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The Interact ion o f  Bodies  in T h e r m o d y n a m i c s  

T. M a t o l c s i  

A b s t r a c t  
Dynamic  laws are established fo r  thermodynamic bodies that interact with each otber and  
their environment.  The trend to equilibrium (asymptotic stability) o f  processes o f  such 
sFstems is examined.  The role of  entropy is" discussed. 

K e y w o r d s :  system of homogenous  bodies, irreversibility, trend to equilibrium, Onsager 
formalism 

1. INTRODUCTION 
In a previous pape/1~ a theory of ordinary thermodynam- 

ics was detailed in which processes are considered functions 
defined in time, a dynamic  law (a system of differential 
equations that contains the usual first law) is established to 
determine processes, and format ive  laws and the second law 
(restrictions) are imposed on the constitutive relations ap- 
pearing in the dynamic law to have equilibria and to assure 
the trend to equilibrium. 

The same paper  treated in that framework the simplest 
thermodynamic system: a body in a fixed environment. 

Now I continue this theory by considering systems consist- 
ing of interacting bodies, applying the previously< 1~ intro- 
duced notions. 

The specific volume and temperature of a body are simple 
notions and form a base for the description of processes. 
They are indispensable for determining fundamental formu- 
las from analogies with continuum thermodynamics, and 
they supply the formative laws for the body constitutive 
relations in a simple form. However,  in order to describe 
processes, it is often more appropriate to use the specific 
internal energy as an independent  variable instead of the 
temperature. 

In this paper  n bodies will be  considered, and n >_ 2. The 
specific internal energy e and the specific volume v of the 
ith body are taken as independant  variables. Then the 
temperature and the pressure of the ith body are given by 
continuously differentiable constitutive functions: 

= T,(e: v), p, = p , (e ,v ) ,  (1) 

for which the formative laws hold(2): 

OT i OT i Opi aT. Opi 
- -  >0,  
Oe~ Oe~ Ov~ Ov i Oe~ 

[ oT1 op, 
P, ovj 

<0,  
(2) 

A process of the bodies is (el, v 1 . . . .  , e n, v,) as a function 

depending on time. 

The dynamic  law for the processes has the form 

e, = qi + w, ( i =  1 , . . . ,  n) 

v , = f  (i = 1  . . . . .  n) 

(3) 

where the "heating" q,, the "spr inging ' f ,  and the "working "(1~ 

w~ = - z f.  (4) 

are given by continuously differentiable constitutive rela- 

tions satisfying some formative  laws that will be specified 

according to the system that includes the bodies. 

The classical case means the constitutive relations 

z = p ,  that is, wi = - p  f,, (5) 

and the existence of the twice continuously differentiable 
specific entropies s = si(<, v)  with the well-known proper- 
ties 

Os~ 1 Os t p ,  

Oe i T i ' Ov, T i 
(6) 

Then (2) implies that the second derivative of s, is negative 

definite. 

Let m be the mass of the ith body. Then the total entropy 

of the bodies together is the function 

N 

S = S(e 1, v v ... , e ,  v )  := ~ mlsi(e,, v,). (7) 
i - 1  

It has the second derivative (in a block matrix form) 
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S" ~ u )  ( ~ ] ,  V l, - - .  , e~l, 

[ ] m~sl (q ,  v 1) 
= 

m s " ( e ,  v )  , 

which is evident ly  negat ive definite as well. 

(8) 

2. BODIES IN A FIXED ENVIRONMENT 
Let us s u p p o s e  that the n bodies  interacting with each  

other  are put into an env i ronment  of  fixed t empera tu re  T 
and fixed pressure  p .  

The constitutive relations for q,, f ,  and z, ( i = 1 . . . . .  n) are 
required to satisfy the formative laws 

(9) o *JT= Uv, ,P,  . . . . .  L,P., v, p.), 

z , =  z~(T~, p, . . . . .  T ,  p~,, T, p~); 

that is, the quantities in quest ion d e p e n d  o n  ( e l ,  v l ,  . . .  , e 9 

v )  through the tempera tures  and pressures  of  the bodies  and  
d e p e n d  on the ambient  t empera tu re  and  pressure.  Further- 
more,  

q (T ,  p~,, . . . .  T , p , ,  T , p , ) = O ,  

(10) f~(L, ~,, . . . ,  L,P,, L, P2 =o, 

z , (L  ~,, .--, L , L ,  L, P2 = L .  

