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Abstract .  A new classification of phase transitions is presented, based on an exact mathematical 
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1. In troduct ion  

It is well known that there are two classifications of phase transitions in thermody- 
namics, due to Ehrenfest and Tisza, respectively ([1],[2]). They differ significantly: 
Ehrenfest's classification is "applicable to those transitions in which the discon- 
tinuities of the derivatives are simple jumps" and is based on intensive variables 

(the chemical potential and its derivatives as functions of temperature and pressure 
are considered); Tisza's classification "is applicable to those transitions in which 
discontinuities are infinite values of the derivatives" and is based on extensive 

variables (s tabi l i ty  cr i ter ia  are examined  in te rms of extensive variables).  

Second order phase t rans i t ions  of Ehrenfes t  type  are rarely observed in na- 

ture;  on the contrary,  ) , - t ransi t ions which correspond to Tisza 's  classification, are 
common phenomena. Since such transitions are related to the lack of stability 
conditions, it is frequently stated that phase transitions, in general, are connected 
with the loss of stability: 

"The criteria of stability must be satisfied by the fundamental equation of any 
system that is to remain homogeneous and stable. If the stability criteria are 
not satisfied, the system breaks into two or more portions. This separation is 
called phase transition." "...the equation of state does not everywhere satisfy the 
criteria of intrinsic stability... A phase transition consequently must occur in this 
substance. . ."  ([2], pp. 146,148). 

"States with indefinite forms cannot exist in nature and they break up into one 
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or more phases." ([i], p.224) 

However, it is well known that liquid water under everyday circumstances (nor- 
mal temperature and pressure) is stable, nevertheless it evaporates. Moreover, the 
well known discussion of Van der Waals gases shows without doubt that the boil- 
ing of liquids begins in a region of intrinsic stability ([2]). Stability and first order 
phase transitions are not in the relation claimed by the cited statements. 

This is well reflected in the fact that first order phase transitions do not appear 
in Tisza's classification. 

Examining the two classifications we find that 

- f i rs t  order phase transi t ions  are well  described in Ehrenfes t ' s  classification 
and are not  presen t  in Tisza's  classification, 

- mos t  of  the second order phase transi t ions - h- t rans i t ions  - are well  described 

in Tisza 's  classification and are not  described in Ehrenfes t ' s  classification. 

Now two questions arise: 
1. What  is the exact relation between the two classifications? 
2. Is there a classification which well describes both first order and second 

order phase transitions? 
This article is devoted to answer these questions. 
Before going into detail, let me mention that the name phase transition in this 

respect is somewhat misleading because transition in everyday language means a 
process. Thus phase transition should mean the process of phase change (e.g. the 

one that initially there are given hundred grams of ice under certain circumstances, 
the ice begins to melt and after t minutes the mass of ice is re(t) and the mass of 

water is 100g - re(t)). There are papers dealing with phase transitions indeed i.e. 
describing some aspects of the dynamics of phase change ([3],[4],[5],[6]) but in the 
mentioned classifications no such a transition is treated; the Clausius-Clapeyron 
equation, the classifications of Ehrenfest and Tisza characterize the phase lines 
and phase surfaces that appear on the well known phase diagrams and which are 
called sometimes phase boundaries ([7]); however, we shall see that, in general, 
they are not boundaries in the usual mathematical sense. Since these lines and 
surfaces mean some connection between different phases, I shall use the name phase 
connection instead of phase transition or phase boundary. In this terminology we 
can say that a phase transition can occur between two phases being in a phase 

connection. 
Of course, to deal with phase connections, first we must have an exact definition 

of phases. In general, different phases are considered to be described by different 
constitutive functions (state functions)([3],[4],[5]). However, the liquid and the 
gaseous phases intermingle over the critical point (Fig 1); therefore these phases 
cannot be described consistently by different constitutive functions. 

We call attention to that  the domain of constitutive functions will play an 
important  role in the precise description and classification of phase connections. 
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Figure 1. 

2. M a t h e m a t i e a l  t o o l s  
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2.1.  D i f f e r e n t i a t i o n  

Let V and U be finite dimensional vector spaces; if f : V ~-~ U is differentiable at 

x C V then its derivative is a linear map f'(x) : V -+ U. 

In particular, for the derivative of a differentiable function f : ]E n ~-+ E~, we 

have ff(xl ,xn) = (af(xl ..... x~) of(zl ..... xn)~ Accordingly, the derivative ,"" oxl ,'", Ox~ ]" 
of the joint of n functions (fl,.--, fn) : R n -+ E~n, (f~,..., f~) is the corresponding 

Jacobian matrix. 

The second derivative of a twice differentiable f : V ~ U at x E V is a bilinear 

map f'(x) : V x V --+ U. In the case U -- ~ it makes sense that f'(x) is negative 

definite, negative semi-definite, indefinite, etc. 

2.2.  D i a g o n a l  s p a c e s  

(i) Let n > 1 be a positive integer and put 

D~-l := xl,...,x~) E IE ~ xi = 0 , 

i=l 

D ~ - I  is an n - 1 dimensional  linear subspace of R *~ and D ~ - I  is an affine space 
over D ~ - I  i.e. the difference of two elements of D,~-I is in D n - 1 .  
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Chosing a k = 1 , . . .  ,n  and omitting the k-th coordinates, we can represent 
the elements of D~_I  by the elements of IR ~-1 ; in other words, we can establish 
a linear bijection ("coordinatization") Rk : Dn-1  --+ ~n-1 .  This does not mean, 
however, that  Dn-1  and IR n-1 are identical. 

