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RADIATION REACTION: CHARGE DISTRIBUTIONS OR POINT

CHARGES?

T. MATOLCSI1 AND P. VÁN2,3,4

Abstract. A point charge is frequently approximated by charge distributions
deriving the Lorentz-Abraham-Dirac (LAD) equation. Here it is shown that
the field of a uniformly charged rigid spherical shell cannot be substituted by
the field of a central effective point charge. The related calculations are short
and transparent due to a reference frame free representation of spacetime and
the mathematical theory of generalised functions.

1. Introduction

The Lorentz-Abraham-Dirac(LAD) equation, [1, 2, 3, 4], is the simplest possible
model of field-matter interaction, coupling Maxwell equations to Newton equation,
electrodynamics to mechanics and mechanics to electrodynamics. LAD equation,
however, is a wrong model of any phenomena, because of unacceptable mathemat-
ical and physical properties. There are numerous attempts to remedy the related
problems, with various and different strategies to remove the mathematical and
physical inconsistencies. These strategies are the following:

– Nonlocal modifications of the electromagnetic part, the Maxwell equations,
[5, 6, 7].

– Dissipative modifications of the mechanical part, the Newton equation [8,
9, 10, 11].

– A suitable interpretation of the LAD equation, e.g. excluding particular
solutions, [4, 12, 13].

– Application of continuum charge distributions instead of point charges.
This is the method of the classical papers of Lorentz, Abraham and Dirac,
too, [1, 2, 3, 4]. There are two main aspects of this strategy:

– One may improve the classical theory, with the identification and elim-
ination of the mathematical problems, [14, 15],

– One may modify the point charge model with the help of quantum
mechanics, or with various renormalization procedures, [16, 17, 18, 19,
20, 21].

The related literature is vast, the interested reader may look into the monographs
of the field, [22, 23]. Worth mentioning, that recent experiments of radiation reac-
tion related phenomena, see, e.g. [24, 25, 26], open the way toward the verification
of the mentioned theories and also toward less rigorous, but applicable approaches,
[27, 28, 29].

The mathematical side of the problem is that the Maxwell equations are singular
along the worldline of a point particle. A related issue is the infinite electromagnetic
energy of a point charge or a line current. That is why continuum charge distribu-
tions are promising, where one derives the corresponding point charge equation of
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motion by a limiting procedure [30, 31]. Here the simplest possible model is prob-
ably a rigid, uniformly charged spherical shell. However, it is not simple, various
pitfalls of the related calculations were discovered step by step, [4, 14].

The theory of generalised functions, [32], is the mathematical tool to deal with
simple singularities. It is easy to show, that electromagnetic energies of a point
charge or a line current are not singular at all if they are represented by distributions
[33]. Moreover, in this way we can obtain the radiation reaction force without
approximations, limiting procedures and subtraction of infinite quantities [34].

Recently Bild, Decker and Ruhl [15] analysed the problem of the LAD equation
with the help of a continuous charge distribution. They pointed to that the equation
of motion for a point charge obtained from truncated series requires the proof of the
convergence. Moreover, they have observed that the definition of the world tube
and the Gauss-Ostrogradskii theorem must be correctly applied, when contrasted
to the derivation of Dirac [15]. They have obtained a delayed equation of motion,
with promising properties.

There are two problems, however, with their analysis. First of all, their definition
of the world tube breaks down for high accelerations. In an actual case, it is hard
to guarantee that the acceleration is less than a given value. The second, more
problematic condition in their derivation is the assumption that outside a uniformly
charged spherical shell the field is identical with a field of a point charge in the
centre. This condition is valid for inertial charged spheres but for accelerating ones
it is not evident because the different points of the spherical shell are not equivalent:
their accelerations, as well as the corresponding retarded proper times, are different.
In this paper, we show that, indeed, the field of a uniformly accelerated spherical
shell with uniform charge distribution does not equal the field of a point charge at
the centre of the sphere. This is a strong argument that the problematic aspects
of the LAD equations may not require any limiting procedure or modification, but
rather a proper interpretation like in [13].

