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Abstract

We show that the antisymmetric spinor tensor representation of spin-0 relativistic quantum mechan-
ics provides a conserved current with positive definite timelike component, interpretable as probability
density. The construction runs in complete analogy to the spin-1/2 case, and provides an analogously
natural one-particle Hilbert space description for spin 0. Except for the free particle, the obtained
formulation proves to be inequivalent to the one based on the Klein–Gordon equation. The second
quantized version may lead to new field theoretical interaction terms for zero-spin particles.1

1 Introduction

The Klein–Gordon equation for a scalar wave function,

[

(∂µ + ieAµ) (∂µ + ieAµ)−m2
]

φ = 0 (1)

(see notation conventions below) is very plausible relativistic quantum mechanical model for a spin-0
particle in an external four-potential field but the corresponding conserved four current

1

2im
(φ∗∂µφ− ∂µφ∗φ) (2)

cannot be interpreted as a probability current since its timelike component is not positive definite.
While the so-called Feshbach–Villars formalism [1] rewrites (1) as a Schrödinger-type – first-order in
time derivative – equation on the two-component wave function

(

φ+ i

m
(∂0 + ieA0)φ

φ− i

m
(∂0 + ieA0)φ

)

, (3)

and can restrict solutions to those with positive integral of the timelike component of (2), a Hilbert
space structure cannot be established.

For the free particle, the ‘positive’ solutions of

(

∂µ∂µ −m2
)

φ = 0 (4)

satisfy [2]

i∂0φ =
√

−△+m2 φ (5)

1Material presented at the Zimányi School, December 7-11, 2015, Budapest, Hungary.
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and admit a time independent Hilbert space scalar product

〈φ1, φ2〉 =
∫

φ
†
1φ2 d

3x (6)

but its generalization

i (∂0 + ieA0)φ =
√

(∂j + ieAj) (∂j + ieAj) +m2 φ (7)

to Aµ 6= 0 is not equivalent to (1),

[

(∂µ + ieAµ) (∂µ + ieAµ)−m2
]

φ 6= 0 (8)

since ∂µ and Aν do not commute.
The situation is in sharp contrast with the spin-1/2 case where the Dirac equation automatically

provides ‘positive’ solutions, a conserved current with positive definite timelike component, and a
Hilbert space structure, all for Aµ 6= 0 as well.

In this writing, we show that the antisymmetric spinor tensor representation of free spin-0 particles
(see, e.g., [3]) can be generalized to Aµ 6= 0 with a conserved current with positive definite timelike
component, and a corresponding Hilbert space. In [3], only the free system is presented and only
in momentum space – here, we perform the transformation to coordinate space, and carry out the
generalization Aµ 6= 0.

The construction can be established in complete analogy to the spin-1/2 case, and provides an
analogously natural consistent one-particle theory for spin 0.

The free particle case is shown, via the adaptation of the spin-1/2 Foldy–Wouthuysen transforma-
tion, to be equivalent to the (5) version of scalar Klein–Gordon quantum mechanics, while for nonzero
external field the equivalence is broken. Accordingly, we expect that, e.g., the Coulomb problem admits
a spectrum different from the scalar Klein–Gordon one.

We start with revisiting the case of spin 1/2. This review is intentionally detailed and pedagogical
– the spin-0 version can then be presented in a straightforward step-by-step way, due to the strong
analogy between the two situations.

