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A Robust Iterative Unfolding Method for Signal Proessing
A Robust Iterative Unfolding Method for SignalProessingAndrás LÁSZLÓMTA-KFKI Researh Institute for Partile and Nulear Physis, Budapest, Hungarylaszloa�szofi.elte.huAbstratIt is a ommon problem in signal proessing to remove a non-ideal detetors resolutionfrom a measured probability density funtion of some physial quantity. This proess isalled unfolding (a speial ase is the deonvolution), and it would involve the inversion ofthe integral operator desribing the folding (i.e. the smearing of the detetor). Currently,there is no unbiased method known in literature for this issue (here, by unbiased we meanthose approahes, whih do not assume an ansatz for the unknown probability densityfuntion).There is a well-known series expansion (Neumann series) in funtional analysis forperturbative inversion of spei� operators on Banah spaes. However, operators thatappear in signal proessing (e.g. folding and onvolution of probability density funtions),in general, do not satisfy the usual onvergene ondition of that series expansion. Thisartile provides some theorems on the onvergene riteria of a similar series expansion forthis more general ase, whih is not overed yet by the literature.The main result is that a series expansion provides a robust unbiased unfolding anddeonvolution method. For the ase of the deonvolution, suh a series expansion analways be applied, and the method always reovers the maximum possible informationabout the initial probability density funtion, thus the method is optimal in this sense. Avery signi�ant advantage of the presented method is that one does not have to introduead ho frequeny regulations et., as in the ase of usual naive deonvolution methods. Forthe ase of general unfolding problems, we present a omputer-testable su�ient onditionfor the onvergene of the series expansion in question.Some test examples and physis appliations are also given. The most importantphysis example shall be (whih originally motivated our survey on this topi) the ase of

π
0 → γ +γ partile deay: we show that one an reover the initial π

0 momentum densityfuntion form the measured single γ momentum density funtion by our series expansion.1 IntrodutionIn experimental physis, one ommonly faes the following problem. The probability densityfuntion of a given physial quantity is to be measured (e.g. by histograming) with an experi-mental apparatus, but a non-ideal detetor smears the signal. The question arises: if one knowsthe behavior of the detetor quite well (i.e. one knows the response funtion of the detetor),how an one reonstrut the original undistorted probability density funtion of the given phys-ial quantity. Speially: there is an unknown probability density funtion x 7→ f(x) (this is the1
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A Robust Iterative Unfolding Method for Signal Proessingunknown probability density funtion of the undistorted physial quantity), and the measureddensity funtion is obtained by y 7→ g(y) =
∫

ρ(y|x)f(x) dx (where the onditional densityfuntion (y, x) 7→ ρ(y|x) desribes the smearing of the measurement apparatus, also alled asresponse funtion), then under whih onditions and how an one re-obtain (i.e. unfold) theoriginal probability density funtion f by measuring g and by knowing ρ. We formalize thisproblem below. (In the text we shall abbreviate probability density funtion by pdf, onditionalprobability density funtion by pdf, and the notion Lebesgue almost everywhere or Lebesguealmost every, known in measure theory, by ae.)Let X and Y be two �nite dimensional real vetor spaes, eah equipped with the Lebesguemeasure (whih is unique up to a global positive onstant fator). Then L1(X) and L1(Y )denote the spae of Lebesgue integrable funtion lasses X → C and Y → C, respetively.De�nition 1. Let ρ : Y × X → R
+
0 , (y, x) 7→ ρ(y|x) is a pdf over the produt spae Y × X,(i.e. it is a nonnegative valued Lebesgue measurable funtion on the produt spae whih satis�esfor all x ∈ X :

∫

ρ(y|x) dy = 1). Then the linear operator
Aρ : L1(X) → L1(Y ), (x 7→ f(x)) 7→

(

y 7→
∫

ρ(y|x)f(x) dx

)

,is alled the folding operator by ρ.Remark 2. The remarks below are trivial.1. By Fubini's theorem, this linear operator is well de�ned.2. By the monotoniity of integration, suh an operator is ontinuous:
‖Aρf‖L1(Y ) =

∫
∣

∣

∣

∣

∫

ρ(y|x)f(x) dx

∣

∣

∣

∣

dy ≤
∫ ∫

ρ(y|x) |f(x)| dx dy = ‖f‖L1(X) .It is also trivial that we an saturate the above inequality by taking ae nonnegativefuntion f , thus ‖Aρ‖ = 1 also follows.Our main interest will be the question: when is the operator Aρ invertible, and how theinverse operator ould be evaluated on given pdfs in a onstrutive way.1.1 A speial ase: deonvolution problemA speial ase of the unfolding problem is the so alled deonvolution, i.e. when Y = X and thepdf ρ is translation invariant in the sense that for all a ∈ X and for all y, x ∈ X : ρ(y|x+a) =
ρ(y − a|x). In this ase, the pdf ρ an be expressed by a pdf η in the way ρ(y|x) = η(y − x)for all x, y ∈ X.De�nition 3. Let η be a pdf (i.e. it is a nonnegative valued Lebesgue integrable funtion on Xsuh that ∫ η(x) dx = 1). Then the linear operator

Aη : L1(X) → L1(X), f 7→ η ⋆ f =

(

y 7→
∫

η(y − x)f(x) dx

)

.is alled the onvolution operator by η. 2



A Robust Iterative Unfolding Method for Signal ProessingWe will state here a few properties of a onvolution operator (see e.g. [1℄, [2℄).1. A onvolution operator is not onto, and its image is not losed.2. The range of a onvolution operator is dense if and only if the Fourier transform of theonvolver funtion is nowhere zero (Wiener's approximation theorem).3. A onvolution operator is one-to-one if and only if the set of zeros of the Fourier transformof the onvolver funtion has zero Lebesgue measure.Remark 4. As a onsequene, the inverse of a onvolution operator � if it exists at all � isnot ontinuous. Indeed, the onvolution operator is everywhere de�ned and ontinuous, so itis losed, thus its inverse is losed as well; sine the domain of the inverse is not losed, theinverse annot be ontinuous by Banah's losed graph theorem.We see that the haraterization of a onvolution operator is strongly related to the Fourieroperators:
F± : L1(X) → C0

