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A mathematically exact dynamical theory of classical thermodynamics of homoge-
neous bodies is presented in which processes are time-dependent functions, gov-
erned by an ordinary differential equation. The fundamental objects of the math-
ematical structure of a thermodynamical system are the dynamical law, the
thermodynamical force, and the constraints; all the other usual notions, too, such as
substances, bodies, linear approximation by Onsager, etc. have got a mathematical
definition. Equilibria are the constant processes; their stability is investigated by
Lyapunov’s method. ©2000 American Institute of Physics.
@S0022-2488~00!01304-9#

I. INTRODUCTION

Classical mechanics is based on the Newtonian equation and constraints that define t
cesses unambiguously; then classical mechanics becomes an elegant mathematical theor
use of contact or symplectic manifolds. Quantum mechanics is based on the Schro¨dinger equation
that defines the processes unambigously; Hilbert spaces orC* algebras offer a complete math
ematical formulation of quantum mechanics. Classical electrodynamics is based on the M
equations that define processes unambiguously; differential forms on manifolds admit a
mathematical formulation of classical electrodynamics. Continuum~irreversible! thermodynamics
is based on the balance equations, partial differential equations that define processes un
ously by boundary conditions and initial values.1–5

All these theories are mathematically well defined and have a clear mathematical structu
physical notions have an exact mathematical definition.

Classical~equilibrium! thermodynamics is a theory to which—at present—no clear m
ematical structure is assigned and many physical notions are intuitive ones without a mathe
definition, e.g., equilibrium, processes, reversible, irreversible, quasistatic, trend to equilibri
is well known how intuitive notions can mislead us~Richard paradox6!, which can be demon-
strated by an excellent example taken from thermodynamics, too. In usual treatments of th
dynamics one ‘‘proves’’ that the Kelvin–Planck formulation and the Clausius formulation o
second law are equivalent;7 a rigorous mathematical examination shows, however, that
Kelvin–Planck formulation follows at once if the heating has an integrating factor and thus
not necessarily presume or imply thermodynamic axioms of any kind.8

Several attempts have been made for a mathematically correct theory of thermodyn
starting from different points of view.9–13 Though some relations have been clarified and obtai
an elegant form, the whole theory cannot be treated in those ways satisfactorily. The reaso
following. The physical theories enumerated above—in particular, continuum thermodynam
aredynamical theories: they describe what will happen under given circumstances. On the
trary, in spite of its name, classical thermodynamics—either in its usual treatments or
mentioned mathematical approaches—does not involve dynamics.

In order to have a satisfactory formulation and to find a convenient mathematical struct
thermodynamics, we must establish a dynamical theory in which processes are describe
differential equation. We know that the Onsager formalism describes nonequilibrium proc

a!Electronic mail: matolcsi@ludens.elte.hu
20210022-2488/2000/41(4)/2021/22/$17.00 © 2000 American Institute of Physics
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near equilibria and the relation between forces and fluxes outlines a strong mathematical str
However, the Onsager formalism is only a linear approximation, and the approximation proc
is not well clarified from a mathematical point of view.

Recently a nonlinear theory has been proposed,14–19 called ordinary thermodynamics, in
which the fundamental notion is the process governed by an ordinary differential equation
the dynamical law; thus processes, solutions of the dynamical equation, are functions in
Equilibria are constant processes. The well-defined linear approximation of the dynamica
gives the usual Onsager formalism in special cases.

To clarify the physical meaning of ordinary thermodynamics, we make the following c
ments; further details can be found in Ref. 14.

Let us consider a continuous medium consisting of identical, spinless, chargeless partic
process of such a medium is the field (u,e,v), the velocity, the specific internal energy, and t
specific volume as functions defined in space–time. If the body force and the body heati
taken to be zero, then the balances of momentum, energy, and mass yield the partial diffe
equations,

Duu52v“"P,

Due52v~“"k1P:“u!,

Duv5v“"u,

whereDu denotes the the ‘‘substantial time derivative’’ with respect to the velocity fieldu, k and
P are the heating flux and the pressure tensor, respectively, given by constitutive relatio
functionals of (u,e,v).

