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Reservoirs in Thermodynamics 
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Abstract 
Dynamic law is defined for isothermal processes and for isobaric processes in ordinary 
thermodynamics, and asymptotic stability is examined. 
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1. INTRODUCTION 
A theory of thermodynamics of homogeneous bodies has 

recently (t) been suggested --  called "ordinary thermody- 
namics" --  in which the fundamental notion is that a process is 
a function that depends on time. Processes are governed by a 
dynamic law which is a differential equation, as in the other 
areas of physics. Equilibrium is a constant process. Trend to 
equilibrium means asymptotic stability of equilibria. The usual 
first law is involved in the dynamic law, and the second law is 
formulated as an inequality playing a fundamental role in 
assuring asymptotic stability. 

The process of a single body in a given environment (' and 
processes of interacting bodies a) have been treated. Now we 
shall deal with isothermal processes and isobaric processes which 
are not covered by those investigations. 

It is commonly taken for granted in the literature of thermody- 
namics that a body placed in contact with a heat reservoir (put 
into an environment of given constant temperature) changes its 
volume isothermally. ~ However, anyone who has pumped air 
into a tire knows that this is not true: materials under compres- 
sion become warmer even if they are in an environment of 
constant temperature. Nevertheless, we may think that if the 
"compression is slow compared to the heat conduction" or "the 
heat conduction is fast compared to the compression," then the 
process can be considered to be isothermal. The two phrases 
within quotation marks have the same meaning; in an exagger- 
ated formulation they read, "the compression is infinitely slow" 
or "the heat conduction is infinitely fast." 

Now we are interested in whether the latter conditions within 
quotation marks can be formulated in a mathematically exact 
way. 

Let us take a body in an environment of given temperature T~ 
and pressure p. described in ordinary thermodynamics according 
to Ref. 1. Assume the simplest constitutive relations 

e = cT, p = p(T,v), (1) 

q = - h ( T -  T~, f =  5(p - p  o), w = -p f ,  (2) 

where k, ~, and c are positive constants. Then the dynamic law 
becomes 

c / '=  - k ( T  - T,) - ~p(p - p ~ ) ,  

~= ~o - P 3 .  
(3)  

It is evident that if the temperature is constant, T = To, then 
/" = 0, thus p = p, as well, which implies ~> = 0, v = const. 
Consequently, the process is an equilibrium; hence nonequilib- 
rium isothermal processes do not exist. 

Now let us suppose that the compression, that is, the volume 
change, is "infinitely slow," which means that ~ is "infinitely 
small." Setting 6 = 0 in the first equation of (3) and taking into 
account the initial condition T(0) = To, we get T = To; however, 
this does not mean that the process is isothermal; 6 = 0 in the 
second equation results in v = const, that is, nothing changes in 
the process, it is an equilibrium. It is not possible to get a 
correct mathematical interpretation of an "infinitely slow" 
compression. 

Now let us suppose that the heat conduction is "infinitely 
fast," which means that h is "infinitely large." Dividing the first 
equation in (3) by k and then letting k tend to infinity, we get 
formally T = T~ without any effect on the second equation. This 
offers a good possibility for describing isothermal processes. It 
is emphasized that the mentioned limit procedure is not com- 
pletely correct from a mathematical point of view. More 
precisely, we can formulate the problem as follows. 

For each k > 0, let (vx,Tx) be the solution of the differential 
Eq. (3) with initial values v• = v0, Tx(0) = T,. Moreover, let 
v be the solution of the inidal value problem 

= Olp(v,T~)  - p J ,  

v(O) = Vo. 

(4) 

Then under not too strong conditions (which are satisfied in 
the present case) we have (7) 

limvx(t) = v( t ) ,  
h~oe 

IimTx(t ) = T 
(5) 

for all t > O. 
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Now we shall postulate that isothermal processes are described 
by an equation of type (4) regardless of the conditions that imply 
(5). A similar reasoning leads us to isobaric processes which 
correspond to an "infinitely fast" volume change (~ is "infinitely 
large" in the example). 

2. SOME FUNDAMENTAL NOTIONS AND NOTATIONS 
We shall consider n bodies in several circumstances, where n 

is an arbitrary positive integer (n = 1 is allowed). The subscript 
i refers to the ith body; if n = 1, the subscript I is omitted. The 
ma.~s of the ith body is denoted by my The bodies will be 
described by their temperature and specific volume; the specific 
internal energy and the pressure of each body are given by a 
differentiable constitutive relation: 

ei = ei(T/,vi), Pi = Pl (Ti ,v i )  

for which the inequalities 

(6) 

Oei OPi [ O e i ]  OPi (7) 
~ > 0 ,  < 0 ,  + p ;  > 0  

hold. 
The classical case means the existence of twice differentiable 

specific entropies st = s~ (T, v3 such that 

Os i Oe i Os i Oe i 
= ' T i ~  = + Pi"  (8) r or, Ov, 

Theorems given in the Appendix of Ref. 1 will be used 
regarding asymptotic stability. 