Recall that an express ion  of the form 

_ q _ ( T _ � 9  w 
t P- (p - pa) (11) 

was  accep ted  as a basis of  the second  law for a o n e - b o d y  
system. (> Divided by T, it is t ransformed into 

(12) 
_ 1 

which  p roves  to be  more  oppor tune  regarding the new 
variables (specific internal energy  and specific volume) .  

The  s e c o n d  law  for the present  sys tem is formula ted  as 
follows: 

(13) w)  . . . .  > O, 

and  equali ty holds  if and only if I I = T, and p, = p ,  for all 
i = 1  . . . .  , n. If 

T~(eo, v~, o )=  T ( i =  1 , . . . ,  n), 

P ( e o ,  V o)=p ,  ( i =  1, . . . ,  n), 

(14) 

then the constant  process  (el.0, Vl. 0 ... , e,,.o, v o) is an equili- 
b r ium of  the dynamic  law (3). Obse rve  that the second  
relation in (2) implies that the above  equat ions  de te rmine  the 
equi l ibr ium locally uniquely,  which  means  that equilibria, if 
they exist, form a discrete set. 

Now we are interested in the trend to equi l ibr ium (i.e., in 
asymptot ic  stabilitya4~). 

P r o p o s i t i o n  1: In the classical case an equi l ibr ium is 

asymptot ical ly stable. 

Proof: The  first derivative of  the funct ion 

L(el, v 1 . . . . .  e, v):= S(el, vl, ... , e ,  v )  

- -  ~ /T/i - -  
/=1 

e i + pay, 
(15) 

at (q.0, q.0, ' "  , e.0, v.0) is zero,  and its second  derivative 
equals  the second  derivative of  S, which  is negat ive definite. 
Consequent ly ,  L has a strict m a x i m u m  at the equil ibrium. 
The derivative o rE  a k m g  the dynamic  law (3) equals  the left- 
hand  side of  13; thus it has a strict m in imum at the equili- 
brium: L is a Lyapunov  function assuring asymptot ic  stability. 

3. BODIES IN A RIGID BOX 
Let us s u p p o s e  that the n bodies  interacting with each 

other  have  a fixed total volume,  

~,  m v = V 0 = const, (16) 
1=1 

and they are in an env i ronment  of  fixed t empera tu re  T (in 
this case the ambien t  pressure  is irrelevant). Then  w e  require 
the relations for i = 1, ... , n: 

O ~ q ,=q , ( r , ,P l ,  . . ,  T,,,P,,, T2, 

0 ~ f = I ( T  v Pl . . . .  , T ,  p,,, T),  (17) 

z, = z , (r l ,  P~, . . . ,  L,  P,,, r )  

with the proper t ies  

q,(ra, P, . . . .  , L,P,,  � 9  

f , (T ,  Pi . . . .  , T,  p,, T )  = 0, (18) 

z,(L,p, ,  . . . ,  L,p~, TO =P,, 
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N 

Z m, f,. = 0. 
i= l  

For the second law we set 

(19) 

~ m (qi 
~= 

+ - 

( k =  1, . . . ,  n), 

> 0  

(20) 

and equality is a l lowed if and only if T = T and p, = Pk for 
al l i ,  k=  1 . . . .  , n. 

