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ALLEN STAIRS 

ON THE LOGIC OF PAIRS OF 

QUANTUM SYSTEMS 

Even a nodding acquaintance with the history of the philosophical 
discussion of quantum mechanics makes clear that many of the theory's 

puzzles have to do with pairs (and larger collections) of systems. The 

EPR "paradox", the question of local hidden variables, Schr?dinger's 
cat, the measurement problem, and the question of holism all have 

essentially to do with the way in which collections of systems are 

represented in quantum mechanics. The aim of this paper is to provide a 

mathematical framework for approaching these problems from within 

the quantum logical tradition. Before presenting the details, however, it 

will be helpful to set the problem in its proper context. 

Although there have been various discussions of the logical aspects of 

collections of quantum systems, none of which the author is aware is as 

complete mathematically as one might wish and most restrict themselves 

entirely to the mathematics. Among the papers which treat the problem 
within lattice theory, A. Zecca's "On the coupling of logics" and T. 

Matolcsi's "Tensor product of Hubert lattices and free orthodistributive 

product of orthomodular lattices" appear to be the most complete. 
Zecca defines a product of proposition systems (in the Jauch and Piron 

sense) and proves that if the factors have trivial centers (and hence are 

isomorphic to lattices of subspaces of vector spaces) then so is the 

product. However, he does not show that if the factors are lattices of 

subspaces of Hilbert spaces, then the product is itself a lattice of 

subspaces of a Hilbert space. Also, Zecca's definition of a product, 
although mathematically elegant, is in terms of conditions many of which 
seem to lack an intuitive motivation.1 Matolcsi, on the other hand, 

proves very strong theorems within the category of lattices of subspaces 
of Hilbert spaces (henceforth Hilbert space lattices) but proves no results 

for the more general category of proposition systems (or, for that matter, 
orthomodular lattices). 

The desirability of connecting the product with Hilbert space is 

obvious enough, as is the desirability of motivating the conditions 

embodied in a definition. However, since Matolcsi's conditions are not 

lacking in motivation, it may seem that the fact that he restricts himself to 
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48 ALLEN STAIRS 

Hilbert space lattices does not constitute a serious shortcoming. After 

all, it is quantum mechanics that gives point to quantum logic, and 

quantum mechanics is a Hilbert space theory. Therefore, why not simply 

begin by considering Hilbert space lattices? The resulting theorems will 

be weaker, since they make stronger assumptions, but it may seem that 

the difference is not philosophically significant. Though tempting, I 

believe that this conclusion would be a mistake. To see why, we need to 

consider briefly the aims of quantum logic as it is understood in this paper 
and to say a bit about just what it is that makes collections of quantum 

systems puzzling. 
Quantum logic is many things to many people. To some, it is simply a 

means of encoding certain facts about quantum systems in a way which 

permits the making of certain analogies with logic, but which really has 

nothing to do with logic properly understood. The point of view taken 

here, however, is much more robust. It is held that logical structure is a 

real feature of systems, physical and otherwise, and that a salient feature 

of quantum mechanics is the novel logical structure which it attributes to 

events. Moreover, it is held that logic plays an explanatory role - that the 

nonstandard logical aspects of quantum systems help to account for their 

puzzing behavior. To develop and defend this view in detail would be 

inappropriate here. However, one important tenet of the so-called 

"realist" program just described is that quantum logic is a generalization 
of classical logic and includes classical logic as a special case. Failure to 

appreciate this point has, I believe, led to various important misunder 

standings of the realist position in quantum logic. For this reason alone, 

then, it is important that my notion of a product of logical structures in 

quantum logic be a generalization of the classical notion. 

On the matter of explanation, it is safe to say that in all of the cases 

noted in the first paragraph, the puzzles arise because of the existence of 

pure states of collections of systems which are not simply products of 

pure states of the subsystems. From one point of view, the existence of 

these so-called 'type-two' states is readily accounted for: they are a 

natural consequence of the use of the tensor product Hilbert space in the 

treatment of families of quantum systems. However, from the point of 

view of quantum logic, the notion of the tensor product of Hilbert spaces 
is clearly extrinsic. It obviously would aid the explanatory ambitions of 

quantum logic if it could be shown that the existence of type-two states is 

the inevitable consequence of generalizing the product of classical 

logical systems to the quantum mechanical case. We show that this 
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PAIRS OF QUANTUM SYSTEMS 49 

desideratum is fulfilled and provide a discussion of the logical differences 

between classical and quantum systems on this point. 
Before turning to the mathematical treatment of products, it should be 

noted that definitions of standard lattice-theoretic notions are presup 

posed. Readers unfamiliar with these notions may consult the works of 

Jauch, Varadarajan, and Maeda and Maeda listed among the references. 