3. ISOTHERMAL PROCESSES 
Now we give a model for a system consisting of n bodies in 

an environment of given temperature T~ and pressure p~, 
supposing that the environment acts as a thermal reservoir, that 
is, the temperature of the bodies always coincides with To. 

Since the temperature is constant, we have only one variable 
for each body: the specific volume. A process is (vt, ... ,v~) as a 
function of time. Corresponding to the investigations in Refs. 1 
and 2, we assume that the dynamic law takes the form (in the 
sequel i = 1,... ,n) 

9~ = f ,  (9) 

where the formative laws 

0 ~ fi = ti(pt,p2 .... ,Pn,P,,T,), 

fi (Pa,Pa . . . .  ,pa,Pa,Ta) = 0 

are required. Assuming the workings 

(10) 

w~ = -p~s 

we impose the second law as follows: 

(11) 

E l E m i wi 
i-1 -P'~i (pi - p~ > 0 ,  

(12) 

where equality holds if and only ifp~ = p,  for all i = 1 .... ,n. 
If v~.0 is a specific volume value such that 

p,(T~,v~.o) = p~ (i = 1,...,n), (13) 

then the constant process (vt.0, ... ,v~.0) is an equilibrium of the 
dynamic law (9). The above equalities determine equilibrium in 
a locally unique way. 

Proposition 1: For n = 1, an equilibrium process v0 of the 
dynamic law (9) is asymptotically stable. 

Proof: The function v ~ p(T~,v) is strictly monotone decreasing 
because Op/Ov < 0; thus v --, L(v) : = [P(To,V) - p,]2 has a strict 
minimum at v0. Its derivative along the dynamic law, 

2(p - p~)(Op/Ov)f = 2(-Op/Ov)[-(w/p)(p - p~)], 

has a strict maximum at v0 in virtue of  the second law. 

Proposition 2: For n > 1, in the classical case, an equilibrium 
process (Vt.o ... . .  Vn.o) is asymptotically stable. 

Proof: 

L(v~'""v~):=~m~Isi(T~'v~)-,.1 e~(To,V,)T +PoV,] (14) 

is a Lyapunov function: (1) it has a strict maximum at the 
equilibrium because its first derivative equals [m,~pJT~ - pJT~)] 
i = 1, ... ,n] which is zero at the equilibrium, and its second 
derivative is the diagonal matrix having the diagonal (Op~/Ov~] 
i = 1,... ,n), which is negative definite; (2) its derivative along 
the dynamic law (9) equals X~=l mi(P/T~ - pdT~)f, which, 
according to the second law (12), has a strict minimum at the 
equilibrium. 

Remark: Now the first law d~ = q~ + w~ does not appear in the 
dynamic law. Since v~ as a function of time is determined by the 
differential equation (9), ei = ei(v~,T,), /7/= Pi(vi, T,), and 
consequently the workings w; as functions of time in the process 
are determined as well. Thus if we adhere to the first law, di and 
w~ being determined in our model of isothermal processes, the 
heat transfers cannot be given by independent constitutive 
relations. In this case the first law can serve to define the heat 
transfers q~. 

4. ISOBARIC PROCESSES 
Now we suppose that the environment with given temperature 

T~ and pressure Pa acts as a mechanical reservoir, that is, the 
pressure of the bodies always coincides with pa. 
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The second inequality in (7) implies that from the equations 

Pi (Ti,vi) = Pa (15) 

we can express v~ (at least locally) as a function of T, 

v; = v~(~); (16) 

we have again a single variable for each body: the temperature. 
A process is (T~, ...,T0 as a function of time. 

Note that from (15) and (16) we have 

#Pi / aPt ] 
= - . ( r , ,  v , ( r , ) ) r , ,  

(17) 

that is, 9~ is determined by the process. 
We assume the dynamic law in the form (in the sequel i = 

1, ... ,n) 

d'i = qi + wi, (18) 

where the formative laws 

0 * q ,  = q , ( T t  . . . . .  Tn,Pa, Ta) , 

q,(Ta .... ,L,po,T,,) = O, 

(19) 

wi = - P ~ i  

are required. 
We impose the second law in the form 

1 2 ~ m ,  - (T  i - To) > O, (21) 
i-I 

where equality holds if and only if ~ = To for all i = 1 .... ,n. 
Let us introduce the specific heat capacities at constant 

pressure 

'ei['ei ] i'Pl 'Pil 
C i : =  #---~ - ~ + p i  [ ~ / ~ - ~ i  I , 

which are positive. With the notation 

6", (T3 : = C~ [T.v~(T3I 

Proposition 3: For n = 1, the equilibrium process To is 
asymptotically stable. 

we can write the dynamic law in the form 

Evidently, 
dynamic law. 

