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Abstract

The widely accepted approximate formula for the relation between
proper time rate s and coordinate time rate t used in the GPS is given by

ds/dt = 1+ V

c2
−

v
2

2c2
, where V is the gravitational potential at the position

of the satellite and v is the velocity. In this note we derive, without approx-

imation, that the precise formula reads as ds/dt =
q

(1 + 2V

c2
)(1− v2

c2
).

1 Introduction

The most significant application of the theory of General Relativity in everyday
life, arguably, is the Global Positioning System. The GPS uses accurate, stable
atomic clocks in satellites and on the ground to provide world-wide position and
time determination. These clocks have relativistic frequency shifts which need to
be carefully accounted for, in order to achieve synchronization in an underlying
Earth-centered inertial frame, upon which the whole system is based.

To determine the time rate s of the clocks carried by satellites and t of
ideal clocks measuring the time of the underlying Earth-centered inertial frame
the customary approach is to use (a slightly modified form of) Schwarzschild
spacetime, and arrive at the formula

ds/dt = 1 +
V

c2
− v2

2c2
, (1)

after several first-order approximations in the calculations. Here V denotes the
gravitational potential at the position of the satellite, and v is the velocity of
the satellite measured in the underlying non-rotating Earth-centered inertial
system. A detailed description of the GPS, including the calculations of rel-
ativistic effects leading to formula (1) is available in [1]. Formula (1) is the
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internationally accepted standard relating the clock frequencies, as described in
[1, 2] and references therein. To make this formula applicable in practice one
needs to change the ideal time t to the time tE measured by Earth based clocks,
which is achieved by the relation

dt

dtE
= 1 − Φ0

c2
, (2)

where Φ0 is a constant corresponding to the Earth’s geoid. This, also, is an
approximate formula.

In this note we derive precise formulae for the clock frequency rates in ques-
tion without approximation. Our calculations are based on an abstract treatment
of Schwarzschild spacetime, rather than the customary coordinate transforma-
tions. In fact, we extend the notions of an abstract model of special relativity
(see [3]) to describe Schwarzschild spacetime, and this new point of view leads
to our precise formulae. This description of Schwarzschild spacetime is abstract

enough to give a mathematically clear view of the appearing concepts (much like
in [6]) but also concrete enough to make calculations easy to carry out (much like
calculations with coordinates, but not needing approximations). Much of the
paper is devoted to the description of the formalism to make it self-contained.
The actual calculations are fairly brief and contained in Sections 4 and 5.

As of now, our results are only of theoretical interest as the existing formulae
provide good approximations to the desired precision in the GPS (see [2]).

2 The formalism

Throughout the paper we normalize the universal constants for simplicity so
that light speed as well as the gravitational constant are the unity, c = 1, γ = 1.

We shall use some notions and results of the special relativistic spacetime
model whose mathematical structure was expounded in [3, 4, 5]. This coordinate-
free formalism differs from the usual textbook treatments of special relativity,
and is close to that of [6] whose terminology we mostly adopt.

Special relativistic spacetime is an oriented four dimensional affine space
M over the vector space M. A time oriented Lorentz form M × M → R,
(x,y) 7→ x · y is given.

A world vector x is spacelike if x ·x > 0, timelike if x · x < 0, and lightlike if
x · x = 0, and x 6= 0. For a spacelike vector x we put |x| :=

√

|x · x|.
For two elements a and b in M we define a ⊗ b to be the bilinear map

M × M → R, (x,y) 7→ (x · a)(b · y).
The history of a classical material point is a curve in spacetime whose tan-

gents are timelike. Such a curve is called a world line. The time passing on a

world line or the proper time of the world line is
∫

√

−ṗ(a) · ṗ(a)da (3)

where p is an arbitrary parametrization of the world line in question. The
world line can be parameterized by its proper time; such a parametrization is
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called a world line function. Thus, if r : R → M is a world line function, then
ṙ(t) · ṙ(t) = −1 for all proper time values t.

Accordingly, a futurelike vector u in M for which u · u = −1 holds is called
a four-velocity. For a four-velocity u, we define the three dimensional spacelike
linear subspace

Eu := {x ∈ M | u · x = 0}; (4)

and
πu := M → Eu, x 7→ x + u(u · x) (5)

is the projection onto Eu along u. The restriction of the Lorentz form onto Eu

is positive definite, so Eu is a Euclidean vector space.
A reference frame U is a four-velocity valued smooth map defined in a con-

nected open subset of M (cf. [6]). A maximal integral curve of U – a world
line – is a space point of the reference frame, briefly a U-space point. The set
of maximal integral curves of U is the space of the reference frame, briefly the
U-space.