∞(X∗), (x 7→ f(x)) 7→
(

y 7→
∫

e±i 〈y|x〉f(x) dx

)

.We denote by C0
∞(X∗) the spae of ontinuous funtions X∗ → C whih have zero limit at thein�nity. Here X∗ is the dual spae of X, and for any y ∈ X∗ and x ∈ X the number 〈y|x〉means the value of the ovetor y on the vetor x.The Fourier operators have the following basi properties ([7℄):1. C0

∞(X∗) is a Banah spae with the maximum norm, F± is ontinuous and ‖F±‖ = 1.2. The Fourier operators are one-to-one. Thus, the inverse Fourier operators F−1
± exist.3. The range of F± is dense in C0

∞(X∗), however it is not the whole spae. Thus, again byBanah's losed graph theorem, we infer that the operator F−1
± is not ontinuous.4. If f, g ∈ L1(X), then F±(f ⋆ g) = F±(f) · F±(g) (onvolution theorem).The naive deonvolution proedure then goes in the following way:1. take the Fourier transform of the onvolution, F±(η ⋆ f),2. divide the above funtion by F±η,3. alulate the inverse Fourier transform;

f = F−1
±

(

F±(η ⋆ f)

F±η

)

.The listed properties of the onvolution operator, however, make it pratially impossibleto apply the deonvolution proedure in signal proessing. The reason is that the measureddensity funtion (whih is approximated by a normalized histogram in general) is not in therange of the onvolution operator: it an be onsidered as the sum of a pdf in the range of theoperator, plus a noise (e.g. Poissonian noise, originating from the statistial �utuations of the3



A Robust Iterative Unfolding Method for Signal Proessingentries in the histogram bins) outside the range of the operator in general. When applying thedeonvolution proedure, the inverse operator an be alulated on the �rst term, however thedeonvolution would give a nonsense result on the noise term, as it is not in the range of theonvolution operator, thus leading to a nonsense result on the whole. Various noise suppressionmethods (high frequeny uto�s) are introdued as symptomati treatment of this problem,however these solutions are based on rather intuitive approahes not on sound mathematis, andare highly non-unique (thus the derived solutions depend on the noise suppression approah).This is beause the non-ontinuity of the inverse of the onvolution operator: a small hangeaused by the high frequeny regulation in the Fourier spetrum is not guaranteed to staysmall after the deonvolution. This e�et, in general, is referred to as: the deonvolutionproblem (or unfolding problem) is ill posed, i.e. one annot get a robust method to do thedeonvolution (or unfolding). Furthermore, if the Fourier transform of the onvolver pdf haszeros in the �nite, then the naive deonvolution beomes even more ambiguous: one has tointrodue regulation proedures even at ertain �nite frequenies (at the zeros of the Fouriertransform of the onvolver pdf).Despite of the above di�ulties, we developed a robust perturbative method, whih solvesthe problem. Our method of series expansion gives a robust and stable method for deonvolu-tion. Using this method, the problem of zeros of the Fourier transform of the onvolver pdf inthe �nite does not arise at all, furthermore one does not have to reonsider any high frequenyregulations on a ase-by-ase intuitive basis. Plus, our series expansion is optimal in the sensethat it reovers the maximum possible information about the initial pdf even in the ase whenthe onvolution in question is not even invertible.2 Inverse operator by a series expansionThere exists a basi theorem providing a perturbative method to obtain the inverse of ontinuouslinear operators on a Banah spae whih are not too far from the identity operator. Thattheorem in its original form, however, does not apply to the ase of onvolution (or folding)operators. The main result of this paper is a generalization of that theorem to the ase ofonvolution operators.Now we reall the series expansion (alled also Neumann series) for the inverse of an oper-ator.Let A be a ontinuous linear operator on a Banah spae suh that ‖I −A‖ < 1, where I isthe identity operator. Then the operator A is one-to-one and onto and its inverse is ontinuous,and the series N 7→
∑N

n=0(I −A)n is absolutely onvergent to A−1.The proof is pretty simple, and an be found in any textbooks of funtional analysis (e.g. [8℄,[9℄). It will be instrutive, however, to ite the proof, as later we will strengthen this theorem.First, it is easily shown by indution that∑N

n=0(I−A)nA = A
∑N

n=0(I−A)n = I−(I−A)N+1.The ondition ‖I − A‖ < 1 guarantees that the sequene N 7→ (I − A)N+1 onverges to zeroin the operator norm, and the absolute onvergene of the series N 7→
∑N

n=0(I − A)n, thus
(
∑∞

n=0(I −A)n)A = A (
∑∞

n=0(I − A)n) = I, i.e. A−1 =
∑∞

n=0(I −A)n. As A−1 is expressed asa limit of a series of ontinuous operators whih is onvergent in the operator norm, we inferthat A−1 is ontinuous.Remark 5. The onditions of the above series expansion theorem fail for any folding operator
Aρ. 4



A Robust Iterative Unfolding Method for Signal Proessing1. We an observe that the series expansion is only meaningful for the ase of a foldingoperator only when the spaes X and Y are the same.2. Let us assume that Y = X. Then, it is easily obtained that a folding operator Aρ doesnot satisfy the required ondition ‖I −Aρ‖ < 1. It is trivial by the triangle inequality ofnorms that ‖I − Aρ‖ ≤ 2. We will show now that this inequality an be saturated for awide lass of pdfs. Let us hoose an arbitrary point y ∈ X, and onsider the series ofpdfs n 7→ 1
λ(Kn(y))

χ
Kn(y)

, where Kn(y) are ompat sets having non-zero Lebesgue measure
λ(Kn(y)), suh that Kn+1(y) ⊂ Kn(y) for all n ∈ N and ∩

n∈N

Kn(y) = {y}. Then,
∥

∥

∥

∥

(I − Aρ)
1

λ(Kn(y))
χ

Kn(y)

∥

∥

∥

∥

=

∫

z 6∈Kn(y)

∫

ρ(z|x) 1

λ(Kn(y))
χ

Kn(y)
(x) dx dz

+

∫

z∈Kn(y)

∣

∣

∣

∣

1

λ(Kn(y))
χ

Kn(y)
(z) −

∫

ρ(z|x) 1

λ(Kn(y))
χ

Kn(y)
(x) dx

∣

∣

∣

∣

dz.By making use of the fat that the integral of any pdf is 1, one an write
∫

z 6∈Kn(y)

