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I. Introduction

Group representations play an important role in modern
physics. It seems, however, that the usual definition of
group representations hinders this theory from being a more
general, all-embracing branch of mathematics and from being
a more powerful tool in physiés.

Elementary particles are classified in quantum mecha-
nics by representations of the space-time symmetry groups.
Recently a classification of elementary particles appeared
also in classical mechanics which seems similar to the quan-
tal one ((13, [2], [3]. [4]). However, the analogy is not
peffectly clear and "it would be desirable to formulate a
correspondenqe principle te relate the classifications™
(fﬁ]). To establish the desired correspondence, one must
first racognize that some sort of group representations
should be used also in classical mechanics.

;I defined a general notion of group representations
([6]) which includes the usual representations, that is,
the linear and unitary representations, ray representations
and actions of transformation groups as well, By.the aid of
this general notion of group representations we can state a
perfect parallelism between classical and quantal elementary
particles.

After recalling the general notion of group representa-

tions, here I shall examine the special feature of represen-



tations needed in quantum mechanics and in classical mecha-
nics. The investigations are based on the formulation of
mechanics using the algebraic structure of events, the so

called logic of a physical system ([7], [8]).



II. Representations of groups

A category consists of objects and morphisms satisfying
some axioms. We are concerned, in our applications, with so
called concrete categories, the objects of which are sets
with a certain structure and the morphisms are maps related
to the structure e.g. preserving it . An isomorphism is a

and _onto
one-to-oEETﬁafﬁﬁigm whose inverse is also a morphism; an
automorphism of an object is an isomorphism of the object
onto itself. The automorphisms of an object X form a group
under the composition of maps; we denote this group by
Aut(X). One generally defines the notion of subobjects in
concrete categories in & natural way and it has an intrinsic
meaning that a subobject is invariant for an automorphism;
hence, we do not give here the precise and convenient defi-
niéion of subobjects and invariant subobjects in category
theory. These definitions are given for an arbitrary (not
necegsary concrete ) category in ([6]} Por further details
on categories we refer to [9].

Definition 1. Let- G be a group and C: a concrete
category. A representation A of G on.the object X of
€ 1s a group homomorphism G -» Aut(X}), gt—vAg.

The representation is faithful if it is one-to-one.

The representation is irreducible if there is no subob-
ject of X invariant for all Ag and not invariant for all

automorphisms of I.‘



The representation is weakly irreducible if there is
no element of X invariant for all l&z and not invariant
for all automorphisms of X.

Two representations of the same group G, A on X
and B on Y, X and Y being objects of & , are
equivalent if there is an 1somorphi§m i ¢t XY such that

:l.¢>A8 = Bgo i for all gé&G.
If G 1s a topological group_gnd the structure of
X contains a topology too, we req&ire that the map
GX X-»X, (g,x)+=> Ag(x) be contlinuoga. Such represen-
tations are called continuous,

If G 1is a Lie group and X has a differentiable
structure, we require that the map G X X —X, (g,x) HAg(x)
be differentiable. Such a representation is called differen-
tiable. .

As an example, take the category whose objects are
Hilbert spaces and morphisms are linear contractions. Then
continuous representations on such objects are exactly the
strongly continuous unitary representations.

As a second example, let us consider the category of
topological spaces and continuous maps. Then we obtain to-
pological transformation groups in the customary sense
([10], p.llo). Effective actions are nothing else than
faithful representations. Transitive actions are irreducible
representations; the converse is only true, in general, on
those spaces whose homeomorphisms form a transitive trans-

formation group; such spaces are called homogeneous,

-



In the theory of topological transformation groups one exa-
mines a given single action. In representation theory one

is looking for different that iq ;néquivalent representatiens
@®. The two theories meet in the theorem that every con-
tinuous irreducible representation A of a locally comﬁact
second countable group G on a locally compact homogene"dl‘xs‘
Hausdorff space X 1s equivalent to the representation L
on G/H where H.'A is a closéd gubgroup of G and L 1is
the canonical or standard action 1left translation of G
([10]. p.lll). Remind that fguivalence means here that
there is a homeomorphdsm £} z G/H —»X such that

f o Lg = As o £ for all ééG. Quite the same is true for
differentiable representations of a Lie group on a differen-
tiable manifold (CIOJ, p.114). However, if X has a fur-
ther additional structure then representations and equiva-
lenéés are given by maps relaf;ed to this structure too and
there can be much more inequivalent representations of G

on X.