In reality, any synchronization procedure aims at establishing when two
world points should be considered simultaneous. Thus in the spacetime model
a synchronization or simultaneity is a smooth equivalence relation on a con-
nected open subset of M such that the equivalence classes are connected three-
dimensional smooth submanifolds (hypersurfaces) whose tangent spaces are
spacelike. Given a synchronization S, an equivalence class is called an S-instant;
the set IS of S-instants is called S-time.

A reference frame with synchronization is a pair (U, S), where U is an ref-
erence frame and S is a synchronization.

A reference frame having constant value is called inertial. The space points
– the integral curves – of an inertial frame with four-velocity u are straight lines
directed by u. The u-space point containing the world point x is the straight
line x + Ru, where Ru := {tu | t ∈ R}.

The standard synchronization according to the inertial frame having four-
velocity u is defined in such a way that two world points x and y are u-
simultaneous if and only if u ·(x−y) = 0, i.e. x−y ∈ Eu. Thus, u-simultaneous
world points form a hyperplane directed by Eu. A u-instant is the collection of
simultaneous world points; so a u-instant is a hyperplane in spacetime directed
by Eu. The u-instant corresponding to a world point x is x + Eu. The set of
u-instants is u-time.

The time passed between two u-instants (hyperplanes in spacetime) s and t
is the time passed between them on an arbitrary straight line directed by u; in
formula,

t − s :=
√

−(x − y) · (x − y) (6)

where x is an arbitrary world point in t and y is an arbitrary world point in s
such that x − y ∈ Ru; alternatively,

(x + Eu) − (y + Eu) := −u · (x − y) (7)

for arbitrary world points x and y.
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The u-space vector between two u-space points (straight lines in spacetime)
p and q is the world vector between u-simultaneous world points of the straight
lines in question; in formula,

p − q := x − y (8)

where x is an arbitrary world point in p and y is an arbitrary world point in q
such that x − y ∈ Eu; alternatively,

(x + Ru) − (y + Ru) := πu(x − y) (9)

for arbitrary world points x and y.

3 Schwarzschild spacetime

In this section we describe Schwarzschild spacetime with the notions introduced
earlier. This description is equivalent to the customary one, but gives a new
point of view.

We conceive that Schwarzschild’s spacetime describes the gravitational field
of a pointlike inertial mass m. Thus, we accept that the point mass has an
inertial world line L (a straight line) in a special relativistic spacetime M . Let
the four-velocity u be the direction vector of this straight line.

For a world point x let r(x) denote the u-distance of x from L, i.e. r(x) :=
|x − y| for y ∈ L, y being u-simultaneous with x. In other words,

r(x) = |πu(x − o)| (10)

where o is an arbitrary element of L. Furthermore, let us introduce the ‘radial
normal vector’

n(x) :=
πu(x − o)

|πu(x − o)| (11)

for x not in L.
It is not hard to see that introducing

V (x) := − m

r(x)
(x /∈ L), (12)

we obtain Schwarzschild’s metric – i.e. a Lorentz form g(x) depending on space-
time points x – in our terms as follows:

g(x) = −(1+2V (x))u⊗u+
1

1 + 2V (x)
n(x)⊗n(x)+

(

1+u⊗u−n(x)⊗n(x)
)

,

(13)
where 1 the Lorentz form of the special relativistic spacetime in question.

Indeed, the above form is transformed into the usual one by taking an or-
thonormal basis e1, e2, e3 in Eu, and establishing the coordinates t := −u · (x−
o), r := |πu(x − o)|, cos θ := e3 · n(x), tanϕ := e1 · n(x)/e2 · n(x). Then

x = o + ut + (e1 sin θ cosϕ + e2 sin θ sinϕ + e3 cos θ)r, (14)
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and the usual form is obtained by composing g by the derivative of x as a
function of (t, r, θ, ϕ). In other words, formally

dx =udt + (e1 sin θ cosϕ + e2 sin θ sin ϕ + e3 cos θ)dr+ (15)

+ (e1 cos θ cosϕ + e2 cos θ sin ϕ − e3 sin θ)dθ+ (16)

+ (−e1 sin θ sinϕ + e2 cos θ cosϕ)dϕ, (17)

and one has to take g(x)(dx, dx) as a function of the coordinates.
Schwarzschild’s metric can be rewritten in the form

g(x) = 1− 2V (x)u ⊗ u − 2V (x)

1 + 2V (x)
n(x) ⊗ n(x). (18)

In what follows, m and L are called the mass and the (world line of the)
center of the Earth.

