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1. Introduction 

The principle of material frame-indifference (material objectivity) is funda- 
mental in the theory of continuous media (thermomechanics). It states that the 
response of the material is independent of the observer ([1], [5], [7]). However, 
the usual formulation of this principle is insufficient from a mathematical point 
of view, because one describes mathematical formulae involving the notion of 
observers without defining mathematically the notion of observer. Thus the 
formulae have dubious mathematical base and this involves the danger of mistakes 
or confusion. Moreover, among the quantities in complicated calculations related 
to observers one often finds the objective ones with great effort ([3], [4], [8]). 

The crucial point is that in the usual considerations space-time appears al- 
ways in coordinates corresponding to observers. An attempt was made in [6] 
to get rid of this uneasiness. However, in the outlined framework of "neoclassical 
space-time" the observers (frames of reference) are not ruled out from the de- 
scription of processes; on the contrary, the definition of processes contains an 
observer. 

Here a new way is proposed. First a space-time model is defined mathematically 
(observers are only determined by the notions of the space-time model) then all 
physical relations--Newtonian equation, balance equations, Boltzmann equation 
etc.--must be formulated in absolute terms, i.e. only with the notions of the space- 
time model that are independent of observers. Moreover, in every respect, we may 
only use notions that are defined mathematically in the framework of the space-time 
model. 

First we survey the nonrelativistic space-time model which is detailed in [2]. 
According to our conception, we have to construct a model that reflects the 

properties of space-time as we experience them, and that enables us to treat all 
physical notions connected with space-time in the structure of the model. 
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2. Tensor products and quotients 

First o f  all we need an appropriate mathematical tool for physical dimensions. 
Although, generally, in mathematical  formulae the time-lapse between two 
happenings is considered as a real number, we well know that this is not right. 
The real number 3 is not a time period, in contradistinction to 3 seconds or 3 hours. 
The set of  time periods consists in the positive multiples of  a chosen one (e.g. 
second). I t  is convenient to introduce the negative multiples, too, and the set of  
all such periods can be endowed uniquely and in a natural way with an addition 
and multiplication by real numbers. Thus we postulate that the set of  time periods 
is a one-dimensional real vector space I, which is oriented, i.e. one of  its "ha l f  
lines" is chosen as consisting in the positive elements. 

The same can be said about the distances between space points. The one- 
dimensional oriented vector space of  distances is denoted by D. 

The physical dimension of  velocity is obtained by dividing space distances by 
time periods. For  the physical dimension of  acceleration we divide space distances 
by the square of  time periods. Thus we need rules concerning how to multiply 
and divide elements of  several one-dimensional vector spaces. The convenient 
mathematical tools are tensor products and quotients. 

Avoiding the abstract definitions, here we only treat the most frequently used 
realizations of  tensor products and quotients o f  finite-dimensional real vector 
spaces. 

The dual X* of  a vector space X is the vector space of  real-valued linear func- 
tionals on X. We have (X*)* ---- X in the finite-dimensional case. 

I f  V is another vector space, the tensor product V | X is identified with 
Lin (X*, V), the vector space of  linear maps from X* into V; for v E V, x E X, 
v | x is the linear map that sends p E X* into (p  t x) v, where (p  [ x) is the 
value of  the linear functional p at x. Note that in particular, • | X = 
Lin (X*, R) = (X*)* = X. 

We often find it convenient to omit the symbol for tensor product when multi- 
plying by elements of  one-dimensional vector spaces; in other words, if  A is a 
one-dimensional vector space, we write ax instead of  a @ x (a E A, x E X). 

X 
I f  A is a one-dimensional vector space, we can form -~-,  the tensor quotient 

x 
of  X by A, which is identified with Lin (A, X); for x E X, 0 + a E A, - -  is the 

a 

b b 
linear map that sends b E A i n t o - -  x, where - -  is the unique real number such 

a a 

b 
that - -  a = b. a 

There are some relations among tensor products and quotients. First of  all 
we derive from A = (.4*)* the statement 

X 
-~- = Lin (A, X) = X | A*,  
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R 
which implies -~- : A*;  furthermore, we have 

X A |  x a |  
- - - -  - - X ,  a ( ~  - -  - -  - - ~ ,  A |  A a a 

X x 

A X a x 

B A |  b a |  

and some other natural relations. 
I f  L is in Lin (X, Y), Z and A are vector spaces, and A is one-dimensional, 

L 
we define i d z | 1 7 4 1 7 4  Y) by z |  and ~ E  

Lin , by - -  ~ - ~ . -  
a a 

A 
I f  A and B are oriented one-dimensional vector spaces, then A | B and ~ -  

are oriented by the tensor product  and the quotient o f  positive elements of  A and B. 
For  natural numbers n we call 

A |  A | 1 7 4 1 7 4  
(1) (2) (n) 

t h e  n th tensor power of  A and we write a n for the n th tensor power of  a E A. 
I f  A is oriented, we can extract tensor roots: for a positive element h of  A| 

we can give a unique positive element t /h of  A such that  (I/h) 2 ---- h. 
D D 

Let us return to physical dimensions. It  is evident now that - T  and T ~  are the 

oriented vector spaces of  velocity and acceleration magnitudes, respectively. I f  
D D m m 

m E D, s E I, then - f  and ~-~ consist in the multiples of  - -  and - -  respec- 
S S 2 ' 

tively. 
I t  is suitable to use a system of  physical dimensions such that the Planck 

constant is a real number  (dimensionless). Then the mass values are the positive 
I 

elements o f -  
D |  

3. Mfine space 

The simplest experience about  our physical space is that two arbitrary points 
can be connected by an oriented straight line segment, called a "vector".  Each 
of  these vectors can be translated parallel to itself. The vectors originating at the 
same point form a three-dimensional vector space with natural rules of  multi- 
plication by real numbers and addition. The most suitable mathematical tool 
for describing such a structure is an affine space which is something like a vector 
space but has no distinguished origin. 
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An affine space is a triplet (L, L, --) ,  where 

(i) L is a nonvoid set, 
(ii) L is a finite-dimensional real vector space, 
(ii) - - is  a map from L x Linto L, denoted by 

(x, y) ~ x -- y,  

having the properties 

a) for every y E L, the map Oy : L ~ L, x ~-~ x - -  y is bijective, 
b) (x -- y) + (y -- z) + (z --  x) = O (x, y, z E L). 