Our calculation is based on distribution theory, and a reference frame free model
of special relativistic spacetime ensures the precise mathematical treatment. That
shortens the analysis of [15] considerably. The necessary mathematical concepts
are collected in the Appendix.

2. About our formalism

The mathematical formulae in the article [15], though being correct, are ex-
tremely large and it is quite impossible to survey them. A more condensed discus-
sion is possible using a coordinate and reference-free treatment of spacetime which
can be found in the book [35].

A brief summary of that (with the speed of the light c = 1):
Spacetime points and spacetime vectors (which are often confused in coordinates)

are distinguished:

– M, mathematically a four dimensional affine space, is the set of spacetime

points,
– M, mathematically a four dimensional vector space, is the set of spacetime

vectors,
– the set of time periods is T, a one dimensional oriented vector space,
– the exact treatment requires the tensorial quotients of M by T, here we do

not refer to them explicitely,
2
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– the Lorentz product of the spacetime vectors x and y is denoted by x · y
(which is xkyk in coordinates); x is timelike if x · x < 0 (which means in
coordinates the signature (−1, 1, 1, 1) of the Lorentz form),

– an absolute velocity is a futurelike vector u for which u · u = −1,
– for an absolute velocity u, Su := {x | u · x = 0} is the set of u-spacelike

vectors, a three dimensional Euclidean subspace of M

– the action of linear and bilinear maps is denoted by a dot, too; e.g the action
of a linear map L on a vector x is L · x (which is Li

kxk in coordinates),
– the adjoint of a linear map L is the linear map L∗ defined by (L∗ ·x) ·y =
x ·L ·y for all vectors x,y; shortly, L∗ ·x = x ·L; similarly, y ·L∗ = L ·y,

– L is a Lorentz transformation if and only if L∗ = L−1,
– 1 denotes the identity map of vectors (which is gi

k = δi
k in coordinates).

Some other required consequent mathematical background is given in the Appendix.

3. Uniformly accelerated sphere – a world tube

Let us consider the rigid uniformly accelerated observer treated in subsection
II.6.4 of [35]. Its space points are uniformly accelerated world lines.

Pick up such a world line, as the center of the sphere being the range of the
world line function,

rc(sc) = xc + uc

sinh(acsc)

ac

+ nc

cosh(acsc) − 1

ac

.

where

– xc is an arbitrarily chosen spacetime point of the world line,
– sc is the proper time of the world line,
– ac is the magnitude of the acceleration of the world line,
– uc is an absolute velocity and nc is an uc-spacelike unit vector, that is
uc · nc = 0 and nc · nc = 1

The corresponding absolute velocity function is

ṙc(sc) = uc cosh(acsc) + nc sinh(acsc). (1)

Further, we take other space points (world lines in spacetime) of the observer in
question in order to represent a uniformly accelerated sphere as follows.

Let us take the set of uc-spacelike unit vectors,

Sc(1) := {n | uc · n = 0, n · n = 1}; (2)

for all of its elements and for an ǫ > 0 we consider the uniformly accelerated world
line function

rǫn(sǫn) = xc + ǫn + uc

sinh(aǫnsǫn)

aǫn

+ nc

cosh(aǫnsǫn) − 1

aǫn

.

for which

ṙǫn(sǫn) = uc cosh(aǫnsǫn) + nc sinh(aǫnsǫn) (3)

where, of course, ˙ denotes the differentiation by the proper time sǫn.
The observer applies the synchronization according to which the proper times of

rc and rǫn are simultaneous if and only if

ṙc(sc) = ṙǫn(sǫn) (simultaneity condition) (4)
3
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holds from which it follows that

acsc = aǫnsǫn.