To describe the actual gravitational field of the Earth, Schwarzschild’s metric
is often modified so that

V (x) := − m

r(x)

(

1 + h(x)
)

, (19)

where h(x) is much less than 1; in particular, one frequently takes (see [1])

V (x) := − m

r(x)

(

1 − k

(

R

r(x)

)2
(

3

(

e · n(x)

R

)2

− 1

))

, (20)

where k is Earth’s quadrupole moment coefficient, R is Earth’s equatorial radius
and e ∈ Eu is the direction vector of Earth’s rotational axis. We emphasize,
however, that the rest of our calculations would just as well be valid for other
modifications of V , i.e. if one includes higher multipole moment contributions
too.

Now we have the following important relations for x ∈ M and q ∈ Eu:

g(x)(u,x) = (1 + 2V (x))u · x, (21)

in particular

g(x)(u,u) = −(1 + 2V (x)), g(x)(u,q) = 0, (22)

g(x)(n(x),x) =
n(x) · x

1 + 2V (x)
, (23)

g(x)(q,q) = |q|2 − 2V (x)

1 + 2V (x)
(n(x) · q)2. (24)

We introduce notions analogous to those in the underlying special relativistic
spacetime. Since in this framework the objects of the special relativistic space-
time and those of the general relativistic spacetime appear together, for a clear
distinction, we shall mark the general objects by a prefix ‘Sch’: Sch-spacelike,
Sch-world line, Sch-four-velocity, etc.
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A world vector x at the world point x is Sch-spacelike if g(x)(x,x) > 0,
Sch-timelike if g(x)(x,x) < 0, and Sch-lightlike if g(x)(x,x) = 0, and x 6= 0.

In the sequel we restrict our consideration to world points x for which 1 +
2V (x) > 0 (i.e. for world points outside the Schwarzschild radius). Then it
follows that u is Sch-timelike at every x in question. A timelike vector x at x
is Sch-futurelike if g(x)(u,x) < 0.

A Sch-world line is a curve whose tangents are Sch-timelike. The Sch-proper
time of a Sch-world line, parametrized by p : R → M , is

∫

√

−g(p(a))(ṗ(a), ṗ(a))da. (25)

Then the Sch-world line can be parameterized by its proper time; such a
parametrization is called an Sch-world line function. The derivative of Sch-
world line functions results in Sch-four-velocities. An Sch-four-velocity at the
world point x is an Sch-futurelike vector w in M for which g(x)(w,w) = −1
holds, i.e.

w ·w − 2V (x)(u · w)2 − 2V (x)

1 + 2V (x)
(n(x) · w)2 = −1. (26)

In particular, u√
1+2V (x)

is an Sch-four-velocity at x (outside the Schwarzschild

radius).
An Sch-frame is a smooth Sch-four-velocity field defined in a connected do-

main of spacetime. According to the above formula,

U(x) :=
u

√

1 + 2V (x)
(x ∈ M, 1 + 2V (x) > 0) (27)

is an Sch-frame (outside the Schwarzschild radius). The U-space points (maxi-
mal integral curves of U) are straight lines directed by u.

The special relativistic inertial frame having four-velocity u together with
its standard synchronization will be called the Earth Centered Reference Frame
(ECRF). This is an ideal frame with space points at rest with respect to the
center of the Earth, and synchronization corresponding to ’clocks at infinity’.
The main task in the GPS is to achieve this synchronization in practice. Ac-
cording to this ideal frame the time elapsed between world points is given by
(7).