Similarly, omitt ing the k-th coordinates, we can represent the elements of D~_~ 
by the elements of R~-~; in other words, we can establish an affine bijection 
("coordinatization") Rk : D n - 1  --+ R n-1.  

All/~k-s,  though being different, play equal role. For the sake of definiteness, 
in the following we consider R~. We have that  

( ) R n - l ( x l , . . . , X n _ l ) =  Xl,...,Xn--1,-- X i ,  
i = 1  

I ~ n - l ( c l , . . . , C n - 1 )  = C l , . . . , c n - l , 1 - -  Ci �9 
i = 1  

(ii) A linear map P : Dn-1  --+ ]R can be given by an element (P l , . . .  ,P~) of I~ ~ 
in such a way tha t  

n 

P ( z l , . . . ,  xn) = }-~pizi. 
i = 1  

We shall write that  P = ( (P l , . . .  ,Pn)). It  is a simple fact that  ( ( q l , . . . ,  q~)) = 
( ( p t , . . . , P ~ ) )  if and only if there is a number c such that  q~ = p~ + c for all 
i = 1 , . . . ,  n. Using the coordinatization R~ we represent this linear map by the 
elment ( P i - P ~  ] i = 1 , . . . , n -  1) of ~ - 1 .  

(iii) The differentiability of a function f : Dn-1 ~-* R at ( c l , . . . ,  c~) is defined 
by the usual formula; its derivative is a linear map f ' ( e l ,  �9 . . ,  e~) : Dn-1  --+ R 

Note the impor tant  fact that  the derivative of f is not the collection of partial 
derivatives (partial derivatives of f make no sense: the coordinates in Dn-1 cannot 
vary independently from each other). However, using the coordinatization R~, 
the collection of the n - 1 partial  derivatives of f o R~ 1 will represent f ' :  if 
f ' ( c , , . . . , c ~ )  = ( ( d , , . . . , d ~ ) )  then 

~ = dk  - ( k  = 1 , . . .  - 1) .  
cOck 

2.3. C u r v e s ,  s u r f a c e s  

(i) Let V be a finite dimensional vector space, n := dimV. Let k be a positive 
integer, k < n. 

A subset S of V is a k d imens iona l  surface if every point of S has a neighbour- 
hood U for which there is a function r : R k ~-+ V, called a parametr izat ion of S in 
U, such tha t  
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- the  domain  of r is a connected open subset ,  
- the  range  of r equals S N U, 
- r is cont inuously  differentiable,  
- r '  is everywhere  injective, 
- r is injective, 
- r -1 is continuous.  

The  one dimensional  surfaces and  the  n - 1 dimensional  surfaces are called 
curves and hypersurfaces, respectively.  

Note  t ha t  hypersurfaces  in a two dimensional  vector  space are curves.  

(ii) I t  follows f rom the implici t  funct ion theo rem tha t  if Z : V ~ ]R ~-k  is 
cont inuously  differentiable,  0 is in the  range  of Z and Z'(x)  is surjeet ive for all 
S := {x E V I Z(x)  = O} then  S is a k-dimensional  surface. 

(iii) Every  point  of a hypersur face  S C V has a connected ne ighbourhood  N 
such t h a t  N \ S is the  disjoint union of two connected open subsets .  

Indeed,  choose an a rb i t r a ry  point  Xo of S and a pa r ame t r i z a t i on  r of S in a 
ne ighbourhood  of x0. Wi thou t  loss of general i ty  we can suppose  t ha t  r(0)  = x0. 
Take  a vector  v E V ,  l inearly independent  of the  range of r ' (0)  (which is an n - 1 
d imensional  l inear subspace) .  The  funct ion p : R ~-1 • ]I{ ~ V ,  (t, s) ~ r(t) + sv 
is cont inuously  differentiable and its der ivat ive a t  (0, 0) equals (r' (0), v). Then  we 
infer f rom the inverse funct ion theo rem t h a t  there  are a connected open subset  
J C ]R '~-1 and an open interval  I such t ha t  the  res t r ic t ion of ~o onto J x I is 
injective and  its inverse is cont inuously differentiable,  too (which implies t ha t  it 
m a p s  connected  open subsets  into connected open subsets) .  

P u t t i n g  N := ~ [ J  x I] we have t h a t  S N N = ~[o r x {0}] and N \ S is the  
disjoint union of the  connected open subsets  ~ [ J  x {s C I I s < 0}] and p [ J  x {s E 
I ls > o}]. 

(iv) We say t h a t  a hypersur face  S C V separates the  open subsets  Hz and H2 
if 

- H1 and He are disjoint, 
- every point  of S has a ne ighbourhood  N such t h a t  N \ S = N1 U N2 where 

N1 and N2 are disjoint connected open subsets,  N1 C H1 and N2 C/-/2.  
If  S separa tes  H1 and H2 then  S C H1 N He 

2.4.  S i d e w i s e  d e r i v a t i v e s  

(i) Suppose the hypersurface S C V separates the connected open subsets HI and 
H~ and f is a (vector valued) function defined on HI U C U H2. We say that f 
is continuously differentiable on S from the side of Hi (l = I, 2) if every point 
of S has a neighbourhood N with the property stated in 2.3.(iv) such that there 
is a continuously differentiable functions fl defined on N and f~(x) : f(x) for 
z c S u N z .  