Oy is called the vectorization of  L with origin y. Its inverse is denoted by 
x ~-+ y + x. Hence, by definition, 

L---~ L, 

y + ( x -  y) = x 

Furthermore we have 

x - - y = 0  if and only if 

(x + x ) +  y = x  + ( x  + y) 

(x, y E L). 

x = y  (x, yE L), 

(xE L, x, y E  L). 

As is usual in mathematics, we shall denote an affine space by a single letter; 
we say that L is an affine space over the vector space L, and the map - -  is called 
subtraction. 

Every vector space is an affine space over itself by the vector subtraction. 
The dimension of an affine space is, by definition, that of  the underlying vector 

space. The affine space is called oriented if  the underlying vector space is oriented. 
A non-void subset S of  an affine space L is called an affine subspace if  there is 

a linear subspace S of  L such that for some (and hence for all) y E S, 
(x - -  Y l x E S} = S, or equivalently, y + S = S. 

S is said to be directed by S and the dimension of S is that of  S. 
One-dimensional affine subspaces are called straight lines. 
Points of  L are zero-dimensional subspaces. 
Let L and K be affine spaces over the vector spaces L and K, respectively. 

A map F :  L--> K is called affine if  there is a (necessarily unique) linear map 
DF : L -+ K, called the derivative of  F, such that 

F ( y ) -  F(x) = D F ( x -  y) (x, y E L) 

or, equivalently, 

F(x + x) -- F(x) = DF(x) (x E L, x E L). 

A map F from a vector space L into another vector space K is affine if and 
only if there is a linear map F : L ~ K and a k E K such that F(x) -= Fx + k 
( x E L ) , ;  then F = D F .  

We can define a metric d on the affine space L with the aid of  a norm [[ r[ on 
L by d(x ,y)  : - - [ [ x - - y I [  (x, y E L ) .  

Since all norms on a finite-dimensional vector space are equivalent, we can 
define continuity and differentiability of  maps between affine spaces in the usual 
way. 
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Let L and K be affine spaces. A map F :  L >:- K (the sign >-> means that the 
domain of  F need not be the whole of  L) is called differentiable at an interior 
point x of  Dora F if there are a (necessarily unique) linear map DF[x] : L --> K, 
called a the derivative of  F at x, and a neighborhood U(x) ( Dora F of  x such 
t hat 

F(y) -- F(x) = D F [ x ] ( y -  x) + ordo ( y -  x) (yE U(x)), 

or, equivalently, there is a neighbourhood Vofzero  of  L such that x + V Q Dom F 
and 

F(x + x) -- F(x) ---- DF[x] x + ordo (x) (x E V), 

ordo (x) 
where l i r a - -  -- 0 for some (and hence for all) norms II ][ on L. 

x~0 II xf[ 
F is differentiable if  it is differentiable at every point of  its domain. F is twice 

differentiable, i f  it is differenfiable, and the map L >-> Lin (L, K), x ~ DF[x] 
is differentiable. 

Note that according to our convention DF[x] is in K | L*, and the second 
derivative of  F a t  x, D2F[x] is in ( K |  | 1 7 4  I l L  is 
one-dimensional, by using the relation between tensor products and quotients we 

K K 
consider DF[x] and D2F[x] as elements o f ~ -  and -~-~, respectively. 

4. The nonrelativistic space-time model 

We attribute an affine structure to our physical space. Similarly, we experience 
an affine structure of  time. Simple considerations show that absolute space does 
not exist, that space is related to material objects. We base our nonrelativistic 
space-time model on the assumption that space-time and absolute time exist and 
both have an affine structure. The progress of  time is described in the model by 
an orientation. The "parity breaking" property of  the interactions called "weak" 
indicates that the left and right orientations of  our space are not equivalent; 
hence we postulate that space-time is oriented as well. Absolute time is related to 
space-time in such a way that a time point is assigned to each space-time point. 
We assume that this assignment is a affine map. 

Thus we postulate as given the following: 
M, an oriented four-dimensional affine space over the vector space M; M is 

called space-time or the worm (we avoid the usual term "event"  for the elements 
of  M, because world points are not events from a probabilistic point of  view); 

/, an oriented one-dimensional affine space over the vector space I;  I is called 
time. 

"r: M-->/ ,  an affine surjection, called time evaluation. 
I f x  and y are world points, then z(y) -- r(x), an element o f / ,  is the time-lapse 

between x and y. 
Dr, the derivative of ~, will be denoted by ~; it is a linear surjection from M 
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o n t o / .  Thus its kernel, denoted by E, is a three-dimensional linear subspace of  
M. 

If  t is a time point, the set of  simultaneous world points having time value t, 
Et : =  (xE M]  r(x) ---- t} is a three-dimensional affine subspace of  M, over g.  