III. Representations in quantum mechanigs

The logic of a physical system in quantum mechanics is
the ort‘hocomplemented F-1attice ?('“-) of projections on &
separable complex Hilbert space W , called the structure
space (of the physical syetem). The lattice structure, that
is, the ordering of projections is defined by the ordering
of closed linear subspaces. Now we introduce a category in
which objects are such lattices and morphisms are ortho-
complementation preserving lattice §-homomorphisms.

We assume from now on that the di.mejn-eion of N 1is
greater than two. By a theorem of Wigner ([7], vol I, p.169).
every isomorphism S : 'Pi‘ll)-’ ?m') is induced by a unita-
ry or antiunitary map U : R->¥, determine:i uniquely up to
a unit factor, such that S(E) = U BU™Y for all E &PeX).
Coné!gsquently, as it is known, a representation of a group on

PC®) gives rise to a unitary-antiunitary ray representa-
tion on ¥ ({1]]) . Conversely, a ray representation on ‘W
determines a representation on ?(‘&) . Represent’awtions on
projection lattices will be called projective reE' resentati-
ong. Let us see more closely the connection between ray rep-
resentations and projective representations.

Let A be a projective representation of a group G
on 'PC’V—) and (U,‘r) its realisation .as a ray representa-

tion on W . It means that we have a map g+=>U i) be-

g’ 8



ing a unitary or antiunitary operator on ¥ , and we rﬂ:ave a

. I
function T: GXG =T (¥ 1is the complex unit circle)

such that -
-1
A'S(E) = l.lgEUg , ()]
Uy = Tlesh) Ugy » @)
T(e,e) = 1 (e is the unit element of G) 3)
T(gph) T(gh,f) = T(h.f) '[‘(g,hf) (4,

for all E € P(®) and for all g, h, f €G. In the sequel,
a function T : GXG =P satisfying (3} and (4) will
be called a unitary cocxcle__ of G. Two unitary cocycles

T and ~' will be said cohomologoug if there is a func-
tion g: G =»7T such that

~'(g,h) = Tle,b) —f-‘ﬂi?é%"—. for all g,heG.

T and A* are weakly cohomologous if either ™ and T’

or ‘Tl: (the complex conjugate of the function T) a.nd
'’ are cohomologous.

Now, first we méntion the lé;xown fact that if G 1is a
connected topological group then‘ I{g is unitary for all
g€c ((11]) . Then we state

Propogition 1. The projective representation A of a

connected topological group G is weakly irreducible if

and only if (U,'t') is irreducible in ﬁhe usual sense.




Proof. We have 08_1 = T(g,g 1) Uzi from (2) end
thus we can repeat the familiar arguments for unitary repre-
sentations to get that a closed linear subspace is invariant
for all U_ 1if and only if th correspondi;% projection

g

commutes with all US . Consequently, we coﬁclude fgom (1)

that a projection is invariant for all A_ 1if and only if

g
the corresponding subspace is invariant for all U_ . Recall

that A 1is weakly irreducible if the only elementg of the
projection lattice, which are invariant for all Ag , are
the identity and.the zero.

Recall now that it follows from our general definition
concerning groﬁp representations that two projective repre-
sentations of the same group, A on P(C¥) and A’ on
'pu('), are equivalent if and only if there is an isomor-

phism S : PCX) =>P(R?} such that

SOAg-AéeS for all g€G . (5).

Proposition 2. Let A and A’ be two projective

representations of the connected group G and let (p,TJ

and (U','r') be their realizations as ray representations.

A and A’ are equivalent if and only if tere is a unitary
or antiunitary map V and a function g $t G=» YT such
that

VU = g(g) UzV for all gJ €a. (¢)



Conseguently, T and %’ or T and -’ , depending
on ihether V is unitary or antiunitary, are cohomologous
by ¢

Proof. (5) and (6) are simple consequences of each

other, Furthermore, multiplying the equality (2) £rom the
left and from the right by V and dy V'l respectively
and using (6} we get that, accordfng to the nature of V ,
T and T* or ‘ ¥ and %' are cohomologous by 9.
As a consequence of Proposition 2, if (U,Tﬂ and
(u’, v!) are ray representations such thet T and T’ are
not weakly cohomologous, the projective representations de-
termined by the ray representations are not equivalent.

In other words, the weak cohomology classes of' unitary

cocycles of a connected group can be used for certain label-
ling of the equivalence classes of projective representati-
ons.of the group.

