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Abstract. The energy of a gas in an insulated equilibrium is constant which can-

not be exceeded by the energy of a molecule. Consequently, the distribution of

momentum (velocity) of a molecule cannot be Maxwellian because it admits a mol-

ecule to have arbitrarily large energy. Starting with the microcanonical ensemble

corresponding to the constant energy, we derive new non-relativistic and relativistic

distributions which, in the limiting case of in�nitely many molecules, result in the

Maxwell and J�uttner distribution, respectively.
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1. Introduction

The Maxwell distribution of momentum (velocity) of molecules of an ideal gas

in equilibrium is a well working and experimentally veri�ed formula of kinetic

theory. A recent paper ([1]) asserts that "It is impossible to consider a perfect gas

of point molecules obeying special relativity. In such a gas the molecules do not

interact, except with the walls of the container. In the approximation where the

container is a rigid cube, the momentum component which is orthogonal to the

wall changes sign. So does the corresponding speed component. The independence

of the x; y; z components provides us with Maxwell-type distribution laws, laws

of the exponential form exp[��(v

2

x

+ v

2

y

+ v

2

z

)] and exp[��(p

2

x

+ p

2

y

+ p

2

z

)]. These

expressions are incompatible if p 6= mv."

On the contrary, there are treatments of relativistic kinetic theory and the

J�uttner distribution { the relativistic counterpart of the Maxwell distribution {

for the momentum of gas molecules is well known ([2],[3],[4]) and recently some

papers generalize that distribution for the case when the mass of particles is a

random variable ([5],[6]).

Nevertheless, it is worth examining the role of independence and the relation

between the non-relativistic and relativistic results; for this purpose let us recall

the deductions of the distributions.

There are three methods of obtaining the Maxwell distribution.

1. Maxwell ([7]) deduced his distribution from two elementary assumptions:

1) the distribution does not depend on the direction of velocity 2) the Cartesian

components of velocity are independent. This simple deduction can be found in

most of the textbooks on kinetic theory and it is known generally ([9],[10]).

2. Later Maxwell ([8],[11]) proved that his distribution is the only one for which

the collision integral is zero, thus the Maxwell distribution can be deduced as the

equilibrium solution of the Boltzmann equation.

3. According to Boltzmann's H-theorem, an equilibrium solution f of the Boltz-

mann equation maximizes the entropy �k

R

f(p) log(p) dp; then the Maxwell dis-

tribution is deduced as the distribution which maximizes the entropy, provided

the expectation of energy (and momentum) is �xed ([9]).

Maxwell himself felt that the assumption of independence in his �rst deduction

is questionable. The other deductions do not use independence but according to

the result { to the Maxwell distribution { the momentum (velocity) components

are independent.

The momentum components and the velocity components are not independent

in the J�uttner distribution.

J�uttner found his distribution by the third method, applied to the relativistic

case ([2],[3]). The same result comes from the second method, too, applied to the

relativistic case ([4]). Of course, the application of the �rst method cannot lead

to the J�uttner distribution.

Let us return to the non-relativistic case. Since an equilibrium distribution

(which is time independent and homogeneous in space) is looked for, in all the

three methods { explicitely or implicitely { it is supposed that the gas is put into

a container with rigid walls (the volume is constant).

All the three methods yield a distribution of the form expf��

jpj

2

2m

g and the

2



physical meaning of � is not speci�ed by the methods. To determine �, Maxwell

followed Clausius' argument: the gas is in a container with rigid and elastic walls,

and there is no interaction besides collision. The elastic collison of the molecules

with the walls yield the pressure which, together with the state equation of ideal

gases, result in � =

1

kT

.

It is an important fact, however, that rigid and elastic walls contradict the

Maxwell distribution: if the walls are rigid and elastic then the energy of the

gas is constant, consequently the energy of a molecule cannot be larger than this

constant value; on the contrary, according to the Maxwell distribution, the energy

of a molecule can be arbitrarily large with non-zero probability: the momentum

distribution of molecules of a gas in a container with rigid and elastic walls cannot

be Maxwellian.