If  f is cont inuously  differentiable f rom the side of H1 then  the  quan t i ty  f / (x )  
(l = 1, 2) is called the corresponding sidewise derivative of f a t  x E S. 
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(ii) Use the previous notations and suppose f is continuously differentiable on 
S from both sides. Then f is continuously differentiable (in the usual sense) at 
x E S if f~ (x) = f6 (x) and is not differentiable at x E S if f~ (x) 7~ f~ (x). 

2.5. P h y s i c a l  q u a n t i t i e s  

(i) We shall distinguish between functions and their values: italic letters denote val- 
ues, functions are denoted by another type of letters (boldface etc.). Thus e, v, T, p 
stand for values of specific energy, specific volume, temperature  and pressure, re- 
spectively, and e, v, T,  p indicate specific energy, specific volume, temperature  and 
pressure as functions of e and v. 

(ii) The set of possible values of specific internal energy and specific volume 
- the (e - v)-plane - is quite different from the set of possible temperature  and 
pressure values - the (T-p) -p lane .  Nevertheless, both are frequently considered to 
be R 2 . For a clear distinction, we shall take into account the "physical dimension" 

of the quantities which will be measured in SI units: 
- time: s (second) 
- distance: m (meter) 
- volume: m 3 
- mass: kg (kilogram) 
- e n e r g y :  J (Joule = kgrn2/s 2) 
- p r e s s u r e :  Pa (Pascal = kg/ms 2) 
- temperature:  K (Kelvin) 

Then, for instance, the values of temperature  are positive multiples of K i.e. 
they are elements of 

(K) + := { a K l a  e R, ~ > 0}. 

Similarly, we shall use the notations 

(kg)0 + := { kg I R, > 0}, (J/kg) := {a(J/kg) l a E R} 

etc. The exact mathematical  meaning of the symbols J/kg, ms 2 etc. can be found 
in [8] or [9]. 

In these notations the ( e -v ) -p l ane  is (J/kg) x (m3/k9) and the ( T - p ) - p l a n e  is 
(K) x (Pc), and their positive quadrant contains the physically meaningful values. 

The vector space structure and the topological properties of the real line can 
be transferred trivially to the above objects. Thus we can speak of continuity and 
differentiability of functions defined or having values in them. In particular, e.g. 
we can speak of a curve in (J/kg) + x (rna/kg) + and in (K) + x (Pa) +. 
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3. S u b s t a n c e s ,  p h a s e s  

843 

D e f i n i t i o n  1. A single-component substance is a triplet (D, s, R) where 
(i) D, called the constitutive domain, is a non-void subset of (J/kg)  + x 

(m3/kg)+; the first and second variables in D (usually denoted by e and v, re- 
spectively), are the specific internal energy and the specific volume, respectively; 
the elements of D are called states of the substance, 

(ii) s : D -+ ( J / kgK) ,  the specific entropy, is continuously differentiable and 
its partial derivatives are everywhere positive, 

(iii) R, the regular constitutive domain, is an open subset, consisting of the 
elements (e, v) E D such that  s is twice continuously differentiable at (e, v) and 
s"(e, v) is negative definite. 

R e m a r k s  1. (i) The temperature T : D --+ (K) + and the pressure p : D --+ (Pa) + 
of the substance, defined by 

1 0s p 0s 

T Oe' T Ov' 
as well as the chemical potential 

p : = e + p v - T s : D - - + ( J / k 9 )  

are continuous on D and continuously differentiable on R. 
(ii) The negative definiteness of s"(e, v) is equivalent to the inequalities 

0T(e, v) 0T(e, v) 0p(e, v) 0T(e, v) 0p(e, v) 
> 0, 

Oe Oe Ov Ov Oe 
- - < 0 .  

(iii) The Jacobian determinant of the joint function (T, p) is the expression on 
the left hand side of the second inequality above. As a consequence of the well 
known inverse function theorem, (T, p) is a local diffeomorphism in R , i.e. every 
point in R has a neighbourhood in which (T, p) is injective and its inverse is con- 
tinously differentiable as well. In other words, at least locally, the specific internal 
energy and the specific volume in R can be given as a continuously differentiable 
function of temperature and pressure. Moreover, if H is an open subset of R then 
(T,p)[H] is an open subset in (K) + x (Pa) +. 

It is worth mentioning that  (T, p) is injective if and only if ( l / T ,  p / T )  = s' is 
injective. 

(iv) If (e, v) E D \ / ~  then either s' is not continuously differentiable at (e, v) 
or s"(e, v) is not negative definite; equivalently, (T, p) is not continuously differ- 
entiable at (e, v) or at least one of the inequalities in (ii) is not satisfied. 

Now we focus our attention on phases. Recall that different phases need not be 
disjoint: the liquid phase and the gaseous phase of a substance intermingle over 
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the critical point which can be seen in the usual phase diagram in Fig.1. What  
makes then distinction between the two phases? For getting a convenient answer, 
let us recall some well known facts. 