Now we want to consider projective representations con-
tinuous in the sense of our definition. For this purpose
recall that there is a well working notion of continuity of"-
ra& representations. A Fay representetion (U,1‘) of a topo-
logical group G 1is continuous in the sense of Bargmann if
there exists a neighbourhood of the identity of G so that

U 1ie strongly continuous and T is continuous in this
neighbourhood. The continuity of ray representations can be
related to projective representations as follows., A distance

d 4s defined on the set of one-dimensional projections



(on the rsys) by .
a(E,P) = inf {llx - y§ . x€EK, yeFR, xh =Myl = 1}.
let A be a projective representation induced by a conti-
nuous ray repJ-esentation of G . Then the map g HAS(B)
is continuous‘in the distance d for every one-dimensional
projection E . Conversely, if A 1s a projective represen-
tation for which the map. gl"q-o AS(E) is continuous for all
one-dimensional E , then one can find a continuous ray
repriesentatiou inducing A .

We would like to defi;l;ne a topology on a projection
lattice ?('K) with the following conditions:

1. The topology is compatible with the structure of
?(‘l) that is the orthocomplementation and intersection
are continuous operations.

2. The automorphisms of T(")() are continuous.

3. The continuous projective representations can be
given by continuous ray representations and continuous ray
representations induce continuous projective representations.

Proposition 3. There is no Hausdorff topology on the

projection lattice 'PGL) gatisfying conditions 1 and 3.

Proof. Let e, (n=1,2,...,dim'¥.) be an orthonormal
basis of W . The formula

exp (it) e, if n=1

Uge, = (ter)
e if n#1

-lo-



determines a ray representation of the additive group of
real numbers. The ray repfesentation is continuous in
Bargmann®’s sense. Let dk. %e the subspace generated by the
two vectars e; + e and €3 and let d/ be the subspace
generated by ey . If there is a topology T with the pro-
perties listed in conditions 1 and 3 , then

W=r- 11m(ut(}4.)nk)=(1‘ - ln U (&))Ak= N,
t =20

t =80
t£0 t £0

which is a contradiction.

Therefore we are forced to change condition 1 into
the following weaker one:

]ﬁ The orthocomplementation and the intersection are
continuous operations in every distributive sublattice
of P(W.

We say in this case that the topology is partially
compatible with the lattice structure.

Proposition 4. The topology on P(W), induced by the

strong operator topology, satisfies conditions 1’, 2 and
3.

Proof. Condition 2 1is trivially satisfied. It is

also simple to see that €ond1t19n 1* 1is fulfilled. The
orthocomplementation Et=»I - E (Eé- P(‘K)) ig evi-
dently continuous., A sublattice of T%ﬂﬂ) is distributive
if and only if it is commutetive., Furthermore, if E and
F are commuting projections then their intersection EAF

.is their product EF . The multiplication in a set of ope-

-‘4_



rators bounded in norm is jointly continuous in the two va-
riables with respect to the strong topology, hence the 1nter4
section is continuous operation in a distributive eublattice:

Regarding condition 3, standard arguments show that
the norm topology, the strong topology and the topology of
the distance d on the set of one dimensional projections
are equivalent. As a consequence, the continuity of a pro-
jective representation implies the continuity of ray repre-
sentations,

Conversely, let the ray representation (U.T’) be conti-
nuous. Then we get the continuity of the projective represen-
tation A induced by (y,1:) from the equality

_ R | -1
AlF) - E = U(F 1-:)1.1g + UEU E

& g -

and from the fact that the multiplication of operators in a
set bouhded in norm is continuous in the two variables.
Remark 1, One can see by a simple example thet the

topology on P(W) , given by the distance

d(E,F) =
- inf{,“x - yl, x6(8 - BAF)X, ye(F - EAR Ixb=tyh= 1}

satisfies :onditions 1' and 2 but it does not satisfy
condition 3 .

From now on we equip the projection lattices with the

strong operator topology.



Let ua now consider continuous projective representati-
ons of connected Lie groups. To every unitary cocycle conti-
nuous in a neighbourhood of tl'xe identity of the Lie group,
one can assigne a closed bilinear antisymmetric real valued
function on the Lie algebra of the group. Closedness means
that if is a bilinear antisymmetric function on a Lie
algebra G then (&([a,b],c) +(§([b,c],a) +(&([c,a],b) =0
for all a,b,c € a, « A closed bilinear antisymmetric func-
tion on a Lie algebra will be called a commutator cocycle.

! are said cohomologous

Two commutator cocycles (S and
if there is a linear function o{ such that p' =P+.(0L.3

where (,] denotes the commutator on the Lie algebra,
(S and ‘3' are weakly cohomologous if either (s and {!'
or -P and ‘s' are cohomologous.