Besides the affine structure, our physical space has another property: a Eucli- 
dean structure. A vector of  our space has a length, and two vectors have an angle. 
The lengths and angles are determined for simultaneous space points. Hence we 
put this structure into the space-time model by giving something like an inner 
product on the underlying vector space of  simultaneous world points. It will not 
be a usual inner product because distances--or lengths of  vectors--are not real 
numbers, as we have said. 

Thus we postulate as given the following: 
D, an oriented one-dimensional vector space, whose elements are called 

space lengths or distances; 
7: ExE--~D| a positive definite symmetric bilinear map (the positive 

definiteness of 7 means that y(q, q) is positive for all non-zero q C E; recall 
that D| is oriented, and so we can speak of  its positive elements). 

According to the Euclidean structure 7, 

[q] : =  I/7(q, q) E D 

is the length of  q E E, and the real number 

~'(ql, q2) 

Iq l Iq21 

is the cosine of the angle between the non-zero elements q~ and q2 of  g. 
Using the above notations we define (M, /, % D, 7) to be a nonrelativistic 

space-time model. Such a nonrelativistic space-time model includes all the struct- 
ures, and only those, that are tacitly applied in usual nonrelativistic physics. 

Let us compare our model with that of  [6]. Our world M corresponds to W 
the r e ;  if we identify t with the hyperplane Et for all t E L then our time I corres- 
ponds t o / '  there. From our time evaluation ~ we derive the time lapse function 
M •  M---~ I, (x, y) ~ v(x) --T(y), which c~orresponds to the time lapse function 

t; moreover, the subtraction I• I corresponds to the time lapse function t 
of  [6]. The fundamental difference between the two models is that our world M 
has an affine structure. ,' 

The simple and na tura l  affine structure has the advantage that it allows us 
:to differentiate both M-vaLued functions (world lines, see section 5), and functions 
defined on M (velocity fields, see section 10). As a consequence, we can rule out 
observers from the description ,of physical phenomena, and use only absolute 
(independent of  observers) notions. For  instance, the affine structure helps us 
to define absolute velocity which is a basic notion both in mechanics and con- 
t inuum mechanics. Moreover ,  since observers are defined in the framework of  
the space-time model, we need not involve "bodies" or "material objects" from 
�9 outside. 
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5. World lines 

The motion of a masspoint usually is described by a function assigning space 
points to time points. Motion and space are notions related to observers (material 
objects). Now we wish an absolute description in our space-time model. Instead 
of  "mot ion"  we introduce a new term: the existence o f a  masspoint is independent 
of  observers. The existence o fa  masspoint is described by what is called a world-line 
function r that assigns world points to time points. Evidently, the natural condition 
v(r(t)) = t must hold for all t E D o m  r. Moreover, here we require that r be 
twice differentiable. 

The first-derivative function of r is denoted by ~ (instead of  Dr). Recall that 
/'(t), which we interpret as the value at t of  the absolute velocity of the masspoint, 

M 
is in 7 "  We have the following important  relation: 

�9 . ~r ( l i m o r ( t + h ) - - r ( t ) ) = l i m ~ ( r ( t + h ) ) - - ~ ( r ( t ) )  
(r(t)) = "~I h h-+o h 

(t q- h) --  t 
= lim --  1. 

h-~O h 

In other words, the values of  absolute velocity lie in 

V(1) : =  u E  7 - ~ x ( u ) =  1 

M E 
which is a three-dimensional affine subspace o f T ,  over 7 . 

From now on we omit the epithet absolute, and we call the elements of  1I(1) 
velocity values. V(1) is not a vector space; there is no zero velocity value and the 
multiple of  a velocity value and the sum of  two velocity values are not velocity 

M 
values. There is no Euclidean structure on 7 ;  thus a velocity value has no 

magnitude and two velocity values subtend no angle. 
I f  u and c are in V(1), then 

l ) u c  : = U - -  C 

E 
is called the relative velocity value of  u with respect to c. rue is in - 7  ; that is why 

E 
we call the elements of  7 relative velocity values. The set of  relative velocity values 

forms a vector space, and has a natural Euclidean structure: 

E E (19)|  ~(Vlt' V2t) (0 =[= t E I) 
7 • 7 -+  (vl ,  v2) ~ v l  .v2  . -  t~ 

is a positive definite symmetric bilinear form. Thus l vI : =  ~ v . v ,  an element 
D 

of  7 ,  is the magnitude of  the relative velocity value v. 
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The second derivative functions of  r is denoted by ~. 7(0, which we interpret 
E 

as the value of  the absolute acceleration of  the masspoint at t, is in ~-~ because it 

~(t + h) - ~(t) E 
equals lim and the differene of  velocity values lies in - f  

h-~O h ' 

E 
That is why we call the elements o f T ~  acceleration values. Acceleration values form 

D 
a Euclidean vector space; their magnitudes are in T ~ .  

I 
We consider mass values as elements of~--~ ; according to the preceding result 

I s E 
and Newton's second law, force values are elements o f ~ - ~  | I |  -- D@ | I " 

In the usual formulations a force can depend on time, space and velocity; that is 
why we postulate that a force field is a differentiable function F : M •  V(1) 

E 
and that 

D @ •  I '  
mi: = F o (r, P) 

is the absolute Newtonian equation for the world-line function r of  a material 
point with mass m under the action of  the force field F. 

Finally we mention that ranges of  world-line functions are called world lines. 
World lines are curves in space-time. 

6. Vectors, tensors 

Let A be a vector space constructed o f / ,  I*, D and D* by tensor products 
and quotients. Then the elements of  

A are called scalars of  type A, 
A | M are called vectors of  type A, 
M 
-~- are called vectors of  cotype A, 

A | M | M are called tensors of  type A. 