Equilibria of the system are de termined  by 

T,(e~.0, vi. o) = T,  

P,(e~.0, v,.o)= pk(ek.0, Vk.o) 
(21) 

for all i, k = 1 . . . . .  n. Equilibria are not unique  even  locally, 
because  we  have only 2 n -  1 independen t  equations.  
Attaching to them Eq. (16) (for v. = v,. 0) we  get locally unique  
equilibrium. In other  words,  for every  vo lume value V0, 

Hv0 := {el, v 1 . . . .  , en, v ) l  s  = V 0} 
i=1 

(22) 

is a 2 n -  1 dimensional  submanifold which is invariant under  
the dynamic  law (3) because  of (19), and equilibria in V 0 are 
locally unique,  

Since we  imposed  (16) as a constraint on  the processes,  we  
are interested in asymptotic  stability with the condit ion H v0' 

P r o p o s i t i o n  2: In the classical case for all V0, an equil ibrium 
in Hv0 is asymptotically stable with the condit ion Hv0.(4) 

Proof: Let us parametrize Hv0 by  (e~, v 1 ... , e 1,  Vnq , e); 
then 

1 n-1 

Vn = m~ [V~ i=l~m'v'] 

and the reduced  dynamic  law becomes  

e, = q ~ + w ,  ( i =  1, . . . ,  n), 

v , = f  (i  = 1 , . . . ,  n - l ) .  
(23) 

It is easily shown that 

L(el, v 1 . . . .  , 6'_1, v,,_l, e )  

rt-1 

: =  S [ e l ,  v 1 . . . .  , en_ 1, Vn_ 1, e n, ( 1 / m  n) [V o - ~ ,  miv) 
i=1 

n 
- ~ m ,  e, ( 2 4 )  

i=1 ~aa 

is a Lyapunov funct ion assuring the asymptotic stability of  an 
equil ibrium of  (23). 

4 .  B O D I E S  I N  A H E A T - I N S U I ~ T E D  R I G I D  B O X  

Now both the total internal energy  and the total vo lume are 
fixed: 

s m e  = E 0 = const, (25) 
i-1 

s m v, = V 0 = const. (26) 
i-1 

Then we assume the relations 

0 ~t~ q, = q , ( r l ,  P l  ' . . . ,  r ,  p r ) ,  

0 ,  f = t , ( r  1, p,, . . . ,  T,  p~), (27) 

z ,  = z , (T1 , / )1 ,  . . .  , T ,  p )  

for i = 1, . . . ,  n with the propert ies  

q ,(T., p,, . . . ,  T, p,,) = 0, 

I,(T, p . . . .  , T, p )  = 0, (18) 

z ( r , , p ,  . . . .  , 

and 

n 

m,(q, + w) = 0, (29) 
i=1 

s m , f  = 0. (30) 

For the second law we set 

~m~ [(q; 1 wi 1] - - ~  

( k =  1, . . . ,  n), 

> 0  

(31) 

and equali ty is a l lowed if and only if T. = T k and p~ = Pk for 

al l i ,  k = l , . . . ,  n. 

Equilibria of  the system are de te rmined  by 

T,(e,.0, v,.0) = Tk(ek.0, Vk.0), 

P~(ei.0, Vi.o) = pk(ek.0, vk.0) 

(32) 

for all i, k = 1 . . . . .  n. Equilibria are not  unique even locally, 

because  we have only 2n - 2 independen t  equations.  

Attaching to them equalities (25) and (26) for e, = e/0 and 

v~ = v~,o, we get locally unique  equilibrium. More closely, 
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for every energy  value E 0 and for every volume value V 0, 

He0, ~:={e~,q . . . . .  en, v)l~rne=lzi,, ~rn,v,= <} (33) 
i=1 i=] 

is a 2 n -  2 dimensional  submanifold which  is invariant under  
the dynamic  law (3) because  of  (29) and (30), and equilibria 

in HF0, v0 are locally unique. 
Since we  imposed  (29) and (30) as constraints on the 

processes,  we  are interested in asymptotic  stability with the 

condi t ion HEo , 17o" 

Proposi t ion 5: In the classical case for all E 0 and V 0, an 
equilibrium in HEo, vo is asymptotically stable with the 
condi t ion HE0 , v0" 

Proof: Let us parametrize HE() ,  Vo by ( e l ,  Vl, . . .  , e,,_~, v, 1); 
then 