Collecting the results of [11] we get

Corollary to Proposition 2. Let A and A’ be conti-

nuous projective representations of the connected Lie group

G . Assume (U,¥) end (U',T’) are realizations of A

and A' as_continuous ray representations., Let F and (5'
be_the commutator cocycles on the Lie algebra Q' of G,
correagondingito T and to 7’ respectively. Let H, and

e -

Ha denote the self-adjoint infinitesimal generators corres-
ponding to aé% in the ray representation (U,t) and
(U',‘c’) regpactively. A and A’ are equivalent if and

only if there £g a8 unitary or antiunitary map V and a line-
ar function of ¢ Q ~» R, arp& such that if V is




unitary then ‘$ and P' are cohomologous by & gand
’ -1
Hy = VH V'™ + o, for all aéﬁ .

If V is_antiunitary then "{5 and !g' are cohomolo-
gous by of and

0 -1
-HY = VH VTS + o, for all aég .

.



IV, Representations in classical mechanics

Let us turn to classical mechanics., The question is
what objects are logics of physical systems in this theory.
One knows a partial answer: the logic of a physical system
is the G-algebra B(M) of Borel subsets of a differenti-
able manifold M called the phase space (of the physical
system) ((7)) . Morphisms between such objects are de-
finqd as differentiable Boolean @ -homomorphisms. i Boolean

§ -homomorpnism u : B(M) —> B(X’) is called differenti-
able if it can be given by a (necesrarily uniquely deter-
mined ) differentiable map £, ¢ U —» ¥ such that
u(E) = f;l (E) for all B € B(x) . This choice seems,
however, too large, because of the #wwsies® mentioned fact
that all good representations on such objects are equivalent
to a few ones.

We assume that on the phase gpaces there is given some
structure inducing a Borel measure in a canonical way. Then
we can require that morphisms, besides being differentiable
Boolean @ -homomorphisms, be related to this structure or
only to the measu:.:e. induced, but in any way in such a manner
that isomorphisms, which are given by diffeomorphisms of
phase spaces, preserve the measure, The most simple examples:
the phase spaces can be Riemannian manifolds, contact mani-
folds or sémplectic manifolds.

Here only one possibility will be investigated.

-I5-



A closed two-form with constant rank on a differentiabl:
manifold will be called a presymplectic form. If the ra
of a presymplectic form is maximal then the form is cal

symplectic. A gymplectic manifold is a pair (M.w) whu

M 1is a differentiable manifold and W 1is a sy“pplectb
form on M .

Definitien 2. let & and & be two presymplect
forms with rank r and r’ on the seame manifdld. Ve w:
w<l ! if r<&< and if there is a presymplecti
form w), with rank r,=r =T such that @+ L8
ve write |w|< [w!] 1if either W W' or -w.

Now we introduce a category whose| objects are §-a
ras of Borel subsets in symplectic manlfolds and morphi:
are given as follows. Let (M,) and (M',0') be t
symplectic manifolds. P(d,w) and B(H',) will 4
the corresponding Borel §-algebras. A morphism
B(it,w) >R (', w’) 1is a differentiable map f : M'=-
such that | f¥w|€|ed| . The morphisms will be called
-symplectic maps. Note that if f : M- represents
isomorphism then f 1is a diffeomorphism and ‘f*o': ll

that is either f’w =0 (f is szmglectic) or fla

= - (f is antisymplectic)

We de;fine that logics of physical systems in class:

mechanics"are objects of this Jategory.



Let us consider group representations on the objects of
the above categofy. Let (M,uﬂ be a symplectic manifold; a
b
representation A of a group G on B(M,o) is a group .

homomorphism ge>»A from G into the group of semi-symp-

lectic diffeomorphi:ms of M . That is why we shall cell
such representations semi-symplectic.

In other words, a semi-symplectic representation is
nothing else than a special M"action™ of G on M , an
"action® which preserves in some sense the additional struc-
ture of M . The T"action™ will be identified with the rep-
resentation and will be denoted by the same symbol A .

For topological resp. Lie groups we consider e%clusively
continuous resp., differentiable semi-symplectic representa-
tions, which means that the corresponding ™action”" 1is a
topological resp. Lie transformation group.

We shall say for simplicity that a semi-symplectic rep-
regsentation is given on a symplectic manifold. One must not
forget, however, about the Borel structure because the mea-
nipg of irreducibility is related to it.