∫

ρ(z|x) 1

λ(Kn(y))
χ

Kn(y)
(x) dx dz =

1 −
∫ ∫

χ
Kn(y)

(z)ρ(z|x) 1

λ(Kn(y))
χ

Kn(y)
(x) dx dzfor the �rst term. For the seond term, one an use the monotonity of integration:

∫

z∈Kn(y)

∣

∣

∣

∣

1

λ(Kn(y))
χ

Kn(y)
(z) −

∫

ρ(z|x) 1

λ(Kn(y))
χ

Kn(y)
(x) dx

∣

∣

∣

∣

dz

≥
∣

∣

∣

∣

∫

z∈Kn(y)

(

1

λ(Kn(y))
χ

Kn(y)
(z) −

∫

ρ(z|x) 1

λ(Kn(y))
χ

Kn(y)
(x) dx

)

dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

1

λ(Kn(y))
χ

Kn(y)
(z) dz −

∫ ∫

χ
Kn(y)

(z)ρ(z|x) 1

λ(Kn(y))
χ

Kn(y)
(x) dx dz

∣

∣

∣

∣

=

∣

∣

∣

∣

1 −
∫ ∫

χ
Kn(y)

(z)ρ(z|x) 1

λ(Kn(y))
χ

Kn(y)
(x) dx dz

∣

∣

∣

∣

= 1 −
∫ ∫

χ
Kn(y)

(z)ρ(z|x) 1

λ(Kn(y))
χ

Kn(y)
(x) dx dzHere, at the seond equality ∫ 1

λ(Kn(y))
χ

Kn(y)
(z) dz = 1 was used, and the fat that theintegral of any pdf over a Borel set is smaller or equal to 1 was used at the third equality.Thus, we infer the inequality:

∥

∥

∥

∥

(I − Aρ)
1

λ(Kn(y))
χ

Kn(y)

∥

∥

∥

∥

≥ 2 ·
(

1 −
∫ ∫

χ
Kn(y)

(z)ρ(z|x) 1

λ(Kn(y))
χ

Kn(y)
(x) dx dz

)

.If the point (y, y) ∈ X × X is a Lebesgue point of ρ, then we will shown that theintegral term goes to zero when n goes to in�nity, thus saturating our inequality inquestion. If a funtion g : X → C is loally integrable, then a point y ∈ X isalled a Lebesgue point of g if lim
n→∞

1
λ(Kn(y))

∫

Kn(y)
|g(x) − g(y)| dx = 0. If y ∈ X5



A Robust Iterative Unfolding Method for Signal Proessingis a Lebesgue point for g, then by the monotonity of integration it also follows that
lim

n→∞
1

λ(Kn(y))

∫

Kn(y)
g(x) dx = g(y). Applying this result for ρ on the produt spae X×X(assuming that the point (y, y) ∈ X × X is a Lebesgue point of ρ), we have that thesequene n 7→ 1

λ(Kn(y))
1

λ(Kn(y))

∫

Kn(y)

∫

Kn(y)
ρ(z|x) dx dz is onvergent to ρ(y|y). Multiply-ing this sequene by the sequene n 7→ λ(Kn(y)) (whih is onvergent to zero), we inferthat lim

n→∞
1

λ(Kn(y))

∫

Kn(y)

∫

Kn(y)
ρ(z|x) dx dz = 0. If ρ is ontinuous, then every point in

X × X is a Lebesgue point of ρ. Thus, we have shown that if the pdf ρ is ontinuous,then ‖I − Aρ‖ = 2 holds, therefore the original theorem of Neumann annot be applieddiretly for a folding operator with ontinuous pdf.Apart from the above remark, the reason is obvious for the obstrution of inverting theonvolution on the operator level: as the onvolution operators are not onto in general, oneonly an try to invert the operator on a funtion in the range of the operator. We try tomodify the theorem for the ase of onvolution operators requiring, instead of onvergenein the operator series, the onvergene of the series N 7→
∑N

n=0(I − A)n(Af) in some sense(equivalently, the onvergene of the sequene N 7→ (I − A)N+1f in the same sense), for any
f ∈ L1(X).For getting a onvenient result, let us reall that the elements of L1(X) an be viewed asregular tempered distributions. The Fourier transformations an be extended to the spae oftempered distributions, where they are one-to-one and onto, ontinuous, and their inverse isalso ontinuous ([8℄, [9℄). The proof of onvergene will be performed on the Fourier transformsof the funtions, then the result will be brought bak by using the ontinuity of the inverseFourier transformation on the spae of tempered distributions.Theorem 6. Let Aη be a onvolution operator for some η ∈ L1(X). Let Z be the set of zerosof the funtion F±η. If the inequality

|1 − F±η| < 1is satis�ed everywhere outside Z, then for all f ∈ L1(X) the series
N 7→

N
∑

n=0

(I −Aη)
n(Aηf)is onvergent in the spae of tempered distributions, and

∞
∑

n=0

(I − Aη)
n(Aηf) = f − F−1

± (χ
Z
F±f).Proof Assume that |1 − F±η| < 1 holds everywhere outside Z. Let V denote the subset of

X∗ where F±η is nonzero. It is lear that V and Z are disjoint Lebesgue measurable setsand X∗ = V ∪ Z. Trivially, the sequene N 7→ |1 − F±η|N+1 onverges pointwise to 0 on V ,furthermore |1 − F±η|N+1 = 1 on Z for all N . For every f ∈ L1(X) and rapidly dereasing testfuntion ϕ on X∗, we have
∣

∣

∣

∣

∫

(1 − F±η(y))
N+1F±f(y) · ϕ(y) dy −

∫

χ
Z
· F±f(y) · ϕ(y) dy

∣

∣

∣

∣

=6



A Robust Iterative Unfolding Method for Signal Proessing
∣

∣

∣

∣

∫

V

(1 − F±η(y))
N+1F±f(y) · ϕ(y) dy

∣

∣

∣

∣

≤
∫

V

|1 − F±η(y)|N+1 |F±f(y)| · |ϕ(y)| dy.The series of Lebesgue integrable funtions N 7→ |1 − F±η|N+1 |F±f | · |ϕ| onverges point-wise to zero on V , and |1 − F±η|N+1 |F±f | · |ϕ| ≤ |1 − F±η|1 |F±f | · |ϕ| for all N , thus byLebesgue's theorem of dominated onvergene the last term of the inequality tends to zerowhen N goes to in�nity. Therefore, the funtion series N 7→ (1 − F±η)
N+1(F±f) is onvergentin the spae of tempered distributions to the funtion χ