In other words, if the momentum distribution of molecules is Maxwellian then

the gas cannot be in a container with rigid and elastic walls i.e. the gas cannot be

adiabatically insulated.

The Maxwell distribution seems to be compatible with a container having rigid

and diathermic walls in a heat bath. Then the walls are "elastic in the mean"

i.e. energy is not conserved in each collision but the avarege of energy in (a large

number of) collisions is conserved. It is not hard to see that Clausius' argument

can be applied in this case, too, and � =

1

kT

can be derived.

Nevertheless, the question remains: what is the distribution of momentum (ve-

locity) if the walls are rigid and elastic (the gas has constant volume and is adia-

batically insulated)?

In this paper we approach the problem on the base of the theory of Gibbs

ensembles, both non-relativistically and relativistically. A strictly constant energy

of the gas (adiabatic insulation) corresponds to a microcanonical ensemble; a �xed

avarege energy of the gas (heat bath) corresponds to a canonical ensemble.

2. Mathematical tools

1. First of all we recall a usual notation: if U and V are sets and f : U ! V is

a function and G is a subset of V then

�1

f (G) := fu 2 U j f(u) 2 Gg:

2. In statistical physics the phase space of one particle is called the �-space and

the phase space of a system of N particles is called the �-space; in other words,

�-space is R

6

and �-space is (R

6

)

N

.

Having these in mind we shall consider X := R

d

and X

N

where d is a positive

integer. Subsets of X and X

N

will always mean Borel subsets; they represent the

events of a particle and a system of particles, respectively. A probability law P

on X will be called a distribution and a probability law L on X

N

will be called an

ensemble.

We assume that the particles are indistinguishable; this will be reected in

the fact that the ensembles are invariant under permutations of particles. More

precisely, if � is a permutation of f1; : : : ;Ng then we put R

�

(x

1

; : : : ;x

N

) :=

(x

�(1)

; : : : ;x

�(N)

) for (x

1

; : : : ;x

N

) in X

N

and we require that every ensemble L

satisfy L �

�1

R

�

= L.
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The i-th canonical projection is the map pr

i

: X

N

! X; (x

1

; : : : ;x

N

) 7!

x

i

(i = 1; : : : ;N). If A is a subset of X then L(

�1

pr

i

(A)) is the probability that the

event A happens to the i-th particle in the ensemble L. In other words, L�

�1

pr

i

is a

distribution; because of the permutation invariance, this is the same distribution

for all i, called the distribution determined by the ensemble and is denoted by P

L

.

Thus P

L

(A) is the probability that the event A happens to an arbitrarily chosen

particle.

We say that an ensemble L has a density function if there is a ' : X

N

! R

such that

L(B) =

Z

B

'(x

1

; : : : ;x

N

) dx

1

; : : : ; dx

N

for all subsets B of X

N

(note that x

k

denotes d variables for all k).

It is de�ned similarly, according to the sense, that a distribution has a density

function.

If the ensemble L has a distribution function ' then the distribution P

L

has

the density function

x 7! �(x) :=

Z

'(x;x

2

; : : : ;x

N

) dx

2

: : : dx

N

:

It may happen that the ensemble L has no density function but P

L

does have.

3. The Hamiltonian is a continuously di�erentiable functionH : X

N

! Rwhose

derivative DH (the vector consisting of the partial derivative ofH) is nowhere zero.

The canonical ensemble corresponding to the Hamiltonian H and to the �xed

temperature T is given by the density function

C

N;T

exp

�

�

H

kT

�

where C

N;T

is a constant.

The microcanonical ensemble corresponding to the Hamiltonian H and to the

�xed energy value E is concentrated onto the surface S :=

�1

HfEg and is uniformly

spread with respect to the surface measure � of S, divided by the modul of the

derivative of H; in symbols, it is

C

N;E

�

jDHj

where C

N;E

is a constant.