M 
When A----R, i.e. when A |  we omit the terms " o f  

type R "  and " o f  cotype R" .  E 
A vector of  type or cotype A is called spacelike i f  it is in A | E or -~- ,  

respectively. 
Let c be an element of  V(1). Then c | I : =  {ct I t E I) is a one-dimensional 

linear subspace of  M. The intersection of  c | I and E is the zero only, thus every 
element x of  M can be uniquely decomposed into the sum of  two vectors lying 
in c | I and E, respectively: x = c~(x) + (x --  c,r(x)). 
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This decomposition will play a fundamental role later. ~(x) and xllc : =  x -- c~(x) 
are called the timelike component and the c-spacelike component of  the vector x, 
and 

sr  I x E ,  xF-*(~(x),x[[c) 

is the c-splitting of  M. 
x is spacelike if and only if its timelike component is zero, or all its c-space- 

like components are the same, namely x. 
The so-called Galilean transformation law shows well how splittings depend 

on velocity values. I f  cl ,  c2 E V(1), then 

(sc, o s~ 1) (t, q) = (t, --v~,~t + q) ((t, q)E I x  E). 

This formula is well known in standard physics. We shall see in the next paragraph 
how it is related to observers. 

Vectors of  type A and vectors of  cotype A are split corresponding to c E V(1) 

$c 
by ida | sc and i"~A' respectively. The timelike component of  a vector of  type 

(cotype) A is in A | 1 7 4  

sc M E 
In particular, ~-~- I maps - 7  into R @ 7  and for all u E V(1) 

S C 

-TT (u) = (1, Vu~), 
lUi 

i.e. the c-spacelike component of a velocity value u is the relative velocity value 
of  u with respect to c. 

We emphasize that there is no Euclidean structure on M; the length of  a vector 
and the angle between two vectors make no sense unless the vectors are spacelike. 

E 
A Euclidean structure can be defined on A | E and ~ - ,  just as was done for 

relative velocity values. Moreover, we can form the scalar product of  spacelike 
vectors of  different types (cotype). For  instance, if A and B are spaces of  scalars, 
h E A | E, g E B | E, then 

h . g : : a b 7  ,--~ E A | 1 7 4  ( O ~ a E A ,  O ~ b E B )  

or, equivalently, for aq E A | E, bq' E B | E, (aq) �9 (bq') : :  abT(q, q'). 
Similarly, we can form the scalar product of  spacelike tensors. I f  H E A | 

( E @ E ) ,  t T E B @ ( E |  then H :17  is an element of  A |  @ D |  if 
H :- a(q @ r), 17 = b(q' @ r'), then H :  17 : =  aby(q, q')7(r, r'). 

On the base of  these formulae, the reader is asked to define the element h �9 G 
of  A @ B @ D |  for h E A @ E ,  1 7 E B @ ( E |  
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7. Observers 

An observer (a material object) is a continuously distributed collection of  
masspoints. Its existence can be given in the space-time model as a set of  disjoint 
world lines filling an open subset of  space-time. Then for all x in this subset 
there is a unique world line passing through x, and we can assign to x the velocity 
value of  the corresponding world line function at z(x). In this way we give a map 
U: M ~ V(1). I f  this map is good enough, then the world lines in question can 
be recovered from U as maximal integral curves of  the differential etluation 
5 c = U o x .  

Therefore we find it convenient to define an observer to be a smooth iinfinitely 
many times differentiable) map U: M ~ V(1). The maximal integral curves of  
U are called U-lines. The U-line passing through x E Dom U is denoted by 
Cv(x) ,  and E v  stands for the set of  U-lines. 

The material points of  a physical observer constitute the space of  the observer. 
A material point of  a physical observer modelled by U is modelled by a U-line. 
Thus a space point of  the observer is modelled by a U-line; that is why the set 
of  U-lines, E v  is called the U-space or the space corresponding to U. 

The observer U splits the corresponding space-time domain into time and space 
by the map 

S v  : Dom U - +  I x  Ev ,  x ~-~ (z(x), Cv(x))  . 

An observer U which is an everywhere defined constant map is called a global 
inertial observer. Let c be the constant value of  U. Then U-lines are parallel 
straight lines directed by c | L A U-line can be written in the form x + c | ! 
for an arbitrary x contained in the U-line. It is not hard to see that the set of  
straight lines directed by c | I, endowed with the subtraction 

(x + c | I)  - -  (y  + c | l )  := (x - -  y)1[~ (x, y E M )  

is an affine space over E. In other words, the space corresponding to a global inertial 
observer is a three-dimensional affine space. Moreover, the splitting 

S v : M - + I x E t r  , x v - - > Q : ( x ) , x + c |  

is an affine map, whose derivative is so. 
Let us emphasize that the spaces of  different global inertial observers are differ- 

ent affine spaces over the same vector space. 
I f  we pair the global inertial observer U with a world point o, called the origin, 

then time and U-space are vectorized with origin z'(o) and o q- c |  respectively, 
and we get the splitting 

Sc,o : M ~ I x  E, x ~ (~(x  - -  o), (x  - -  o)llc). 

Thus a global inertial observer with origin represents space-time points by ele- 
ments of  I x  E. This corresponds to the usual practice in physics, that time and 
space (corresponding to an observer) are considered vector spaces (one speaks 
of  time zero, position vector). 
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Though all global inertial observers with origin use the same vector spaces I 
and/~ to represent time and space, the physical meaning of  the elements of  I x / ~  
depend on observers and origins. Two different global inertial observers with origin 
represent different world points by the same element of  I •  I f  the observers 
have velocity values ca and c2, respectively, and their origins coincide, then 
(t, q) and (t, --v~:ct q- q) represent the same world point according to the first 
and second observer, respectively. 