C~(T3T~ = q, (i = 1 . . . . .  n) (24) 

(To, ...,To) is an equilibrium process of this 

Proof: L(T) :=  (T - T a )  2 is evidently a Lyapunov function. 

Proposition 4: For n > 1, the equilibrium process (To ..... T,) is 
asymptotically stable (1) if e~, Pi, and consequently C~ are the 
same for all i ("all the bodies consist of  the same material"); (2) 
if C~ is constant (independent of temperature) for all i; and (3) 
in the classical case. 

Proof: The following functions are Lyapunov functions: 

tt  

(1) L(T, . . . ,T~)  := ~_m,(T~ - To) 2 , (25) 
i - I  

pt 

(2) L(T~,...,T,) := E m i C i ( T i  - Ta)2, (26) 
i - I  

where Ci denotes the constant value of C~, and 

(3) L(T,,...,T,):= 

n 

~m~ ~(r,,v~(r;))- 
i - I  

1 
e,(ri,vAT~)) + pov~(r~)/ 

L J 
(27) 

(20) $. ISOBARIC PROCESSES OF A HEAT-INSULATED 
SYSTEM 
Suppose now that n > 2, and the n bodies are put into a 

mechanical reservoir, and they are heat-insulated from the 
environment. (Such systems are taken in adiabatic calorimetry.) 

According to our previous considerations, the first condition 
means that we are to construct a model in which the pressure of  
each body is the same constant throughout the process. Heat 
insulation is a delicate matter: the right mathematical expression 
of heat insulation is questionable, in general, t2) Now we can 
argue as follows. Each body can extend or contract freely in 
such a way that its pressure constantly equals the pressure of  the 
environment; hence we can consider that the bodies do not act 
mechanically on each other; they work only on the environment. 

(22) The reasoning in Ref. 2 shows that then there is no indirect 
heating between the bodies, and so we can describe heat 
insulation by the requirement that the total heating is zero: 

n 

(23) ~ m,qi = O . (28) 
i - I  

Moreover, heat insulation of the bodies means that the 
ambient temperature does not play any role. 

Thus we accept relations (15) and (16), and so a process will 
again be (Tt, ... ,T~), and we have relation (17) as well. Further- 
more, putting the formative laws 
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o ~ q, = q , ( T , ,  . . . ,T , ,pD,  

q , ( T , ,  ... ,T , , p , , )  = o ,  

we require relation (28); accepting equality (20) we assume the 
dynamic law (18), which can be written in the form (24) as well. 
The second law becomes 

~,m i - ( T / - T k )  > 0 (k = 1, . . . ,n) ,  
i * l  

where equality holds if and only if T~ = Tk for all i,k = 1, ... ,n. 
We see from (29) that (Ti.o ..... T,.0) is an equilibrium pro- 

cess if 

T~.o = T~.o (i,k = 1, ... ,n). 

These are only n -  1 independent equalities for the n 
variables; thus they do not determine equilibrium in locally 
unique way. A f-urther equality comes from the relation (28) of 
heat insulation as follows. 

Introducing 

h,(T3 := et [ T ,  vi(T,.)] + Pi [T,v~(T,.)]v;(T3 

(the specific enthalpies corresponding to the constant pressure), 
we easily find that 

G r , )  = dh , ( r , ) / d r ,  

(which is well known from usual equilibrium thermodynamics as 
well). Consequently, the dynamic law (24) becomes 

h,(r,.)" = q, 

from which we deduce by equality (28) that 

I1 

(29) ~_,m~hi(Ti) = coast. (35) 
i - I  

Thus for a given enthalpy value H0, the equation 

n 

~'~ mih,(T~.o) = Ho (36) 
i - I  

(30) 
supplements (31), assuring the (local) uniqueness of equilibrium. 

Proposition 5: For every enthalpy value H 0, 

n 

Hu ~ := {(Tl,...,T,)]~.,m~h(Ti ) = H0 } (37) 
(31) i.1 

is a submanifold invadant under the dynamic law (34). In the 
classical case an equilibrium (Tt.0 .... ,T,.o) in Hno is asymptot- 
ically stable with condition//no. 

Proof: The submanifold in question can be parametrized by 
(Tt, ... ,T,_t). Then T~ is expressed (at least locally) as a function 

(32) of the parameters, 

T, = r,(T~ .... ,T,_,), (38) 

and the reduced dynamic law becomes 
(33) 

Ci(T3~= qi ( i =  1 .... , n -  1). (39) 

We can easily verify that L[T,, ... ,T,_,,r,(T~, ... ,T,_~)] is a 
Lyapunov function, where L is the function introduced in the 

(34) Proof of item (3) in Proposition 4. 

Received 20 January 1993. 

R~sum~ 
La loi dynamique est d~finie pour des processus isothermes et pour des processus isobares 
dans la thermodynamique ordinaire. En plus, la stabiliM asymptotique est examinee. 
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