4. We recall that if a surface S in R

n

is the graph of a function u : R

n�1

! R

(i.e. S = fx; u(x)g) then the surface measure is given by

p

1 + jDu(x

1

; : : : ; x

n�1

)j

2

dx

1

: : : dx

n�1

:

Suppose now that S =

�1

HfEg. Then the equality H(x

1

; : : : ; x

n

) = E allows us

to express, at least locally, a variable as a function of the other n � 1 variables;

without loss of generality, we take the n-th variable:

x

n

= u(x

1

; : : : ; x

n�1

):

4



Then (a part of) S is parametrized by the variables x

1

; : : : ; x

n�1

i.e. it becomes

the graph of u. Moreover, we have

@u

@x

k

= �

@H

@x

k

@H

@x

n

(k = 1; : : : ; n � 1):

Consequently, in this parametrization,

�

jDHj

becomes

1

j

@H

@x

n

j

dx

1

: : : dx

n�1

:

5. We shall consider an ideal gas consisting of N identical particles with mass

m in a container with rigid walls. This means that there is no potential energy,

the Hamiltonian does not depend on position, consequently the spatial part of the

ensembles and distributions is trivial, so it is out of interest; we shall concentrate

on the momentum part i.e. we take X := (R

3

)

N

(N copies of the momentum

space). The Hamiltonian has the form

H(p

1

; : : : ;p

N

) =

N

X

i=1

h

(

p

i

)

where h is the kinetic energy of a particle,

h(p) =

(

jpj

2

2m

non-relativistically;

c

p

jpj

2

+m

2

c

2

�mc

2

relativistically

where c is the light speed.

3. Ideal gas in a container with rigid

and diathermic walls in a heat bath

In this case the gas corresponds to a canonical ensemble, whose distribution

function, both non-relativistically and relativistically, is

C

N

T

exp

�

�

H(p

1

; : : : ;p

N

)

kT

�

=

N

Y

i=1

C

T

exp

�

�

h(p

i

)

kT

�

where T is the temperature of the heat bath. The distribution determined by this

ensemble is

C

T

exp

�

�

h(p)

kT

�

which is the Maxwell distribution in the non-relativistic case and the J�uttner

distribution in the relativistic case.
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4. Ideal gas in a container with rigid and elastic (adiabatic) walls

4.1. Dependence of components of momentum.

First of all we show that momentum (velocity) components cannot be indepen-

dent in this case. Let E denote the constant total kinetic energy of the gas. Then

the momentum p = (p

1

; p

2

; p

3

) of a particle can vary in the set

B

E

:= fh(p) � Eg =

�

fjpj

2

� 2mEg

fjpj

2

� 2mE +E

2

=c

2

g;

here and in the following the upper and the lower lines refer to the non-relativistic

and relativistic case, respectively.

We accept that B

E

is the support of the distribution P of momentum values

which means roughly that the momentum values outside of B

E

have zero proba-

bility and every momentum value in B

E

occurs with non-zero probability; more

precisely, if G is an open subset then P (G) = 0 if G is disjoint from B

E

and

P (G) 6= 0 if G is not disjoint from B

E

.

For l = 1; 2; 3 let G

l

denote the set of momentum values (p

1

; p

2

; p

3

) for which

2mE

p

3

< p

l

holds in the non-relativistic case and the corresponding inequality is

required in the relativistic case.

Note that

{ G

l

-s are open,

{ G

l

-s are not disjoint from B

E

,

{

T

3

l=1

G

l

is disjoint from B

E

.

Consequently, P (G

l

) 6= 0 for all l = 1; 2; 3 and P

�

T

3

l=1

G

l

�

= 0.

Suppose the momentum components are independent under the probability law

P ; then

3

Y

i=1

P (G

l

) = P

 

3

\

l=1

G

l

!

which implies that one of P (G

l

)-s is zero; this contradiction proves that the mo-

mentum components cannot be independent.