Then let us take the Lorentz boost (see (24)) from uc to ṙc(sc),

L(sc) := 1 +
(ṙc(sc) + uc) ⊗ (ṙc(sc) + uc)

1 − ṙc(sc) · uc

− 2ṙc(sc) ⊗ uc. (5)

Using

ṙc(sc) + uc = uc

(

cosh(acsc) + 1
)

and 1 − ṙc(acsc) = 1 + cosh(acsc), (6)

a short calculation results in

L(sc) · n = n + (nc · n)
(

uc sinh(acsc) + nc(cosh(acsc − 1)
)

(7)

and

L̇(sc) · n = (nc · n)ac

(

uc cosh(acsc) + nc sinh(acsc)
)

. (8)

All these imply that the range of

rc(sc)+ǫL(sc)·n = xc+ǫn+
(

uc sinh(acsc)+nc(cosh(acsc)−1)
)

(

1

ac

+ ǫnc · n
)

(9)

equals the range of rǫn; therefore we have

aǫn =
ac

1 + ǫac(nc · n)
, sc =

sǫn

1 + ǫac(nc · n)
.

Moreover, we obtain

ṙc(sc) + ǫL̇(sc) · n = (1 + ǫac(nc · n))ṙǫn ((1 + ǫac(nc · n)sc)) . (10)

The sphere of radius ǫ with centre Ran(rc) in spacetime is the subset

Tǫ :=
⋃

n∈Sc(1)

Ran(rǫn),

which is a world tube of type treated in [15]: the distance between Ran(rǫn) and
Ran(rc) equals ǫ at every synchronization instant.

4. Lebesgue measure on the world tube

For the notions and formulae appearing in this section, we refer to the subsections
8.3 and 8.4 of the Appendix.

The world tube Tǫ is a three dimenional submanifold in spacetime, its very
definition gives the map

p : T × Sc(1) → M, (sc,n) 7→ rc(sc) + ǫL(sc) · n; (11)

putting here n := pc(ϑ, ϕ), we get a parametrization of Tǫ; accordingly, (11) is
called a generalised parametrization and its use admits a concise formulation in the
following. The derivative of p is

Dp[sc,n] =
(

∂sc
p(scn) ∂np(sc,n)

)

=
(

ṙc(sc) + ǫL̇(sc) · n ǫL(sc)|Eucn

)

(12)

where the last symbol denotes the restriction of the Lorentz boost to the linear
subspace in question, Eucn.

For the sake of brevity, using the notation

z(sc,n) := ṙc(sc) + ǫL̇(sc) · n (13)
4
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and then omitting the variables and subscripts, we have

(Dp)∗ · Dp =

(

z

ǫ (L|E)
∗

)

·
(

z ǫL|E
)

=

(

z · z z · ǫL|E
ǫ (L|E)

∗ · z ǫ21E

)

. (14)

Note that the adjoint of L|E : E → M is the linear map (L|E)∗ : M → E defined
by ((L|E)∗ · x) · q = x · L|E · q = x · L · q for all x ∈ M, q ∈ E.

Thus, recalling the projection P onto E, for all vectors y we have,

((L|E)∗ · z) · (P · y) = z · L · (P · y) = (L∗ · z) · (P · y) = (P · L∗ · z) · y
which means that the block matrix form of (Dp)∗ · Dp is symmetric: z · L|E =
(L|E)

∗ · z = P · L∗ · z ∈ E.
As a consequence, since E is two dimensional1

det((Dp)∗ · Dp) = ǫ4z · z − ǫ4 (P · L∗ · z) · (P · L∗ · z) . (15)

Here

(P · L∗ · z) · (P · L∗ · z) = (L∗ · z) · (1 + uc ⊗ uc − n ⊗ n) · L∗ · z =

= z · z + (z · L · uc)
2 − (z · L · n)2.

Equalities ṙc ·L ·n = 0 and (L̇ ·n) · (L ·n) = 0, together with the definition (13)
imply that z · L · n = 0.

Further, (1) and (8) imply (L̇ · n) · ṙc = −ac(nc · n), thus from (13) and the
property L ·uc = ṙc of the Lorentz boost we have that z ·L ·uc = −(1+ ǫac(nc ·n)).