1 n-1 1 n-I 
e = - -  [e  0 -  Z m f e ] '  v = - - [ ~ -  Z m v ] ,  

mn l = 1 mn ,~ 1 

and the reduced  dynamic  law becomes  

e =  q, + zv i ( i =  1 . . . . .  n - l ) ,  

v , = f  (i = 1 . . . . .  n - l ) .  
(34) 

It is easily shown that 

L(e 1, V 1, . . -  , eye_ 1, vr>l) 

[el, v~ .... ,e n~,v,,:, := S (1/r<)[~ 
t 

-~_lme],(1/m,~[P~l-~<my~ = (35) 

is a Lyapunov  function assuring the asymptot ic  stability of  an 

equilibrium of (34). 

5. A GENERAL FORMULA 
The fundamenta l  cases were  treated in the preceding 

paragraphs.  Evidently, there are many  other  interesting cases 

as well, for example,  if each b o d y  has a fixed volume, and 

the bodies  are in an envi ronment  of  given temperature  or  

they are heat insulated. 

We would  like to have a general formula that covers all 

these cases. However ,  we  can hardly expect  that all the 

possibilities of  interactions can be dealt with on  the same 

line; indeed, in general, the description of  heat insulation is 

quest ionable (see Sec. 7). 

A general case including the cases treated above  and many 

others can be formulated as follows. 

Let r be a positive integer, r < n, and for all c~ = 1, ... , r, 
let d be a positive integer. We define a family 

(Apl  e~= 1 . . . .  , r, [3= 1 , . . . ,  d )  (36) 

of  disjoint subsets of  {1 . . . . .  n}. Set 

dc~ 

B := tO Ao6 (o~ = 1, ... , r), 
/3=1 

n 

B 0 := {1, ... , n}\ u B .  
ot=l  

(37) 

For every e~ = 1, ... , r and for every [3 = 1 . . . .  , d let k~ 
and Vp be an energy  value and a volume value, respectively, 
and suppose  

m v = V~, .Y~ m , e , = E .  (38) 
ie A s~ 1 E B 

[We have g rouped  the n bodies: there is no  constraint on  the 
bodies  in B 0, the total volume of  the bodies  in A~ is fixed 
( together  they are in a rigid box), and the total internal 
energy of  the bodies  in B is fixed ( together  they are heat 
insulated from the other  bodies and the environment.]  

The formative laws for the "heatings," etc., will not  be 
detailed, because  it is obvious  h o w  we  shall set them. 

The second  law reads as follows. Let k(e0 and j(e~/3) be 
arbitrarily chosen  elements of  B e and A~, respectively. Then  
we  require 

i ~Bomi (qi + w~) ~ -  -~ - P, L T - -~  

+ ~ X m, q,+w) T T 7 

- ~ ~ • m~ ' >0.  (39) 
o = ,  r - 

i e A ~  

Asymptotic  stability with condit ion (38) is p roved  in the 
classical case as previously. 

6. THE ONSAGER FORMAHSM 
Consider the n bodies  isolated from the environment ,  that 

is, the case treated in Sec. 4. Suppose  the temperature  value 
T 0 and the pressure value Po cor respond  to an equilibrium 

[T 0 = T(e,.0, v~. 0) andP0 = p~(e,.o, v o) for all i = 1, . . . ,  n]. Since 
the constitutive relations are supposed  to be cont inuously  
differentiable funcitons, equalities in (29) and Lagrange's  
mean  value theorem yield that in a ne ighbo rhood  of  the 
equilibrium 

qz=  ~k=l a ,  ~ -  +bik ~ - ~  , 
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(40) 

where  a,k = a~k(T1, Pl . . . .  T,, p,), etc., (i, k = 1 . . . . .  n) are 
cont inuous  functions. 

Then the dynamic  law becomes  

To 

(41) 

Introducing 

{ m~r for r = 1, ... , n 
Y := (42) 

m_,v~_n for r =  n+l,  ... , 2n, 

X r := 

1 1 
for r = 1, . . . ,  n 

P .... P0 for r = n+l,  ... , 2n, 
r_,, r,, 

(43) 

we  can write (41) in the form 

2n 
Y = ~ L,X, ( r  = 1 . . . .  , 2n), (44) 

S=I 

where  L = L (T , ,  p, . . . . .  T,  p,~) (r, s = 1, ... , 2n) are 
cont inuous  functions. 