Then it is trivial that the velocity components are also dependent in the non-

relativistic case for velocity is proportional to momentum.

Velocity components are dependent in the relativistic case, too, since we can

copy the above proof: the support of the probability law for velocity v is fjvj � cg.

4.2. General aspects of the distribution.

Since the total energy E of the gas is constant, the gas corresponds to a micro-

canonical ensemble.

We have that

S :=

�1

HfEg =

8

<

:

n

(p

1

; : : : ;p

N

)

�

�

P

N

i=1

jp

i

j

2

2m

= E

o

n

(p

1

; : : : ;p

N

)

�

�

P

N

i=1

c

p

jp

i

j

2

+m

2

c

2

�Nmc

2

= E

o

;

Enumerating the momentum components from 1 to 3N (i.e taking the identi�-

cation (R

3

)

N

= R

3N

by (p

i

)

l

=: p

3(i�1)+l

, i = 1; : : : ;N; l = 1; 2; 3), we split S into
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three disjoint subsets S

+

,S

0

and S

�

, consisting of the elements for which p

3N

is

positive, zero and negative, respectively. S

0

has zero measure, and we can express

p

3N

as a function of the other components both on S

+

and S

�

:

p

3N

=u

�

(p

1

; : : : ; p

3N�1

) =

8

>

<

>

:

�

q

2mE �

P

3N�1

k=1

p

2

k

�

r

�

E+mc

2

�

P

N�1

i=1

h(p

i

)

c

�

2

� p

2

3N�2

� p

2

3N�1

�m

2

c

2

;

of course, the functions u

�

are de�ned on the subset where the expression under

the square root is positive.

In other words, S

+

and S

�

are represented as the graph of the functions u

+

and

u

�

, respectively. Then, according to the formulae in Section 2, the probabililty of

the event B of the gas (B is a subset of R

3N

) under the microcanonical ensemble

in question is

C

N;E

X

+;�

Z

�1

u

�

(B\S

�

)

1

�

�

�

@H

@p

3N

�

�

�

�

dp

1

: : : dp

3N�1

where

�

�

�

�

@H

@p

3N

�

�

�

�

�

:=

�

�

�

�

@H

@p

3N

(p

1

; : : : ; p

3N�1

; u

�

(p

1

; : : : ; p

3N�1

))

�

�

�

�

=

8

>

>

>

<

>

>

>

:

p

2mE�

P

3N�1

k=1

p

2

k

m

c

2

v

u

u

t

 

E+mc

2

�

P

N�1

i=1

h(p

i

)

c

!

2

�p

2

3N�2

�p

2

3N�1

�m

2

c

2

E+mc

2

�

P

N�1

i=1

h(p

i

)

:

(1)

According to the de�nition of the distribution determined by the ensemble in

question, the probability of the event A of a particle (A is a subset of R

3

) under the

distribution is the probability of

�1

pr

i

(A) under the ensemble where i is an arbitrary

number between 1 and N . Here in the general considerations and in the non-

relativistic case we take i = 1 whereas in the relativistic case we �nd convenient

to choose i = N � 1.

For p = (p

1

; p

2

; p

3

) 2 B

E

, let us introduce the notation

V

p

:= f(p

4

; : : : ; p

3N�1

j (p

1

; : : : ; p

3N�1

) is in the domain of u

�

g:

Then we have that the probability of A is zero if A is disjoint from B

E

and it is

C

N;E

Z

A

X

+;�

Z

V

p

1

�

�

�

@H

@p

3N

�

�

�

�

(dp

1

dp

2

dp

3

)dp

4

: : : dp

3N�1

if A is contained in B

E

.