Finally, according to (10), z · z = −
(

1 + ǫac(nc · n)
)2

.
Summing up, the second term of (15) is zero and

√

| det Dp∗[sc,n] · Dp[sc,n]| = ǫ2
(

1 + ǫac(nc · n)
)

,

and the Lebesgue measure λTǫ
on the tube is given by the integration formula

∫

f dλTǫ
= ǫ2

∫

T

∫

Sc(1)

f
(

rc(sc) + ǫL(sc)n)
)(

1 + ǫac(nc · n)
)

dn dsc. (16)

5. Uniform charge density on the sphere –
world current

According to (4) and (8), the set of spacetime points simultaneous with rc(sc)
is the hyperplane (in fact only a convenient part of it) which contains rc(sc) and
is Lorentz-orthogonal to ṙc(sc). Thus, at every synchronization instant the world
tube Tǫ (i.e. the intersection of the tube and the instant hyperplane) is a sphere
of radius ǫ. The world current of a uniform charge density σ on the sphere is the
vector measure

jǫ := σuǫλTǫ

where uǫ is the function (a vector field) on the world tube which assigns the cor-
responding absolute velocities to the points, i.e. uǫ(rǫn) := ṙǫ,n, in other words, by
(10),

uǫ

(

rc(sc) + ǫL(sc) · n
)

=
ṙc(sc) + ǫL̇(sc) · n

1 + ǫac(nc · n)
. (17)

1The matrix (14) in spherical coordinates has the form

(

α ǫβ1 ǫβ2

ǫβ1 ǫ2 0
ǫβ2 0 ǫ2

)

5
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6. Electromagnetic potentials

For the notions and formulae appearing in this section, we refer to the subsection
8.5 of the Appendix.

From now on, for the sake of brevity, we write s and a instead of sc and ac.
Now we are ready to compare the electromagnetic potentials of a point charge

and the one of a charged spherical shell. In electrostatics, they are equal outside the
shell; however, we will show that they are different in case of uniform acceleration.

The electromagnetic potential produced by the uniformly accelarated charged
sphere is the distribution jǫ ∗ λL→ which, according to (16) and (17), acts on a test
function Φ as follows:

(jǫ ∗ λL→ | Φ) =

∫ ∫

Φ(x + x) σuǫ(x) dλTǫ
(x) dλ→

L (x) =

= σǫ2

∫

T

∫

Sc(1)

∫

L→

Φ(rc(s) + ǫL(s) · n + x)
(

ṙc(s) + ǫL̇(s) · n)
)

dn ds dλL→(x).

(18)

Let us consider now a point charge σ4πǫ2 existing on the centre of the world
tube. The corresponding world current is

jc := σ4πǫ2ṙcλRanrc

producing the electromagnetic potential jc ∗ λL→ for which2

(jc ∗ λL→ | Φ) = σ4πǫ2

∫

L→

∫

T

Φ(rc(s) + x)ṙc(s) ds dλL→(x). (19)

The electromagnetic potentials produced by the uniformly accelerated charged

sphere and by the point charge would be equal outside the world tube if and only if

the integrals (18) and (19) were equal for all Φ having support outside the world

tube.
Taking such a Φ and rewriting (19) in the form

σǫ2

∫

L→

∫

T

∫

Sc(1)

Φ(rc(s) + x)ṙc(s) dn ds dλL→ (x), (20)

let us examine the difference of the integrals.
According to the equality

Φ
(

rc(s) + ǫL(s)·n + x
)

= Φ
(

rc(s) + x
)

+

+ (ǫL(s)·n)·DΦ[rc(s) + x] + (ǫL(s)·n)·D2Φ[rc(s) + x]·(ǫL(s) · n) + ordo(ǫ2),

the difference of the integrands, omitting the variables for the sake of perspicuity,
becomes
(

Φ + (ǫL · n) · DΦ + (ǫL · n) · D2Φ · (ǫL · n)
)