Z
F±f . Applying the inverse Fouriertransformation F−1

± and using the ontinuity of the inverse Fourier transformation in the spaeof tempered distributions, we get the desired result, as by the onvolution theorem we have
F−1
±
(

(1 − F±η)
N+1(F±f)

)

= (I − Aη)
N+1f , and beause

f −
N
∑

n=0

(I −Aη)
n(Aηf) = (I − Aη)

N+1ffor all N .Remark 7. Let us assume that the ondition of the theorem holds. Then it is quite evidentthat1. If Z has zero Lebesgue measure (whih holds if and only if Aη is one-to-one), then
F−1
± (χ

Z
F±f) = 0. This means that the series in question always restores the arbitrarilyhosen original funtion f if and only if Aη is one-to-one, i.e. if and only if F±η is aenowhere zero.2. If Z has nonzero Lebesgue measure, our series also onverges, and restores the maximumpossible information about the original funtion f , namely the tempered distribution

f − F−1
± (χ

Z
F±f). However, this tempered distribution may not be a funtion in general.If the funtion χ

Z
F±f is not a ontinuous funtion whih tends to zero at the in�nity,then F−1

± (χ
Z
F±f) annot be an integrable funtion. As we shall see in the next setion,if the funtion χ

Z
F±f is not a ontinuous funtion whih is bounded, then F−1

± (χ
Z
F±f)annot even be a measure with �nite variation.3. Let now η and f be pdfs, and suppose that F−1

± (χ
Z
F±f) = 0. Then our onvergeneresult has the following meaning in probability theory: the series onverges in the sensethat the expetation values of all rapidly dereasing test funtions on X are restored.Namely, for any rapidly dereasing test funtion ψ on X we have that:

lim
n→∞

∫

(

N
∑

n=0

(I − Aη)
n(Aηf)

)

(x) · ψ(x) dx =

∫

f(x) · ψ(x) dx.It an be easily observed that the ondition of our previous theorem is not always satis�edfor a pdf η. E.g. if η is a Gaussian pdf entered to zero, then it is satis�ed, but e.g. if η isa uniform pdf on a retangular domain entered to zero, then the ondition is not satis�ed.Therefore, one ould think that the appliability of our deonvolution theorem is rather limited.This is not the ase, however, as stated in our following theorem.7



A Robust Iterative Unfolding Method for Signal ProessingTheorem 8. Let η be a pdf on X. Then for any f ∈ L1(X) the series
N 7→

N
∑

n=0

(I − APηAη)
nAPη(Aηf)is onvergent in the spae of tempered distributions, and

∞
∑

n=0

(I −APηAη)
nAPη(Aηf) = f − F−1

± (χ
Z
F±f),where Z := {y ∈ X∗|F±η(y) = 0}. Here P is the parity operator on L1(X), namely Pf(x) :=

f(−x) for all f ∈ L1(X) and x ∈ X.Proof Let us observe, that if F±η is real valued and nonnegative for a pdf η, then |1−F±η| < 1is automatially satis�ed outside Z. This is beause1. by our assumption 0 < F±η outside Z, thus we onlude that 1−F±η < 1 outside Z, and2. by the inequality |F±η| ≤ ‖η‖ = 1, we onlude that 0 ≤ 1 − |F±η| = 1 − F±η.It is easy to see that F±Pη = F±η (where the bar denotes omplex onjugation) for a pdf η,beause η is real valued. Thus, we have that F±(Pη⋆η) = |F±η|2 is real valued and nonnegative,onsequently, by our previous observation, the inequality |1 − F±(Pη ⋆ η)| < 1 holds outside
Z, i.e. our previous theorem an be applied by replaing the onvolution operator Aη with thedouble onvolution operator APηAη.When applying this theorem in pratie, one should take into aount that the measured pdf(whih is obtained by histograming in general) is not in the range of the onvolution operator,but it an be viewed as the sum of a pdf in the range of the onvolution operator (if our modelis aurate enough) and a noise term. By the above theorem, the series expansion will beonvergent on the pdf in the range of the onvolution operator, but will be divergent (mostprobably) on the noise term, as it is not in the range of the onvolution operator (in general).Thus, the problem is that when to stop the series expansion: one should let the series go farenough to restore the original (unknown) pdf, but should stop the series expansion early enoughto prevent the divergene arising from the noise term. This trunation proedure an be viewedas a very elegant way to do the high frequeny regulation. Note, however, that the regulationproblem at the �nite frequenies (at the zeros of the Fourier transform of the onvolver pdf)does not arise at all, with this method.The only remaining question is: at whih index should one stop to keep the noise ontentlower than a given threshold.When working in pratie, our density funtions are disrete in general (e.g. histograms),thus we may view them as a vetor of random variables (e.g. in the ase of histograming,these random variables are the number of entries in the histogram bins). Let us denote itby v. If A is a linear operator (i.e. a matrix here), then we have that E(Av) = AE(v) and
Covar(Av) = ACovar(v)A+, where we denote expetation value by E(·), ovariane matrix by
Covar(·), and the adjoint matrix by (·)+. Thus, in the N -th step of the series expansion, wehave

Covar

(

N
∑

n=0

(I − Aη)
n
v

)

=

(

N
∑

n=0

(I − Aη)
n

)

Covar(v)

(

N
∑

n=0

(I − Aη)
n

)+

.8



A Robust Iterative Unfolding Method for Signal ProessingThis means that if we have an initial estimate for the ovariane matrix Covar(v), we analulate the ovariane matrix at eah step, thus an alulate the propagated errors at eahorder.When using the method of histograming, as the entries in the histogram bins are knownto obey independent Poisson distributions, the initial undistorted estimates E(vi) ≈ Ni (i ∈
{1, . . . ,M}) and Covar(v) ≈ diag(N1, . . . , NM) will be valid, where we onsider our histogramto be a mapping H : {1, . . . ,M} → N0, i 7→ Ni. The squared standard deviations are thediagonal elements of the ovariane matrix, thus we an have an estimate on the L1-norm ofthe noise term at eah N-th order by taking 1