Since

�

�

�

@H

@p

3N

�

�

�

+

=

�

�

�

@H

@p

3N

�

�

�

�

, we obtain that the distribution has the density func-

tion

D

N;E

(p) =

(

K

N;E

(p)

R

B

E

K

N;E

(p

0

) dp

0

if h(p) � E;

0 if h(p) > E

(2)
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where

K

N;E

(p) :=

Z

V

p

1

�

�

�

@H

@p

3N

�

�

�

+

dp

4

: : : dp

3N�1

: (3)

4.3. The non-relativistic case.

4.3.1. The distribution.

Writing 2mE �

P

3N�1

k=1

p

2

k

= (2mE � jpj

2

) �

P

3N�1

k=4

p

2

k

and applying polar

coordinates in R

3N�4

, in view of (1) we have for the function de�ned in (3) that

K

N;E

(p) = a

p

2mE�jpj

2

Z

0

1

p

2mE � jpj

2

� r

2

r

3N�5

dr = b

�

2mE � jpj

2

�

3N�5

2

where a and b are constants.

Applying polar coordinates in R

3

, a convenient substitution and the formula

([12])

1

Z

0

x

�

(1� x)

�

dx =

�(� + 1)�(� + 1)

�(� + � + 2)

;

we can calculate the integral of

�

2mE � jpj

2

�

3N�5

2

with respect to p and as a �nal

result we have according to (2) that the distribution of momentum of particles

of a non-relativistic ideal gas in a container with rigid and elastic walls has the

following density function:

D

N;E

(p) =

8

<

:

�

(

3N

2

)

�

(

3N�3

2

)

�

3=2

(2mE)

3=2

�

1�

jpj

2

2mE

�

3N�5

2

if jpj

2

� 2mE;

0 if jpj

2

> 2mE:

(4)

This is a distribution di�erent from the Maxwellian one; Figures 1 and 2 com-

pare them for neon molecules at a normal temperature, in the cases N = 10 and

N = 100, respectively (m = 3; 36 � 10

�26

kg, T = 300K, E =

3

2

kTN); the fat lines

draw the Maxwell distribution, the thin lines draw our distribution. The di�erence

between the two distributions cannot be observed in this scale if N � 1000.

We see that though the analytic forms of the two distributions are di�erent,

their graphs are similar even for few molecules and they coincide practically for a

large number of molecules. This is con�rmed by the following result.

4.3.2. The thermodynamic limit.

It is a routine to calculate the expectation of the energy of a particle under the

distribution (4):

�

�

3N

2

�

�

�

3N�3

2

�

�

3=2

(2mE)

3=2

Z

jpj

2

�2mE

jpj

2

2m

�

1�

jpj

2

2mE

�

3N�5

2

dp =

E

N

:
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Let us increase the number of particles of the gas in such a way that the ex-

pectation of the energy of a particle { in other words, the speci�c energy E=N {

is constant. Putting

E

N

=:

3

2

kT:

we obtain that

D

N;(3N=2)kT

(p) =

 

�

�

3N

2

�

�

�

3N�3

2

� �

3N

2

�

!

�

m

2�kT

�

3=2

�

1�

jpj

2

2mkT

1

3N=2

�

3N�5

2

if jpj

2

� (3mkT )N .

Then Stirling's formula ([12])

�(�+ 1) = �

�+1=2

e

��

p

2�

�

1 + Ordo

�

1

�

��

and the well known limit procedure of obtaining the powers of e yield that our

distribution tends to the Maxwellian one:

lim

N!1

D

N;(3N=2)kT

(p) =

�

m

2�kT

�

3=2

e

�

jpj

2

2mkT

:

It is worth mentioning that the convergence is uniform.

4.4. The relativistic case.

4.4.1. An integral form of the distribution.

Now we choose the (N � 1)-th particle to determine the distribution from the

microcanonical ensemble. According to (1), the function de�ned in (3) is of the

form

K

N;E

(p) =

Z

V

p

�

E +mc

2

�

N�1

P

i=1

h(p

i

)

�

dp

1

: : : dp

N�2

dp

3N�2

dp

3N�1

c

2

v

u

u

u

t

0

@

E+mc

2

�

N�1

P

i=1

h(p

i

)

c

1

A

2

� p

2

3N�2

� p

2

3N�1

�m

2

c

2

where p := p

N�1

; take care that N � 1 vector variables p

1

; : : : ;p

N�1

and two

scalar variables p

3N�2

; p

3N�1

are involved in this formula.