Fig.2 shows the well known picture of isotherms in the (p - v)-plane of Van 
der Waals gases. The dashed lines ("spinodal lines'!) represent the edge of the 
"physical region" (i.e. the part  corresponding to the regular constitutive domain), 
the dotted lines mark the "unphysical part" of isotherms; the continuous fat lines 
("binodal lines") represent the phase equilibrium states. The meaning of the star 
lines will be explained later. 

We know the picture of isobars in the (T - v)-plane, too ([10]). Then we can 
reconstruct a three dimensional phase diagram in the (p - T - v)-space (Fig.3). 
The picture in the (p - e - v)-space will be similar, perhaps only distorted a little 
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p~ 

Figure 4. 

(for a Van der Waals gase in the simplest case T(e,  v) = 7(e + a/v) where 7 and 
a are positive constants) (Fig.4). 

A profound study of these diagrams leads us to the following definition. 

D e f i n i t i o n  2. A phase of a single-component substance (D, s, R) is a connected 
open subset F of R such that  

(i) s '  is injective on F,  
(ii) F is maximal  with this proper ty  (i.e. if N is a connected open subset of R 

containing F and s ~ is injective on N then N = F).  

P r o p o s i t i o n  1. Every point of R is in a phase. 

Pro@ Every point (e, v) of /~  has a neighbourhood in which s ~ is injective. Let S 
be the family of the connected open subsets, containing (e, v), tha t  s'  is injective 
on. 5 is ordered by the inclusion. Take a chain in ~-; the union of the subsets in 
the chain is in 3 c and is an upper bound of the chain. Thus Zorn's lemma yields 
tha t  Y has a maximal  element; it is evidently a phase containing (e, v). 

R e m a r k s  2. (i) The definition admits, indeed, that  a point belong to more than 
one phase: different phases need not be disjoint. 

(ii) The star  lines in Fig.2 indicate the borders of the liquid and gaseous phases 
in the (p - v)-plane. The border line on the left hand side of the critical point 
is constructed as follows: draw a horizontal line across the local max imum of an 
isotherm (under the critical value) and take the point where this horizontal line 
meets the isotherm in question. A similar construction - with minimum instead 
of max imum - yields the border line on the right hand side of the critical point. 

The gaseous phase is the region over the left border line and right spinodal 
line; the liquid phase is the region over the left spinodal line and the right border 
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line. 
(iii) Recall that  the injectivity of s' is equivalent to the injectivity of (T, p). If 

F is a phase then 
r := (T, p)[F] 

is a connected open subset of (K) + x (Pa) +. As usual, let a vertical bar denote 
the restriction of functions, and introduce the notations 

( eF ,vF )  := ( ( T , p ) I F )  -1 : r -+ F, /~F := # o ( eF ,vF)  : r -+ (J/kg). 

In other words, specific internal energy and specific volume - consequently 

the chemical potential, too - in a phase are given as continuously differentiable 

functions of temper ature and pressure; note that  #F (T, p) = # ((eF (T, p), VF (T, p)) 
for all (T,p) C r 

The Gibbs-Duhem relations read in these notations as follows: 

OpF O#F 
o (T,p)  = -s]~-, o (T,p)  = vlF. 

OT Op 

(iv) Regarding phase connections, two phases F1 and F~ will be involved. Then 
we shall use the notations for l = 1, 2: 

r := (T,p)[F1], (Tl ,pl)  := (T,p)IF~, 

(el, vt) := (%,  pl)  -1 ,  ~ := ~ o (el, vl). 

4. Z e r o t h - o r d e r  p h a s e  c o n n e c t i o n s  

Phase diagrams, such as the one in Fig.l,  are usually given in the (T -p)-plane.  
Consequently, usual phase lines are subsets of the (T - p)-plane. 

The intensive parameters characterize a phase completely; however, they do 
not characterize necessarily two phases: (T, p) is injective on a phase but is not 
necessarily injective on the union of two phases. 

Therefore it seems, it is better to describe phase connections in the (e-v)-plane, 
all the more because phases are defined to be subsets of that  plane. 

The liquid phase and the gaseous phase are not disjoint; thus it is possible 
that  a process starts from a definitely liquid state and then through continuous 
changes it arrives at a definitely gaseous state. Of course, such a process is a phase 
transition which is characterized by the facts that  

- the extensive quantities (specific internal energy and specific volume) and 
the intensive quantities (given by the constitutive functions) and their derivatives 
change continuously. 
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A similar phase transition can occur if disjoint phases have a common boundary 
in the regular constitutive domain. 

Such processes can be called a zeroth-order phase transitions. 

D e f i n i t i o n  3. The zeroth-order phase connection of the phases F1 and F2 of a 
single-component substance is R N F1 N F2; if this set is not empty then the two 
phases are said to be in zeroth-order connection. 

m 

R e m a r k s  3. (i) With the usual notation for the boundary of sets (OF := F \ F,  
so F = F U OF) and taking into account that  the phases are subsets of R, we can 
transform the zeroth order phase connection of F1 and F2 in the form 

(El AS2) U (F  1 NGqF2) U (cqF 1 NF1) U (cqF1 NcqF2 NR).  

(ii) If F1 and/;'2 are not disjoint then F1 n F2 is a non-void open subset in the 
zeroth-order phase connection and F1 \ F,2 is the largest open subset in F1, disjoint 
from F2; this is the part  of F1 which is "definitely" /71 in contrast to F2. 

