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Spacetime without Reference Frames: An Application

to Synchronizations on a Rotating Disk

T. Matolcsi
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Nonstandard synchronizations of inertial observers in special relativity and syn-
chronizations with respect to a uniformly rotating observer are investigated in a
setting which avoids coordinates and transformation rules and so removes some
misunderstandings .

1. INTRODUCTION

It has long been known that the standard synchronization corresponding
to inertial observers in special relativity can be replaced by another in
which the one-way speed of light is not supposed to equal its two-way
speed, ( 1) i.e., if a reflected light signal starts from a space point at ts and
arrives back at ta , the space point of reflection at tr , then

tr= ts= a( ts 2 ta ) ( 1)

where a Î [0, 1] , the synchronization parameter is arbitrary. If c is the two-
way light speed, then the starting light speed is cs= c/( 2a) and the arriving
light speed is ca= c/[2(1 2 a) ] .

Recently several papers ( 2 ± 5) have dealt with nonstandard synchroniza-
tion, extending the investigations to synchronization on the rotating disk.
As a result of these examinations it was claimed that the nonstandard syn-
chronization, instead of being a possibility, is a necessity, and absolute
simultaneity must be introduced in special relativity.

The arguments are expounded in the usual framework using coor-
dinates and transformation rules. However, coordinates and transformation
rules are not inherent objects of spacetime and their use can mislead us. An
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excellent example for such an error is that the usual formulation with coor-
dinates suggests tacitly that it has an a priori meaning that two vectors in
the spaces of different observers be equal, and under this tacit assumption
it has been taken for granted that being equal in different spaces is a tran-
sitive relation; this has resulted in the paradox of velocity addition.( 6)

Using a formalism of special relativity which is built up without
reference frames, coordinates, or transformation rules, ( 7) we can solve the
velocity addition paradox.( 8) The same formalism will be applied to
investigate nonstandard synchronizations and the synchronization on the
rotating disk, and it will be shown that some of the conclusions of the cited
papers are erroneous.

As an introductory remark to the absolute (without reference frames)
formulation of spacetime, we note that the frequently stated assertion that
special relativity is the theory of inertial reference frames and general
relativity is the theory of arbitrary reference frames ( 9) is to be substituted
with the one that general relativity describes gravitation and special
relativity concerns the lack of gravitation.( 10, 11, 7) It is evident nowadays
that the mathematical structure of spacetime can (and must ) be formulated
without reference frames . ( 12 { 14 ) A general relativistic spacetime model is a
triplet (M, I, g) , where M is a four-dimensional smooth manifold, I is the
measure line of spacetime distances, and g is an I Ä I-valued Lorentz form
on M ( 12) (usually one takes real-valued Lorentz forms, but it is obvious
that spacetime distances are not real numbers). A special relativistic
spacetime model is a particular general relativistic one in which M is an
affine space and g is constant.( 7)

2. SPACETIME WITHOUT REFERENCE FRAMES

Now we recapitulate briefly the fundamental notions and results of the
formalism given in Ref. 7.

2.1. Spacetime Model

A special relativistic spacetime model is a triplet (M, I, g) where:

· M is an oriented four-dimensional affine space, i.e., there is a four-
dimensional vector space M such that to each pair (x, y) of points
of M a vector in M , denoted by x 2 y is assigned.

· I is an oriented one-dimensional vector space.

· g: M 3 M ® I Ä I is a Lorentz form endowed with an arrow orienta-
tion.
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Instead of g we shall write a dot product, i.e., x . y := g(x, y ).
A vector 0 Þ x Î M is called spacelike, timelike, and lightlike if

x . x> 0, x . x< 0, and x . x= 0, respectively. The timelike and lightlike vec-
tors are either future directed or past directed, according to the arrow
orientation of g.

2.2. Absolute Velocities

The history of a classical mass point is described in (M, I, g) by a
world line, which is a curve whose tangent vectors are timelike.