Lastly we only mention that the motion of  a masspoint relative to an observer 
U, as a map assigning U-space points to time points, can be derived from the 
existence (world line) of  the masspoint, and differentiation of  motion yields rela- 
tive velocity values, as expected (see [2], Section 1.4.). 

8. Differentiation 

Let V be a finite-dimensional vector space and take a differentiable function 
F defined in space-time M and having values in V. Then DF[x], the derivative of  
F a t  x E D o m F ,  is in L i n ( M , V ) :  V |  

As a consequence of  the structure of  our space-time model, the partial time 
derivative of  F makes no sense. On the other hand, the space-like derivative of  
F is meaningful. I f  x is in the domain of  F, then the restriction of  F onto the 
hyperplane E~tx) of  world points simultaneous with x is differentiable, and we call 
its derivative at x the spaeelike derivative of  F at x, denoting it by VF[x]. In other 
words, VF[x] is the derivative of  the function E ~ V, q ~-~ F(x + q) at zero. 
Evidently, 7F[x] is in Lin (E, V) : V | E*, and 

VF[x] = DV[x]l ~ (x E Dom F),  

where the last symbol denotes the restriction of  the map DF[x] onto the subspace E. 
Let c be an element of  V(1). Then for x E Dora F, the function 1 ~  V, 

t ~ F(x § ct) is differentiable, and we call its derivative at zero the c-timelike 
derivative of  F at x, denoting it by D~F(x]. Evidently, D~F[x] is in Lin (it, V) = 
V 

--~-, and 

D r [ x ] . .  
DeE[x] -- ~ tc) (x E Dom F).  

To generalize this notion, let us take a velocity fieM u: M>--~ V(I). Then 

DuF[x] :=DFd~] (u(x)) (xE DomFf~  Dom u) 

is called the u-substantial time derivative of  F at x. 
For  a velocity field u and a velocity value c we have the relation 

7F[x] 
D,F[x] = DcF[x] ~- ~ (v,,tx)c), 
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which in the case V = R can be written in the familiar form 

DuF[x] = DcF[x] + v,,(x)~ " VF[x]. 

In the special case when there is another vector space Z such that V = Z 
| M, DF[x] is in Z | M @ M*, and the trace functional Tr  : M | M* -+ R, 
x | p ~ (p [ x) allows us to define the divergence of F: 

D" Fix] : -  (idz | Tr) DF[x] (x E Dom F) .  

I f  F takes values in Z | E, its divergence involves only spacelike derivation 
M 

and equals V �9 F. Similar formulae can be written for V = --~-. 

I f  Z ---- B, we split the vector-valued function F into a time-like component 
v o F :  M>-~ I and a c-spacelike component FI! ~ : M >+ E; then for every c E V(1 
we have 

D.  F =  D~(vo F) + V .(FHc ). 

To relate the notions introduced above to the ones usually applied, let us take 
a global inertial observer with velocity value c and origin o. Then F o S~.o ~ is a 
map defined in the Cartesian product of  vectorized time and observer space. We 
can differentiate this map partially corresponding to the variables in I and E, 
respectively. Then the chain rule yields 

a 
.7 - I  at (Fo ~,o) (t, q) = D~F[s~,lo (t, q)] 

a 
-~  (Fo s~,lo) (t, q) = VF[s~,Io(t, q)] 

S--I for all (t, q) in Dom (Fo c,o) Q I x  E. 
That  is, applying the usual imprecise notations, we can state that the global 

inertial observer with velocity value c and origin transforms 

a 
Dc into 

at ' 

a 
7 into a q '  

a a 
Du into ~ -  + v "a -'z-t/ 

where v is the relative velocity field o f u  with respect to c, i.e. v(t, q) : =  u(s~.lo(t, q)) 
- -  c. Moreover, if F takes values in M, and ~ and f denote the timelike and c- 
spacelike component, respectively, of  F in coordinates corresponding to the 

a~ 
observer (i.e. ~(t, q) = vF(s~.1o(t, q))) then D .  F is transformed into -~- + divf .  
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9. Integration 

First we mention that i fA is a space of  scalars (a one-dimensional oriented real 
vector space) then we can introduce two ideal elements, the positive A-infinity c~a, 
and the negative A-infinity --OOa in the same way as for real numbers, and 

we put A:---- ( - -  ooa} U A U {OOa}. 
Two spacelike vectors e and e '  are said to be orthogonal, if 7(e, e ' ) =  O. 

Let el,  e2, ea be pairwise orthogonal elements of  E and define P(ea, e2, Ca) : :  
{~,e, q-o~2e2-l-o%e310<=oq, o~2, a a ~  1}. For  q E E ,  q q - P ( e , , e 2 ,  ea) is 
called a parallelepiped at q. The volume of  q Jr P(e,,  e2, ca) is defined to be 
lell le2l ]e3lEO| 

The open subsets of  E are uniquely defined by an arbitrary norm on E. The 
a-algebra of  Borel subsets of  E, B(E), is the one generated by the collection of  

open subsets. As is well known from measure theory, there is a unique D| 
positive measure # on B(E), called the canonical measure of  E, such that the measure 
of  an arbitrary parallelepiped equals its volume. The fundamental property of  

the canonical measure is translation invariance. Similarly, a -valued cano- 

nical measure can be defined on B {@). 
~ J  

Take a t C I and consider Et, which is an affine space over E. The open sub- 
sets of  Et and the Borel a-algebra B(Et) are uniquely defined by an arbitrary norm 
on E. B is a Borel subset of  Et if  and only if for some (and hence for all) z C- Et, 
B - -  z : =  {x - -  z I x E B} is a Borel subset of  E. Using the vectorization map 
Oz : JEt --~ E, x ~ x -- z, we can write B --  z = Oz[B]. The translation invari- 
ance of  the canonical measure of  E allows us to define the canonical measure 
/*t of E t by 

tit(B) :----- ,u(B --  z) = ,u(O,[B]) (B e B(Et), z E JEt). 