5. S e c o n d - o r d e r  p h a s e  c o n n e c t i o n s  

In second order phase transitions 
- the extensive quantities as well as the intensive quantities change continu- 

ously, but some of their derivatives change discontinuously. 
This indicates that  in such a process the state leaves a phase and enters another 

one through a common boundary point Which does not belong to the regular 
constitutive domain. 

D e f i n i t i o n  4. The second-order phase connection of the phases F1 and F2 of a 
single-component substance (D, s,/~) is (D \ R) n F1 N F2; if this set is not empty 
then the two phases are said to be in a second-order phase connection. 

R e m a r k  4. Since the phases are disjoint from D \ R, the second-order phase 
connection of F1 and/72 can be transformed into the form 

OF~ n OF~ n (D \ R); 

thus only boundary points of the phases are contained in the second-order phase 
connection. 

In Tisza's classification the differentiability is not questioned, only the lack of 
intrinsic stability is required. 

D e f i n i t i o n  5. A point (e, v) of a second-order phase connection is called of Tisza 
type if s' is continuously differentiable at (e, v) but s"(e, v) is not negative definite. 
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A subset of the second-order phase connection is of Tisza type if all of its points 
are of Tisza type. 

R e m a r k  5. Because of the continuous differentiability, the second derivative of s 
at a Tisza type point is negative semi-definite. 

Ehrenfest's classification involves sidewise derivatives; therefore, to define Ehren- 
fest type second-order phase connection, we need the following notion. 

De f in i t i on  6. A subset C of the second order phase connection between the 
phases F1 and F2 is called a regular part if 

(i) C is a curve which separates F1 \ F2 and F2 \ F1, 
(ii) s' is injective on an open subset G containing C, 

(iii) s' is continuously differentiable on C from both sides. 

R e m a r k s  6. (i) Put  

HI := FI \ F2, H2 := F2 \ F1. 

According to the definition of a phase, s' is continuously differentiable on H1 
and H2. Moreover, the sidewise continuous differentiability on C means that  every 
point of C has a neighbourhood N (satisfying the properties listed in 2.3.(iv)) 
on which continuously differentiable functions S'l, and s'2 can be defined such 
that  s'i(e,v) = s'(e,v) for (e,v) E N1 and s'2(e,v) = s'(e,v) for (e,v) E N2. 
(The functions sq and s'2 have no physical meaning on N2 and N1, respectively, 
they serve only for the convenient mathematical expression of continuous sidewise 
differentiability on C.) 

(ii) C is disjoint from R and is contained in /~. Because of the continuity, 
the sidewise derivatives of s' at every point of C are negative definite or negative 
semi-definite. 

0ii) s' and (T, p) determine each other uniquely. Thus (T, p) is continuously 
differentiable on C from both sides. 

(iv) Specific internal energy and specific volume can be given as a function of 
temperature and pressure in a neighbourhood of a regular part of a second-order 
phase connection. More precisely, put 

F := (T, p)[C] f~ := (T, p)[G], 

and 

ftl := (T,p)[G n H1] ft2 :-- (T,p)[G N H2]. 

For 1 -- 1,2, f~l is an open subset in Ct, and (e,v) := ((T,p) l~)  -1 is a function 
defined on f / fo r  which (e,v)(T,p) = (el,vt)(T,p) holds if (T,p) C fh (l = 1,2). 
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D e f i n i t i o n  7. A regular part  C of a second-order phase connection is called of 
Ehrenfest type if at every point of C both sidewise derivatives of s' are negative 
definite. 

The next proposition shows that  our definition of Ehrenfest type second-order 
phase connection coincides with the original one based on intensive variables. 

P r o p o s i t i o n  2. Suppose C is an Ehrenfest type regular part of a second-order 
phase connection and use the previous notations. Then 

(i) F is a curve, 
(ii) (e, v) and consequently # := # o (e, v) are continuously diferentiable on F 

f i rm both sides, 
(iii) P is described by the Ehrenfest differential equation (detailed below). 

Pro@ Let (To,Po) be an arbitrary point of P. Then there is a unique (eo,vo) 
in C such that  To = T(eo,v0) and P0 = p(e0,vo). Let ( T l , p s )  and (T2,p~) be 
the continuously differentiable functions defined on a neighbourhood N C G of 
(e0, v0) that  correspond to the sidewise continuous differentiability of (T, p) on C. 
Their  derivatives on C are invertible because they satisfy the second inequality in 
Remark 1 (i). Consequently, if r is a parametrization of B in N then (T~, ps) or = 
(Tu, P2) o r is a parametrization of P in (T, p)[N], thus P is a curve. 

From the continuity of (T, p) and from the fact that  C separates G C~ HI 
and G N//2 ,  we infer that  F separates fh  and 92; thus the continuous sidewise 
differentiability of (e, v) on F is meaningful. 

It follows from the inverse function theorem that  (T~, Pz) (l = 1, 2) are injective 
on an open subset contained in N and their inverses are continuously differentiable. 
We can suppose without loss of generality that  this open set equals N. Then 
(Tt, pl) -1 are the functions that  define the sidewise derivatives of (e, v) on P. 

The sidewise derivatives of s' on C are negative definite; consequently, the two 
sidewise derivatives of (T, p) at every point of C are different (if they were equal 
at a point then that  point would be in the regular domain, see 2.4.(ii)). Hence the 
sidewise derivatives of (e, v) on F are different as well: with the notation 

(~,(T,p), a , (T,p) )  := e'l(T,p ) 

for all (T, p) E F we have 

~2(t,p) - ~I(T,p) # 0 or c~2(t,p) - a l (T ,p)  # O. 