If x and y are points on a world line C, then the time passed along C
between x and y is

tC (x, y) := #
p { 1( y )

p { 1(x )
Ï 2 pÇ ( t) . pÇ ( t) dt ( 2)

where p is an arbitrary parametrization of C.
Using the time passed along the world line ( the proper time of the

world line) as a parameter, we get a world line function r: I ® M which is
a parametrization of the world line and rÇ (s) Î V ( 1) for all s Î I, where

V ( 1) := 5 u Î
M

I ) u . u= 2 1 , u is future directed 6 ( 3)

is the set of absolute velocities (corresponding to four-velocities in the usual
nomenclature) .

A light signal is a curve whose tangent vectors are lightlike.

2.3. Observers

First we have to make some comments on the nomenclature because
the term observer and reference frame is used in several senses in the
literature. Frequently observer means a single world line( 10 ) and reference
frame refers to a collection of world lines, ( 10) but observer, too, can refer
to a collection of world lines ( 11, 13) and reference frame can involve
implicitly or explicitly coordinates or a basis ( `̀ tetrad’’) . ( 10, 11, 14 ) Since
world line is a customary notion, there is no need to rename it observer,
so a collection of world lines is accepted to be an observer and the name
reference frame will be retained for observers with chosen coordinates
(Ref. 7, II.9).

A physical observer is a material object consisting of mass points;
accordingly, it would be described by a collection of world lines. However,
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it is more convenient to give it by the tangent vectors of the corresponding
world lines, so we accept that

· An observer is a smooth vector field U: M ® V (1 ).

The integral curves of such a vector field are world lines, representing
the histories of the material points that the observer is constituted of; thus
it is quite evident that an integral curve of U is a space point of the
observer; the set EU of the (maximal) integral curves of U is the space of
the observer, briefly the U-space.

This is the most important± ± but trivial± ± fact concerning observers:
a space point of an observer is a line in spacetime .

For every spacetime point x there is a unique U-space point qU (x )
containing x.

Observers and their spaces in spacetime are well defined simple and
straightforward notions. The spaces of different observers are evidently
different.

The time of an observer, however, is not meaningful, in general.

2.4. Synchronizat ions

Time in spacetime is given by a synchronization whose physical meaning
is that one determines by some procedure which spacetime points are to be
considered simultaneous. Accordingly,

· A synchronization or simultaneity is a smooth equivalence relation
on M such that the equivalence classes are connected three-dimen-
sional smooth submanifolds (hypersurfaces) whose tangent spaces
are spacelike (Ref. 7, II.6.) .

Given a synchronization S , an equivalence class is called S-instant; the
set IS of S instance is called S-time .

This is the most important± ± but trivial± ± fact concerning synchroniza-
tions: a time point ( instant) in a synchronization is a hypersurface in spacetime .

For every spacetime point x there is a unique S-instant tS (x) con-
taining x.

Smoothness of a synchronization S means the following: the tangent
space of tS (x) at x is three dimensional and spacelike, so there is a unique
US (x ) Î V (1), g-orthogonal to that tangent space; we require that the
assignment x ƒ US (x) be smooth. Thus a synchronization S determines a
unique observer US .

On the contrary, not every observer determines a synchronization. We
call an observer U regular if there is a (necessarily unique) synchronization S ,
called the U-synchronization, such that U= US .
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It is worth mentioning that it follows from a well-known theorem in
differential geometry ( 15) that an observer U is regular if and only if for all
smooth vector fields X, Y: M ® M such that U . X= U . Y= 0 we have
U . [X, Y] = 0.

An observer U and a synchronization S define the splitting of spacetime
into S-time and U-space, which means that the corresponding S-instants and
U-space points are assigned to spacetime points:

M ® IS 3 EU , x ƒ ( tS (x) , qU (x) ) ( 4)

2.5. Motions and Relative Velocities

The history of a material point ± ± a world line C ± ± is perceived by an
observer U as a motion which is described with the aid of a synchronization
S as a function which assigns U-space points to S-instants.

The world line C meets every hypersurface t Î IS at most in one point;
let C * t denote this point of intersection. The unique U-space point passing
through this point is assigned to t, i.e., the motion in question is described
by the function

IS ® EU , t ƒ qU (C * t) ( 5)

Since U and S are smooth, IS and EU can be made a one-dimensional
and a three-dimensional smooth manifold, respectively. Then the derivative
of the above function is the relative velocity of the material point with
respect to the observer and the synchronization.