It also should be noted that I rely heavily on results proved in 

Varadarajan and direct the reader to that source for details. 

1. CLASSICAL VS. QUANTUM 

We begin with a review of those features of quantum systems which 

distinguish them from classical systems and give rise to the difficulties 
indicated above. In the case of a classical system, the event space of a 

physical system has the structure of a Boolean algebra. In the usual case, 
one begins with a set of E of states or maximal events and constructs the 
event space by taking the Boolean algebra B(E) of measurable subsets of 

E. Let Si and S2 be two classical systems with associated event spaces or 

logics B(EX) and B(E2). B(EX) and B(E2) will be cr-fields of sets and the 

appropriate event space for the union of the two systems will be the field 

(7-product of B(EX) and B(E2). 
The simplest way of viewing the field product is to note that it is 

isomorphic to B(EX x E2), i.e., the cr-field of measurable subsets of 

Ei x E2, the cartesian product of Ex and E2. More revealing for our 

purposes, however, is the characterization in terms of the notion of a 

Boolean product.2 Let Bx and B2 be a pair of Boolean o--algebras. The 
Boolean product of Bx and B2 is a triple (ix, i2, B) such that 

(a) B is a Boolean tr-algebra, 
(b) ?i and i2 are ^-isomorphisms of Bx, B2 respectively into B, 
(c) ix(Bx) and i2(B2) are independent; i.e., if bx, b2 are nonzero 

elements respectively of Bx, B2 then ix(b) a 1*2(^2) ^ 0, 

(d) ix{Bx) U i2(B2) o--generates B. 

The field product is just a special case of the Boolean product. (More 

precisely, it is the least Boolean product of Bx and B2, where the order is 

given by imbeddability.) Let us briefly examine these four conditions. 
Condition (a) needs no comment. Condition (b) guarantees that the logic 
of Si + S2 contains isomorphic copies of the logics of Si and S2. (c) 
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50 ALLEN STAIRS 

assures us that Si and S2 are independent in the following sense. Any 
combination of an Si event with an S2 event is a possible event for Sx + S2. 

Thus, no event associated with one system excludes any event associated 

with the other, nor does it permit any inference to an event of the other 

system. Condition (c) also entails the existence of statistical states with 

the property that every event of one system is probabilistically in 

dependent of every event of the other. (States which lack this feature are, 
of course, possible as well.) Condition (d) insures that the parts determine 

the whole in a certain clear sense. In the case of classical systems, this is a 

rather strong sense. A consequence of the above definition is that if a 

is an atom, or maximal event, then a = 
ix(ax) a 1*2(^2) where ax is an atom 

of Bx and a2 an atom of B2. In the case of pairs of classical systems, then, 
we can always think of the subsystems as being in definite states 

determined by elements ex, e2 of Ex, E2. 
As is well known, the quantum mechanical case is more complex. The 

states of a quantum system are represented by unit vectors in Hilbert 

space. The event space is the lattice of closed linear subspaces of Hilbert 

space. If Si and S2 are two quantum systems with event spaces L(HX) and 

L(H2), then the event space for Si + S2 is L(HX?H2), the lattice of 

subspaces of the tensor product of Hx and H2. Hx <8) H2 is generated by 
the elements {a? x 

?;}, where a, e Hx, ?; e H2 and unit vectors of the 
form a <8> ? are referred to as type-I states. However, a general vector in 

Hi <8> H2 has the form 

? djOLi <8> ?h 

and not all such unit vectors are expressible as type-I states. Those which 
are not are referred to as type-II states and it is the type-II states which 

give rise to many of the characteristic difficulties of interpretation which 

beset quantum mechanics. From a lattice-theoretic point of view, the 

notable feature of these states is that the corresponding propositions are 

not of the form a a b, where a is a proposition concerning Si and b a 

proposition concerning S2. 

2. PROPOSITION SYSTEMS 

Classical event spaces and lattices of subspaces of Hilbert space are 

both instances of proposition systems.3 Following Jauch and Prion, a 
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PAIRS OF QUANTUM SYSTEMS 51 

proposition system is a complete orthomodular lattice L satisfying the 

atomicity axiom: 

A(i) For every element a = 0 of L there exists an atom p such that 

p^ a. 