Let (To,Po) be an element o f f  and suppose ~2(To,Po)-~l(To,Po) # O. Then by 
the continuity, (To,Po) has a neighbourhood A C [t such that  for all (T,p) C F N A  
the non-equality holds. 

Then from the formula 

F N A = {(T,p) 6 A i e2(T,p) - e1(T,p) = 0, v2(T,p) - vl (T,p) = 0} 
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and from the implicit function theorem we conclude that F A A is the graph of a 
continuously differentiable function (K) + ~-* (Pa) + which is the solution of the 
differential equation 

dp a2(T,p) - a l (T ,p )  
d---T = a 2 ( T , p ) - a I ( T , p ) '  p(To) =Po.  

Of course, if a2(T0,P0) - al(To,Po) ~ 0, we have that  F in a neighbourhood 
of (T0,p0) is the graph of a continuously differentiable function (Pa) + ~ (K) + 
which is the solution of the differential equation 

d_T_T =  2(T,p) -  I(T,p) T(po) = To. 

R e m a r k  7. (i) The previous definitions and result exhibit clearly the relation 
between Tisza's and Ehrenfest 's ideas regarding second-order phase connections. 

(ii) There are subsets of second-order phase connections which are neither of 
Tisza type or of Ehrenfest type. It seems, the most important  "intermediate" 
type is the following: C is a regular part  of a second-order phase connection and 
at every point of C one of the sidewise derivatives of s' is negative semi-definite, 
the other is negative definite. (If both sidewise derivatives are negative definite 
then C is of Ehrenfst type; if both are negative semi-definite then C is of Tisza 

type.) 
The A-transition of the quartz cristal is of this intermediate type: the heat 

capacity tends to infinity from one side and tends to a finite value from the other 
side ([2]). 

6. F i r s t - o r d e r  p h a s e  c o n n e c t i o n s  

In a first-order phase transition (e.g. in boiling) the process starts from a definitely 
liquid state and then abruptly it arrives at a definitely gaseous state. Such a phase 
transition has the characteristic feature that  

- the extensive quantities change discontinuously whereas the intensive ones 
change continuously. 

Fig.1 shows the projection of the surface in Fig.3 onto the ( T -  p)-plane. Fig.5 
is the projection of the surface in Fig.4 onto the (e - v)-plane; the projection of 
the surface in Fig.3 onto the (T - v)-plane gives a similar picture. Examining the 
lines of first order phase equilibrium (fat continuous lines), we observe that  

(i) one phase line in the (T - p/-plane corresponds to two phase lines in the 
(e - v)-plane (which expresses the fact that  specific internal energy and specific 
volume are not continuous in a first-order phase transition whereas temperature 
and pressure are continuous), 
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Figure 5. 

(ii) the phase lines in the (e - v)-plane lie in the "physical region" (regular 
constitutive domain), more closely they lie in the phases and are disjoint from the 
intersection (the zeroth-order phase connection) of the phases, 

(iii) the two phase lines in the (e - v)-plane are characterized by the property 
that the intensive variables take equal values on corresponding points. 

Defini t ion 8. Let F1 and F2 be phases of a single-component substance (D, s, R), 

C1 := {(el,v1) e F1 \F-22 [there is a(e2,v2) C F2 \ F-~-I, 
( T , p , # ) ( e l , v l )  = (T ,p ,p) (e2 ,v2)} ,  

C2 := {(e2,v~) E/;2 \~-1 [there is a(e l , v l )  C F1 \-~2, 

(T, p, #) (el , vl) = (T,p ,p)(e2,v2)};  

the pair (C1, C2) is the first-orderphase connection of F1 and F2; if C1 and C2 are 
not void then the two phases are said to be in a first-order connection. 

Remarks  8. (i) (T,p) is injective on both C1 and C2; thus by the very definition 
of first-order phase connections, there is a one-to-one correspondence between 
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the two curves: to each (el,v1) �9 C1 there is a unique (e2,v2) �9 C2 such that  
T(el ,  Vl) = T(e2, v2) and p(el ,  Vl) = p(e2, v2). 

(ii) The images of C1 and C2 by (T, p) coincide, 

P := (T,p)[C1] = (T,p)[C2], 

and # I (T ,p )  = #2(r ,p)  for (T,p) �9 r (notation:Remark 2(iv)). 

Proposition 3. 

is an open set and 

ft := (T,p)(F1 \ F 2 ) N  (T,p)(F2 \F1)  

F = {(T,p) �9 ~ I # 2 ( T , p )  = #I (T ,p )} .  

Proof. (T, p) is injective and continuously differentiable on the phases and this 
holds for its coresponding inverses as well, thus it maps open subsets of the phases 
into open subsets, consequently fl is open. The definition of the first-order phase 
connection makes it evident that  pl (T, p) ~ #2 (T, p) if (T, p) E f~ \ F. 

P r o p o s i t i o n  4. C1 and C2 are curves in F1 \ F2 and F2 \ F1, respectively, and F 
is a curve in f~ C (K)  + • (Pa) + described by the Clausius-Clapeyron differential 
equation. 