The same can be said if C is a light signal.
It is emphasized that the relative velocity of a material point or a light

signal with respect to an observer has a meaning only if a synchronization is
given and it depends on the synchronization.

To avoid misunderstandings, we call attention that in this paper
relative velocity means a vector; its magnitude will be called speed.

2.6. Inertial Observers and Standard Synchronizat ions

An observer having constant value is called inertial. An inertial
observer will be referred to by its constant value.

The space points± ± the integral curves ± ± of an inertial observer with
value u Î V (1) are straight lines parallel to u.

Inertial observers are regular; the corresponding synchronization is the
standard one determined by light signals with the assumption that light
propagates isotropically with respect to the observer, i.e., the one-way speed
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of light is the same in all directions. According to the standard synchroniza-
tion determined by u, the spacetime points x and y are u-simultaneous if and
only if u . (x 2 y) = 0. Thus putting

Eu := {x Î M | u . x= 0} (6)

we have that the instants of the standard synchronization corresponding to
the observer u are hyperplanes parallel to E u ; their set, called the u-time,
will be denoted by Iu .

Let t1 , t2 Î Iu . It is quite trivial that the same time passes on every
u-space point between t1 and t2 , namely 2 u . (x2 2 x1 ) , where x1 and x2

are arbitrary elements of t1 and t2 , respectively. Thus Iu , endowed with the
subtraction

t2 2 t1 := 2 u . (x2 2 x1 ) (x2 Î t2 , x1 Î t1) ( 7)

becomes a one dimensional affine space over I.
The u-space vector between the u-space points q1 , q2 Î Eu is defined as

the spacetime vector between u-simultaneous points of the straight lines q1

and q2 , respectively. Thus Eu , endowed with the subtraction

q2 2 q1 := x2 2 x1+ u(u . (x2 2 x1 ) ) (x2 Î q2 , x1 Î q1 ) ( 8)

becomes a three dimensional affine space over E u .

3. NONSTANDARD SYNCHRONIZATIONS

Nonstandard synchronizations for inertial observers can be simply
treated in our model outlined previously. Namely, let us take an inertial
observer with value u Î V ( 1) and an affine synchronization S , i.e., a syn-
chronization in which the instants are parallel hyperplanes. Then there is
a unique uS Î V (1) such that the S-instants are hyperplanes parallel to E uS

;
thus, in the previous notations S-time is IuS

. Of course, if uS = u, then we
get back the standard synchronization corresponding to u.

As in the case of standard synchronization corresponding to u, the
same time passes on every u-space point between the S-instants t1 and t2 ,
namely ( 2 uS . (x2 2 x1 ) )/( 2 uS . u ) , where x1 and x2 are arbitrary elements
of t1 and t2 , respectively. Thus IuS

, endowed with the subtraction

t2 2 t1 :=
2 uS . (x2 2 x1 )

2 uS . u
(x2 Î t2 , x1 Î t1 ) ( 9)

becomes a one dimensional affine space over I.
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According to Sec. 2.5, if C is a world line, then the motion, corre-
sponding to C, relative to the inertial observer u and the affine syn-
chronization S , is described by the function

IuS
® Eu , t ƒ ( straight line parallel to u, passing through C * t)= : q( t)

( 10)

Then for t2 , t1 Î IuS
, using formulae (8) and (9), we get

q( t2) 2 q( t1 )
t2 2 t1

=
C * s 2 C * t+ u(u . (C * t2 2 C * t1 ) )

2 uS . (C * t2 2 C * t1 )
( 2 uS . u ) ( 11)

Let us suppose now that the world line C is a straight line parallel to
u ¢ Î V ( 1). Then there is a unique s Î I such that C * t2 2 C * t1= u ¢ s. Thus
we obtain from (11) that the relative velocity corresponding to the above
motion, more precisely, the relative velocity of u ¢ with respect to u according
to the synchronization S is

vu 9 u , uS
:= u ¢ + u(u . u ¢ )

uS . u

2 uS . u ¢ = vu 9 u

( 2 u ¢ . u )( 2 uS . u )

2 uS . u ¢ ( 12)

where

vu 9 u :=
u ¢

2 u ¢ . u
2 u ( 13)

is the relative velocity of u ¢ with respect to u according to the standard syn-
chronization of u. This shows clearly that the relative velocity of the same
motion depends on the synchronization.