2 Basics

2.1 Notations

In most respects, our notations follow those of [4]. We work in the convention ~ ≡ c ≡ 1, consider
the Lorentz metric g with signature (+−−−), and use spacetime four-indices µ, ν = 0, 1, 2, 3 and
three-indices j, k = 1, 2, 3. Repeated indices involve summation. Complex conjugate is denoted by ∗ ,
and its combination with transposition T is indicated by †. With the Pauli matrices and the 2× 2 unit
matrix,

σ1 =

(

0 1
1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0
0 −1

)

, I2 =

(

1 0
0 1

)

, (9)

we introduce the 4× 4 matrices

β = γ0 =

(

I2 0
0 −I2

)

, γj =

(

0 −σj
σj 0

)

, αj = −βγj =
(

0 σj
σj 0

)

, (10)

where 0 denotes the 2× 2 zero matrix as well. These possess the properties

γµγν + γνγµ = 2gµνI4, γ
†
0 = γ0, γ

†
j = −γj , γ†µβ = βγµ, α

†
j = αj . (11)

For elements θ of C4, as well as for complex 4× 4 matrices Θ, we put

θ = θ†β, Θ = Θ†β. (12)

We discuss the case of positive particle mass, m > 0 only. Four-momenta p with

p0 =
√

pjpj +m2 =
√

p2 +m2 (13)

form the set P – the positive mass shell –, on which the Lorentz invariant integration measure is m
p0

d3p

(up to proportionality).

2



2.2 Geometric ingredients

For any p from P , the eigenvalues of the matrix

pµγ
µ (14)

arem and −m, following from that (pµγ
µ)

2
= m2I4 ; and the corresponding two eigensubspacesN+(p),

N−(p) are both two-dimensional. For example, especially simple is the case of the four-momentum
that is at rest with respect to the inertial reference frame used:

p̌ =

(

m

0

)

, p̌µγ
µ = mγ0 = mβ : (15)

then

N+(p̌) is spanned by









1
0
0
0









,









0
1
0
0









, N−(p̌) is spanned by









0
0
1
0









,









0
0
0
1









. (16)

For other ps, upper and lower components become mixed.
One finds, analogously, that the same N+(p) and N−(p) are the eigensubspaces of

αjpj + βm, (17)

with eigenvalues p0 and −p0, respectively.

3 Spin 1/2 quantum mechanics

3.1 Free particle, momentum space

The momentum space version of the Dirac equation,

γµpµψ(p) = mψ(p) (18)

has, in the light of the previous section, the simple geometric interpretation that, at each p, ψ(p) has
to be an element of N+(p),

γµpµψ(p) = mψ(p) ⇐⇒ ψ(p) ∈ N+(p). (19)

For example, at p̌ =

(

m

0

)

, a solution ψ(p̌) can have only upper nonzero components,

ψ
(

p̌
)

=











ψ1

(

p̌
)

ψ2

(

p̌
)

0
0











. (20)

For other ps, upper and lower components become mixed but there are still only two degrees of freedom
– when we expand ψ(p) with respect to basis vectors n1, n2, n3, n4 in C4 where n1 and n2 are in N+(p)
and n3, n4 are in N−(p),

ψ(p) = c1n1 + c2n2 + c3n3 + c4n4, n1, n2 ∈ N+(p), n3, n4 ∈ N−(p), (21)

then

(γµpµ −m)ψ(p) = (γµpµ −m) (c1n1 + · · ·+ c4n4) = 0 =⇒ c3 = c4 = 0, (22)

and only the two coefficients c1, c2 can be nonzero.
Being on the positive mass shell (13) involves

p0ψ =
√

pjpj +m2 ψ (23)

from which

p20ψ =
(

pjpj +m2
)

ψ (24)
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follows so we obtain the momentum space version of the Klein–Gordon equation,
(

pµpµ −m2
)

ψ = 0. (25)

The same conclusion can be derived via acting by γµpµ +m on (γµpµψ −m)ψ = 0 [see (18)] from
the left.