∑M
j=1 Nj

∑M

i=1

√

Covarii

(

∑N

n=0 (I − Aη)
n
v
). Bystopping the series expansion when this noise ontent exeeds a ertain prede�ned threshold,we get the desired trunation of the series expansion.Remark 9. We show an other (iterative) form of our series expansion whih may be moreintuitive for physiists. Namely, take the initial onditions

f0 := APηH,

Ĉ0 := APηdiag(H), C0 :=
(

APηĈ
+
0

)+

.Then, perform the iteration steps
fN+1 := fN + f0 − APηAηfN ,

ĈN+1 := ĈN + Ĉ0 − APηAηĈN , CN+1 :=
(

Ĉ+
N + Ĉ+

0 − APηAηĈ
+
N

)+

.Here H means the initial (measured) histogram, fN is the deonvolved histogram at the N -thstep, and APηAη is the disrete version of the double onvolution operator. The quantity ĈN isa supplementary quantity, and CN is the ovariane matrix at eah step. The noise ontent anbe written as 1
∑M

j=1 Nj

∑M

i=1

√

(CN)ii, whih should be kept under a ertain prede�ned threshold.Remark 10. As pointed out in the previous remark, one an exatly follow the error propaga-tion during the iteration. However, to store and to proess the whole ovariane matrix an osta lot of memory and CPU-time. Therefore, one may rely on a slightly more pessimisti but lessostly approximation of the error propagation, namely on the Gaussian error propagation. Thismeans, that at eah step one assumes the ovariane matrix to be approximately diagonal, i.e.this method is based on the negletion of orrelation of entries (whih, indeed, holds initially),that slightly will overestimate the error ontent. Gaussian error propagation means that whenalulating the ation of the operators in questions, we apply the following two rules:1. if v is a random variable (histogram entry), and a is a number, then σ(a · v) := |a| · σ(v)(this is exat, of ourse), and2. if v1 and v2 are random variables (histogram entries), then σ2(v1 + v2) := σ2(v1) + σ2(v2)(whih is exat only if v1 and v2 are unorrelated). Here σ means standard deviation.Remark 11. Even if the onvergene ondition for the deonvolution by series expansion issatis�ed for Aη, it is better to use the double deonvolution proedure by APηAη, for the follow-ing reason. In pratie the measured pdf orresponds to a pdf in the range of Aη plus a noise9



A Robust Iterative Unfolding Method for Signal Proessingterm. When onvolving the measured pdf by Pη before the iteration, the noise level is reduedby orders of magnitudes (the onvolution by Pη smooths out the statistial �utuations). Asa thumb rule, one iteration step is lost with the onvolution by Pη, but several iteration stepsare gained, as we start the iteration from a muh lower noise level.3 The general ase of unfoldingFor the ase of general unfolding problems, a series expansion will beome even more inter-esting, as there are no known alternative methods like the naive deonvolution in the ase ofdeonvolution problems.Unfortunately, for the general ase of unfolding, we annot state suh a strong result as forthe ase of deonvolution. This is beause our theorem on the deonvolution strongly relieson the relation of onvolutions and Fourier transformation. However, we an state a su�ientondition for the onvergene of a series expansion for the general ase of unfolding. To statethis theorem, we have to perform studies not only on pdfs, but also on probability measures.The spaes X and Y are going to denote �nite dimensional vetor spaes again.A omplex measure P on X is a omplex valued σ-additive set funtion de�ned on on theBorel σ-algebra of X. The variation of the omplex measure P is the nonnegative measure
|P | de�ned as follows: if E is a Borel set, then |P |(E) is the supremum of ∑n

k=1 |P (Ek)| forall splitting (E1, . . . , En) of E, i.e. for all suh (E1, . . . , En) �nite system of disjoint Borel setswhose union totals up to E ([8℄, [6℄). The measures with �nite variation (i.e. the omplexmeasures P for whih |P |(X) <∞) form a Banah spae with the norm being the value of thevariation on X, i.e. ‖P‖ := |P |(X). Let us denote this spae by M(X).Reall that a probability measure P on a X is a nonnegative measure on the Borel σ-algebraof X, with P (X) = 1. Thus, a probability measure is evidently in M(X).De�nition 12. We shall all a mapping Q : X → M(Y ), x 7→ Q(·|x) a folding measure if forevery x ∈ X the measure Q(·|x) is a probability measure on Y , and for every Borel set E in Ythe funtion x 7→ Q(E|x) is measurable.Note, that Q may be viewed as a onditional probability measure on the produt spae
Y ×X. Evidently, if ρ is a pdf, then Qρ(E|x) :=

∫

E
ρ(y|x)dy de�nes a folding measure.De�nition 13. Let Q be a folding measure Q. Then the linear map

AQ : M(X) →M(Y ), P 7→
(
∫

Q(·|x) dP (x)

)

,will be alled the folding operator by Q.Remark 14. The following remarks are trivial.1. Suh an operator is well de�ned, as for all points x ∈ X and Borel sets E the inequality
Q(E|x) ≤ 1 holds, thus the funtion x 7→ Q(E|x) is integrable by any measure with �nitevariation.2. By the monotoniity of integration, suh an operator is ontinuous and ‖AQ‖ = 1, justas in the L1 ase. 10



A Robust Iterative Unfolding Method for Signal Proessing3. The folding operator de�ned above an be viewed as a generalization of the folding op-erator Aρ : L1(X) → L1(Y ) de�ned by a pdf ρ. This is beause L1(X) an naturallybe embedded into M(X) by assigning to eah f ∈ L1(X) the measure E 7→ Pf(E) :=
∫

E
f(x) dx. Of ourse, if the folding measure Qρ is de�ned by a pdf ρ, then the restritionof AQρ

to L1(X) is just Aρ as de�ned before.First, we generalize our deonvolution results to the spae of measures with �nite variation.Remark 15. The onvolution of two measures F,G ∈M(X) an be de�ned by
F ⋆ G : E 7→