The process (u,e,v) can be determined, at least in theory, from initial and boundary value
these balance equations that form a complete dynamical law.

In ordinary thermodynamics we consider the bodies as homogeneous i.e., all quantiti
pend only on time, not on space. Let us insert the conditions“u50,“e50,“v50,“k50,“P
50 into the equations of continuum thermodynamics; we find that the quantities do not depe
time either, that is, nothing happens. There is no nonconstant homogeneous process.Ordinary
thermodynamics cannot be obtained from continuum thermodynamics as a special case. Perhaps
one could even say then that the theory of homogeneous bodies is meaningless, because
experimental fact as well that bodies out of equilibrium are never homogeneous; for examp
temperature of a cooling body is always lower on the surface than in the interior of the
However, we know as well that a rigid body does not exist: all bodies are deformed under f
still, certain bodies in certain circumstances can be considered as rigid. The rigid body mo
simple, much simpler than the model of deformable bodies, and it is suitable for many pur
Similarly, ordinary thermodynamics offers simpler models than continuum thermodynamic
they are applicable for a large class of phenomena. The theory of ordinary thermodynamics
a good approximation when the inner motion of the bodies is insignificant, and it has the a
tage that we can use ordinary differential equations that are much simpler than partial diffe
equations. Of course, the homogeneous model is rougher than the continuum model; how
derives results in several questions where the continuum theory seems useless becaus
complexity.

A similar point of view is accepted in the theory of chemical reactions that are mo
described by ordinary differential equations20,21 as if the materials in chemical reactions we
homogeneous though, evidently, they are far from being homogeneous. Nevertheless, a
basic features of chemical reactions are well reflected in such a description. Some other pro
of course, can be deduced only from a continuum theory.22 Then comparing the results we can s
clearly where the inhomogeneity plays a fundamental role. In reaction kinetics the differ
equations concern only the concentrations, that is, only the concentrations are conside
dynamic variables; thermodynamical properties of reactions are taken into account in anothe
2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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The theory of chemical reactions in ordinary thermodynamics involves the dynamical descr
of all thermodynamical quantities, so it is an extension of usual reaction kinetics.

Ordinary thermodynamics was formulated and applied in Refs. 14–18 to particular syste
homogeneous bodies~one body in an environment, interacting bodies, phase transitions!. Now a
general mathematical framework will be given and investigated for systems consisting of s
component bodies. Sections II and III are devoted to the basic notions; Definition 5 includes
special systems considered in the earlier papers and can be applied for diffusion processes
that have not yet been treated. The thorough examination of thermodynamic forces leads u
conclusion that we have to make a clear distinction between nominal forces and effective
and suggests how we have to formalize constraints, which is one of the main results of the p
paper. In Sec. IV, we present the abstract mathematical structure of ordinary thermodyn
which can be summarized briefly as follows. There are given an open subset of a vector spa~the
set of states!; a covector field on the set of states~the nominal thermodynamical force!; a vector
field on the set of states~the dynamical quantities!, satisfying some conditions, the most importa
of which is the dissipative property; and a subspace field on the set of states~the constraint!.

The effective thermodynamical force is the restriction of the nominal force onto the cons
subspaces; the dynamical quantities determine the dynamical law, a differential equation
solutions are the processes. The fundamental properties of this structure are demonstrated
IV. In Sec. V general theorems on the stability of equilibria are proved.

II. SUBSTANCES, PHASES, BODIES

Let us recapitulate the most important notions and results indispensable for the mathem
treatment.

To have a mathematically exact and unambiguous formulation, we shall take into accou
‘‘physical dimension’’ of the quantities that will be measured in SI units. For instance, the va
of energy are real multiples ofJ5Joule, i.e., they are elements of

~J!ª$aJuaPR%.

Similarly, we shall use the notations (m3)1,(K)1 for the~positive! values of volume, temperature
etc. An exact mathematical meaning can be given23 to the product and quotient of units o
measurements~e.g., toJ/K).