To each proper Lorentz transformation L there exists (see, e.g., [5]) – uniquely up to a unit
multiplier – a 4× 4 matrix DL such that

βD
†
Lβ = D−1

L , DL (γµpµ)D
−1
L = γµ(Lp)µ. (26)

As a consequence, DLθDLθ
′ = θθ′. Proper Lorentz transformations map four-momenta of P to four-

momenta still within P , and the formula
(

U(a,L)ψ
)

(p) = e
ipµa

µ

DLψ(L
−1p) (27)

proves [3, 5] to give the spin-1/2 irreducible unitary ray representation of the proper Poincaré group
(a: a translation, L: a Lorentz transformation) on the Hilbert space H

4,+
P

of (measurable) C4 valued
functions ψ defined on P with ψ(p) being in N+(p) for each p, and with finite integral

∫

ψ(p)ψ(p)
md3p

p0
=

∫

ψ(p)
†
ψ(p)

m2d3p

p20
. (28)

Why these two integrals are equal follows from that, for ψ(p) in N+(p),

(αjpj + βm)ψ(p) = p0ψ(p), (29)

σjpj

(

ψ1

ψ2

)

= (p0 +m)

(

ψ3

ψ4

)

, σjpj

(

ψ3

ψ4

)

= (p0 −m)

(

ψ1

ψ2

)

, (30)

ψψ =
2m

p0 +m

(

|ψ1|2 + |ψ2|2
)

, ψ†ψ =
2p0

p0 +m

(

|ψ1|2 + |ψ2|2
)

, (31)

ψ(p)ψ(p) =
m

p0
ψ(p)†ψ(p). (32)

The first form of the integral – the lhs of (28) – makes Lorentz invariance apparent while the second
[the rhs of (28)] emphasizes positive definiteness of the integrand. It is important to bear in mind
that, in the integrals, ψ is not an arbitrary square integrable C

4 valued function – that would mean a
larger Hilbert space H

4
P

– but has to be in the subspace H
4,+

P
of that larger Hilbert space H

4
P
, defined

by the condition ψ(p) ∈ N+(p). It is the solution space of (19) that becomes a Hilbert space by the
integral (28).

In a rephrased form, the multiplier operator αjpj +βm is self-adjoint in H
4

P
, and has the spectrum

(−∞,−m]∪ [m,∞). The proper Hilbert space H
4,+

P is the subspace corresponding to the positive half
of this spectrum.

The physical meaning of being a representation of the Poincaré group is to be a free system on
special relativistic spacetime (not to be connected to anything distinguished). The physical meaning
of being an irreducible representation is that the system is elementary, not some composite one (not
some decomposable one).

Except for p = p̌ [recall (20)], elements of N+(p) have some nonzero third and/or fourth component.
If Lp denotes the Lorentz boost that brings p to p̌ then W (p) ≡ DLp

, the so-called Foldy–Wouthuysen
transformation [6, 7, 8, 9], transforms elements of N+(p) to elements of N+(p̌), in other words, to
upper components only:

ψ =











ψ1

ψ2

ψ3

ψ4











, ψW (p) =W (p)ψ(p), ψW =











ψW
1

ψW
2

0
0











. (33)

As DL is unique only up to unitary equivalence, so is W (p). One possible choice is

W (p) =
1

√

2m (p0 +m)

[

(p0 +m)I4 − αjpj
]

. (34)
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Since
(

pµpµ −m2
)

I4 commutes with W (p), from (25) we find that
(

pµpµ −m2
)

ψW = 0 (35)

also holds. In parallel, utilizing (33), (28) can be further expressed as
∫

ψψ
md3p

p0
=

∫

ψ†ψ
m2d3p

p20
=

∫

(

∣

∣ψW
1

∣

∣

2
+
∣

∣ψW
2

∣

∣

2
) m2d3p

p20
. (36)

3.2 Free particle, coordinate space

Fourier transformation transports elements of H
4,+

P
to coordinate space:

1

(2π)2

∫

e
−ipµx

µ

ψ(p)
md3p

p0
=

1

(2π)2

∫

e
−ip0x0e

ipjxjψ(p)
md3p

p0
=

1√
2π
ψ(t,x) (37)

[

t ≡ x0
]