ǫL̇ · n+
(

(ǫL · n) · DΦ + (ǫL · n) · D2Φ · (ǫL · n)
)

ṙc + ordo(ǫ2). (21)

The integration by n (see (26)) yields zero for the terms linear and trilinear in
n. As concerns the bilinear terms,

(

(L · n) · DΦ
)

L̇ · n = L̇ · (n ⊗ n) · L∗ · DΦ and

2The known actual form of the potential is obtained by the substitution x := rc(s) + x from
which the retarded proper time sret(x) is determined in such a way that x − r(sret(x)) be lightlike

6
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(L · n) · D2Φ · (L · n) = n ·
(

L∗ · DΦL
)

n; consequntly, the integration by n yields

(recall that L∗ = L−1 and a cyclic permutation can be made under a trace)

ǫ2 4π

3

(

L̇ · (1 + uc ⊗ uc) · L∗ · DΦ + Tr
(

∇2
uc

Φ
)

ṙc

)

. (22)

To find the properties of the first term, we proceed as follows. Since uc · L∗ =
L · uc = ṙc, we have

L̇ · (1 + uc ⊗ uc) · L∗ = L̇ · L∗ + r̈c ⊗ ṙc. (23)

L̇ ·L∗ is evidently the linear combination of uc ⊗uc, uc ⊗nc, nc ⊗uc and nc ⊗nc;
the coefficients are obtained by uc · L̇ · L∗ · uc = (uc · L̇) · (uc · L) etc.

A simple calculation based on (5) and (6) yields

uc · L(s) = uc cosh(as) − nc sinh(as) uc · L̇(s) = a
(

uc sinh(as) − nc cosh(as)
)

,

nc ·L(s) = −uc sinh(as)+nc cosh(as) nc · L̇(s) = a
(

−uc cosh(as)+nc sinh(as)
)

from which it follows that L̇ · L∗ = a(uc ⊗ nc − nc ⊗ uc). At last,

a(uc ⊗ nc − nc ⊗ uc) + a(uc sinh +nc cosh) ⊗ (uc cosh +nc sinh) =

a(uc cosh +nc sinh) ⊗ (uc sinh +nc cosh) = ṙc ⊗ r̈c

and we have that the first term in (22) is
(

r̈c(s) · DΦ[rc(s) + x]
)

ṙc(s).

As a consequence, we can state that the two electromagnetic potentials would
be equal if and only if

∫

T

∫

L→

(

r̈c(s) · DΦ[rc(s) + x] + Tr
(

∇2
uc

Φ[rc(s) + x]
)

)

ṙc(s) ds dλ→
L (x)

were zero for all Φ having support outside the world tube. The integrand has
timelike values or zero, it is evident then that the integral cannot be zero for all Φ
in question.

As a consequence, the electromagnetic potentials produced by the uniformly ac-

celarated charged sphere and by the point charge at the centre are not equal outside

the world tube.

7. Conclusions

The physical and mathematical paradoxes of LAD equation challenge the founda-
tions of physics since more than a century. It is widely believed that the problem is
not physical and the instabilities are due to the oversimplified mathematical model
of point charge. Therefore a continuum theory, a charge distribution is considered
a better model that eventually can remove the paradoxes.

The simplest possible continuum model is the uniformly charged rigid spherical
shell, a model that is continuously kept analysed and improved since the seminal
work of Lorentz [1]. The latest elegant and profound analysis of Bild, Deckert and
Ruhl reveals further problems and improves the previous calculations. Then they
obtain a delayed equation with promising properties. They assume, however, that
outside the accelerating charged medium the electromagnetic field is the same as
the field of a point charge in the centre of the sphere. Here we have shown that
this assumption is wrong. Our mathematical tools ensured that the result is exact
and also transparent due to the short, simple calculations.

7
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The assumption of uniform charge distribution on the spherical shell seems to be
too strong. Perhaps weaker assumptions such as non-uniform charge distribution
or non-spherical shell can work, but we do not think so. Anyway, according to our
analysis, a continuum charge distribution requires delicate care.