A(ii) If p is an atom then for all a, x e L, 

a^x^(avp)=>x 
= a or x = a v p. 

A(ii) is usually referred to as the covering law. We recall an important 
fact concerning proposition systems which is a consequence of the 

covering law. If k e L is finite dimensional, then the elements of the 
lattice [fc] consisting of all x e L such that x ^ k satisfies the modular law 

a ^ c =?> (a v b) a c = a v (b a c), 

as well as the orthomodular law 

a^t^i) 
= 

aA(iv ax). 

In the case of classical as well as quantum systems, observables can be 

represented as o--homomorphisms from B(R), the Boolean cr-algebra of 

measurable subsets of the real line, into L. If O is a maximal observable 

for the system in question, the range of O is a maximal Boolean sub 

o--algebra of L. In the classical case, this is L itself. In the quantum case, 
it is a proper subalgebra of L. 

3. LOGICAL PRODUCTS OF PROPOSITION SYSTEMS 

The characterization given in section 1 of the event space of a pair of 

quantum systems was extrinsic, involving explicit reference to the tensor 

product of Hilbert spaces. In what follows, I offer a characterization of 

the product event space which embodies all of the mathematical features 
that one could reasonably demand. Specifically, it is proved that the 

logical product of Hilbert space lattices is itself a Hilbert space lattice, 
without assuming anything in the definition concerning vector spaces. 

Let Li and L2 be proposition systems and let (iu i2, L) be such that 

(i) L is a proposition system, 
(ii) ii : Lx -> L and i2 : L2?? L are orthoisomorphisms. 

(iii) if Si is a maximal Boolean subalgebra of Li and B2 is a 

maximal Boolean subalgebra of L2, then ii(Bi) U ?2(B2) 
generates a maximal Boolean subalgebra B of L such that 
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52 ALLEN STAIRS 

(ii/B?, k/Bz, B) is a Boolean cr-product of Bx and B2. 

(iv) ?i(Li) U kiLi) cr-generates L. 

Conditions (i) and (ii) require no comment. Condition (iii) makes it clear 
that the object being defined is a natural generalization of the product of 

classical event spaces. Indeed the motivation for (iii) is to make the 

product of general proposition systems as like the classical product as is 

compatible with the recognition that we are concerned with a larger class 

of structures. Condition (iv) is just the counterpart of condition (iv) in the 

definition of the Boolean product. These conditions, then, represent very 
minimal and natural assumptions. Nonetheless, they enable us to prove 
some rather striking theorems. For notational convenience, if a e Lx and 

beLz, then denote ix(a), i2(b) by *a, ft*. If aeLi and ftel^ are 

atoms, then (iii) guarantees that *a a ft* is an atom of L. We have the 

following theorem. 

THEOREM 1: Let Hx and H2 be Hilbert spaces of dimension ^2. If 

(ii, i2, L) satisfies (i)-(iv), then L contains atoms which are not of the 

form *a a ft*, where a is an atom of L(HX) and b is an atom of L(H2). 

Proof: The proof proceeds by choosing arbitrary atoms a, a' e L(HX) 
and ft, b'e L(H2) such that ala', bib' and showing that *a a ft* and 

*a' a ft'* are strongly perspective. It is then shown that any atom xeL 

such that x is an axis of perspectivity for *a a ft* and *a' a ft'* [i.e., such 

that ((*a a ft*) v (*a' a ft'*)) 
= 

((*a a ft*) v x) 
= 

((*a' a ft'*) v x)] cannot 

satisfy x = 
(*y a z*), y and z atoms. Details are in the appendix. 

Thus, the minimal conditions for constructing the event space of a pair 
of quantum systems require the existence of events corresponding to 

type-II states. With the help of the following lemmas we can prove 
another important theorem. 

LEMMA 1: Let (il9 i2, L) be as in theorem 1. If BX^L{HX) and 
B2 ? L(H2) are maximal Boolean subalgebras, then every pair of atoms 

in the maximal Boolean subalgebra B generated by ii(Bi) U i2(B2) is 

strongly perspective. 