For the sake of perspicuity, here we shall consider the mathematical description of s
component materials. A generalization to multicomponent materials is straightforward fr
conceptual point of view~but its composition is more complicated!.

The attribute ‘‘specific’’ will mean ‘‘per particle’’~molecule!.
Definition 1: A single-component substanceis a quintet~D,T,P,m,R!, where
~i! D, called theconstitutive domain, is a nonvoid subset of (J)13(m3)1; the first and second

variables inD ~usually denoted bye andv, respectively!, are thespecific internal energyand the
specific volume, respectively; the elements ofD are calledstatesof the substance;

~ii ! T:D→~K!1, the temperature, P:D→~Pa!, the pressure, m:D→~J!, the chemical poten-
tial, theconstitutive functions, are continuous.

~iii ! R, theregular constitutive domain, the subset ofD on which the constitutive functions ar
continuously differentiable and

]T

]e
.0,

]P

]v
]T

]e
2

]P

]e

]T

]v
,0, ~1!

holds is an open set dense inD.
Definition 2: Let ~D,T,P,m,R! be a single-component substance. Then

s:D→~J/K !, ~e,v !°
e1P~e,v !v2m~e,v !

T~e,v !
~2!
2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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is thespecific entropy. The substance is calledentropic if Ds5(1/T,P/T) on the regular domain
Here and in the following D denotes the derivative of functions.
Note that if the substance is entropic then the specific entropy is twice continuously diff

tiable on the regular domain and its second derivative is negative-definite.
Definition 3: A phaseof a single-component substance (D,T,P,m,R) is a connected open

subsetZ of R such that~i! ~T,P! is injective onZ.
~ii ! Z is maximal with this property~i.e., if N is a connected open subset ofR containingZ and

(T,P) is injective onN, thenN5Z).
Proposition 1: Every point of the regular domain is in a phase.24

The injectivity of ~T,P! in a phase implies that there the specific internal energy and
specific volume can be given as functions of temperature and pressure. In particular, to
phaseZ we can define the chemical potential of the phase by

mZªm+„~T,P!uZ…
21. ~3!

The phase connections~‘‘transitions’’! have been examined and classified in Ref. 17.
A body means a certain amount of a substance: the triplet of variables (e,v,N) describes a

body where (e,v) is an element of the constitutive domain andN is the particle number, an
arbitrary positive number.

Definition 4: A body consisting of a single-component substance (D,T,P,m,R) is (D
3R1,T,P,m,R); the elements ofD3R1 are called thestatesof the body.

It turns out that the description of processes of bodies in which mass varies will be simp
instead of the variablese and v we use thetotal internal energy Eand thetotal volume, V,
respectively. More precisely, we establish the smooth bijection,

~J!13~m3!3R1→~J!13~m3!13R1,

~e,v,N!°~Ne,Nv,N!5:~E,V,N!,

whose inverse,

~E,V,N!°~E/N,V/N,N!,

is smooth as well.
We find convenient to introduce the notation

R1* Hª$~Ne,Nv,N!u~e,v !PH,NPR1%, ~4!

for an arbitrary subsetH of D.
Using the variables (E,V,N), we define

T̂~E,V,N!ªT~E/N,V/N!, ~5!

and similar expressions forP̂ andm̂ as well. For the sake of brevity and perspicuity, an abuse
notations will be applied further on: the simple symbolT, etc. will be written instead ofT̂, etc.,
i.e., two different functions will be denoted by the same letter. Then we easily derive that

]T

]E
5

1

N

]T

]e
,

]T

]V
5

1

N

]T

]v
, ~6!

holds onR1* R, where, according to the previously accepted abuse of notations, it is under
that the variables on the left-hand side and on the right-hand side are (E,V,N) and (e,v)
5(E/N,V/N), respectively. Moreover, we have
2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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]T

]N
52

E

N

]T

]E
2

V

N

]T

]V
, ~7!

and similar formulas forP andm as well.
For thetotal entropy,

S~E,V,N!ªNs~E/N,V/N!, ~8!

we get the usual equalities if the substance is entropic:

]S

]E
5

1

T
,

]S

]V
5

P

T
,

]S

]N
52

m

T
. ~9!

