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SPECTRAL PROPERTIES OF VECTOR OPERATORS

T. MATOLCSI

1. Introduction

Usual quantum mechanical observables are self-adjoint operators, or better said,
families of self-adjoint operators. For instance, position, a so-called vectorial observ-
able, is considered as a family of three self-adjoint operators that are interpreted as
the components of position relative to a basis of the physical space. If we want to get
rid of bases and to look for a coordinate-free description, we face the problem, what
mathematical objects represent quantum mechanical observables. The notion of vec-
tor operator is introduced to answer this question. Here we investigate only mathe-
matical properties of vector operators and we do not enter into physical applications.

2. Preliminaries

In the sequel H and Z denote a complex Hilbert space and a finite dimensional
complex vector space, respectively.

Inner products are denoted by the symbol (, ) and are taken to be linear in the
second variable.

H® Z is the algebraic tensor product of H and Z. It is well-known (see [1], Ch.
I1. 4) that if we equip Z with an inner product then H® Z turns into a Hilbert space
with the inner product defined by

h®z, gQy):=<(h,g){z,y) (h, g€H, z, yEZ).

The corresponding topology on H® Z is independent of the particular inner product
chosen on Z. That is why we consider H® Z as a topological vector space without
specifying an inner product on Z.

If z,, ..., zy Is a basis of Z then every element of H® Z can be written in the form
N

h®z.
1

Z* stands for the dual of Z and the bilinear map of duality is denoted by (|).
We are given a continuous bilinear map

(()): Z*X(H®Z) ~ H,

k=

defined by
(Ph®2):=(pl)h (P€Z*,hRzEHQZ),
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and a continuous sesquilinear map
(G HX(H®Z) ~Z
(g, h®z)):={(g, hyz (g€H,h®zcHRZ).
We have the following relation:
(& (pla))) = (p[Kg @)))  (PEZ*, g€H, aE HRZ).

If py, ..., py1s a basis of Z* then the elements a and b of H® Z are equal if and
only if (pla@)=((pelb)) (k=1, ..., N).

defined by

3. Basic facts about vector operators

DEerINITION 1. A linear map defined in H and having values in H® Z is called a
Z valued vector operator in H.
If 4 is a vector operator and p€Z* then we define the linear map

((p|4)): H > Dom A —~ H, hw— ((p|Ah)).

REMARKS. (i) A complex valued vector operator is a usual operator.

(i) Since H® Z has a topology, we can speak about continuous and closed
vector operators.

(iii) Let z,, ..., zy be a basis of Z and let p,, ..., py be the corresponding dual
basis of Z*. Then we can consider ((pc]4)) (k=1, ..., N) as the components of the
vector operator A relative to the given basis of Z. We have the equality

Ah = kg (] AR)1® 2z  (h€Dom A).

Consequently, if we are given a family 4,, ..., Ay of operators with common domain
D in H, then we can construct the vector operator

h»kg"zl (4R ®z  (heD)

whose components are precisely the given operators.
As a consequence, two Z valued vector operators are equal if and only if their
components relative to any basis of Z coincide.

ExAMPLES. (i) If u€Z then Qu: H~-H®Z, h—~h®u is a continuous vector

operator and ((p|®u)=(plu)idy.

(ii) Let V be a finite dimensional real vector space. Then L2(V)® Z is identified,
through the prescription f®z= (v—f(v)z), with the vector space of Z valued square
integrable function classes. The identity multiplication operator M defined on

Dom M := {fcL2(V): fid,€L*(V)QV(}

by
= fidy = (v — f(v)v)



SPECTRAL PROPERTIES 119

is a V¢ valued vector operator in L2(V) where V stands for the complexification
of V. If ry, ..., ry is a basis in ¥ then ((r,|M)) is contained in the operator of multipli-
cation by the k-th coordinate.

If f+ V—~C is differentiable, then Df(v), its derivative at v€ V, is a linear map
V—~C which can be extended uniquely to a complex linear map V¢—C; in other
words, we can consider Df as a map V—(Vo)*=(V*)c=:V¢. Then the differenti-
ation operator D defined on

Dom D:= {f€L?*(V): f is differentiable, Dfc L2(V)QV ¢}

is a V¢ valued vector operator in L2(V). If vy, ..., vy is a basis in ¥V=(V*)* then
((v|D)) is contained in the k-th partial differentiation operator.