Formulae (11) and (12) remain valid for a light signal C parallel to a
( future directed) lightlike vector w if we replace u ¢ with w. In the standard
synchronization corresponding to u light speed is unity for all light signals:
|vw u |= 1, thus

|vwu , uS
|=

( 2 w . u) ( 2 uS . u )

2 uS . w
( 14)

To analyze this expression, let

w= u+ n, uS =
u+ bnS

Ï 1 2 b2
( 15)
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where n and nS are unit vectors in the u-space and b Î [0, 1[ . Then an easy
calculation yields that

vw u , uS
=

1
1 2 bnS . n

n ( 16)

Since in our model the standard (or the two-way) light speed is unity, we
have that the synchronization parameter in the direction of n is

a(n )=
1 2 bnS . n

2
(17)

Its value varies between a0 := ( 1 2 b )/2 and 1 2 a0= (1+ b )/2.
Returning to relative velocities of material points, and putting

u ¢ =
u+ v ¢ n

Ï 1 2 (v ¢ ) 2
( 18)

where, of course, v ¢ = |vu 9 u |< 1, we find that

vu 9 u , uS
=

v ¢

1 2 v ¢ bnS . n
n ( 19)

It is evident that v ¢ /( 1 2 v ¢ bnS . n )< 1/( 1 2 bnS . n) ; thus in nonstandard
synchronization we have, too, that in all directions the magnitude of the
relative velocity of a material point is less then the one-way light speed.

Putting cos H := 2 nS . n, our formulae, obtained in a transparent and
simple way, turn into the known ones.( 2)

4. SYNCHRONIZATION AND LIGHT SPEED IN GENERAL

We have seen that one-way light speed with respect to inertial
observers depends on the synchronization, and to every inertial observer
there is a single synchronization ± ± the standard one± ± which results in the
same one-way light speed in all directions. It is an important and general
fact that the one-way speed of light or material points relative to a (non-
necessarily inertial) observer makes sense only if a synchronization is chosen
and it depends on synchronization.

The question arises: given an arbitrary (noninertial) observer, is there
a synchronization which ensures the observer the same one-way light speed
in all space points and in all directions? We cannot hope the answer is yes.
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Let us take an observer U . Suppose S is a synchronization such that
all one-way light speeds with respect to U are the same ( the unity). We
imagine then that the observer and the synchronization infinitesimally are
similar to an inertial observer with the standard synchronization, i.e., if q ¢
and q are U-space points ( integral curves) near to each other and t is an
S-instant, then q¢ * t 2 q * t is nearly g-orthogonal to U(q * t) . Precisely
this means that the instants (world surfaces) of the synchronization are
g-orthogonal to U: U is regular ( see 2.4.) .

The heuristic consideration above suggests the following conjecture:
for an observer U there is a synchronization S such that all the one-way light
speeds in the space of the observer corresponding to the synchronization S are
the same if and only if U is regular and S is the U-synchronization .

5. SYNCHRONIZATION AND LIGHT SPEED ON THE

ROTATING DISK

5.1. Uniformly Rotating Rigid Observers

Uniformly rotating rigid observers are described thoroughly in Ref. 7,
II.6.8; let us recapitulate the most important formulae. Such an observer is
given by an o Î M, uo Î V ( 1) , and a nonzero antisymmetric linear map
V: E uo

® E uo
/ I as follows:

Urot(o+ x )=
uo+ V(x+ uo(uo . x ) )

Ï 1 2 |V(x+ uo(uo . x) ) |2
( 20)

for x Î M such that the denominator makes sense.
The axis of rotation is at rest in the space of the inertial observer with

value uo . Every vector in Euo
can be decomposed into the sum of a vector

e in the (one-dimensional) kernel of V and a vector q orthogonal to e. The
integral curve (space point) of the rotating observer passing through
o+ e+ q for v |q | := |Vq |< 1 can be given by the parametrization

t ƒ o+ e+ uo t+ exp( tV ) q ( 21)

where the parameter t Î I is the uo -time originated in o, i.e., if to is the
uo -instant assigned to o ( to is the hyperplane parallel to E uo

and passing
through o) , then t= t 2 to for t Î Iuo

. The proper time of this world line is

s= t Ï 1 2 b2 ( 22)
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where

b := vr, r := |q | ( 23)

It can be shown that all the integral curves of U rot are of the form (20).