In the classical case we  have for the total en t ropy (by the 

constraints ~5t=1 m e  i = 0, s  mtvi  = 0)  

1 - ~  miei -~o 

2n 2n 
= X x g  = X  xx. (45) 

r=l r,s=l 

Almost the same formulas are deduced  for the other two 
cases treated in Secs. 2 and 3; the only difference is that the 
cor responding  Lyapunov functions (15) and (24) appear  in 
(45) instead of  the total entropy:  

2n 

= ~, XY.  (46) 
r=l 

We recognize the Onsager  formalism for "fluxes and 
forces." More precisely, the usual formalism corresponds  to 

the approximat ion that the equilibrium value A := L (  7~, p,, 
... , ~,  p0) is taken instead of  L.  

Let me remark that the usual derivation and applications 
of  the Onsager  formalism are not complete ly  clear. One  
starts with the en t ropy product ion  in cont inuum thermody-  
namics, so forces and fluxes are functions defined in space 
and time. Then one  considers fluxes as ordinary time 
derivatives of  extensive variables describing the system? s) 
The formalism is applied to h o m o g e n e o u s  bodies as well as 
for i n h o m o g e n e o u s  bodies, <6) and sometimes care is not  
taken that a flux be a time derivative. Moreover,  one always 
gets the equality (45) regardless of  whether  or not the system 
is closed whereas  we  have seen in our  rigorous f ramework 
that for nonc losed  systems, equality (46) is valid. 

7. DISCUSSION 
First of  all, let us make  a few remarks about  heat insulation, 

which is an everyday notion, important  in applications but 
quest ionable in theory. 

We usually consider  heating as conduct ion  of  internal 
energy. If the n bodies are heat insulated from the environ- 
ment,  internal energy  is conduc ted  be tween  the bodies only. 
So it seems evident that the bodies  are heat insulated from 
the envi ronment  if and only if the total heating is zero: 

mq,  = 0. (47) 
z=l 

On the other  hand, it seems evident as well that if the 
bodies  have a fixed total volume,  then they are heat insulated 
if and only if the total internal energy  is constant. 

It is a simple fact that relations (25) and (26) are not 
equivalent  to (26) and (47): the two pieces of  "evidence" 
contradict each other. Which of  them shall we  prefer? 

To clarify the situation, let us consider  two classical bodies 
with fixed total volume. For convenience,  set 

E := me,  V, := mfv,, Qi := m,ql (i = 1,2). (48) 

Then  

/~, = Q , -  P i~  ( i  = 1,2) (49) 

and 

+ = o. (50)  

If we  require the total heating to be zero, then 

Q1 + Q2 = 0, E 1 +E2 = - (Pl -P2)V1; (51) 

if we  require the total energy  to be fixed, then 

E1 q-E2 = 0, Q1 "{- Q2 = ( P l -  P 2 ) ~  ' (52) 
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Equations (51) and (52) are equivalent if and only if 

(p, - pc) ~ = 0 for all possible processes, that is. if and only 
if (p~ - p2)fx(T~, p~, ~, pc) = 0 for all T~, p~, 7~, Pv which 
does not hold in general; for example,  in the simplest case 
,/" = [3(p, - P 2 )  with a positive [3 we have (p, - p , _ ) ~  = 
[3 (p~ - P S  > 0, and equality holds if and only if p~ = Pc' 

Thus if the total heating vanishes, in general, the total 
internal energy is not conserved (decreases monotonically in 
the simplest case); if the total internal energy is conserved, 
the total heating does not vanish, in general (is non-negative 
in the simplest case). Which of (51) and (52) corresponds to 
the heat insulation of the bodies together? 