In the same way, a -valued canonical measure �9 can be defined on the 
E 

Borel subsets of  V(1) with the aid of  the canonical measure of - i -"  

Now we wish to find the mathematical tool for the description of mass density. 
In standard physics, it is a real-valued function defined on time and space, and its 
integral over space gives the total mass. First of  all, we have to pay attention to 
physical dimensions. Mass density cannot be a real-valued function. The volume 
(measure) of  a bounded space region is in D| as it must be: if  D is spanned by 
m, then D| is spanned by m 3. Furthermore, according to our convention, mass 

I 
values are in-D--~ ; as a consequence, mass density must be a function taking 

I 

D| t 
values in D|  - -  D| " Evidently, it is defined in space-time, i.e. we have 

I 
o : M >+-~-~'. 
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Relative to a global inertial observer with velocity value c and origin o, ~ o S~,o 1 
describes mass density as a function of  vectorized time and observer space. The 
total mass at t E I  is 

f (co s;,2) (t, q) d#(q). 
E 

We write t : =3(0) + t and we vectorize E t with origin z(c,  o, t) : =  o + c( t  - -  

~(o)), i.e. we give the affine bijection 

Ozcc,o,O : E 1 ~ E,  x ~ x - -  (o 4- c( t  - -  lr(o))) = (x - -  o)H~. 

We easily find that sg,,~o(t - -  ~(o), q )  = 07(2,o,t)(q). Then the well known integral 
transformation law makes the above integral equal 

f e dl~,. 
Et 

That  is why we postulate that  mass density is a measurable function ~: M 
I 

~ f f ~ -  whose restriction onto Et is integrable with respect to/~t  for all t E I. 

10. Balance equation 

The fundamental tool for describing the existence of  a continuous medium 
is a velocity field u : M >-~ V(1) which is supposed twice differentiable. Then the 
points o f  the corresponding "body"  are the maximal integral curves of  u. In 
this repect such a body or continuous medium is nearly the same as an observer, 
the only difference being that  observers are infinitely many times differentiable. 

E 
For  a global inertial observer with velocity value c, v,c : =  u - -  c : M ~ - T  

is the c-relative velocity field. This is used in standard physics. 
E 

Since u is differentiable, its derivative at x E D o m  u,  Du[x] ,  is i n - / - |  

/~ |  
M * - - - -  Evidently, D u = D ( u - - c )  for all c E V(1). Since u - - c  

I 
g 

takes values i n -  T , its divergence involves only space-like derivative, i.e. 

D �9 (u - -  c) = V.  (u - -  c). Consequently, the divergence of u involves only space- 
like derivatives as well: D �9 u = V �9 u. 

To characterizatize the continuum, besides the velocity field we must give its 
mass density, internal energy density, etc. 

Let A be a space of  scalars. The density of  an observable of  type A is a measur- 
A 

able function d:  M ~ - - ~  whose restriction E t is integrable with respect to/A t 

for all t E 1. 
The convective current of  the quantity having the density d is du  : M 

A M A |  
D| |  - -  D| | i (note that d u  is not a differential but the product o f  the 
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density d and the velocity field u). Note that  the timelike component  of  this 
current is the density. The conductive current of  the considered quantity is a current 

A |  
without density; thus it must be spacelike, i.e. given by a m a p j :  M>--> D| @ ~ "  

A 
The source density of  the quantity is a map q : M x V(1) >--> D@ | 1 and the balance 

equation, if  the functions in question are differentiable, has the form 

O . (du + j )  =- q o (idM, u).  

Similarly, the density of  a vector observable of  type A is a measurable function 
A |  

d : M  >-, D--'--'@-- whose restriction onto Et is integrable with respect to fit 

for all t E I.  
A | 1 7 4  

The corresponding convective current is d | u : M >~ D|  | I and the 

A @ M |  
conductive current is a map J : M >-> D| | I The source density is a map 

A |  
q : M x  V(1) ~ D| | and in the differentiable case we have the balance equa- 

tion 
D . (d | u + 2) = q o OdM, u) .  

In the same way, according to the order, we can write balance equations for 
tensor quantities of  type A. 

I 
In particular, the density of  mass is a function 0 : M >--> ~--~--, its conductive 

current and source are zero; hence we have the continuity equation 

D .  (0u) ----- 0, 

which can be written in the form Due + V �9 u = 0, too. 
M I 

Since velocity values are in -~- and mass values are in ~--@-, momentum values 

I M M 
lie in ~ | I - -  D| " We emphasize that we speak about  absolute momentum. 

Relative momentum, the fundamental notion in usual physics, involves an observer; 
if  c E V(1), the c-relative momentum is the product of  mass and c-relative velocity, 
and equals the c-space-like component  of  absolute momentum. 

M 
The density of  momentum is ~ u : M  >--~-ff~, its conductive current is 

M |  
P : M >+ D| | I ( - - P  is the stress tensor field), its source density equals the 

E 
force density f :  M X  II(1) >-> D| | I '  and the balance equation reads 

D "  (Qu | u + P) = ] o (idM, U). 
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M @ E  
Since P has values in D| @ I '  we have D .  P ----- V �9 P, and some familiar 

manipulations yield Q D,,u + V �9 P : f o (idM, u). 