Proof. If (T,p) E F then ( e l (T ,p ) , v l (T ,p ) )  and (e2(T,p) ,v2(T,p)) ,  being in C1 
and C2, respectively, are distinct. Furthermore, s l ( T , p ) -  s2(T,p) = e l ( T , p ) -  
e2 (T, p) +p(vl  (T, p) - v2 (T, p)); so if V l (T, p) - v2 (T, p) = 0 then s l (T, p) - s2 (T, p) # 
0. Consequently, the Gibbs-Duhem relations imply that  the derivative of the 
continuously differentiable function #1 - #e is not zero on F. If (To,po) E F and 
vl (To, P o ) -  v2 (To, Po) ~ 0 then (because of the continuity of the functions) (To, Po) 
has a neighbourhood A such that  v l (T ,p )  -- v2(T,p) # 0 for all (T,p) r F N A. 
Then from the implicit function theorem we conclude that  F n A is the graph of 
a continuously differentiable function (K) + ~-~ (Pa) which is the solution of the 
differential equation 

@ s l ( T , p ) - s : ( r , p )  
d-T = v l ( T , p )  - v2(T,p)' p(fo) = po. 

If Vl(TO,PO) - v2(fo,Po) = 0 then S l ( T 0 , P 0 )  - -  s2(T0,Po) ~ 0, and we have 
that  F in a neighbourhood of (To,Po) is the graph of a continuously differentiable 
function (Pa) + ,-~ (K)  + which is the solution of the differential equation 

dT v (T,p) - vl  (T, p) 
dp s2(T,p) - sl(T,p) ' 

T (po ) = To. 
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Finally, it is evident now that  C1 and C2 - images of the curve F by the 
continuously differentiable injective functions ( T l , P l )  -1 and (T2,p2) -1 whose 
derivatives are everywhere invertible - are curves. 

Definit ion 9. Let F1 and /;2 be two phases with first-order phase connection 
(C1, C2). The elements of (D \ R) n C1 n C2 are called the critical points of the 
phases. 

P r o p o s i t i o n  5. The critical points of two phases are in the second-order phase 
connection of the phases. 

m 

Proof. It is evident that  the critical points are in D A F1 \ F2 ~ F2 \ F1, so we have 
to show only that  they are not in the regular constitutive domain. Let (ec,Vc) 
be a critical point and suppose it is in R. Then it has a neighbourhood in which 
( T , p )  is a diffeomorphism. Consequently, (Tc,p~) := (T(eo,v~),p(e~,v~)) is in 
the closure of F. If U is an arbitrary neighbourhood of (co, vo) then (T, p)[U] is a 
neighbourhood of (To, Po), thus F n (T, p)[U] is not void. This means that  there are 
(el,v1) in C1 N U and (e2,v2) in C2 •U such that  (T ,p ) (e l ,Vl )  = (T,p)(e2,v2) .  
We arrived at the contradiction that  (T, p) is not injective in any neighbourhood 
of (ec, Vc); as a consequence, (ec, v~) cannot be in R. 

7. M u l t i c o m p o n e n t  s u b s t a n c e s  

A multicomponent substance, besides its specific internal energy and specific vol- 
ume, is characterized by the concentrations of the substances that  is constituted 
of. The concentrations of an n-component substance are in (notation:2.2.) 

Cn-, := {c = ( c l , . . . ,  e~) ~ D~-x 10 < e~ < 1, (i = 1 , . . . ,  n)}. 

D e f i n i t i o n  10. An n-component substance is a triplet (D, s, R), where 
(i) D, called the constitutive domain, is a non-void subset of (J/l~g) + • 

(-~3/kg)+ • c~_1; 
(ii) s : D --~ ( J /kgK),  the specific entropy, is continuously differentiable and 

its first and second partial derivatives are everywhere positive, 
(iii) R, the regular constitutive domain, is an open subset, consisting of the 

elements (e, v, c) E D such that  s is twice continuously differentiable at (e, v, e) 
and s'/(e, v, c) is negative definite. 

Remarks 9. (i) The temperature and the pressure of the substance are defined 
from the first and second partial derivative of s by the usual formulae given in 
Remark i: 
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1 0s p cqs 

T - 0 e '  T = ~ v v "  
0s  (ii) Moreover, one frequently assumes ~ equals € where pi is the chemical 

potential of the i-th component ([11]); however, this is not right, because such a 
partial derivative does not exist: the concentrations cannot vary independently 
(see 2.2.(iii)). 

We can fix an e and v and take the derivative of the function Cn-1 -~ ( J / k g K ) ,  

c ~ s(e ,v ,c)  denoted by as(~,~,r it is a linear map from D ~- I  into ( J / k g K ) .  
Then we can write that  

0S ~t I #n  

- T ) ) .  ac ((T' " 
The relations above do not determine uniquely the chemical potentials. The 

uniqueness follows from the requirement 

~# ic i  =e+pv  -Ts  
i=1 

where ci is the i-th concentration function which assigns ci to (e, v, c). 
(iii) In the following we use the independent concentrations ~ := (Cl , . . . ,  c~-1), 

and we denote by a tilde that  a function of concentrations is considered to be a 
function of the chosen n - 1 independent concentrations; e.g. ( n; ) 

g(e,v, 8 ) = s  e,v ,  c l , . . . , C n - l , 1 -  ci �9 

Furthermore we put 
: =  

Then O~/Oc~ = ~ (i = 1 , . . . , n  - 1) and note that  the injectivity of s' is 
equivalent to  the injectivity of (T, p, ~). 