If the representation A on B(M,0) is not weakly
irreducible then there exists a nonetrivial Borel subset
invariant for all Ag . The converse is true only if there
isno non-trivial Borel subset invariant for all automorphisms
of B(M,w) . It is the case if B(M,w) 1is homogeneous in the
sense that AutCB(MJo{) constitutes a transitive transfor-

mation group of M , Every orbit of a locally compact second



countable topological transformation group is a Borel set,

hence we have

Propogition 5. If the "action" on ; M corresponding to
a _representation on B(M,w) 1is_transitive then the repre-
sentation is weakly 1greducibie. If a continuous represen-
tation of a locally compact second countable group on a
homogeneous IB(MJo) is weakly irreducible then the corres-

ronding "action" is trensitive, .

ie shall call a semi-symplectic representation tran-
sitive if the corresponding "action" is transitive., We used
the term action only for pointing out how we arrived at this
familiar notion; quotation marks were applied to underline
that, as it was mentioned earlier, an action is a special
sort of representations. Later we retain the term action only
for standard actions (left translation) on coset sgpaces.

We shall now restrict our investigations to differenti-
able semi-symplectic representations of Lie groups. If G 1is
connected we have the following simple but important facts.
First: Ag is symplectic for all g € G .

Secondly: if the representation is transitive then also M
is connected.

Let us denote the Lie algeﬁra of G by 4; and that
of the infinitesimal generators of the representation by £, .
Recall that the infinitesimal generator of a one-parameter

group g() 1is the vector field defined by x> (?/dt)t=o

Ag(t) (x) (e M) . There is a surjective algebra anti-

-48-
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Let (M) denote the algebra of differentiable functibns
on M, and assume the usual notation ix for the interior

product of differentisl forms by a vector field X .

_ Proposition 6. Consider a differentiable semi-gymplec-
tic representation of a Lie group on a simply connected

symplectic manifold (ﬂ,t{} Then there exists a generating
function H, € H(K) for all 2 such that i@ = dH_ .
a

a
Bvidently, H, is determined only up to_an additive constan

Proof. 2, 1is the infinitesimal generator of a one-
-parameter group of symplectic diffeomorphisms, herce

1,0=0 ((12), chap. V.2) . Now, L, =1, ed +deiy
a a a a

and thus izta is closed. We conclude from the simply con-
a

nectedness of M and from Poincaré’s lemma (CIZJ, Chap.IV
that 1269 is exact.
a

Remark 2. The simply connectedness of M is not neces
sary at all for the existence of generating fundtions. We
suppose in the sequel that M 1is connected and there is a
generating function for every infinitesimal ge;erator.

We start our further investigations recalling that the
symplectic form & induces an isomorphism J, from the mo-
dule of vector fields onto the module of one-forms on M ,

13,00 = ;0 ({123, chep. VII.I).
The Lie structure is transferred by this isomorphism from

the vector fields to the one-forms:

-49-



[Jw(x, ’J”(Y)]i = iﬁ[ny]~ (7)

Furthermore one defines a Lie structure on J(M) by the

Poipsov. . hrackets.

{z.u} - -U(J;;l G, 37 (am)

(8)
(7. 1 €dt) .

Cne hasg the identity

4 {P,:—i} = [dF,dH]‘ . ©)

Proposition 7. the map H : (‘ - S(M), al—bHa

(cf. Froposition 6 and Remark 2) can _be chosen to be

linear, Furthermore, by such a choice, there is a commutator

cocycle (s on Q so_that

{Ha,ﬂb} = “Hig,py *fla,p  for 81l ab (—3 . (20)

(We find convenient to write (;s,h instead of (S(a,b)).-
Proof. The kernel in B(i) of the R-linear map d

is R , viewed as the constauit functions on M . Let

4) & (M) —» ()R be the natural surjection. ® 1is in

the clenter of (M) with respect to the Poisson bracket,

thus one can define a Lie structure on & /R by

{¢(P). +UI)_L3- .ﬂ?.ﬂ} . (11)

-20-



Now, d can be factored, .d = Do¢ . The image of d
1s the submodule consisting of exact one-forms. Then D'l
is an R-linear isomorphism from the module of exact one-
-forms onto J(M)/ R . Let us transfer the Lie structure
defined by (7} from the one-forms to F(M)/ R .
Then we obtain by (8) and (11) :

[p-2(ary, 072 (am)] :- D‘l[dxr,cm]1 -

- D"ld{lf.n}a {f(F) .+(H)}/ . 19

That is, the Lie structures on S/ R , induced by the
Polsson bracket and by the Lie structure of the vector
fields, coincide, )

(&(M]/IR)XIR' can be linearly imbedded in - and onto -

SHn). It can be done in'such a manner that the imbedding

followed by the natural surjection ¢ .gives the projection
from (aﬁ(M)/ R)x R onto SW/RrR.

