ) )  of H%, the 
reduced dynamical law takes the form 

b : f [p(v ,  "s %(V),pa, Ta]. (37) 
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Observe that 

v =vo d~v% v =vo 
d _ ~)p ~i v 

3-b-p[v, % ( v ) ]  - 2-7 + ~ -  

~(v +Pa) < 0, (38) = - o -  

where the notations introduced in Sec. 6 are used, and Vo := v (To). 
Consequently, the derivative (supposed to be continuous) is negative in a 
neighborhood of v0 as well; thus p(v,  '/~ ( v ) )  as a function of v is strictly 
montonically decreasing and so injective in a neighborhood of v0. Hence 
the second law (24) can be formulated as follows: 

[zf][ p(v, '~(v)), '~(v), p~, T~] 
x[p(v, Wo(v))-pa] >0, (39) 

and equality holds in a neighborhood of Vo if and only if v = Vo. 
By the same reason, L(v)  := - [ p ( v ,  To(v))  -Pa l  2 as a function 

of v has a strict maximum at v0. Its derivative along the differential Eq. 

(38), 

2 ( p - P a )  + aT av f 

2 (0 ,0  Op d W o ) [ z f ( p _ p a )  ] 
= z  -~v +aT dv 

has a strict minimum at Vo because of (38), (39), and (12). 

(40) 

9. DISCUSSION 
Asymptotic stability is a convenient mathematical notion for the trend 

to equilibrium, or irreversibility. A nonequilibrium process is irreversible if 
it tends to equilibrium. The previous propositions tell us that processes in 
a neighborhood of equilibrium are irreversible. It would be interesting to 
know how large such a neighborhood can be. 

The present second law is a convenient reformulation of the Clausius- 
Duhem inequality. Usually the second law is conceived as the law of irre- 
versibility. This is so, but it is clear now that the second law alone does 
not involve asymptotic stability; the second law and the formative laws to- 
gether do. Namely, the strict maximum of a Lyapunov function and the 
strict minimum of its derivative along the dynamical law together call forth 
asymptotic stability. The cases treated in items (2), (3), and (4) of Sec. 8 
show that the strict maximum is assured by the formative laws given in A.1, 
which concern the body only, and the strict minimum is assured by the 
second law, which concerns the system. 

Observe that the existence of equilibrium is also a consequence of for- 
mative laws that concern the system (see A.2 to A.5). 

The classical case treated in item (2) of Sec. 8 has a special interest. 
Then Ts = q holds and asymptotic stability, that is, irreversibility, occurs. 
Ts = q does not mean reversibility. 

The second law is formulated and, in general, the trend to equilibrium 
is proved without the notion of entropy. The existence of entropy with the 
classical properties is irrelevant to the present results. The role of entropy 
will be discussed in a forthcoming paper. 

Finally, the reader is reminded that only the simplest bodies have been 

treated in this paper. To proceed further we must deal with systems of 
interacting bodies, with diffusing and chemically reacting systems, phase 
transitions, etc.. We have to find the actual formative laws, the dynamical law 
and the second law, to create an effective theory of ordinary thermodynamics. 

APPENDIX 
Let n be a positive integer, and suppose F is a continuously differentiable 

function from R n into R n , and consider the differential equation 

= F(x) .  (A1) 

Moreover, suppose that x0 is in the domain of F and 

,~(Xo) = 0. (A2) 

Then the constant function x (t)  = x0 (l ~ R) is a solution of the 
differential equation; we call it an "equilibrium." 

We say that a solution r starts from a subset H of the domain of F if 
r(0) is in H. The solution proceeds in H if r(f) ~ H for ali t >_ 0. 

Definition AI: The equilibrium Xo is stable if for each neighborhood N of 
x0 there is a neighborhood U of Xo, such that for every solution r starting 
from U proceeds in N. 

The equilibrium x0 is asymptotically stable if it is stable and there is a 
neighborhood V of x0 such that for all solutions r starting from V we have 
limt_~or(t) = x0. 

If L is a differentiable real valued function defined in R n, then its 
derivative (gradient) L'  is a function from R n into R ' .  The real valued 
function L ' - F  defined in R n by x --+ L ' ( x ) . F ( x ) (where the dot 
represents the inner product in R n ) is called the dznvative of F along the 
differential equation. 

Proposition AI: If there is a continuously differentiable function L, defined 
in a neighborhood of Xo and having real values, such that (1) L has a 
strict maximum atxo, that is, L(x) < L ( x 0 )  for allx in a neighborhood 
of Xo, and (2) L'  �9 F has a (stric0 minimum at x0, then the equilibrium 
Xo is (asymptotically) stable. 

Function L is usually referred to as a Lyapunov function. 
The derivative of F at Xo, denoted by F ' (x0) ,  is a linear map from R" 

into R" (the Jacobian matrix of F at Xo). We call it the "linearization" of 
F atx0. 

Proposition A2: If all eigenvalues of F'(xo) have negative real parts, 
then the equilibrium xo is asymptotically stable. 

A subset H of R 'a is an m-dimensional submanifold, if for every h ~ H 
there is a function p from R "z into R n , called a "parametrization" of H 
at h, such that (1) p is continuously differentiable, and (2) p ' ( ~ )  (the 
derivative of p at ~, which is a linear map from R m into R n ) is injective 
for all ~ in the domain of p ,  (3)P is injective and its inverse is continuous, 
and (4) the range ofp is a neighborhood of h in H. 

A submanffold H is called "invariant" under the differential Eq. (A1) if 
every solution starting from H proceeds in H. 
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Definition A2: Let H be a submanifold invariant under the differential 
Eq. (A1). An equilibrium Xo in H is called "stable with condition" H if for 
each neighborhood N of :Co there is a neighborhood U of x0, such that for 
every solution starting from U n H proceeds in N n H. 

The equilibrium Xo is asymptotically stable with condition H if it is 
stable with condition H and there is a neighborhood V of x0, such that for 
all solutions starting from VN H we have limt~oor(t) = x0. 

If p is a parametrization of the m-dimensional submanifold H at x0, 
then we can define the reduced differential equation 

= p ' (~ )  -1F(~)  (A3) 

in R m . 

Proposition A3: The equilibrium Xo is (asymptotically) stable with con- 
dition H if and only if the equilibrium ~o := p -1  (Xo) of the reduced 
differential equation is (asymptotically) stable. 

Received 10 September 1990. 

R6sum6 
Une thdorie de la thermodynamique est propos6e dans laquelle les processus sont 
gouvern~s par une loi dynamique (un ~ystDne d'dquations diffdrentielles), l'dquilibre 
est ddfini comme une solution constante de la loi dynamique, et la tendence 
l'dquilibre est formulde comme la stabilitd asymptotique de l'dquilibre. 
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