Both D,,u and ] have spacelike values; thus V �9 P must have spacelike values 
as well. And if so, the timelike component of  the momentum balance equation 
is the mass continuity equation. 

The balance equation for angular momentum implies, as usual, that the stress 
tensor field - - P  is symmetric, which implies that P is spacelike, i.e. that it takes 

E |  
values in D| | 1" Here we mention that if  we consider a continuum consisting 

of  spinning particles, P need be neither symmetric nor spacelike. 

11. The energy balance equation 

It is important to see that kinetic energy does not exist absolutely (independently 
of  observers). I f  cC V(1), we define c-kinetic energy density (kinetic energy density 

I D|  
relative to the inertial observer with velocity c) as �89 I u -- c [ 2 : M ~ ~ | I |  

R I* D g 
--  D| | I D| ' where I ] denotes the - f  -valued Euclidean norm on -T  " 

The conductive current of  the c-kinetic energy is (u --  c) �9 P. 
The density of  internal energy is given by the specific internal energy e:  M 

D| g 
>->-f~- in the form 0e, and its conductive current is It: M ~ D| @ I|  " 

Now we should have to take into account electromagnetic c-energy and chemi- 
cal energy, but for simplicity--because my intention is only to give a general sur- 
vey of  an absolute formulation of thermo-mechanics--we will consider the case 
when electric charges and electromagnetic moments are absent, and chemical reac- 
tions do not occur. By the way, the treatment of  chemical reactions in our frame- 
work is similar to the usual ones, with evident modifications. On the other hand, the 
treatment of  electromagnetic phenomena in continuous media requires a precise 
formulation of  electromagnetism with the notions of  of  our non-relativistic space- 
time model, which differs significantly from the usual formulations. 

Now the source density of  c-energy--the sum of  c-kinetic energy and internal 
energy--is the sum of  the c-energy gained from the external force, which is 
(idro) --  c) .jr, and the internal energy gained from "heating" (absorption and 

I* 
emission of  heat radiation) which is denoted by s : M x  V(1) >--> D| | 1" 

Then the balance equation of  c-energy and the balance equation of  momentum 
result in the following balance equation of  internal energy: 

D" (oeu + k) ----- - - P  : (Vu) + s o (idM, u).  

Note that this equation is independent of  c. The left side can be transformed into 
the form e D u e + V ' k .  
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12. Boundary conditions 

It is necessary to associate boundary conditions to the balance equations; 
boundary conditions play a fundamental role both in theory and practice. Bound- 
aries and conditions on them represent some constraints and actions of  the sur- 
rounding on the continuum. 

To find how to formulate boundary conditions, let us imagine a tube or a box 
with water in it. The tube or box confines a region of  our space. We know that 
space exists only relative to observers. Hence boundary conditions require ob- 
servers. Here we use notions that are not defined in the present paper, e.g. the topo- 
logy of space corresponding to a non-inertial observer and the orientation of  E; 
for  them we refer to [2]. 

Let U be an observer and G be a connected open subset of  the U-space Ev 
such that the boundary 8G of  G is an orientable two-dimensional submanifold 
of  Ev. We assume that Dom u = {x E M I Cu(x) E G} where Co(x) denotes the 
maximal integral curve of  U (the U-space point) containing x. Moreover, u and 
all other quantities describing the continuum are supposed to be continuously 
extended to the closure of  Dom u. 

For  t E L G t : =  (x E Et I Cv(x) E G} -~ E t F~ Dom u is an open subset 
of  the hyperplane E t, with boundary 8Gt an orientable two-dimensional submani- 
fold. We put 

B : = ~  ~ G  t .  
tE1 

Fixing an orientation of 8G, we fix an orientation of  aGt for all t E / ,  and we can 
E 

give uniquely an n(x) in - ~  that has unit length, is orthogonal to 8G~x) and is 

positively oriented; n(x) is called the normal vector of B at x. 
The boundary conditions are formulated with the aid of  B and n(x) (x E B). 

It would be tedious to list all the boundary conditions. We illustrate them by the 
boundary condition imposed on mass if mass does not cross the boundary. In 
our example, the water at the wall of  the tube moves parallel to the wall, i.e. the 
normal component of  the relative velocity of  the continuum with respect to the 
observer is zero at the boundary: 

( u  - t 0 l B "  n = 0 .  

13. Equilibrium 

Equilibrium is a basic notion in thermo-mechanics; therefore we try to formu- 
late it with mathematical exactness in our framework. 

Consider a free gas; it is never in equilibrium. A gas in a ball resting on the 
earth can be in equilibrium. If  we rotate the ball around an axis uniformly, the 
gas inside can be in equilibrium with respect to the rotating ball as well, but this 
equilibrium differs from the previous one. 

As the example shows, we must realize that equilibrium does not exist absolutely 
but only with respect to observers. The equilibrium depends on the action of  the 
observer on the medium through boundary conditions. 
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As a consequence, there is no "trend to equilibrium"; we can speak only about 
a "trend to equilibrium with respect to an observer", and we can expect success 
in describing such trends only if we take into account the non-negligible action 
of the observer on the medium. 

How to define equilibrium with respect to an observer U? My answer is the 
following: 

(i) the substance cannot move relative to the observer, i.e. the velocity field u 
is defined in the domain of  U, and u ( x ) =  U(x) for all xE  Dom u; 

(ii) all quantities Q (mass density, internal energy density, etc.), except the velo- 
city field u, which is determined by the preceding item, are stationary with respect 
to U; in other words, they do not depend on time with respect to U; i.e. the U- 
substantial time derivative of  Q is zero, D v Q  = O. 