8. Appendix

8.1. Tensor products. 1. The tensor product a ⊗ b of the vectors a and b

can be considered either a linear or a bilinear map; its action on the vector x or
the vectors y and x is (a ⊗ b) · x := a(b · x) or, y · (a ⊗ b) · x := (y · a)b · x).

2. For an absolute velocity u, 1+u⊗u is the projection onto the linear subspace
Su of u-spacelike vectors.

3. For two absolute velocities u and u′, the Lorentz boost from u to u′ is

1 +
(u′ + u) ⊗ (u′ + u)

1 − u′ · u − 2u′ ⊗ u, (24)

which sends u to u′ and maps the Euclidean subspace Su onto the Euclidean sub-
space Su′ in a rotation-free way.

8.2. Derivatives. For more details, see section VI.3 of [35].
The symbol ordo means a function R

+ → R, defined in a neighbourhood of zero,

such that limα→0
ordo(α)

α
= 0.

The derivative of a differentiable function Φ : M → R at x is the linear map
DΦ[x] : M → R for which

Φ(x + x) = Φ(x) + x · DΦ[x] + ordo(‖x‖) (x ∈ M)

holds for an arbitrary norm ‖ ‖ on M.
The second derivative of a twice differentiable function Φ : M → R at x is the

bilinear D2Φ[x] map for which

Φ(x + x) = Φ(x) + x · DΦ[x] + x · D2Φ[x] · x + ordo(‖x‖2) (x ∈ M)

holds.
Similar formulae are valid for functions defined in an arbitrary affine space and

having values in M.
For an absolute velocity u, the u-spacelike derivative of Φ is the restriction of

DΦ[x] onto the linear subspace of u-spacelike vectors,

∇uDΦ[x] := DΦ[x]|Su
= (1 + u ⊗ u) · DΦ[x].

8.3. Submanifolds. For more details, see section VI.4 of [35].
1. For d ∈ {0, 1, 2, 3, 4} a submanifold H of dimension d in M (M) is a subset

for which there is a smooth map p : Rd → M (M), called a parametrization, such
that

– Ran(p) = H ,
– p is injective and p−1 is continuous,
– Dp[ξ] : Rd → M is injective for all ξ in the domain of p.
More generally, the domain of a parametrization can be a d dimensional affine

space instead of Rd.
The tangent space of H over p(ξ) is the range of Dp[ξ], a linear subspace of M.

8
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2. For an absolute velocity uc, the unit sphere Sc(1) of uc-spacelike vectors is a
two dimensional submanifold which can be parametrized by the usual angles ϑ and
ϕ: taking two unit vectors a and b, orthogonal to each other and to nc,

pc(ϑ, ϕ) := uc + nc cos ϑ + a sin ϑ cos ϕ + b sin ϑ sin ϕ. (25)

The tangent space of Sc(1) over n is the linear subspace Eucn consisting of
vectors Lorentz orthogonal to both uc and n; it is the range of the linear projection
Pucn := (1 + uc ⊗ uc − n ⊗ n).

3. The futurelike light cone

L→ := {x | x · x = 0, u · x < 0 for all absolute velocities u}

is a three dimensional submanifold in M which can be parametrized with the aid
of an arbitrary absolute velocity u:

p(q) := u|q| + q (u · q = 0) (q ∈ Su).

8.4. Lebesgue measures. For measure theory we refer to [36, 37].
1. The Lebesgue measure on M (on M) is the translation invariant measure λM

(λM) which assigns the value |a| |b| |c| |d| to a prism defined by Lorentz orthogonal
vectors a,b, c,d, where | | denotes the pseudo-length.

For the integrals of functions f defined in M, we use the notations
∫

f dλM =

∫

M

f(x) dx.

2. Let H be a d dimensional submanifold in M (in M). Then for a parametri-
zation p of H , (Dp[ξ])∗ is a linear map M → R

d, thus (Dp[ξ])∗ · Dp[ξ] is a linear
map R

d → R
d, i.e. it is a d times d matrix.