(iv) The negative definiteness of s"(e, v, c) is equivalent to the negative defi- 
niteness of ~"(e, v, ~) which is an (n + 1) • (n + 1) matrix. If one formally took the 
partial derivatives of s according to all the concentrations ([11]) then s"(e ,v ,  c) 
would be an (n + 2) x (n + 2) matrix, whose negative definiteness would be a 
stronger requirement. 

We can repeat word by word Definition 2 and Proposition 1 for phases of a 
multicomponent substance. In a phase F of a multicomponent substance specific 
internal energy, specific volume and the concentrations are given as continuous- 
ly differentiable functions of temperature, pressure and n - 1 chemical potential 
differences; consequently, the a-th chemical potential is a function of the listed 
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intensive variables. If #~ denotes this function then the Gibbs-Duhem relations 
read in our notations as follows: 

Cgpn(F) o (T, p, 7) = --SlF, (9#n(F) o (T, p, 7) = vlF, 
cgT Op 

0#~(F) o(T,p,7)=eilF ( i = l , . . . , n - 1 ) .  
07{ 

Definitions 3 and 4 can be repeated for zeroth-order and second-order phase 
connections of a multicomponent substance. To avoid the possibility of confusion 
of indices, we shall write parantheses for the indices regarding two phases. 

First-order phase connections are defined simiarly to Definition 8, according to 
the sense, as detailed below. 

D e f i n i t i o n  11. Let F(1) and F(2) be phases of a multicomponent substance. If 

S(1) :=  {(C(1),V(1),C(1)) �9 F(1) \ /;'(2) I there is a(e(2),v(2),c(2)) �9 F(2 ) \ F(1), 
(T, p, ;~) (e(1), v(1), C(l>) = (T, p, #)(e(2), v(2), e(2)) }, 

S(2) := {(e(2), v(2), c(2)) c F(2) \  F(1)t there is a(e(1),  v(1), C(1)) E F(1) \  F(2), 

(T, p,  ~t)(e(1), v(1), c(1)) : (T, p, p)(e(2), v(2), c(2))} 

are not void then the pair (S0) , S(2)) is called a first-order phase connection be- 
tween F0) and F(2). 

Copying the proof of Proposition 2, replacing (T, p) with (~', 15, ~) and # with 
#~, we can demonstrate that S(1) and S(2) as well as their image by (T,15,@ 
are hypersurfaces. This latter is determined by a system of partial differential 
equations which, in general, is too complicated for being successfully applicable. 

Finally, the critical points of two phases with a first-order phase connection 
of a multicomponent substance are defined as in Definition 9, and we can prove 
similarly that  a critical point is in the second order phase connection of the two 
phases. 

8. D i s c u s s i o n  

Phases are defined to be convenient open subsets in the space of extensive param- 
eters. 

If two phases have a phase connection then phase transition may occur between 
the two phases, i.e. there are processes starting from one of the phases and ending 
in the other. 
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Zeroth-order, first-order and second-order phase connection have been defined. 
Two phases can have more phase connections. For example, the liquid phase and 
the gaseous phase of a substance have a zeroth-order phase connection (over the 
critical point), a second-order phase connection (the critical point) and a first-order 
phase connection (under the critical point). 

A zeroth-order phase connection is a subset of the regular domain; in a zeroth- 
order phase transition everything changes continuously (continuous phase transi- 
tion). 

A second-order phase connection is a subset of the boundaries of two phases 
outside the regular domain; in a second-order phase transition the state of the sub- 
stance changes continuously but some quantities change discontinuously (gradual 
phase transition). 

A first-order phase connection is in different disjoint parts of two phases; in 
a first-order phase transition the state of the substance changes discontinuously 
(abrupt phase transition). 

Then it is clear that  the sequence of classes zeroth-order, second-order, first- 
order is more natural in this respect than the one indicated by the numerals zeroth, 
first, second. 

The relation between Tisza's and Ehrenfest's ideas are clearly exhibited by our 
treatment. Since it is based on continuous differentiability, third-order and higher 
order phase connections make no sense in it. These notions would be meaningful if 
the regular constitutive domain were defined to be the set where specific entropy 
is smooth (infinitely differentiable). Then Definition 4 would describe second- 
or-higher-order phase connection; however, in general, a definite order could not 
be assigned to such a phase connection. In special cases we could define an rn- 
th order phase connection by modifying (iii) in Definition 8: s is (rn - 1) times 
continuously differentiable on C without being rn times continuously differentiable, 
and its (rn - 1)-th derivative is continuously differentiable on C from both sides. 
It seems, however, that  practice does not demand the notion of higher order phase 
connections. 

Phase connections of multicomponent substances, in principle, are similar to 
those of single-component substances. However, in practice, they are much more 
complicated: instead of curves we have to deal with multidimensional surfaces. 
Moreover, the chemical potentials of the components are not easily measurable 
quantities, thus the surface in the (T - p - ~/)-space, corresponding to a first order 
phase connection (analogue of the phase line described by the Clausius-Clapeyron 
equation), besides being described by a system of partial differential equations, 
has no direct physical meaning. That  is why the question of first-order phase 
connections of multicomponent substances is discussed frequently from different 
points of view ([12]). 
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