The space points of the Sch-frame (27) coincide with the ECRF-space points.
This Sch-frame, together with the ECRF-synchronization will be called Schwarzschild
Earth Centered Reference Frame (Sch-ECRF). Thus, the Sch-ECFR-instants
are just the ECRF-instants. Accordingly, the vector between two U-space points
is defined by (9) (difference between Sch-simultaneous world points). On the
other hand, formula (7) cannot be applied now because the Sch-proper time
passed in a U-space point between two synchronization instants depends on
the location of the U-space point. Explicitly, the Sch-proper time passed be-
tween two instants s and t (hyperplanes directed by Eu) in the U-space point
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q (a world line directed by u) is obtained by (25). A parametrization of q is
p(a) := z+au where z is an arbitrary world point of q. Then g(z+au) = g(z) for
all a and the Sch-proper time interval in question is the integral of

√

1 + 2V (z)
from as to at where p(as) ∈ s i.e. as = −u · (x− z) for an arbitrary world point
y of s and similarly, at = −u · (y − z) for an arbitrary world point x of t. Thus,
we get that the Sch-proper time interval in question is

√

−g(z)(x − y, x − y) =
√

1 + 2V (z)(−u · (x − y)). (28)

In other words, if t denotes the ideal special relativistic time interval between
two ECRF-instants, then the Sch-time interval between them is

tSch(z) =
√

1 + 2V (z)t. (29)

Thus, we can conceive that the ideal time interval t is measured by a clock
‘infinitely far’ from the Earth’s center.

4 Uniformly rotating frames

The rotating Earth is modeled in Schwarzschild’s spacetime as a uniformly ro-
tating frame around the world line of the gravitating point mass. Such a frame
is given similarly to that in special relativity ([1]). Namely, we assume a Lorentz
antisymmetric linear map Ω : Eu → Eu, the angular velocity of the rotation,
and the frame is

Urot(x) := α(x − o)
(

u + Ωπu(x − o)
)

, (30)

where o is an arbitrary world point of the straight line L, and

α(x − o) :=
1

√

1 + 2V (x) − |Ωπu(x − o)|2
(31)

and x is a world point for which the expression under the square root is positive.
We easily get that the solutions of the differential equation ẋ = Urot(x) are

of the form
R → M, t 7→ o + α(q)tu + eα(q)tΩq, (32)

where q is an arbitrary element of Eu such that o +q is in the domain of Urot.
This solution is an Sch-world line function, t is its proper time. Recall that such
an Sch-world line function represents a space point of the frame Urot (a space
point of the rotating Earth). The Sch-four-velocity of the above world line,

t 7→ α(q)u + eα(q)tΩΩq (33)

is periodic, the proper time period is 2π
α(q)ω where ω := |Ω| := − 1

2TrΩ2 is the

magnitude of the angular velocity.
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Let q0 be an equatorial radius vector of the Earth. The proper time period
of a world line function given by q (a space point of the Earth) equals the
equatorial period of rotation if α(q) = α(q0) which is equivalent to

Φ(q) := V (o + q) − |Ωq|2
2

= V (o + q0) −
|Ωq0|2

2
=: Φ0. (34)

For the original Schwarzschild metric this holds if and only if |q| = |q0| =: R.
Φ represents an effective gravitational potential which includes the gravita-

tional potential of the Earth and a centripetal term. The modified Schwarzschild
metric corresponding to (20) is defined exactly in such a way that the Earth
surface be equipotential with respect to Φ. Thus we obtained that the proper
time periods of all points on the Earth surface are equal. This means that
the clocks at rest on the Earth surface all beat at the same rate. Exploiting
this fact, we find it convenient to measure time intervals between u-instants
(ECRF-instants) on the surface of the Earth.

Since the u-time period of the rotation is (see (7))

− u ·
((

o +
2π

ω
u + q

)

− (o + q)

)

=
2π

ω
(35)

(which corresponds to clocks at rest at infinity), we see that the rate between
the time periods is α(q0) = 1√

1+2Φ0

. More explicitly, if t(t) denotes the u-time

point (ECRF-instant) corresponding to the proper time value t on the Earth
surface, then

dt(t)

dt
=

1√
1 + 2Φ0

. (36)

This is the precise formula relating Earth based clocks to ideal clocks at infinity.
The customary formula (2) is a very good approximation.