'.Now, by Prox;osition 6 , the elements of jw(x}\)
are exact one-forms, that is we can consider
a‘A 1= DL J.:(JfA) . - It is a subalgebra of UM/ R .
Thus there is a linear imbedding 1 : &, X® = J(M) so
that <|>(1(i'.k)) =X for all X€&€& and for all A€ER .
Furthermore, +(F)63’A if and only if Fé€ i(&kx (R).
Thus we c.onclude from (11) that the Poisson bracket of two
elements of 1(&Ax R) 1is again in i(&Ax R) . In other
words, i(&AX R) with the Foisson bracket is a central

-24~



extension of 31 by R.

Equivalence classes of such extensions are.in one-to-
-one correspondence with cohomology classes of commutator
cocycles of 31 ((14]. Chap.3.8). Let (? be a commu-
tator cocycle of &A ; the extension defined by F is gi-

ven by the commutator i
iz, @ - o[55]) f6D) Erenipe). 63
Put now 2a:= D'l(ju (Za)) and define the linear map

Q = ) by H, = 1(’2”3,0).; Then 4}&[&): E; and by
D °+ we get dH, = J“(Za,, hence H, is a generating

o]
v

function for Z,., Furthermore, it is obvious from (12) that
the mapping (a,h\t—o‘&a’hla -(i&,zb) defines a commutator
cocycle (3 on g, . Then equality (10) follows from (13)
and from the fact that Z is a Lie algebra antihomomorphism.
Later we need the following facts. Let X be a vector
field on a differentiable manifold M . Consider a manifold
¥’ and a diffeomorphism £ : M — M’ ., Then
fulX) 1= df o X of™} 13 a vector field on M’ . If ‘f' is a

p-form on i’ then

(f*T.)(xi,xz,...,xp)=\é(f* (X)) £, N senat (X)) 02 (14)

for all vector fields xi,xz,...,xp on M ([10], p.24).
Making use of this equality one easily proves the following



Lemma, Let (M,u) and (M',(o') be symplectic mani-
folds, f : M-sM’ a symplectic(resp. antisymplectic)dif-
feomorphism,. Suppose I and }x' are vector fields on M
and on u’ resgective?x and put ofs= Ju(x),
o= 3 (%) Then X =2, (X) if and only if o= t¥o
(cesp. - o= t¥a’),

We can now state

Proposition 8. Let A and A’ be differentiable semi-

=symplectic representations of the connected Lie group G

on the connected symplectic manifolds (M,w) and (’,0')
respectively. Let Q denote the Lie algebra of G . Assume

that H,P and E’,‘!' corresponding to A and A’ respec-
tively, are the same as in Proposition 7. A and A’ are

equivalent if and only if:there is a symplectic or antisymp-
lectic diffe})morphism £f : M -4’ and a linear func'.tion

ol ¢ (‘ —> R, ab>«& , such that if f is symplectic
then (‘ and P' are cohomologous by oL and

-1
B! =Hy o £ + o, for all aeq. @1s)

If £ is antisymplectic then -P and P’ are cohomologous
by of and
-1
-H, = H, o 77 +d, for all 369.

Proof. Suppose first that A and A’ are equivalent.

Then there exists a symplectic or antisymplectic diffeomor-

-23~



phism £ : M —aU’ such that £ o A, = Aé of for all gé€Q,
Let f be symplectic; the other case can be treated similare
ly. The equivalence of the representations implies that the
corresponding infinitesimal generators satisfy the equality

ar o 2, (I z; o £, |that is,
[
za! = 1, (2) for all e € Q, (16)

Consequently, dH, = ¥ (dH;). Now, f¥ and 4 commute

|
((12] , Chap.IV.Z) thus there exist real numbers o(a such
that Ha = f‘ (H;) -a(a for all a . It can be easily seen
from the linearity of H and H’ and from the identity
f’(H;\ = ﬂ'aof ‘l.the correspondence aM»ol defines a
linear map on Q , whence we obtain equality (15). Further-
more, because of the identity {Ha,ﬂb} = -u(za.zb\. we get
from (10), (5), (16} that

(sa,b = 'w(za’zb) + H[a,bJ

("'a'h - - '(f* (2,),2, (2) + Hea,by ° 1, a1

for all a,b ég-. Using (14) and the fact that
Fa,‘b ° f'l 'Pa,b , we get the desired result concerning the
cohomology of ‘§ and p’ .