Then the second derivative of the total entropy is

D2S52
1

T2 S ]T

]E

]T

]V

]T

]N

P
]T

]E
2T

]P

]E
P

]T

]V
2T

]P

]V
P

]T

]N
2T

]P

]N

2m
]T

]E
1T

]m

]E
2m

]T

]V
1T

]m

]V
2m

]T

]N
1T

]m

]N

D . ~10!

Proposition 2:D2S(E,V,N) is negative semidefinite for all(E,V,N)PR1* R, having a one-
dimensional kernel spanned by(E,V,N).

As usual, we call energy, volume, and mass theextensive variables, temperature, pressure, an
chemical potential theintensive variables.

III. AN OUTLINE OF ORDINARY THERMODYNAMICS

A. Heuristic considerations

In this paragraph we use rather loose notations.
The state of a body is the triplet (E,V,N); a process of a body is a function that assigns sta

to instants:t°„E(t),V(t),N(t)…. We assume that the domain of a process is a time interval
The first law of thermodynamics is expressed in the form

Ė5Q1W1L,

whereQ is theheating, Wis theworking, andL is thetransferring; this last quantity expresses th
energy change of the body due to the particle change. The quantities on the right-hand side
equation are time rates, thus, e.g., the heating is the heat per unit time; working is the wo
unit time.

We shall deal with the ideal case only, i.e., when

W52PV̇, L5mṄ.

The first law is conceived as a differential equation. Of course, this single equation i
sufficient to determine processes consisting of three functions. Therefore we suppose that w
equations for the time change ofV andN as well:

V̇5F, Ṅ5G,
2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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whereF andG are called thespringingand theconverting, respectively. The quantitiesQ, W, L,
F, andG are supposed to be given as functions of the state (E,V,N); so we have a complete se
of differential equations.

If n>2 bodies interact, then a process of the system of interacting bodies is the joint
processes of the bodies:t°„(Ei(t),Vi(t),Ni(t)u i 51,...,n….

The processes are supposed to be governed by a system of differential equations,

Ėi5Qi1Wi1Li , V̇i5Fi Ṅi5Gi ,

~Wi52PiFi , Li5m iGi , i 51,...,n!,

called thedynamical law, where thei th heatingQi , etc. are given as functions of the states. La
we examine the properties of these functions.

The bodies can be in contact with an environment, which may be thought as an ‘‘infin
large’’ body whose process is prefixed~e.g., its temperature and pressure is constant!, whose state
does not change in the interaction~i.e., the environment acts on the bodies, the bodies do no
on the environment!. This means that the environment is always characterized by its given
peratureTa , pressurePa , and chemical potentialma , which can vary with time.

The heating of a body consists of the heatings from the other bodies and from the en
ment, so

Qi5 (
k50

n

Qik ,

where the subscript 0 refers to the environment. Similarly, we have

Fi5 (
k50

n

Fik , Gi5 (
k50

n

Gik ,

Wi (
k50

n

Wik , Li5 (
k50

n

Lik .

It is convenient to introduce the notation

AikªQik1Wik1Lik , Aiª(
k50

n

Aik .

Qik , etc. are called thesystem constitutive functionsor thedynamical quantities.
Evidently, the particle number passed from thei th body to thekth body is the opposite to the

particle number passed from thekth body to thei th body, and a similar statement is true for th
energy change and volume change of thei th body due to thekth body. Thus we accept—
roughly—thatAik52Aki , Fik52Fki , Gik52Gki . The exact formulation of these requiremen
will be given later.

We underline that the heatings need not have the above property, which is a well-know
in classical thermodynamics: the ‘‘noncompensated heating’’Qik1Qki is not necessarily zero. A
similar remark is valid for workings and transferrings.

It is reasonable to suppose~as it is done in mechanics, too! that the interaction of two bodie
can be characterized by the properties of the two bodies only, which means that the dyn
quantities between two bodies depend only on the states~i.e., on the extensive variables! of the
two bodies. Moreover, according to our experience, we accept that the dynamical qua
depend on the extensive variables through the intensive variables and the particle numbers
the intensive variables do not characterize the state~the same intensive values can belong
different states in different phases!, the dynamical quantities depend on phases, too, which co
2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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sponds to a trivial experimental fact: the heat conduction at a given temperature and pr
between two ice bodies is different from that between two water bodies.