. The momentum space condition ψ(p) ∈ N+(p), which can also be expressed in the two other
forms

γµpµψ(p) = mψ(p), (αjpj + βm)ψ(p) = p0ψ(p), (38)

is transformed to

γµ(i∂µ)ψ(x) = mψ(x), i∂tψ(t,x) = [αj (−i∂j) + βm]ψ(t,x). (39)

Because of the unitary three-Fourier transform inside (37), the coordinate space integral
∫

(

ψ†ψ
)

(t,x)d3x (40)

is time independent along the solutions of (39), and corresponds to the squared norm of ψ in the
momentum space Hilbert space H

4,+
P

. [This time independence can also be seen from the conserved
probability current to be introduced in (42).] The coordinate space scalar product related to (40),

〈ψ1, ψ2〉 =
∫

ψ
†
1ψ2 d

3x, (41)

is also time independent along solutions. Accordingly, spatially integrable solutions of (39), endowed
with (41), form the Hilbert space H

4,+
X

of the free spin-1/2 particle. H
4,+

X
is the coordinate space

equivalent of the momentum space Hilbert space H
4,+

P .
Physical quantities of the particle can be realized on H

4,+
X

. One interesting example is that of
position [10].

For solutions of (39), the four-current

jµ = ψγµψ (42)

is conserved, that is, its four-divergence ∂µj
µ is zero. The timelike component,

j0 = ψγ0ψ = ψβψ = ψ†ψ, (43)

is positive definite and is the probability density in the integral (40), i.e., jµ is the conserved probability
current.

Actually, (39) is the Euler–Lagrange equation stemming from the Lagrangian

L = ψ [iγµ∂µ −m]ψ, (44)

and j is the conserved Noether current derivable from L corresponding to the global gauge transfor-
mations ψ 7→ e

iχψ.
Solutions of (39), i.e., of

(iγµ∂µ −m)ψ = 0, (45)

satisfy the free Klein–Gordon equation componentwise,
(

∂µ∂µ −m2
)

ψ = 0, (46)

as follows by acting on (45) by iγµ∂µ +m from the left – as well as from (25).
Should one start with (46), selecting the ‘positive’ solutions [solutions of (39)] is not straightforward

– instead, it is the momentum space equivalent (25) that is advantageous for this purpose.
Transforming (23) to coordinate space leads to

i∂0ψ =
√

−△+m2 ψ, (47)

where the square root of the positive operator is well-defined. Nevertheless, (47) is technically incon-
venient, and is not suitable for generalization of this free particle theory to nonfree ones.
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3.3 Particle in external field

The generalization to nonfree cases, more specifically, to motion under the action of a four-potential
external field A, can be done via minimal coupling in (39), that is, via the substitution

∂µ  ∂µ + ieAµ, (48)

yielding

γµ (i∂µ − eAµ)ψ = mψ, i∂0ψ = [αj (−i∂j − eAj) + βm+ eA0]ψ. (49)

The four-current jµ = ψγµψ remains conserved under the more general equation (49), and its positive
definite timelike component ensures a Hilbert space structure for the solutions of (49) like in the free
case. Similarly, (49) is the Euler–Lagrange equation corresponding to the Lagrangian

L = ψ [γµ (i∂µ − eAµ)−m]ψ, (50)

and j is still the conserved Noether current corresponding to global gauge transformations.
On the other side, the minimally coupled Klein–Gordon equation is not satisfied,

[

(∂µ + ieAµ) (∂µ + ieAµ)−m2
]

ψ 6= 0. (51)

In fact, acting on [γν (i∂ν − eAν)−m]ψ = 0 by [γµ (i∂µ − eAµ) +m] gives a second order equation
that differs from the minimally coupled Klein–Gordon one by

[

γµ (i∂µ − eAµ) +m
][

γν (i∂ν − eAν)−m
]

ψ

− gµν
[

(∂µ + ieAµ) (∂ν + ieAν)−m2
]

ψ (52)

= ie (gµνI4 − γµγν) (∂µAν)ψ 6= 0.