Considering the inverse function, t(t) being the u-time point (ECRF-instant)
corresponding to the proper time value t on the surface of the Earth, we have

dt(t)

dt
=
√

1 + 2Φ0. (37)

5 A satellite in the Earth’s gravitational field

Now let us consider a material point – a satellite – in Schwarzschild’s spacetime,
described by the Sch-world line function p : R → M ; then ṗ(s) is an Sch-four-
velocity for all proper time values s. The ECRF-instant t(s) corresponding to
the proper time value s is the hyperplane p(s) + Eu. Then, according to (7),

dt(s)

ds
= lim

h→0

(p(s + h) + Eu) − (p(s) + Eu)

h
= −u · ṗ(s). (38)

Of course, we can give the inverse of this function, s(t) being the proper
time value of the satellite corresponding to the ECRF-instant t; then

ds(t)

dt
=

1

−u · ṗ(s(t))
. (39)

8



According to (9) and (28), the Sch-relative velocity of the satellite with
respect to Sch-ECRF is

v(t) = lim
h→0

πu

(

p(s(t + h)) − p(s(t))
)

√

1 + 2V (p(s(t))
(

−u ·
(

p(s(t + h)) − p(s(t))
)) =

=
1

√

1 + 2V (p(s(t)))

(

ṗ(s(t))

−u · ṗ(s(t))
− u

)

. (40)

Then we find for the Schwarzschild magnitude of the relative velocity

v(t)2 := g(p(s(t)))(v(t),v(t)) = 1 − 1

(1 + 2V (p(s(t)))(−u · ṗ(s(t)))2
. (41)

Thus, we infer from (39) that

ds(t)

dt
=
√

(1 + 2V (p(s(t)))(1 − v(t)2). (42)

This is the precise formula relating the proper time s of the satellite to the
ideal time t of the underlying inertial frame. The customary formula (1) is a
very good approximation. We remark that instead of the Sch-velocity v(t) it is
customary to use the ECRF-velocity of the satellites; we will discuss this below.

Next, let us measure time intervals by Earth-based clocks, i.e. let us replace
t with t(t) and, for the sake of brevity, let us write simply t instead of t(t);
then, in view of (37), we have

ds(t)

dt
=

√

(1 + 2V (p(s(t)))(1 − v(t)2)

1 + 2Φ0
. (43)

Of course, we can consider the inverse function t(s), the time measured by
clocks on the Earth surface as a function of the proper time of the satellite; then

dt(s)

ds
=

√

1 + 2Φ0

(1 + 2V (p(s))(1 − v(t(s))2)
. (44)

We repeat the meaning of our symbols: s denotes the Sch-proper time of the
satellite (denoted by τ in [1] and by Tsv in [2]), and t denotes the Sch-proper
time on the surface of the Earth (denoted by t′′ in [1] and by t in [2]).

Lastly, it is customary to use the Newtonian approximation for the velocity
of the satellite. This means that in formula (1) the symbol v is meant to be the
magnitude of the ECRF-velocity for which a good Newtonian approximation is
available. Therefore, in the formulae above we replace the Sch-ECRF-velocity
v(t) by the ECRF-velocity vN (t) as follows:

In equation (40) we need to measure time by ideal clocks, i.e. we get

vN (t) =
√

1 + 2V (p(s(t)))v(t). (45)

9



Combining (24), (41) and (45) we get

v(t)2 =
1

1 + 2V (p(s(t)))

(

|vN |2 − 2V (p(s(t)))

1 + 2V (p(s(t)))
(n(p(s(t))) · vN (t))2

)

, (46)

which is to be substituted to (43). As a result we obtain

ds(t)

dt
=

√

1 + 2V (p(s(t))) − |vN (t)|2 − 2V (p(s(t)))
1+2V (p(s(t))) (n(p(s(t))) · vN (t))2

1 + 2Φ0
.

(47)
Using a series expansion, assuming that all the terms on the right-hand side

of (47) are much less than 1, we get back formula (1)

ds(t)

dt
≈ 1 + V (p(s(t))) − Φ0 −

|vN (t)|2
2

. (48)

Similarly,
dt(s)

ds
≈ 1 − V (p(s)) + Φ0 +

|vN (s)|2
2

. (49)

These expressions coincide with formulae (27) and (28) in [1] and (6) in [2].
Assuming that the satellite moves along a Newtonian orbit with semimajor axis
a – which is a good approximation for orbits far enough from the Earth surface
–, one can evaluate vN (t) as

|vN (t)|2 = −2V (p(s(t))) − m

2a
, (50)

and then proceed with the calculations as in [1] to achieve the desired synchro-
nization in the underlying ideal inertial frame.
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