Since, in equilibrium with respect to U, Dtrp = 0 and u Q U, also D,9 = 0, 
and the continuity equation yields 7 �9 u = 7 �9 UIDomU = 0. Thus if V �9 U =~ 0, 
there cannot be equilibrium with respect to U; 7 �9 U = 0 is a necessary condition 
for the possibility of  equilibrium with respect to U. It is not hard to see that rigid 
observers (see [2], 1.3.7) satisfy this condition. 

14. The Boltzmann equation 

The kinetic theory of  gases is strongly related to thermo-mechanics. Some of  
the constitutive equations are derived with the aid of  the Boltzmann equation, 
the usual formulation of  which is based on the notion of  phase space. Phase space 
does not exist absolutely, for it consists of  position and momentum values related 
to observer, and the usual Boltzmann equation contains a partial time derivation 
which is related to observer too; that is why problems arise regarding material 
objectivity in connection with the Boltzmann equation ([3], [8]). To avoid such 
problems, we need an absolute formulation of  the Boltzmann equation. 

Usually the Boltzmann distribution function depends on time, space (position) 
and momentum values. Instead of  momentum one often takes velocity. Thus we 
easily find that an absolute distribution function in our model is to be defined on 
M •  ti(1). Furthermore, in usual formulations the distribution function is normal- 
ized so that its integral over space and velocity equals the number 1 for all time 
points. Now we integrate over E1X V(1) with respect to the tensor product of  

the corresponding canonical measures: /~t | v is the D| | 1| 

valued measure defined on the Borel subsets of  E t x  V(1), by (tit | 2 1 5  
: =  izt(B) r (H)  for all bounded Borel subsets B of  Et and H of  V(1). 

Thus we agree that a distribution function is a measurable function f :  MX 
I|  

V(1)-+-D- ~ whose restriction onto E t x  V(1) is integrable with respect to 

/z t | v and 

for all t E L 

f f d ~ ,  t | v) = i 
E t • vo) 
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To set up a collision integral, we reformulate some familar notions. 
g 

Recall that we have a Euclidean structure on -~-, and the lengths of  elements 

E 
of -ff  are real numbers. The directions of  space-like vectors can be given most 

conveniently by the elements of  the unit sphere S :-- n E ~ -  In ] = 1 . 

In accordance with usual considerations, a scattering cross section is a map 
E 

that assigns to every non-zero v E - ~  a D| non-zero positive measure 

a,, on the Borel subsets of  S. The meaning of the cross section is interpreted as 
follows: in the collision of  two masspoints with relative velocity value v before 

a,,(D) 
collision, is the probability that the direction of  the relative velocity 

a~(S) 
value after collision, which is called the scattering direction, is in the Borel subset 
D o f S .  

A scattering function prescribes how the velocity values after collision of  the 
two masspoints depend on the velocity values before collision and on the scattering 
direction; thus it is a function (ul ,  u2): V(1)• V(1)• V(1)x V(1). 

The collision integral of the distribution function fcorresponding to the scatter- 
ing cross section a and the scattering function (ul ,  u2) is 

Cf(x~ u )  : = 

f f ] u ' -  ul If(x,  m(u', u,2)) f(x, u2(u',  u,2)) - f(x, u')f(x, u)] da,.,_.(~)dv(u') 
vo)s  

((x, u) ~ m x  V(1)). 

provided the integral exists. Note that Cfis a function defined on M •  V(1) and 
I |  

having values in D| " 

Now we suppose that f is differentiable. Then Df[x, u], the derivative o f f  

at (x, u), is in Lin M •  --I ' D~" , and - - i d l  is in Lin • I |  D-~' " 

I f  m is the mass of  the molecules of  the gas to be described and the force field F 
acts on the molecules, then the absolute Boltzmann equation reads 

Df[x, u] ( F(X/nU)) Cf(x, u) ((x, u)E M• V(1)) 
idi u, = 

It is not difficult to relate this equation to the usual one. The first partial 
derivative (corresponding to the "space-time variable") Dxf[x, u] of  f a t  (x, u) 

I |  
is the derivative at x of  the function M-+-~-~, y ~+f(y, u) for fixed u. We 

define the second partial derivative D2f similarly. With these notations we can 
Dlf[x, u]. . 

write the left-hand side of  the Boltzmann equation in the form ~ (u) + 
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id I . Then we see with the aid of  the formulae in Section 8 that 

a global inertial observer transforms our Boltzmann equation into the customary 
one. 

16. Constitutive relations 

Up to now we have not spoken about  temperature. Now we involve it as well. 
We take the Boltzmann constant to be the real number  one, so that temperature 
has the same physical dimension as energy, Le. temperature values are considered 
to be positive elements of  I*. Accordingly, the temperature field of  a substance is 
a function T :  M ~ I*.  

To characterize the properties of  the substance we establish what are called 
constitutive relations among velocity field u, mass density ~, stress tensor field 
- -P ,  specific internal energy e, internal energy conductive current (heat flow) k, 
internal energy source s, temperature field T, and the derivatives of  u, O, T, etc. 

Since all the quantities in question are absolute, independent of  observers, if 
we use absolute equations for establishing constitutive relations, then the principle 
of  material frame indifference is satisfied as a matter  o f  course. 

In particular, we can apply the Chapman-Enskog method in an appropriate 
absolute form to solve the Boltzmann equation in our terms; this will be done 
in a separate paper. Working with this method we do not get into trouble regarding 
material frame-indifference, e.g. we avoid the problem treated in [3]. 
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