4 Spin 0 quantum mechanics

The antisymmetric spinor tensor formulation of the spin 0 case can be done in close analogy to the
spin-1/2 situation. The analogy is actually so strong that it is enough to compare the two cases in
form of a table that lists the steps in brief form.
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4.1 Free particle, momentum space

SPIN 1/2 SPIN 0

C4 valued ψ C4 ∧ C4 valued ζ

(antisymmetric 4× 4 complex matrix valued)

γµpµψ = mψ γµpµζ = mζ

ψ(p) ∈ N+(p) ζ(p) ∈ N+(p) ∧N+(p)

ψ
(

p̌
)

=











ψ1

(

p̌
)

ψ2

(

p̌
)

0
0











ζ
(

p̌
)

=









0 ζ12
(

p̌
)

0 0
−ζ12

(

p̌
)

0 0 0
0 0 0 0
0 0 0 0









2 degrees of freedom:

(γµpµ −m) (c1n1 + · · ·+ c4n4) = 0

=⇒ only c1, c2 can be nonzero

2 ∧ 2 = 1 degree of freedom:

(γµpµ −m)(c12n1 ∧n2 + c13n1 ∧n3 + · · ·
+ c34n3∧n4) = 0 =⇒ only c12 can be nonzero

(

U(a,L)ψ
)

(p) = e
ipµa

µ

DLψ(L
−1p)

(

U(a,L)ζ
)

(p) = e
ipµa

µ

(DL ⊗DL) ζ(L
−1p)

= e
ipµa

µ

DLζ(p)D
T
L

irreducible unitary ray representation of

the Poincaré group (free elementary object)

irreducible unitary ray representation of

the Poincaré group (free elementary object)

ψW =Wψ =











ψW
1

ψW
2

0
0











ζW =WζWT =









0 ζW12 0 0
−ζW12 0 0 0
0 0 0 0
0 0 0 0









p0ψ =
√

pjpj +m2 ψ p0ζ =
√

pjpj +m2 ζ

(

pµpµ −m2
)

ψ = 0
(

pµpµ −m2
)

ζ = 0

(

pµpµ −m2
)

ψW = 0
(

pµpµ −m2
)

ζW = 0

∫

ψψ
md3p

p0
=

∫

ψ†ψ
m2d3p

p20

=

∫

(

∣

∣ψW
1

∣

∣

2
+
∣

∣ψW
2

∣

∣

2
) m2d3p

p20

∫

1

2
Tr
(

ζζ
)md3p

p0
=

∫

1

2
Tr
(

ζ†ζ
)m3d3p

p30

=

∫

∣

∣ζW12
∣

∣

2 m3d3p

p30

H
4,+

P
H

4∧4,+
P
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4.2 Free particle, coordinate space

SPIN 1/2 SPIN 0

γµ(i∂µ)ψ = mψ γµ(i∂µ)ζ = mζ

i∂tψ = [αj (−i∂j) + βm]ψ i∂tζ = [αj (−i∂j) + βm] ζ

L = ψ (iγµ∂µ −m)ψ L = 1
2 Tr

[

ζ (iγµ∂µ −m) ζ
]

jµ = ψγµψ conserved Noether current jµ = 1
2 Tr

(

ζγµζ
)

conserved Noether current

j0 = ψ†ψ =
∣

∣ψW
1

∣

∣

2
+
∣

∣ψW
2

∣

∣

2 ≥ 0 j0 = 1
2 Tr

(

ζ†ζ
)

=
∣

∣ζW12
∣

∣

2 ≥ 0

〈ψ1, ψ2〉 =
∫

ψ
†
1ψ2 d

3x 〈ζ1, ζ2〉 =
∫

1
2 Tr

(

ζ
†
1ζ2
)

d3x

H
4,+

X
H

4∧4,+
X

(

∂µ∂µ −m2
)