5.2. The Sagnac Effect

The Sagnac effect consists in the following. Let two light signals be
emitted from a space point of a rotating disk; one of the signals goes round
on a circle in the direction of the rotation, the other in the opposite direc-
tion. According to the inertial observer in which the axis is at rest, the
travel time of the first signal until its return to the emitting point is denoted
by t+ , the other travel time is denoted by t { . If the angular speed of the
disk is v and the radius of the circle ( the distance of the emitting point
from the axis) is r, then it has been demonstrated long ago that

t { 2 t+ =
2(2pr ) b

1 2 b2 ( 24)

which is in accordance with experiments.
The Sagnac experiment is discussed from the point of view of the

rotating observer in Ref. 5 and on the base of arguments using transforma-
tion rules, in particular, Lorentz transformations, it is stated that `̀ special
relativity predicts a null-effect ( i.e. no time delay) on the rotating platform
for the Sagnac experiment’’ which is taken to deny the validity of special
relativity.

Now we shall show by our formalism without coordinates and trans-
formation rules that the above statement is false.

Let the U rot -space point q be the one given by (21) and let r := |q |.
Then the light signal started from q and circulating in the direction of the
rotation is described in spacetime by the function

t ƒ o+ e+ uo t+ exp 1
tV

b 2 q ( 25)

Indeed, its tangents are lightlike and runs at a distance r from the axis.
The intersections of the lines (21 and (25) are the meeting points of the

Urot -space point and the light signal; the intersections occur at t for which

q= exp 1 tV
1 2 b

b 2 q ( 26)
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Thus the first meeting (after starting at t= 0) occurs at

t+ =
2pr

1 2 b
( 27)

The light signal started from q and circulating in the opposite direc-
tion is described in spacetime by the function (25), 2 V substituted for V.
Then we get that this light signal arrives back at the starting point at

t { =
2pr

1+ b
( 28)

Note that we used only world lines and light signals, their meeting points
were determined without any reference frame. World lines and light signals
were parametrized by uo -time; consequently, the inertial observer with
velocity value uo perceives time periods t+ and t { between the meetings of
the light signals and the rotating point. Thus this inertial observer
measures the time delay (24). If the time passed between the meeting of the
light signals and the rotating point (world line) q is measured on q ( i.e., the
proper time of the space point of the rotating disk is measured), then we
get

s± =
2pr Ï 1 2 b2

1 7 b
( 29)

so the time delay from the point of the rotating observer is

s { 2 s+ =
2(2pr ) b

Ï 1 2 b
2 Þ 0 (30)

5.2. Synchronizat ions on the Rotating Disk

The uniformly rotating observers are not regular, ( 7) thus it is not a
`̀mystery’’ that there is no synchronization in which the light speed is the
same in all space points and in all directions.

From (29) we find that

s± =
2pr

Ï 1 2 b2
( 1± b) ( 31)
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The first factor on the right-hand side is the circumference of the circle
measured by the rotating observer; thus we infer that the circle-way light
speed with respect to the rotating observer is different for the two direc-
tions,

ĉ± =
1

1± b
( 32)

Selleri( 5) showed under very general conditions that

ĉ+

ĉ {
=

1 2 b

1+ b
( 33)

must hold. Then he states that `̀ (1 2 b )/(1+ b ) does not give the ratio of
global light velocities for a full trip around the platform in the two opposite
directions, but the local ratio as well: isotropy of space ensures that the
velocities of light are the same in all points of the rim and therefore the
average value coincides with the local ones.’’

This statement, however, is not right. Namely, the ratio (33) as well as
formulae (32) concern the circle-way speed of light, which does not tell any-
thing about the `̀ local’’, i.e., one-way speed, as two-way or many-way speed
does not imply anything for one-way speed. One-way or local speed makes
sense only if a synchronization is given (and depends on synchronization);
so any assertion regarding one-way (local) light speeds ± ± e.g., a formula for
their ratio± ± would be meaningful if a synchronization had been specified .