∫

F (E − x) dG(x),where E runs over all the Borel sets. (Of ourse, Pf ⋆ Pg = Pf⋆g for any f, g ∈ L1(X).)The Fourier transformations an also be de�ned on M(X), and have the same propertiesas in the L1 ase, exept that the Riemann-Lebesgue lemma does not hold (i.e. the Fouriertransform of a measure is a bounded ontinuous funtion but does not tend to zero at thein�nity). Therefore, our previous results on the series expansion for the deonvolution (Theorem8) an diretly be generalized to the probability measures, as the elements of M(X) an alsobe viewed as tempered distributions.As we remarked above for the deonvolution ase, we have a powerful result also in the moregeneral framework of measures with �nite variation. However, we are still laking an answerfor the general ases of unfolding.Remark 16. The onditions of the original Neumann series expansion theorem fail also in thease of measures.1. We an observe that our series expansion is only meaningful for the ase of a foldingoperator only when the spaes X and Y are the same. (Just as in the L1 ase.)2. Let us assume that Y = X. Then, it is easily obtained that a folding operator AQ doesnot satisfy the required ondition ‖I − AQ‖ < 1, in general. It is trivial by the triangleinequality of norms that ‖I − AQ‖ ≤ 2. We will show now that this inequality an besaturated for a wide lass of folding measures. Let Kn(y) (n ∈ N) be a sequene ofompat sets with nonzero Lebesgue measure, suh that Kn+1(y) ⊂ Kn(y) for eah n ∈ Nand ∩
n∈N

Kn(y) = {y}. Let us denote the omplement of a set Kn(y) by K∁
n(y). Clearly,by onsidering the splitting (Kn(y), K∁

n(y)) of the Borel set X, one has:
∣

∣(I −AQ)δy
∣

∣(X)

≥
∣

∣

∣
δy(Kn(y)) −Q(Kn(y)|y)

∣

∣

∣
+
∣

∣

∣
δy(K

∁
n(y)) −Q(K∁

n(y)|y)
∣

∣

∣

=
∣

∣1 −Q(Kn(y)|y)
∣

∣+Q(K∁
n(y)|y).At the equality, δy(Kn(y)) = 1 and δy(K

∁
n(y)) = 0 was used. Let us take the limit

n → ∞ on the right side. By the monotone ontinuity of measures, we have that
lim

n→∞
Q(Kn(y)|y) = Q({y}|y) and lim

n→∞
Q(K∁

n(y)|y) = Q(X \ {y}|y), furthermore by11



A Robust Iterative Unfolding Method for Signal Proessingthe subtrativity of measures we have Q(X \ {y}|y) = Q(X|y) − Q({y}|y). As Q(·|y) isa probability measure, we also have Q(X|y) = 1. Thus,
∣

∣(I − AQ)δy
∣

∣(X) ≥
∣

∣1 −Q({y}|y)
∣

∣+ (1 −Q({y}|y)).As the measure Q(·|y) annot take up larger values then 1 on any Borel set, we onludethat
‖I −AQ‖ ≥ 2 · (1 −Q({y}|y)).Thus, if there exists suh a point y ∈ X, where Q({y}|y) = 0, then ‖I − AQ‖ = 2. Whenthe folding measure Qρ is de�ned by a pdf ρ, then Qρ({y}|y) = 0 always holds (thisis beause a measure of the form Pf � for any funtion f ∈ L1(X) � annot have sharppoints, i.e. suh points where Pf({y}) 6= 0). Thus, ∥∥I −AQρ

∥

∥ = 2 holds for any pdf ρ,therefore the Neumann series annot onverge for AQρ
in the M(X) operator norm. (Butof ourse, even Q({y}|y) ≤ 1

2
is enough to violate ‖I − AQ‖ < 1.)Just like in the onvolution ase, our strategy will be to require muh weaker notions ofonvergene. By intuition, one would think that if for all x ∈ X the Dira-measures δx arerestored by the method (in some sense of onvergene), then this would be enough for therestoration of any other arbitrary measures with �nite variation. We provide a similar resultwith slightly stronger onditions. The theorem below is a trivial onsequene of Lebesgue'stheorem of dominated onvergene.Theorem 17. Let AQ be a folding operator for some folding measure Q. Let us �x a Borel set

E in X. If for all x ∈ X the sequene
N 7→

(

(I −AQ)N+1δx
)

(E)onverges to zero, furthermore
sup
N∈N

sup
x∈X

∣

∣

∣

(

(I − AQ)N+1
δx

)

(E)
∣

∣

∣
<∞holds, then for any P ∈M(X) the series

N 7→
(

N
∑

n=0

(I − AQ)nAQP

)

(E)is onvergent and
( ∞
∑

n=0

(I −AQ)nAQP

)

(E) = P (E).Proof First, we note that for any indexN the measurable funtion x 7→
∣

∣

(

(I − AQ)N+1δx
)

(E)
∣

∣an be bounded by 2N+1, thus these funtions are integrable by any measure with �nite varia-tion.We know that for all x ∈ X the relation lim
N→∞

(

(I −AQ)N+1
δx

)

(E) = 0 holds, further-more sup
N∈N

sup
x∈X

∣

∣

∣

(

(I − AQ)N+1
δx

)

(E)
∣

∣

∣
<∞. The integral ∫ ((I − AQ)N+1δx

)

(E) dP (x) existsfor all N and the integrands onverge pointwise to zero as N tends to in�nity. As the in-tegrands are dominated by a onstant independent of N whih is learly |P |-integrable, by12



A Robust Iterative Unfolding Method for Signal ProessingLebesgue's theorem of dominated onvergene, the limit and the integration an be inter-hanged: lim
N→∞

∫ (

(I − AQ)N+1δx
)

(E) dP (x) =
∫

lim
N→∞

(

(I −AQ)N+1δx
)

(E) dP (x) = 0. Onthe left-hand side, (I −AQ) an be interhanged with the integration, beause I is the identityoperator and beause AQ itself is an integral: we an interhange the integrals by Fubini'stheorem, namely ∫ (AN
Qδx
)

(E) dP (x) =
∫ ∫

. . .
∫

Q(E|yN) dQ(yN |yN−1) . . . dQ(y1|x) dP (x) =
(

AN
QP
)

(E), for arbitrary power N . Thus, lim
N→∞

(

(I −AQ)N+1P
)