Suppose now that we have an f and an ¢{ with the
propertiea listed in the proposition. Then
aB, = t* (a8 ) or -aH, = £*(dBY) which impltes (16).
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Let 8, be the ot:ae-parameter subgroup of G generated by

aeg . Then we have f o Ag = Al o £ . Since every ele-
EY a
ment of G can be written as a product of elements teken

from one-parameter suﬁgroups. we obtain the equality
!

f£on, = A; e f for sll g €& G which proves our assertion.



V. Discussion

There is a well known analogon of Proposition 7 for ray
representations which, together with Propositon 8 and Corol-
lary of Broposition 2, shows how a complete parallelism can
be established between group representations in quantum and
in classical mechani# « Unitary resp. antiunitary maps in
quantum mechanics correspond to eyqplectic resp. antisymp-
leckic diffeomorphisms in classical mechanics. As an essen-
ti;I consequence of our definitqon of *epresentationa and
their equivalence, weak cohomoldgy classes of commutator
cocycles appear in labelling equivalence classes of represen-
tations of connected Lie groups, both in quantum and in clas-
sical mechanics.

Souriau’s treatment of dynamic systems, translated to
our language, is similar to our treatment of representations
in classical mechanics, but he considers only symplectic rep-.
regentations and follows a somewhat different way. Our line
was worked out to make the parallelism between quantum and
clasgsical mecha#ics apparent.

On the other hand, one does not see the connectiion bet-
ween Arens’ method and ours at first sight. Arens considers
canonical left actions of groups on their coset spaces modulo
closed subgroups and he looks for symplectic structures which

make the actions symplectic. The following method would seem
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Lorreaponding in gquantum mechanics: one constructs some
canonical linear representations of groups and then one
looks for inner products which make the representations
unitary. However, Arens' method can be arrived at from ours
by the reasoning below.

Suppose we have to find transitive differentiable
semi-symplectic representations of a connected Lie group
G . ILet A be such a representation of G on the symp-
lectic manifold (M,u”. Then, as we know, there is a cloSed
&% subgroup :? of G and a diffeomorphism

f : G/H =»M such that f e Lg = Ag o f for all gé€G,

where L 1is the canonical action of G on G/H . Then
(G/H. f’ua) is a symplectic manifold and L =:(L, f‘up)
will be a8 semi-eymplecfic representation of G . One easily
proves the following.

Proposition 6. Let A and A’ be two transitive

differentiable semi-gymplectic representations of the

connected Lie group G on (y,ua) and on (M', uﬁ) res-
pectively, and let f and f¢ be the diffeomorphisms

éending A and A’ to canonical actions on the coset

spaces G/H and G/H’ respectively. Then (L,‘fxn;) and
(v, % ') sare equivalent if end only if A and A’

are _eguivalent,
In this way we obtained, for representations in clas-

sical mechanics, a method of "symplectification® of canoni-
cal actions on co&gt gpaces, and thus there is given di-

rectly a correspondence desired in f4] .
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VI. Elementary particles

We define elementary particles both in quantum and in
classical mechanics as follows. The Galilean group in non-
-relativigtic theories and the Poincaré group in relativis-
tic theories will be called the space-time symmetry group.

Definition 3. An elementary particle is a physical
gsystem on whose logic there is given a weakly irreducible
faithful representation of the identity component of the
apéce-time symmetry group. The properties of an elementary
particle are characterized by the corresponding representati-
on so that equivalent representations, and only those,
describe the séme particlp.

Souriau ([I]) stafed a general method of finding the
representations we need for elementary particles in classical
mechanics and he gave explicitly the representations both of
the Galilean and of the Poincaré group. Arens ([3], [4])
obtained a similar result for the Poincaré group. There are
two aspects in which the given form of representations is not
sufficient. First- the equivalence classes are not the same
as ours because qquivalence made by an antisymplectic map is
not considered. Secondly: we would like to get a member of an
equivalence class of representations which reflects the dy-
namics of the particle in a chtumary way. This means the

following,
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States of a physical system are defined to be probabi-
lity measures on the logic of the system. Let g be a prob%-
bility measure on the logic 5( of a classical or a quantal
gystem and let tt-DAt be a "convenient% representation on

aﬂ of the time translation g&oup. Then the map
[

to g = ¢ 03!

describes the dynamics of the system. We mean by "convenient®
that some condition must be fulfilled; for instance, for an
elementary particle, the representation of the time transla-
tion group is obtained by restricting the representation of
the space-time symmetry group.