To get an answer, let us examine the approximation upon 
which "ordinary ''<~ thermodynamics is based: the bodies are 
considered homogeneous  and internal motion is neglected. 
In fact, if the two bodies interact with each other, changing 
volumes (the volumes of the bodies can change, although 
the total volume is fixed), then internal motion appears  to 
which kinetic energy belongs; so a part of the internal energy 
is converted into kinetic energy. In fact, the total internal 
energy is not constant in a process. However,  the kinetic 
energy of internal motion will dissipate into internal energy, 
and, finally (in equilibrium), the value of the total internal 
energy wilt equal the original one. In ordinary thermody- 
namics our models do not consider the kinetic energy of 
internal motion, so we have to understand what happens by 
means of the internal energy. The total internal energy varies 
slightly in the process, but its initial and final values coincide: 
a monotone  decrease of the total internal energy is incorrect; 
hence (51) cannot be accepted. 

On the other hand, we can consider the total internal 
energy to be constant in the whole process (to such an extent 
that the body is homogeneous) ,  and we have to modify our 
conception of heating. In addition to the direct conduction 
of internal energy, heating includes the indirect conduction 
as well: internal energy --+ kinetic energy -+ internal energy. 
In this way it is comprehensible why the total heating is not 
necessarily zero in a heat-insulated system. 

Thus we can accept that if the total volume is fixed, then 
heat insulation is described by the conservation of the total 
internal energy. 

On the other hand, if the total volume is not fixed, the 
conservation of energy does not mean heat insulation. It is 
clear from the above that zero total heating can express heat 
insulation in particular cases only, when  indirect heat 
conduction is not considered. Thus we are left with the 
important open question: which mathematical relation de- 
scribes heat insulation in general? 

Second, the present theory of ordinary thermodynamics 
does not include the notion of entropy, which appears  now 
only as an auxiliary quantity; in this context  entropy has no 
conceptual  importance (of course, this assertion does not 
concern the role of entropy in other aspects, e.g., in statistical 
physics). If entropy exists, we can easily construct a Lyapunov 
function; hence asymptotic stability is proved immediately. 

The role of entropy is similar to that of a potential in 
mechanics. The axioms of mechanics concern forces and do 
not use the notion of potentials; however,  some formulas, 
calculations, and deductions are much simpler if the force 
has a potential. 

Note that, even if entropy exists, the Lyapunov function is 
the total entropy if and only if the bodies together are 
isolated from the environment (see Sec. 4). In other cases the 
Lyapunov function is the total entropy plus a convenient  
term (see Secs. 2 and 3). In the literature entropy often 
appears as a Lyapunov function. <> However,  in those 
instances continuous media are described by partial differ- 
ential equations for which the extension of Lyapunov's 
theory is questionable. The corresponding formulas are 
obscure from a mathematical point of view. 

Third, in usual equilibrium thermodynamics the first law 
- implicitly or explici t ly-  is degraded to define the heating~S~; 
even in a new approach it is utilized only to rule out the 
heating from the constitutive relations/9~ 

After having pronounced the existence of entropy, the first 
law is used merely to fix the properties of the entropy listed 
in (6). 

In usual theories the second law postulates some extremal 
property of the entropy. Henceforth the conditions and 
circumstances are confused. Namely, up to now a single 
homogeneous  body has been  considered, and the general 
formulation of the second law suggests that we continue to 
consider a single homogeneous  body. 

Clausius' inequality dS > 8Q/T, a common form of the 
usual second law, obviously must refer to a single homoge-  
neous body because it contains a single temperature value. 
However,  the assertion "the entropy of an isolated system 
cannot decrease, ''~1~ deduced from the above inequality for 
8Q = 0, tacitly concerns an inhomogeneous  body (which lies 
outside the competence  of equilibrium theory) or a system 
of homogeneous  bodies, because no change can occur at all 
in a single isolated homogeneous  body. Unfortunately, even 
if the entropy increase is postulated explicitly for a system of 
homogeneous  bodies, ~11~ the entropy increase for a single 
body appears surprisingly and without justification) le~ 

Furthermore, according to the common conception, dS = 
8 Q / T  if and only if the process is reversible. Nevertheless, 
we find the following assertion as well: "in a quasi-static 
process the increase in entropy is given by dS = 8Q/T. ''~2~ 
Perhaps the obscure content of such statements suggests the 
different opinion that "there is no special relation between 
entropy change and heat flow for general irreversible 
changes."<~ 

I suspect that Clausius' inequality is a consequence of 
tacitly supposed and incompatible "evidence." 