Proof: If {a?} is the set of atoms of Bi and {bj} is the set of atoms of B2, 
then {*a, a ft*} is the set of atoms of B. For i ̂  k, j=? /, the proof of 

theorem 1 assures us of the existence of an appropriate perspective 
element for *a? a ft*, *ak a ft*. For pairs of elements *af a ft*, *a, a ft*, 

any element *a a c* with c an atom which is an axis of perspectivity for 
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PAIRS OF QUANTUM SYSTEMS 53 

bj, bt will suffice. (The structure of L(H2) guarantees the existence of 

such atoms.) Similar remarks apply for pairs *a? a ft*, *ak a ft*. 

LEMMA 2: Let L be a proposition system and B a maximal Boolean 

subalgebra of L such that every pair of atoms a, ft of B is strongly 

perspective. It follows that L is irreducible. 

Proof: Assume the contrary. Then there are elements A, A j= 0, 1 in 

the center of L. Let {a?} be the set of atoms of B. Since A is central, 
we have A = 

AaV?o? 
= 

V,a; for some set {a7} 
<= {a?}. Similarly, for an 

appropriately chosen set {ak} <= 
{a,}, we have A? = 

Vkak. Let x e {a;} and 

y e {ak}. By hypothesis x and y are strongly perspective. Let z be an atom 

which is an axis of perspectivity for x and y. We have (xvy) 
= 

(xvz) 
= 

(y v z). Clearly {ay}n{ak} 
= 0. Since A is central we have (Aajc)v 

(A a y) 
= 

(A a jc) v (A a z) 
= A a x = x. Therefore, A a z = 0. Simil 

arly, A1" a z = 0. But since z commutes with A, we have z = 

(z a A) v (z a A1-) 
= 

0, which contradicts the fact that z is an atom. 

Therefore, there are no central elements in L distinct from 0, 1. 

THEOREM 2: Let L(Hi), L(H2), (ix, i2, L) be as in theorem 1. L is 

irreducible. 

Proof: This is an immediate consequence of lemmas 1 and 2. 

Remark: Since L in theorem 2 is of dimension ^4, it can be shown 

that L is a complete projective logic in the sense of Varadarajan, p. 176. 

(Varadarajan relies on this fact in his proof of Piron's theorem.) It is 

therefore a consequence of theorem 7.40 in Varadarajan that L is 

isomorphic to the lattice of closed subspaces of a vector space over a 

division ring D. Moreover, if Hx and H2 are over the same division ring 
K, then L(Hi <8> H2) together with the canonical mappings from L(HX), 

L(H2) into L{HX?H2) satisfies (i)-(iv).4 

We may now ask to what extent (i)-(iv) determine L completely. At 

present, the answer is not clear. However, by adding one additional 

constraint (which may prove to be eliminable) we define an object for 

which a fully determinate representation theorem exists in the most 

interesting case. The additional axiom is 

(v) Let aeLx, bel^ be nonzero. Define i[ :[a]-?[*a a ft*] 
by i[(x) 

= *x a ft* and i2:[b]^[*a a ft*] by i2(y) 
= *a a y*. 

The lattices [a], [ft] and the triple (ix, i2,[*a v ft*]) satisfy 
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54 ALLEN STAIRS 

(i)-(iv) when orthocomplement in [a] is understood as rela 

tive orthocomplement in Lx mod a and similarly for [ft], 

[*a a ft*]. 

Some comments on (v). First, in the case where Lx and L2 are Boolean 

algebras, it is easily verified that (v) is redundant. Further, (v) can be 

provided with a certain intuitive motivation. It is often the case that a 

physical system, due for instance to considerations of conservation or 

symmetry, is restricted to some subset of the events in its event space. 
From the point of view of the system, as it were, the effective event space 
is the lattice under some event e j=l. If Si and S2 each occupy such 

"invariant subspaces", (v) simply requires that all of the events open to 

Si + S2 be determined by the events in the appropriate sublattices [ex], 

[e2] of Li and L2. Thus, (v) can be provided with a certain plausibility 

independent of its technical role. The important mathematical con 

sequence of (v), however, is embodied in the following lemma. 

LEMMA 3: Let aeLi be nonzero and let bel^ be an atom. The 

morphism il:[a]??[*a a ft*] defined as in (v) is surjective. 

Proof: By (v), we know that every element of [*a a ft*] is expressible 
in terms of elements from i[[a] U i2[ft]. We note that i2[b] 

= 

{*a a ft*, 0} 
= 

{*a a ft*, *0 a ft*}. Further, if {a,} is the set of elements of 

[a] then i[[a] = {*a? a ft*} 3 i[[b]. Thus [*a a ft*] is generated by ?x[?\. It 
therefore follows that [a* a ft*] is isomorphic to [a]. If e = 

{</>*af a ft*} 
where <f> is a (possibly infinite) lattice polynomial, then e = 

i?(0{a?}).5 
This lemma leads immediately to the following important theorem. 