The integration with respect to the two scalar variables can be calculated by

the use of polar coordinates; the integration extends over the region described by

the inequality

p

2

3N�2

+ p

2

3N�1

<

0

B

B

@

E +mc

2

�

N�1

P

i=1

h(p

i

)

c

1

C

C

A

2

�m

2

c

2

:
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With the notation

F

N;E

(p

1

; : : : ;p

N�1

) :=

=

E +mc

2

�

N�1

P

i=1

h(p

i

)

c

2

v

u

u

t

 

E +mc

2

�

P

N�1

i=1

h(p

i

)

c

!

2

�m

2

c

2

(5)

(the domain of F consists of the momentum values for which the expression under

the square root is positive), we obtain

K

N;E

(p) = 2�

Z

F

N;E

(p

1

;p

2

; : : : ;p

N�2

;p) dp

1

: : : dp

N�2

(6)

where the integration extends over the region

(

(p

1

; : : : ;p

N�2

)

�

�

N�2

X

i=1

h(p

i

) < E � h(p)

)

:

The density function D

N;E

of the momentum distribution of particles of a rel-

ativistic ideal gas in a container with rigid and elastic walls is obtained from (5)

and (6) by the formula (2).

If m 6= 0 then we cannot give this density function in an explicit form. It is not

hard to see that the non-relativistic limit (when c tends to in�nity) of this density

function equals the one given in (4).

4.4.2. The distribution for the photon gas.

If m = 0 then we can calculate the above integrals easily. Namely, in this case

K

N;E

(p) =

2�

c

Z

 

E

c

� jpj �

N�2

X

i=1

jp

i

j

!

2

dp

1

: : : dp

N�2

;

the integration extends over the region where the expression between parantheses

is positive. Applying the substitution p

i

:=

�

E

c

� jpj

�

z

i

(i = 1; : : : ;N � 2), we

obtain that

K

N;E

(p) = const.

�

E

c

� jpj

�

3N�4

:

Using polar coordinates in R

3

, we �nd that

Z

jpj<E=c

�

E

c

� jpj

�

3N�4

dp = 4�

E=c

Z

0

�

E

c

� r

�

3N�4

r

2

dr =

= 4�(E=c)

3N�1

�(3N � 3)�(3)

�(3N)

:

Consequently, for m = 0, we have the explicit form

D

N;E

(p) =

1

8�

�

3Nc

E

�

3

�

1�

3

3N

��

1�

2

3N

��

1�

1

3N

��

1�

cjpj

E

�

3N�4

:

(7)
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4.4.3. The thermodynamic limit.

As in the non-relativistic case, we easily �nd that the expectation of the energy

of a photon is E=N . Then putting

3kT :=

E

N

;

keeping this quantity constant and letting N tend to in�nity in (7), we obtain as

a uniform limit the well known usual density function of the photon gas ([3]):

lim

N!1

D

N;3NkT

(p) =

1

8�

�

c

kT

�

3

exp

�

�

cjpj

kT

�

:

Though the density function for m 6= 0 is not given explicitely by elementary

functions, we can determine its thermodynamic limit as follows.