DErINITION 2. A bounded operator L is said to commute with the vector opeia-
tor 4 if ALD(L®idy)A.

PROPOSITION 1. L commutes with A if and only if L commutes with ((p|A))
Sfor all pe€Z* which holds if and only if L commutes with ((p,|4)) (k=1,...,N)
for an arbitrary basis p,,...,py of Z*.

4. The spectrum of a vector operator

In the sequel 4 denotes a fixed densely defined vector operator.

DEerINITION 3. A linear subspace D of Dom A4 is called invariant under A4 if
A(D)cD®Z.

PROPOSITION 2. D is invariant under A if and only if D is invariant under ((p|A))
for all p€Z* which holds if and only if D is invariant under ((pi|4)) (k=1, ..., N)
for an arbitrary basis p,, ...,py of Z*.

DEerINITION 4. An element A of Z is called an eigenvalue of A if there is a non-
zero héDom A such that Ah=h®A. The linear subspace {h¢ Dom 4: Ah=h® 1}
is the eigenspace of A corresponding to A. The set of eigenvalues of 4 is denoted by
Eig A.

DEFINITION 5. A linear subspace T of H® Z is called bulky if there is no proper
closed linear subspace D of H such that TcD® Z.

PROPOSITION 3. A linear subspace T of HQ Z is bulky if and only if H is spanned
by U {(pl@): acT}.
p *

DEFINITION 6. An element A of Z is a regular value of A if
(i) A—®2 is injective,
(ii) Ran (4— ®4) is bulky,
(i) (A—®4)~! is continuous.
The set
Sp A:={A€Z: Ais not a regular value of A4} is the spectrum of A.
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PROPOSITION 4. (i) Eig ACSp A4, and for all peZ *
(ii) (p|Eig A)Eig ((p|4)),
(i) (p|Sp A)<Sp ((p|4))-

PRrOOF. (i) and (ii) are evident. To prove (iii) suppose that A€Sp 4, S(1):=
:=A4— ®2A is injective, and distinguish the following two cases.
Firstly, assume that U ((p|Ran S(4)) does not span H. Then Ran ((p|S(1))=

=((p|Ran S(4))) cannot be dense in H, thus (p|A)€Sp ((p]A)) for all peZ*.

Secondly, suppose that the inverse of S(4) is not continuous. Then there is an
unbounded sequence h, (n€N) in H such that S(1)A, is bounded. Consequently, the
sequence ((p]S(l)h,,)) is bounded, thus ((p|S(4))) cannot have a continuous inverse
(it may have no inverse at all), and (p|A)€Sp ((p|4)) (p€Z¥).

PROPOSITION 5. The spectrum of a vector operator is closed.

Proor. To demonstrate this assertion let us equip Z with an inner product.
Then for all u€ Z the norm of the vector operator ® u equals the norm of the vector
u: |h@u|=|ul|hll for all h¢ H. As a consequence, one can show as in usual oper-
ator theory that if B is a vector operator having a continuous inverse then B— ®u
has a continuous inverse for u in a convenient neighbourhood of the zero of Z. Fur-
thermore, suppose that Ran B is bulky, i.e. for any g€ H there are p€Z* and
heDom B such that (g, (p|Bk))=0; then (g, (p|B—®@u)h)=(g, (plBh))~
—(g, h)(plu)0 if u is small enough, hence Ran (B— ®u) is bulky. Substitute

— ® A for B with a regular value A of 4 to have the desired result.

PROPOSITION 6. Let A be continuous. Equip Z with an inner product. Then the
set {z€Z: ||z| =||All} is disjoint from Sp A.