THEOREM 3: Let L(HX), L(H2), (ix, i2, L) satisfy (i)-(v). Suppose that 
dim(Hx), dim(H2) ^ 3. Suppose further that Hi and H2 are over the same 

division ring D. Then L = 
L(H) for some Hilbert space H. 

Proof: By theorem 2, L is irreducible and clearly dim(L) ^ 4. It can 

therefore be shown that L is a complete projective logic in the sense of 

Varadarajan (p. 176). It follows from Varadarajan's theorem 7.40 that 

there exists a division ring D, a vector space V over D, an involutive 

anti-automorphism 0 of D and a definite, symmetric, 0-bilinear form 

(.,.) on Vx V such that L is isomorphic to L(V, (.,.)), where (.,.) 
induces the orthocomplementation. Let a e L(HX) be finite-dimensional 

with dim(a) ^ 3 and let ft be any atom of L(H2). We know from lemma 3 

that [*a a ft*] is isomorphic to [a], which is the lattice of subspaces of 
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PAIRS OF QUANTUM SYSTEMS 55 

finite-dimensional Hilbert space. It is clear from the proof of Varadara 

jan's theorem 7.40 (pp. 180-81) that 6 is the conjugation and hence L is 

associated with D (p. 181). From Varadarajan's theorem 7.42 and the 

remarks following theorem 7.40 it is clear that ( V, (.,.)) is a Hilbert 

space. Moreover, if Hi and H2 are separable, then by (iii) there exists a 

countable maximal orthogonal set in L. (If Bi and B2 are atomic 

cr-algebras with countably many atoms, then their Boolean <r-product 
has countably many atoms.) Therefore, in this case V is separable. 

(Halmos, section 16, Varadarajan, theorem 7.44). 
If Li and L2 are proposition systems let us call a triple satisfying (i)-(v) 

a logical product of Li and L2. We can now ask, in the case where Li and 

JL2 are lattices of subspaces of Hilbert spaces, whether the logical product 
is unique. That is, suppose that (ix, i2, L) and (il, i2, V) are two logical 

products of Li and L2. Does there exist an isomorphism h:L-+ L' such 

that the following diagram commutes? 

If we restrict ourselves to the cases of real and complex Hilbert space, 
theorem 3 leads to an answer via a result proved by Matolcsi. As noted 

earlier, Matolcsi considers for Hilbert space lattices the problem 
considered in this paper for the more general category of proposition 

systems. (Since Matolcsi does not have to prove that the product of 

Hilbert space lattices, as he defines it, is itself a Hilbert space lattice, the 

results of this paper provide a considerable strengthening of his results.) 
Matolcsi's definition is as follows (with notation altered to correspond to 

our own). 

Let Hi, H2, H be Hilbert spaces, all complex or all real, (ii, i2, L(H)) 
is called a tensor product of L(HX), L(H2) if 

(i) ij : L(Hj)-+ L(H) is a cr-orthoisomorphism (j 
= 1, 2) 

(U) V V (ii(Aff) a ?(M?)) = V ?i(Af?)A(V fe(Ai?)) for 
n = l m = l n = l m = l 

any pairwise orthogonal elements M? of L(Hi) and pairwise 

orthogonal elements of NT? of L(H2) 

(iii) ii(L(Hi)) and i2(L(H2)) generate L(H). 
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56 ALLEN STAIRS 

Let us compare this with the definition in this paper. As a consequence of 

theorem 3 the logical product of L(HX) and L(H2) is a Hilbert space 
lattice together with a pair of isomorphisms. Thus, Matolcsi's (i) is 

satisfied. Since {M?} and{M2} belong to maximal Booleansubalgebras, 
our condition (iii) guarantees the fulfillment of Matolcsi's condition (ii). 

Finally, Matolcsi's (iii) corresponds to our (iv). To the three conditions 

just enumerated, Matolcsi adds a fourth, which he calls a condition of 

fullness 

(iv) Let a e L(HX) and ft e L(H2) be atoms. The maps 
?? : L(Hi) -* [i2(ft)] and i2 : L(H2) -+ [ix(a)] defined by 

ii(Mi) = ii(Mi) a i2(ft) 
i2(M2) = ix(a) a i2{M2) 

are surjective. 