(E) = 0.Using the equality (P −∑N

n=0(I −AQ)nAQP
)

(E) =
(

(I − AQ)N+1P
)

(E), we get the de-sired result.Remark 18. Assume that the ondition of our theorem holds.1. The ondition sup
N∈N

sup
x∈X

∣

∣

∣

(

(I −AQ)N+1
δx

)

(E)
∣

∣

∣
< ∞ (i.e. the ondition of boundedness)is ruial for the proof in order to be able to interhange the limit and the integration.In other words: the restoration of the Dira-measures δx for all x ∈ X is not enough.2. If P is a probability measure, then the meaning of our onvergene result is that theprobability of the event (Borel set) E is restored:

lim
N→∞

(

N
∑

n=0

(I − AQ)nAQP

)

(E) = P (E).The present theorem is weaker than the one for deonvolution, nevertheless it providesa omputer-testable ondition of onvergene for any unfolding problem (whih may not beexpressed as onvolution). In the next setion, we shall provide some physial examples whihshow the method in operation. Of ourse, the iteration proedure goes just the same as disussedat the end of the previous setion.Remark 19. If we are testing the onvergene riterion by omputer, some measure theorytrivialities are useful. Namely, if the ondition holds for disjoint sets, then it also holds forthe union of them. Thus, in pratie (e.g. when handling histograms), it is enough to on�rmthe ondition when the Borel sets E are the histogram bins, beause then the ondition willautomatially hold for any set built up from the histogram bins. Of ourse, we annot go belowthe granulation of our histogram binning, but if our granulation is �ne enough, the numerialtest of onvergene ondition an give an aurate answer.The disadvantage of our presented onvergene riterion is that it is rather expensive evenfor a simple 1-dimensional ase (however, for a given folding measure Q, this ondition has tobe shown only one). It may be better to only show the onvergene for the given unfoldingproblem, i.e. on a ase-by-ase basis, and not for the general ase of every P ∈ M(X). (Thedisadvantage of suh a onvergene ondition is that surely it will be violated after a ertainiteration step, beause of the divergene arising from the noise term.) Suh a ondition ofonvergene may be obtained by Cauhy's root riterion:Theorem 20. Let AQ be a folding operator for some folding measure Q. Let us �x a measure
P ∈ M(X) and a Borel set E in X. If the inequality

limsup
N

N

√

|((I −AQ)NAQP ) (E)| < 113



A Robust Iterative Unfolding Method for Signal Proessingholds, then the series
N 7→

(

N
∑

n=0

(I − AQ)nAQP

)

(E)is absolute onvergent.With the above ondition one may ontrol the onvergene of the series iteration for a givenmeasured pdf: the ondition limsup
N

sup
E

N
√

|((I − AQ)NAQP ) (E)| < 1 may be required as aondition of onvergene, where the Borel sets E are the histogram bins. Given the order N ,we shall all the number sup
E

N
√

|((I − AQ)NAQP ) (E)| the Cauhy index.Remark 21. The iteration sheme is the same as disussed at the end of the previous setion(Remark 9). In the iteration sheme, the onvolution operator APη should be replaed by somefolding operator AG (used to arti�ially smear the measured histogram in order to redue thenoise ontent, as pointed out in Remark 11 � typially this may be hosen to be a onvolutionoperator by a Gauss pdf entered to zero, or an be hosen to be the identity operator, ifsmoothing is not needed), and the onvolution operator Aη should be replaed by the foldingoperator AQ (desribing the physial smearing proess).4 Examples and appliations in physisOur �rst test example will be a deonvolution problem of an initial Cauhy pdf of the form
x 7→ 1

π
· 1

Γ2+x2 , and with a Gauss onvolver pdf of the form x 7→ 1√
2π·σ2

· exp
(

− x2

2·σ2

) over thereal numbers. We will hoose Γ = 1 and σ = 1 in our example. By Theorem 8 we an assurethe onvergene of the problem. The result is shown in Figure 1.Our seond test example will be a deonvolution problem of an initial Cauhy pdf as in theprevious example with a triangle onvolver pdf of the form x 7→ 1
W 2 ·χ[−W,W ]

(x) ·
∣

∣W − |x|
∣

∣ overthe real numbers. We will hoose W = 2 in our example. By Theorem 8 we an also assurethe onvergene of the problem. The result is shown in Figure 2.A signal smearing, aused by a measurement apparatus, is desribed by folding in general.In this ase the pdf in the folding integral is the response funtion of the devie. Our seriesunfolding an be applied to remove the non-ideal detetor smearing at the spetrum level. Thisis a ommon issue in analysis of reorded data in experimental physis, whih may be solvedby our method.Our physial example will be the π0 deay. π0-s are produed in high-energy partile ol-lisions (e.g. in hadron or heavy-ion ollisions). The partile π0 deays through the hannel
π0 → γ + γ deay (98.798% branhing ratio). It has suh a short lifetime (8.4 · 10−17 sec), thateven in the highest energy olliders it only travels at most mirometers before deay, thus fromthe detetor's point of view, the resulting γ photons ome from the ollision point. The π0partiles are deteted via the resulting γ photon pairs. This is possible beause the dominantpart of the γ yield omes from π0 deays in hadron or heavy-ion ollisions. The γ andidatesignals are paired to eah other in every possible ombination, and the mass of eah pair isalulated from the hypothesis that they originate from a ommon π0 deay. The ombinato-rial bakground is estimated by so alled event mixing tehniques (by taking γ andidates fromdi�erent events, thus these signals are ompletely independent). The π0 yield as a funtion ofmomentum thus an be obtained, whih plays an important role in high-energy partile physis.14
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A Robust Iterative Unfolding Method for Signal ProessingHowever, in ertain ases (e.g. in heavy-ion ollisions) the reonstrution e�ieny of π0-san be very low at ertain momentum spae regions, thus this straightforward reonstrutionmethod is not always appliable for measuring the momentum distribution of the produed
π0-s.A possible idea is to measure the single γ momentum distribution, and reonstrut the parent
π0 momentum distribution from it, somehow. The arising of the hild γ photon momentumpdf from a parent π0 momentum pdf is desribed by a folding, as will be disussed below. Thetask is: to unfold the original π0 momentum pdf from the γ momentum pdf. This issue wasalso addressed in [4℄, however the answer given by the paper was not fully satisfatory. Firstly,the method desribed in the paper was very spei� to the partiular ase of π0 → γ+ γ deay(and did not deal with the general problem of unfolding). Seondly, two kinematial kind ofapproximations were used whih are mathematially ill-de�ned and have an unlear physialmeaning. It seems, indeed, that our method gives a more realisti answer, as it will be shown.Let us denote the momentum spae by (M, g), where M is a 4-dimensional real vetor spae,and g : M × M → R is a Lorentz form (with signature 1,−1,−1,−1). Let us hoose a timeorientation on it. Let V +(0) denote the positive null one (positive light one), and let V +(m)be the positive mass shell with mass value m (m will now play the role of π0 mass). The π0momentum pdf is de�ned over V +(m), and the γ photon momentum pdf is de�ned over V +(0).However, they also an be be viewed as probability measures over M, with their support in
V +(m) and V +(0), respetively. Given a π0 momentum, the γ momenta diretions (deay axes)are uniformly distributed in the π0 rest frame (this is the physial information put in). Namely,let us take the set