PROOF. If |z|| > 4] then [(4—®2)h|=||4hl— Izl |Al|=(lzll | 4IA} for
all h¢Dom A, hence A— ®z has a continuous inverse. We have to show now that
Ran (4—®z) is bulky. Let z denote that element of Z* for which (Z|y)=(z, y)
(¥€Z). Then ((Z14))=(®2)*4, so [(ElA)I=]zll4]<|zl? and thus |z|*=
=(z|2) is not in the spectrum of ((|4)) as it is well-known from usual operator theory.
Consequently, Ran [((2]4))—(2]z) idg]=((¢|]Ran (4 — ®2z))) is dense in H; apply
Proposition 3 to end the proof.

PROPOSITION 7. Let Y be a finite dimensional vector space containing Z as a linear
subspace. Then HQ ZC HR® Y and a Z valued vector operator is also a Y valued vector
operator. The spectrum of A is independent of whether A is considered as Z valued or Y
valued.

ProOF. We have to show that if y€Y and y¢ Z then y is a regular value of 4.
Choose an inner product on Y and write y=u+v such that u is in Z and v0 is
orthogonal to Z. Then for all h€Dom 4, II(A QY h||2=|(4— ®u)h||2+||v||2|| h||22
=||v||2||h)2, hence A— ®y has a continuous inverse. Furthermore, using the notation
1ntroduced in Proposition 6, we have ((3/(4— ®y)h))= —|v||2h (h¢ Dom A) which
yields that Ran(4—®y) is bulky.

ReMARKs. (i) If Z=C, Definition 6 gives back the usual definition of the spec-
trum. If Z is one-dimensional, the spectrum of a Z valued vector operator has the
usual properties.
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(ii) To construct examples that the spectrum of a vector operator does not exhibit
in general all the properties of the usual spectrum, we take two dimensional spaces.
Let hy, h, and z,, z, be an orthonormal basis of H and a basis of Z, respectively, and
let us consider vector operators of the form H-H®Z, h—(A;h)®z;+(A4:h) Qz,.

— The vector operator given by A h;:=h;, Ashy:=0, Ashy:=Ashy:=h;+h,
has a void spectrum.

— The spectrum of the vector operator given by A, h;:=A;hy:=h;+hy, A hy:=
:=A,h;:=0 contains zero, but not as an eigenvalue.

(ii1) Observe that the norm of vector operators depends on the inner product
on Z. It is interesting that even the set {z€Z: |z| >||4||} depends on it. To see this
let H and Z be as in (ii) and let 4, and A, be the projections onto the subspaces span-
ned by h, and h,, respectively. Then the corresponding vector operator has one and
the same norm whatever be the inner product on Z such that ||z, =||z,]|=1.

(@iv) If 4,, ..., Ay are operators defined on a common dense linear subspace in H,
the spectrum of the CV valued vector operator whose components relative to the
standard basis are the given operators is some sort of joint spectrum for A,, ..., Ay.

5. Spectral theorem for vector operators

If T is a Hausdorff topological space, B(T) denotes the algebra of Borel subsets
of T.If Pis a projection valued measure defined on B(T) and having values in the set
of projections of H then for all h,gcH, E~P, ,(E):=(h, P(E)g) is a complex
measure on B(7T).

An element ¢ of T'is called a sharp value of Pif P({t})#0. The set of sharp values
of P is denoted by Sharp P.

The support of P is the set

Supp P:={t€T: P(G)#0 for all open G with 1€G}.

DEerINITION 7. A Z valued vector operator 4 in H is called
(i) partially normal if
((p|4)) is closable and its closure is normal for all p€eZ*,

Dom 4 = |J Dom ((p|4));

pPEZ*

(ii) totally normal if it is partially normal and ((p|A4)) and ((g]4)) strongly com-
mute for all p,q€Z*

PROPOSITION 8. (i) A partially normal vector operator is densely defined and
closed.
(ii) A continuous partially normal vector operator is totally normal.