The proof of lemma 3 is symmetric in L(Hi) and L(H2) and so this 

condition is satisfied by the logical product. 
Matolcsi proves the following theorem. If H is a Hilbert space, let H 

denote its conjugate Hilbert space, the elements of which correspond 

canonically to the elements of H such that if x and y in H correspond to x 

and y in H then x + y corresponds to x + y, Ajc to Ax (A a number) and 

(jc, y) to (y, jc) where.,. is the inner product in H and H. If H is real then 

H = H. 

THEOREM: Let Hi and H2 be Hilbert spaces, dimHi, H2 ^ 3. If Hi 
and H2 are complex there are exactly two nonequivalent tensor products 
of L(Hi) and L(H2) satisfying the condition of fullness. They are given 

(i) H = HX?H2, i1(Mi) = M?H2 
i2{M2) = Hx?M2 

(ii) H = HX?H2, ii(Mi) = Mi?H2 
i2(M2) = H?M2 

If Hi and H2 are real then (i) characterizes the unique tensor product. 
The above theorem results from an application of Wigner's proof that 

the symmetries of a Hilbert space are all induced either by unitary or 

anti-unitary transformations. It is clear from what has been said that 

Matolcsi's theorem also characterizes the logical products of L(HX) and 

L(H2). 
As was noted at the outset, this paper is intended to provide a 
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mathematical preliminary to a discussion of the logical features of pairs 
and larger families of quantum systems. It is to be hoped that the logical 

approach will help to clarify the issues of holism and locality. In addition, 
the results discussed here give rise to an interesting question, viz., what is 

the physical significance of the existence of nonequivalent logical 

products? The answer, I suspect, will come from considerations of 

time-reversal and particle-anti-particle pairs. 

APPENDIX 

Proof of Theorem 1: 

Choose distinct a, a', c, c' e Lx such that a?a',c ?c' and a v a' 
= c v c'. 

Similarly, choose distinct ft, ft', d, d!e 1^ such that ft 1 ft', did' and 

ft v ft' = d v d'. Let P denote a\i a! and O denote ft v ft'. Note that there 

exist maximal Boolean subalgebras Bi, B3 of Lx such that a, a! eBx, c, 
c' e B3 and maximal Boolean subalgebras B2, B4 of L2 such that ft, 
ft' e B2, d, d! e B4. It is therefore easily seen that 

(*a a ft*) v (*a v ft'*) v (V a ft*) v (*a' a ft'*) 
= *P a Q* 

= 
(*C A d*) V (*C A d'*) V (V A d'*) V (V A d'*). 

It follows that dim(*PAQ*) 
= 4 and that [*P a Q*] 

= 
{jce L: 

x ^ *P a O*} is modular. Denote [*P a Q*] by L'. We first show that 

*aAft* and *a'Aft'* are perspective in L' (i.e., have a common 

complement). Since L' is modular, it follows that *a a ft* and *a' a ft'* 
are strongly perspective (i.e., have a common complement in [(*a a 

ft*) v (*a' a ft'*)], which complement is an atom of L)We show this by 

proving that each of them has 

(1) (*CAd*)v(*CAd'*)V(*c'Ad*) 

as a complement in I!. In the proof, we shall appeal frequently to the 

well-known result of Holland and Foulis that in an orthomodular lattice, 
if x and y both commute with z, then (x, y, z) is a distributive triple. 

We have that (1) is equal to 

(2) (*cAO*)v(*c'Ad*). 

We must show that 

(3) (*a A ft*) A ((*C A O*) v (V A d*)) = <f> 
and 

(4) (*a a ft*) v ((*c a Q*) v (*c a d*)) = *P a Q*. 
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Suppose (3) is false. We then have 

(5) (*a a ft*) ̂  ((*c a O*) v (V a d*)). 

The right side of (5) belongs to [*P a Q*]. We may therefore invoke 

modularity and infer that 

(6) (*a A ft*) V {(*C A ft*) A ((*C A O*) V (V A d*))} 

is identical with 

(7) {(*a A ft*) V (*C A ft*)} A {(*C A Q*) V (V A d*)}. 

But (6) reduces to 

(8) (*aAft*)v(*cAft*) 

which, by the Holland and Foulis result, is 

(9) (*av*c)Aft* 

which, given our choice of a, c, is *P a ft*. 