F :=

{

(p, k) ∈ M × M

∣

∣

∣

∣

∣

p ∈ V +(m), k ∈ V +(0), g

(

1
√

g(p, p)
p, k

)

=
m

2

}

,and let us de�ne for every p ∈ M the set Fp := {k ∈ M | (p, k) ∈ F}. Clearly, Fp is the set ofpossible γ photon momenta arising from a π0 with momentum p (in other words: Fp is de�nedby the vetors in V +(0) whih have energy m
2
in the rest frame of the π0 with momentum p). Weshall de�ne our folding measure by: Q(·|p) is the measure over M for eah p whih desribes theuniform distribution on Fp (as Fp is ompat, it has �nite measure, thus this is meaningful).If P is a probability measure over M desribing the π0 momentum distribution, then the γphoton momentum distribution is de�ned by the probability measure AQP . Thus, one maytry to obtain the parent π0 momentum distribution by unfolding the measured γ momentumdistribution. This will be done expliitly below for a toy example.Let us parameterize the momentum spae with respet to an Einstein synhronized frame

(e0, e1, e2, e3) that orresponds to the enter-of-mass system of the ollision. We hoose theollision axis (the beam axis) to be the third spatial oordinate axis whih we also all thelongitudinal diretion. As the experimental setups of ollisions are axially symmetri withrespet to this axis, the single partile momentum distributions are axially symmetri with re-spet to the longitudinal diretion. Therefore, it is onvenient to parameterize a π0 momentum
p ∈ V +(m) in the form (

g(e3, p),
√

g(e1, p)2 + g(e2, p)2, arctan
(

g(e2,p)
g(e1,p)

)), and a γ momentum
k ∈ V +(0) in the form (

g(e3, k),
√

g(e1, k)2 + g(e2, k)2, arctan
(

g(e2,k)
g(e1,k)

)). The three oordi-nates are alled longitudinal momentum, transverse momentum and azimuth, respetively. Theaxial symmetry means that the pdfs desribing π0 and γ momentum distributions only dependon the longitudinal and transverse momentum.16



A Robust Iterative Unfolding Method for Signal ProessingIt is even more onvenient to introdue a more sophistiated parameterization: if p
L
is thelongitudinal momentum and p

T
is the transverse momentum, then y := asinh

(

p
L√

m2+p2
T

) (lon-gitudinal rapidity) and E
T

:=
√

m2 + p2
T
(transverse energy) an be introdued. The so alledlongitudinal pseudorapidity η := asinh
(

p
L

p
T

) is also useful for longitudinal parameterization.We shall present the pdfs in the (η, p
T
) parameterization.For demonstration, we take a realisti toy example of π0 momentum pdf. The π0 momentumpdf is haraterized by: the momentum pdf of the π0 with respet to the Lorentz invariantmeasure of the mass shell V +(m) orresponds to a produt of a Gaussian one in y and anexponential one in E

T
(a typial experimental spetrum an be qualitatively desribed in thisa way). The standard deviation of the y distribution was taken to be 0.5, and the inverse slopeparameter of the E

T
distribution was taken to be 0.5GeV.The initial π0 momentum pdf is presented in Figure 3 together with the arising γ momentumpdf. We used a sample of 10000000 Monte Carlo π0 partiles to generate the measured γspetrum.The unfolded π0 momentum pdf is presented in Figure 4 together with the initial π0 mo-mentum pdf. Due to the high statistis, we did not apply smearing for noise redution (asdisussed in Remark 21 ).To demonstrate the apability of the method, we also inluded a smearing aording tothe CMS-ECAL detetor's known energy and angular resolution funtion, when generating themeasured gamma responses: the method also removes this detetor e�et from the momentumpdf. This fat is rather important in pratie, beause a non-ideal detetor resolution hangesthe inverse slope parameter of the transverse momentum spetrum remarkably, whih is usedin heavy-ion physis to determine the temperature of the ollided system.Some setions of the previous pdfs are also presented at η = onstant slies in Figure 5 andin Figure 6.For ompleteness, we also show the answer given by R. Cahn's presription (as desribed in[4℄), in Figure 7 and Figure 8. Of ourse, here we did not inlude additional detetor e�ets asin our unfolding ase, as R. Cahn's method was not designed to undo detetor e�ets. As onean see, the reonstruted π0 momentum pdf given by R. Cahn's presription is rather far fromthe initial one, espeially when ompared to the answer given by our series expansion method,introdued in this paper.Our remaining issue is to show the onvergene of our series expansion for this π0 → γ + γdeay unfolding problem. In Figure 9 we plotted the Cauhy index as a funtion of the iterationorder. It is learly seen that the Cauhy indies are saturating to ≈ 0.8, thus the onvergeneis a onsequene of Theorem 20.Remark 22. It is very important to note that when implementing the folding operator, onedoes not have to know the analyti form of the integral. In the π0 → γ + γ ase it is possibleto alulate the integral formula analytially from kinematis, however, the integral beomesvery ugly in the (η, p

T
) parameterization. Therefore we alulated the ation of the foldingoperator by Monte Carlo simulation, whih makes the method easy to implement.

17
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