Then in Ref. 5 it is argued as follows: consider uniformly rotating
observers whose angular speed v is smaller and smaller, and take their
small pieces whose distance r from the axis is larger and larger such that
vr= b= constant. Then the ratio of light speeds in the opposite directions
is the same (1 2 b )/( 1+ b ) Þ 1 for all such pieces which become more and
more similar to pieces of a limit inertial observer moving with speed b with
respect to the axis. Thus the ratio will differ from unity for that limit iner-
tial observer, in contradistinction to special relativity, which asserts that
light speed is the same in all directions with respect to inertial observers.
Thus, accepting special relativity, we have a discontinuity which is not con-
firmed by experiments.

This conclusion is erroneous as well. Namely, according to special
relativity, light speed is the same in all directions with respect to an inertial
observer if and only if the standard synchronization of the observer is used.
We shall show that the ratio above refers to a synchronization which is not
the standard one of the limit inertial observer, so no contradiction and no
discontinuity occur.
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Let us investigate the one-way light speed on the rotating disk in the
standard synchronization corresponding to the inertial observer in which
the axis is at rest; then the instants are the hyperplanes parallel to E uo

. Let
the time passed between the uo -instants be measured by the proper time
of q, i.e., the time passed from 0 to t will be s := t Ï 1 2 b

2.
At the uo -instant t the light signal ( 25) meets an U rot -space point q( t) ;

their intersection is a spacetime point of the form

o+ e t + uo t+ exp( tV ) q t ( 34)

for some e t and q t . It is an easy task to find that that e t= e and

q t = exp 1 tV
1 2 b

b 2 q ( 35)

q and q t are on the same circle of radius r in the (vectorized) space of
the inertial observer uo ; the angle between them is t( 1 2 vr )/r, so their dis-
tance on the circle is t( 1 2 b ). It is well known that the tangential distance
in the U rot -space ( the rotating disk) is contracted by the factor Ï 1 2 b

2,
thus

dU rot
(q, q( t) )= t

Ï 1 2 b

Ï 1+ b
( 36)

As a consequence, the one-way ( local) light speed on the rotating disk,
corresponding to the synchronization in question, in the direction of the
rotation is

c+ := lim
s ® 0

dU rot
(q, q( s/ Ï 1 2 b

2 ) )

s
=

1
1+ b

( 37)

Similarly, the light speed in the opposite direction is

c { =
1

1 2 b
( 38)

Consequently, the assertion that the ratio of one-way ( local) tangen-
tial light speeds on the rotating disk equals the ratio of the circle-way
(global) light speeds is true in the synchronization which is the standard one
of the inertial observer with respect to which the axis is at rest.

In the limit v ® 0, r ® ¥ , vr= b= constant we have that the one-way
light speeds relative to the limit inertial observer u moving with relative
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speed b with respect to the inertial observer uo are given by (37) and (38)
in a synchronization which is not the standard one of u, more closely in the
affine synchronization corresponding to uo as it is described in Sec. 3 ( for
uS = uo ) , so the result is in full agreement with special relativity, according
to formula (16) . There is no contradiction, no discontinuity.

Now we are interested in whether a synchronization can be given such
that both one-way ( local) tangential light speeds on the rotating disk are
the same (unity). Since U rot is not regular, we cannot hope so. We shall
show, however, that to each U rot -space point ( integral curve) q a local,
nearly standard synchronization S q exists in which both one-way tangential
light speeds in q are the same. It is emphasized that such synchronizations
are defined for all U rot -space points, but different synchronizations for dif-
ferent points, and the synchronization S q is similar to a standard one
exclusively for the U rot -space point q; the two tangential one-way light
speeds relative to U rot and corresponding to S q are equal only in q.