By the identity of (6) and (7), then, 

(10) *P A ft* = {(*a A ft*) V (*C A ft*)} A {(*C A O*) V (V A d*)} 

and by two applications of the Holland and Foulis result, 

(11) *P A ft* = {(*P A ft*) A ((*C A O*) V (V A d*))} 

(12) *P A ft* - (*C A ft*) V (*P A ft* A V A d*). 

However, ft* a d* = 0. Therefore, we have 

(13) *P a ft* = 
(*c a ft*). 

But this is impossible, since dim(*PAft*) 
= 2 and dim(*c a ft*) 

= 1. 

Therefore 

(14) (*a a ft*) a {(c a d*) v (*c a d'*) v (V a d*)} 
= 0. 

Further, since (*a a ft*) is an atom not under the three dimensional 

element (*c a d*) v (*c a d'*) v (V a d*) and both are under *P a Q*, 
we have 

(*a A ft*) V {(*C A d*) V (*C A d'*) V (*C' A d*)} 
= *P A Q*. 

Thus, these elements are complements in [*P a O*]. A similar argu 
ment shows that (*a' a ft'*) and {(*c a d*) v (*c a d*) v (*c' a d*)} are 
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complements in [*P a O*]. Thus, (*a a ft*) and (*a' a ft'*) are strongly 

perspective. 
We must now show that any element jc of L which satisfies 

(i) (*a a ft*) a x = 0 = 
(V a ft'*) a x 

and 

(ii) (*a a ft*) v x = (*a a ft*) v (V a ft'*) = (V a ft'*) v jc 

cannot be of the form *y a z* (y and z atoms). First, suppose that y is an 

atom of Li not under P. If (ii) is to be satisfied, we must have 

*yAz*^*PAO* 

and hence 

*yAz*^*P. 

But y a P = 
0, hence *y a z* ^? *P. Similar remarks apply if z ^? Q*. 

Thus, if x = 
*y a z*, then y ̂  P and z ^ Q. 

It is clear that x^(*?a ft*), (*a a ft'*). Further, jc cannot be any of 

(*aAz*), (*a'Az*), (*yAft*), (*yAft'*). The case of (*a a z*) is 

representative. We have 

(15) (*aAz*)v(*aAft*) 
= *aAQ* 

^(*aAft*)v(*a'Aft'*). 

It now remains to consider y ^ a, a', z ^ ft, ft'. Suppose 

(16) (*y a z*) ^ (*a a ft*) v (*a' a ft'*). 

We then have 

(17) (*y a z*) ^ (*a a ft*) v (*a' a ft'*) v (*a a ft'*) 
= 

(*aAQ*)v(*a'Aft'*). 

By modularity, 

(18) (*y a z*) v {(*a a z*) a ((*a a O*) v (*a' a ft'*))} 

is identical with 

(19) {(*y a z*) v (*a a z*)} a {(*a a O*) v (*a' a ft'*)}. 

Using Holland and Foulis's result and the fact that *aAz*=^*aAQ*, 

(18) becomes 

(20) *Paz*. 

This content downloaded from 134.100.220.72 on Fri, 5 Apr 2013 10:11:27 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


60 ALLEN STAIRS 

We can similarly reduce (19) to 

(21) (*P a z*) a {(*a a O*) v (*a' a ft'*)} 

and since we can distribute, (21) is 

(22) *a a z*. 

We thus get *a a z* = *P a z*, which is clearly false. 

Therefore, there exists an atom x ^ *P a Q* which is not of the form 

*y 
a z*. 

University of Maryland, College Park 

NOTES 

* 
The author gratefully acknowledges the support of the general research board of the 

University of Maryland for financial assistance during the preparation of this paper. 
1 I suspect that Zecca's definition of a product is equivalent to (i)-(iv) in this paper, but 

have not confirmed this at the time of writing. I wish to thank Professors David Foulis and 

Charles Randall for bringing the papers by Matolcsi and Zecca to my attention. 
2 This definition is from R. Sikorski, Boolean Algebras. 
3 

See, J. Jauch, Foundations of Quantum Mechanics for a discussion of proposition 

systems. 
4 If Hx and H2 are not over the same division ring, then one would expect that their product 

would not exist. I believe that this is true, but have not yet shown it. I suspect that if it were 

proved, it could be shown that condition (v) is eliminable. 
5 

Recall that we are considering complete lattices. 
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