Proor. (i) is quite easy. To show (ii) observe the continuity of A implies that
((pl4))=((p|4)). Take the bounded normal operators ((p+4g|4))=((p|4))+((q|4))
and ((p+iq|4)) to obtain that ((p|4)) commutes with ((/4))* which implies the
commutativity of ((p|4)) and ((g|4)) (p, g€ Z*).
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PROPOSITION 9. Let A be a totally normal vector operator. Then there exists a
unique projection valued measure R on B(Z) such that

(h, Agyy = [idzdR,, (h€H, geDom A).
Z

PRrOOF. Let py, ..., py be a basis in Z* and let R, be the spectral resolution of the
normal operator ((p,|4)) (k=1, ..., N). Then Ry, ..., Ry are commuting projection
N

valued measures, hence their product ® R, exists and is the unique projection
k=1

N N N
valued measure on B(CY) determined by (® Rk)(x Ek]= Il R.(E). Let b
k=1 k k=1

denote the inverse of the linear bijection Z—~CN, z—{(p|2): k=1, ..., N}, and put
N
R:=[® Rk}ob‘l. Then for all k=1,..., N, hé H and g€Dom A4
k=1

(Pl (s A))) = (h, (Pl 4)) ) = cf idcd (R, =

= fpl'kd (% Ri] = fpdeh,g = (Pkl fidZdRh,g)
CN i=1 h,g z z

where pr,: CVN—C is the k-th canonical projection; we also used the relation p,ob=
=pr, and the well-known integral transformation formula. The uniqueness of R
follows from the uniqueness of the R,’s and from the equalities

N
R=[® (RopiY]ob~!, R, = Ropi.
k=1

REMARK. We can define the integral of measurable functions 7—~Z with respect
to projection valued measures on B(T) as Z valued vector operators. It can be shown
that all such vector operators are totally normal. In other words, only the totally
normal vector operators have spectral resolutions, i.e. are integrals of id, with respect
to projection valued measures.

PROPOSITION 10. A bounded operator L commutes with a totally normal vector
operator A if and only if L commutes with the spectral resolution of A.

The proof of the following assertion requires a number of notions and particular
results from the theory of integration with respect to projection valued measures. Who
is familiar with them, can argue similarly as in the case of usual normal operators
(see [2]), needing only one new step, a consideration on bulky subspaces. We omit
these details.

PROPOSITION 11. Let A be a totally normal vector operator having R as its
spectral resolution. Then

Eig A = Sharp R, Sp A = Supp R.

DEFINITION 8. Let ¥V be a finite dimensional real vector space. A V¢ valued vector
operator 4 in H is called
(i) partially self-adjoint if
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((r]4)) is closable and its closure is self-adjoint for all re V™,

Dom 4 = (\ Dom ((r|¥));
revx
(ii) totally self-adjoint if it is partially self-adjoint and
((r|4)) and ((s]A)) strongly commute for all r, s€ V*.

REMARKS. (i) A partially self-adjoint vector operator is densely defined and closed.

(ii) A partially self-adjoint vector operator need not be partially normal. For
instance, the first operator given in Remaik (ii) at the end of Section 3, if Z=V,
7y, 2,€ V, is partially self-adjoint without being partially normal.

(iii) Taking a basis ry, ..., ry in V* (it is a basis in V¢, too, with respect to the
complex structure) and repeating the argument of the proof of Proposition 9, this
time considering ((r,|4)) instead of ((p,|4)), we find that a totally self-adjoint vector
operator is the integral of idy with respect to a projection valued measure whose
support is in V. As a consequence, by the Remark to Proposition 9, a totally self-
adjoint vector operator is totally normal, and its spectrum is contained in V.

ExampLES. (i) For u€z, the vector operator ®u is totally normal, its spectral
resolution is the projection valued measure concentrated at u.

(ii) The identity multiplication operator in L%*(¥) is totally self-adjoint. Its
spectral resolution is the projection valued measure that assigns to E€B(V) the
operator of multiplication by the characteristic function of E (which is the projection
onto L(E)C L3(V)).

(iti) The differentiation operator in L%(V’) is closable, its closure multiplied by
the imaginary unit is totally self-adjoint. Its spectral resolution is the projection valued
measure that assigns to S€B(V*) the projection F~1K(S)F where K(S) is the
projection onto L2(S)cCL*(¥V*) and F: L2(V)—~L3*(V*) is the Fourier transfor-
mation defined by

(EN@):= [ f@)dv  (feL*(V)NL V), reV?)
14

with the translation invariant measure on B(V*) chosen in such a way that F be uni-
tary.
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