ψ = 0
(

∂µ∂µ −m2
)

ζ = 0

(

∂µ∂µ −m2
)

ψW = 0
(

∂µ∂µ −m2
)

ζW = 0

i∂0ψ =
√

−△+m2 ψ i∂0ζ =
√

−△+m2 ζ

i∂0ψ
W =

√

−△+m2 ψW

i∂0ψ
W
1 =

√

−△+m2 ψW
1

i∂0ψ
W
2 =

√

−△+m2 ψW
2

i∂0ζ
W =

√

−△+m2 ζW

i∂0ζ
W
12 =

√

−△+m2 ζW12

equivalence to scalar Klein–Gordon theory

via ζW12 ≡ φ

4.3 Particle in external field

SPIN 1/2 SPIN 0

γµ (i∂µ − eAµ)ψ = mψ γµ (i∂µ − eAµ) ζ = mζ

i∂0ψ =
[

αj

(

1
i
∂j − eAj

)

+ βm+ eA0

]

ψ i∂0ζ =
[

αj

(

1
i
∂j − eAj

)

+ βm+ eA0

]

ζ

L = ψ [γµ (i∂µ − eAµ)−m]ψ L = 1
2 Tr

{

ζ [γµ (i∂µ − eAµ)−m] ζ
}

jµ = ψγµψ conserved Noether current jµ = 1
2 Tr

(

ζγµζ
)

conserved Noether current

j0 = ψ†ψ ≥ 0 j0 = 1
2 Tr

(

ζ†ζ
)

≥ 0

〈ψ1, ψ2〉 =
∫

ψ
†
1ψ2 d

3x 〈ζ1, ζ2〉 =
∫

1
2 Tr

(

ζ
†
1ζ2
)

d3x

[

(∂µ + ieAµ) (∂µ + ieAµ)−m2
]

ψ 6= 0

[see (52)]

[

(∂µ + ieAµ) (∂µ + ieAµ)−m2
]

ζ 6= 0

[see (52), with replacement ψ  ζ ]
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5 Outlook – a list of tasks for the future

Having established the relationship between the spinor tensor formalism and the Klein–Gordon scalar
one in the free case, some further investigation between the two could give some further insight.
For example, the Klein–Gordon conserved current could be expressed in terms of the spinor tensor
formalism, while the spinor tensor conserved current could be transformed to the Klein–Gordon scalar
language.

The relationship between the known Klein–Gordon scalar version of the Foldy–Wouthuysen trans-
formation [11] (formulated in terms of the Feshbach–Villars form) and the one shown here (adaptation
of the spin-1/2 version) would be interesting to investigate.

One of the most exciting questions is the spectrum of the Coulomb problem in the spinor tensor
theory.

Second quantization of the free case would be important and seems straightforward.
Concerning interacting quantum field theories in general, we expect some new interaction and

self-interaction terms (recall that the Foldy–Wouthuysen relationship between the spinor tensor and
the Klein–Gordon scalar is ‘nonlocal’ in the free case, and even this type of equivalence is broken for
nonfree situations). Renormalization properties of the spinor tensor field might be better than what
superficial power counting says because of possible cancellations due to antisymmetricity of the field.

As one concrete example, the spinor tensor QED may behave differently from the Klein–Gordon
based ‘scalar QED’.

Another interesting idea is to realize interaction terms through which the Higgs particle can give
mass to fermions, and to explore Higgs self-interaction potentials.

As another direction of outlook, similarly to the version of zero-spin quantum mechanics presented
here, the treatment of higher spin particles is also worth revisiting. For example, the spin-1 particle
is known to admit a symmetric spinor tensor description (see a historical overview in [4]). Issues like
‘the wave function of the photon’ and ‘position operator of the photon’ as well as possible quantum
field theoretical benefits motivate such a line of investigation.
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