The local nearly standard synchronization S q is defined in a neighbor-
hood of q as follows: let its instants be subsets of hyperplanes such that for
all x Î q the hyperplane passing through x is g-orthogonal to U rot(x) . It can
be shown by the inverse function theorem that this synchronization is well
defined in a neighborhood of the curve q. The time passed between the
hyperplanes t1 and t2 is measured by the proper time of q between q * t1

and q * t2 .
Let q be the U rot -space point described by (21); use the proper time

(22) instead of uo -time, i.e., substitute s/ Ï 1 2 b
2 for t. The absolute

velocity ( the value of U rot) of this world line at s is

uo + V exp( sV/ Ï 1 2 b2 ) q

Ï 1 2 b
2

( 39)

The spacetime point of q at proper time s,

o+ e+ uo

s

Ï 1 2 b
2
+ exp 1

sV

Ï 1 2 b
2 2 q ( 40)

is simultaneous, according to S q , with the spacetime point of the light
signal described by (25)

o+ e+ uo t(s )+ exp 1
t( s ) V

b 2 q ( 41)
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where t( s) is determined by the condition that the difference of (40) and
(41) is is g-orthogonal to the velocity value (39). We find that

t( s) 2
s

Ï 1 2 b2
2 V exp 1

sV

Ï 1 2 b2 2 q . 1 exp 1
t( s) V

b 2 q

2 exp 1
sV

Ï 1 2 b
2 2 q 2 = 0 (42)

Since t( 0)= 0, differentiating with respect to s and then taking s= 0, we get

tÇ ( 0)= Ï 1+ b

Ï 1 2 b
( 43)

Thus, according to (36), the one-way light speed in the direction of the
rotation, measured in q with respect to the synchronization S q , is

c+ = lim
s ® 0

dU rot
(q, q( t( s) )

s
= 1 (44)

We get similarly that the light speed in the opposite direction is c { = 1. In
particular, in this synchronization the ratio of the one way ( local) light
speeds is not given by (33).

Note that in the limit v ® 0, r ® ¥ , vr= b= constant, the syn-
chronization S q becomes the standard one of a limit inertial observer
having relative speed b with respect to the the axis. Again we get a result
in full agreement with special relativity: there is no contradiction, no dis-
continuity.

6. DISCUSSION

A formulation of special relativity which avoids reference frames
allows us to avoid some misunderstandings arising from the use of coor-
dinates which are not inherent objects of spacetime.

Recently several papers have been published on the light speed relative
to a rotating disk.( 2 { 5 ) The basic idea is the `̀ clock hypothesis’’: the rate of
an ideal accelerated clock is identical to the rate of a similar clock in the
instantaneously comoving inertial frame, which was confirmed by muon
storage experiments. From this it is concluded that `̀ the speed of light
found locally in the accelerated system should be the same as that observed
in the t̀angent’ inertial frame’’. ( 4)
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It is well known, however, from the arguments regarding nonstandard
synchronizations that the speed of light± ± more precisely, the one-way light
speed ± ± relative to an observer has a meaning only if a synchronization is
specified. Different synchronizations yield different one-way light speeds.
Thus the above conclusion would be right with the following completion:
if both the accelerated observer and the instantaneously comoving inertial one
apply the same synchronization.

Disregarding this completion, a contradiction was claimed to be
deduced in special relativity ( a discontinuitywhich contradicts experience) . (5 )

Namely, different one-way light speeds were found for the accelerated ( in
particular, the rotating) observer and the instantaneously comoving inertial
observer; tacitly, however, different synchronizations were attached to the
two observers.

We have shown that specifying clearly the synchronizations with
respect to which the light speed is determined, the contradiction or discon-
tinuity disappears. Furthermore, we have disproved the statement ( 5) that
special relativity predicts a null effect from the point of view of the rotating
platform for the Sagnac experiment.

The cited papers, on the ground of their results± ± which are untenable,
as we have seen ± ± argue for the existence of an absolute simultaneity. We
make a simple remark regarding the following reasoning: (2) let us consider
two twins who are at rest with respect to an inertial observer, at a given
distance from each other, and their clocks are synchronized according to
the inertial observer. They start accelerating simultaneously according to
that inertial observer and then later they stop accelerating simultaneously
according to that inertial observer. Then they will be at rest with respect
to another inertial observer, distinct from the original one. Their clocks
remain synchronized according to the original inertial observer, but will
not be synchronized according to the new inertial observer. Then `̀of
course in principle nothing can stop them from resynchronizing their
clocks once they have finished accelerating. If they do so, however, they
find in general that they have different biological ages at the resynchronized
time.’’ This is false, however. The resynchronization means, e.g., that one of
them puts the clock back; this affects his nominal age, but not his biologi-
cal age, as the one who flies from Europe to America will not be younger
when putting the clock back.
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