Here we mention that pure states can be identified,
both in classical and in quantum mechanics, with the atoms
of the logics ((7] vol.I. p.116, p.160). Consequently, the
points of the phase space in classical mechanics and the
vector rays of the structure space in quantum mechanics can
be considered the pure states of a physical system and thus
the representations on the logics can be transferred directly
to the pure states.

Now I give a form of transitive semi-symplectic reptre-
sentations of the Galilean group and of the Poincaré group
which is in perfect accordance with the resulﬁe in quantum
mechanics and with the canonical formulation of clageical
mechanics.

Let a? denote the two dimensional sphere in RS with



radius §20. Lef x = (q,p,8) be an element of

R3 XIR3 X Sg with an obvious meaning in the case @ = O.
A vector field V on 83 X!R3 X 3‘2. is given by three
components (X,Y,Z) guch thet X{g,p,s) ., Y(a,p,e) and
Z(q,p,s) are in the tangent space of the points gq, p
and 8 regpectively. Let us define a symplectic form

We on ®> XR3X Se2 by

uqr(v,v')(x):x
= <X(x) ,Y’(x)> - <Y(x) ,X'(x)) + <s,Z(xn % Z'(x))

where ¢, regp. & denotes the inner resp. exterior

2 for <p,p> , and

q1P4»95 (i=1,2,3) for the Cartesian coordinates in 8> .

product in ®° . We shall write p

Je state our theorems based on the results in 1.

Theorem 1., There is a family of inequivalent differen-

tiable transitive semi-symplectic representations of the

connected Galilean group labelled by two real numbers )J.)O
and E),O . The representation A(”'ﬂ can be given, up to

equivalence, on (R3 XR3 X s‘? , w..) by the following gene-
rating functions for the canonical base of the Lie algebra
of the Galilean group:

K;{a,p,8) = Py (pure Galilean subgroup),
P,_(Q.P»B) = P; (space translation suhgroup),

Ji(Q-P.B) = éijkquk + 85 (apace rotation subgroup),



. 2
H(g,p,s) = __%ET (time translation subgroup);:

(1!3 yk=1,2,3; (q,p,s) € RB X¢R3 x Sg).

’k enumerates the weak cohomology clagsses of commutator

cocycles and appears in the commutator (Poisson bracket)

{Ki,PJ.} =[“Sij .

One can write down the representations explicitly:

(’h‘) Rp - JAV
A(t,a,v,R)(q’p’s) = (Rq + a + ——,‘—P t, Rp - Qv Rs) .

t is a time translation, a 13 a sgpace translation,
v 1s a pure Galilean transformation and R 1is & rotati-
on in space.

The representation given in Theorem 1 can be extended,
in a unique way, to semi-symplectic representations of the
Galilean group with space and time inversion. It is an easy
task to check that the representation IS of the space in-
version S and the representation IT of the time inversi-

on T are obtained as follows:

Is (q,p,s) = ("Qi‘Pos) ’ IT(Q:Pva) b (q.-P.-S) .

Note that the time inversion is represented by an anti-symp-
lectic diffeomorphism; in quantum mechanics, as it is known,
the time inversion is represented by_an antiunitary operator.

Theorem 2. There is a family of inequivalent differen-

Egble trangitive semi-symplectic representations of the con-

nected Poincaré group labelled by thxe@ real numbers
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A0, §30 * . TIhe repmesemtations can be
Eiven, up to_equivalence, on (ﬂ3 183 b 4 s‘? , a)f) by the
follow nerating functions for the canonical base,  of the

Lie algebra of the Paincaré group:

Pi(a,ps8) = py (space translation subgroup)
H-(Q-P.e) =tp, = Jpz +,ﬁ2 (time translation subgroup)
Jy(asp,8) = e’ijkq.jpk + 8y (space rotation subgroup)

Ki(‘hpvs) = Pyq4 +€1Jkpjak/(p° + }4’ {pure Lorentz

one-parameter subgroups)
(1:3.%=1,2,3, (a.p.8)€e€° XR> X 52) .

The interpretation of Theorem 1 and Theorem 2 1is

straightforward: the representations describe free particles

with mass » and spin € .Wl
e e e e

There is another family of representations which cor-
respond to particles with zero mass. These representations,
however, lie outside of the framework of m;echanica'. and do
not describe particles in mechanical sense ([1] p. 220,
{73 vol.1I p. 217).
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