The Lebesgue measure λH on the submanifold H is defined in such a way that
for a function f defined in H ,

∫

f dλH :=

∫

Rd

f(p(ξ))
√

| det
(

(Dp[ξ])∗ · Dp[ξ]
)

dξ

for an arbitrary parametrization p (thus, the integral is the same for all p).
Of course, also a function defined in M (M) can be integrated by λH , taking the

restriction of f onto H ; in this way we can – and we do – consider λH a measure
on M (M), too.

If h : H → M is a continuous function then hλH is a vector measure, for which
the integrals are defined by d(hλH) := h dλH .

3. The Lebesgue measure on the unit sphere, Sc(1), is given by the well known
formula

∫

f dλSc(1) =

∫

Sc(1)

f(n) dn =

∫ 2π

0

∫ π

0

f(p(ϑ, ϕ)) sin ϑ dϑ dϕ.

Then it is easy to find that
∫

Sc(1)

n dn = 0,

∫

Sc(1)

n⊗n dn =
4π

3
(1+uc⊗uc),

∫

Sc(1)

n⊗n⊗n dn = 0, (26)

9
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which go over tensors, too; for instance,
∫

Sc(1)

n · (a ⊗ b) · n dn =

∫

Sc(1)

a · (n ⊗ n) · b dn =

=
4π

3
a · (1 + uc ⊗ uc) · b =

=
4π

3

(

(1 + u ⊗ uc) · a
)

(b · (1 + u ⊗ u)
)

=

=
4π

3
Tr
(

(1 + uc ⊗ uc) · (a ⊗ b) · (1 + uc ⊗ uc)
)

,

and the last formula holds for arbitrary bilinear maps instead of a ⊗ b.
4. According to the general definition, the Lebesgue measure on the futurelike

light cone, L→, is zero. Nevertheless, we can define on it a nonzero measure quite
naturally, which we consider to be the Lebesgue measure. Namely, for all a > 0

V (a) := {x ∈ M | x · x = −a2, x is futurelike}
is a three dimensional submanifold which can be parametrized with the aid of an
arbitrary absolute velocity u:

p(q) := u
√

|q|2 + a2 + q (q ∈ Su).

It is simply obtained that
√

| det(Dp[q]∗ · Dp[q])| = a√
|q|2+a2

. Then the Lebesgue

measure on the light cone is defined to be

λL→ := lim
a→0

1

a
λV (a)

in an appropriate sense of the limit procedure; then we have the integration formula
∫

f dλL→ =

∫

L→

f(x) dx =

∫

Su

f(u|q| + q)
dq

|q|
for an arbitrary absolute velocity u.

8.5. Distributions. For distribution theory we refer to [38, 32].
The usual setting of distribution theory is based on R

n. It is a quite simple
generalisation that we consider the affine space M instead of Rn. Thus, the space
of our test functions, D(M), consists of smooth functions Φ : M → R, with compact
support. A distribution is a continuous linear map D(M) → R.

Another simple generalisation that we consider vector distributions, too, i.e.
continuous linear maps D(M) → M. The action of a (vector) distribution T on the
test function Φ is denoted by (T | Φ).

The present article needs only the following facts from distribution theory.
1. The derivative of a (vector) distribution T is the distribution DT defined by

(a · DT | Φ) := −(T | a · DΦ) (a ∈ M).

2. A Lebesgue measure of a submanifold H is a distribution by the definition

(λH | Φ) :=

∫

Φ dλH =

∫

H

Φ(x) dx.

3. If H is a submanifold in M, f is a continuous function defined in H , and K

is a submanifold in M, the convolution fλH ∗ λK is the distribution defined by

(fλH ∗ λK | Φ) :=

∫

H

∫

K

f(x)Φ(x + x) dx dx.

10
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4. For the d’Alembert operator � := D · D := Tr(D2) (in coordinates ∂k∂k)

�(T ∗ λL→) = T.
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