We let the number of particles increase in such a way that the speci�c energy is

constant i.e. we put E = Ne where e is a �xed nonnegative constant. For the sake

of simplicity, now the functions de�ned in (5), (6) and the density funtion will be

labelled by a single subscript referrring to the number of particles: K

N

, F

N

and

D

N

. Moreover, we note that all these functions depend on momenta through the

hamiltonians:

K

N

(p) = 2��

N

(h(p)); D

N

(p) = �

N

(h(p)); (8)

F

N

(p

1

; : : : ;p

N�1

) = �

N

(h(p

1

); : : : ; h(p

N�1

))

where

�

N

(x

1

; : : : ; x

N�1

) :=

Ne+mc

2

�

N�1

P

i=1

x

i

c

2

v

u

u

u

u

u

u

t

0

B

B

@

Ne +mc

2

�

N�1

P

i=1

x

i

c

1

C

C

A

2

�m

2

c

2

is de�ned for nonnegative real numbers x

1

; : : : ; x

N�1

which satisfy

P

N�1

i=1

x

i

< Ne.

It is obvious that

�

N�1

(x

1

; : : : ; x

N�2

+ x

N�1

� e) = �

N

(x

1

; : : : ; x

N�1

) = �

N+1

(x

1

; : : : ; x

N�1

; e):

As a conseqence, according to (6), we have for h(p) < Ne

�

N

(h(p)) =

Z

P

N�2

i=1

h(p

i

)<Ne�h(p)

�

N

(h(p

1

); : : : ; h(p

N�2

); h(p)) dp

1

: : : dp

N�2

=

Z

�

Z

�

N�1

(h(p

1

); : : : ; h(p

N�2

) + h(p)� e) dp

1

: : : dp

N�3

�

dp

N�2

=

Z

h(p

0

)<Ne�h(p)

�

N�1

(h(p

0

) + h(p)� e) dp

0
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and

Z

h(p)<Ne

�

N

(h(p)) dp =

Z

�

N

(h(p

1

); : : : ; h(p

N�2

); h(p

N�1

)) dp

1

: : : dp

N�2

dp

N�1

=

Z

P

N�1

i=1

h(p

i

)<Ne

�

N+1

(h(p

1

); : : : ; h(p

N�1

); e) dp

1

: : : dp

N�1

= �

N+1

(e):

Thus from (2) and (8) we get the following iteration (with x := h(p) < Ne):

�

N

(x) =

�

N

(x)

�

N+1

(e)

=

�

N

(e)

�

N+1

(e)

R

�

N�1

(h(p

0

) + x� e) dp

0

�

N

(e)

= �

N

(e)

Z

h(p

0

)<Ne

�

N�1

(h(p

0

) + x � e) dp

0

for the distribution.

Letting N tend to in�nity and supposing that the sequence of density functions

is uniformly convergent as in the previous two cases, we get the following integral

equation for the limit distribution (which will be continuous)

�(x) = �(e)

Z

�(h(p

0

) + x� e) dp

0

(0 � x; 0 < e)

where the integration extends over all momentum space. Then

�(x+ e) = �(e)

Z

�(h(p

0

) + x) dp

0

and taking the limit e! 0, we get

�(x) = �(0)

Z

�(h(p

0

) + x) dp

0

from which we conclude that

�(0)�(x+ e) = �(x)�(e) (0 � x; 0 � e):

Since � is continous, it follows that

�(x) = C exp(��x)

where C and � are positive constants (the positivity of � is assured by the inte-

grability of p 7! �(h(p))).

Thus accepting that � =

1

kT

, we obtained that the thermodynamic limit of our

distribution is the J�uttner distribution:

lim

N!1

D

N

(p) = �(h(p)) = C exp(�

c

p

p

2

+m

2

c

2

�mc

2

kT

):
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5. Discussion

The Maxwell distribution and the J�uttner distribution correspond to an ideal

gas in a container with rigid and diathermic walls in a heat bath. In this paper we

have given the distribution of momentum for a gas in a container with rigid and

adiabatic (elastic) walls, both non-relativistically and relativistically. The non-

relativistic density function of the distribution is given explicitely by the formula

(4); the relativistic density function is presented in an implicit form by the expres-

sions (5), (6) and (2) which result in the explicit function (7) in the case of zero

mass (photon gas). The thermodynamic limit of our distributions gives back the

usual ones.

13
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