Let us take two classical bodies isolated together and use 
the notations of  (48). The isolation is described by the 
"evidence" (50) and (52). The first body will be regarded as 
the body submitted to our investigation and the second one 
as the tool of investigation (experimental instrument). Let us 
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omit the subscript 1 and substitute a prime for the subscript 
2. Accepting the "evidence" ( p - p ' ) 1 )  > 0, we have Q + Q' 

> 0. Here, TS is substituted for Q, where S is the entropy of 

the investigated body: TS: + Q' > 0. In practice, we can control 
the h e a t - Q '  supplied by the experimental instrument. 
Supposing the "evidence," that is, the heat absorbed by the 
body equals the supplied heat, Q = - Q ' ,  we arrive at the 

inequality 7S _> Q. Furthermore, for a "quasi-static process," 
that is, for a "process in which the body is always in 
equilibrium with the experimental device," thus for a process 
in which T= T'  and p = p' ,  we should have Q + Q' = 0, or 

with the above manipulation, TS = Q. 
Fourth, in the present theory of ordinary thermodynamics 

the troubles with Clausius' inequality are removed. As it has 
been pointed out, (14) for a single classical body in a given 

environment, we always have Ts "= q -  or S = Q/Twi th  Q := 
mq, s = ms, where rn is the mass of the body - and this 
equality is strictly related to asymptotic stability, that is, 
irreversibility. In a process, entropy can decrease or in- 
crease. If the single body is isolated, then no change can 
occur; there is no nonconstant process. Of course, then 
entropy is constant as well. 

For a system of classical bodies we now have that 

i=I i=I ~ ; 

entropy can increase or decrease, in general. 
The basic property of a Lyapunov function assuring 

asymptotic stability is that in a nonequilibrium process, it is 
strictly monotone increasing (its derivative along the differ- 
ential equation has a strict maximum at an equilibrium). If 

the bodies together are isolated from the environment, then 
the total entropy is the Lyapunov function; thus the total 
entropy increases in a nonequilibrium process (see Sec. 4). 

Fifth, usual equilibrium thermodynamics abounds in tacit 
assumptions that do not follow form the axioms. For 
instance, consider "two simple systems within a closed 
cylinder, separated from each other by an internal piston." 
Then one "frees the piston," "strips the adiabatic coating," 
etc., and as a consequence,  "various internal processes are 
induced. ''~>) These considerations are based on "evidence"; 
there is no formulation in the axioms describing what 
happens  under given circumstances, what causes changes, 
why and how a process comes into being. 

The formative laws and the dynamic laws in the present 
theory of ordinary thermodynamics are destined to answer 
these questions, that is, to formulate mathematically the tacit 
assumptions. 

A typical piece of"evidence" that does not follow from the 
usual axioms is that "the induced pressure difference tends 
to move the piston inward, ''<~5> that is, in our notations at the 

beginning of Sec. 7, if p~ -P2  < 0, then q < 0. This seems 
plausible from a pure mechanical point of view, but even if 
it were correct, it should be part of the axioms of thermody- 
namics. However,  since thermal and mechanical effects are 
now coupled, one can doubt the truth of this "evidence." 
Another well-known piece of "evidence" is that "heat flows 
from hot to cold." 

The second law in the present theory of ordinary thermo- 
dynamics is destined to incorporate the tendencies of 
processes that correspond to the "evidence" described in this 
paper  into the foundation of thermodynamics. 
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R~sum~ 
Les lois dynamiques pour  des corps thermodynamiques en interaction l'un avec l'autre 
et avec leur environnement sont ~tablies. La tendence d l'~quilibre (stabilit~ asymptotique) 
du processus de tels syst~mes est examinee et le rdle de l'entropie discut~. 
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