The second law must be reflected in the properties of the dynamical quantities. The diss
inequality~Clausius–Duhem inequality! in nonequilibrium thermodynamics expresses the sec
law ~positive entropy production!; an analogon of this exact relation can be well defined
ordinary thermodynamics, too.25

B. Thermodynamical systems

On the base of the heuristic considerations of the previous paragraph we can formul
exact definition.

Definition 5: Let n be a given positive integer.A thermodynamical systemof n bodies in a
given environment consists of the following.

~1! A family of simple substances, (Di ,T i ,Pi ,mi ,Ri) ( i 50,...,n); the zeroth substance i
called the environment; the body corresponding to thei th substance is called thei th body of the
system.

~2! A given phaseZ0 of the environment, and the given temperature and pressure o
environment, as a continuous function defined on a time interval:t°„Ta(t),Pa(t)…P(T0 ,P0)
@Z0#.

~3! The dynamical quantities, given for all phasesZi and Zk of the i th and thekth body
( i ,k50,1,...,n), respectively,

QZiZk
:F i3Fk→~J/s!, FZiZk

:F i3Fk→~m3/s!, GZiZk
:F i3Fk→~1/s!, ~11!

where

F iª~T i ,Pi !@ Z̄iùDi #3R1; ~12!

these functions are continuous; moreover, they are continuously differentiable on the inte
their domain.

The dynamical quantities satisfy for alli ,k50,1,...,n.
~i! The compatibility property: QZi ,Zk

and QZ
i8Z

k8
, etc. are equal on the intersection of the

domain for all phasesZi , Zi8 andZk , Zk8 ; furthermore, with the notations

WZiZk
~Ti ,Pi ,Ni ,Tk ,Pk ,Nk!ª2PiFZiZk

~Ti ,Pi ,Ni ,Tk ,Pk ,Nk!,

LZiZk
ª~Ti ,Pi ,Ni ,Tk ,Pk ,Nk!ªmZi

~Ti ,Pi !Gik~Ti ,Pi ,Ni ,Tk ,Pk ,Nk!,

AZiZk
ªQZiZk

1WZiZk
1LZiZk

,

and then~for the sake of brevity! with the subscriptsik instead ofZiZk and

@ i ,k#ª~Ti ,Pi ,Ni ,Tk ,Pk ,Nk!PF i3Fk ,

the dynamical quantities satisfy the following.
~ii ! The mutuality property,

A ik~@ i ,k# !52Aki~@k,i # !, Fik~@ i ,k# !52Fki~@k,i # !, Gik~@ i ,k# !52Gki~@k,i # !. ~13!

~iii ! The dissipative property:

2
Qik~@ i ,k# !

Ti
~Ti2Tk!2

W ik~@ i ,k# !

Pi
~Pi2Pk!2

L ik~@ i ,k# !

m i~Ti ,Pi !
„m i~Ti ,Pi !2mk~Tk ,Pk!…>0,

~14!
2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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where equality holds if and only ifQik(@ i ,k#)50, W ik(@ i ,k#)50, L ik(@ i ,k#)50; this inequality
can be rewritten in the form

A ik~@ i ,k# !S 1

Ti
2

1

Tk
D1Fik~@ i ,k# !S Pi

Ti
2

Pk

Tk
D1Gik~@ i ,k# !S 2m i~Ti ,Pi !

Ti
1

mk~Tk ,Pk!

Tk
D>0,

~15!

where equality holds if and only ifA ik(@ i ,k#)50, Fik(@ i ,k#)50, Gik(@ i ,k#)50.
~4! The dynamical law,

Ėi5Qi1Wi1Li V̇i5Fi , Ṅi5Gi ~ i 51,...,n!, ~16!

where

Qi5 (
k50

n

Qik , Wi5 (
k50

n

Wik , Li5 (
k50

n

Lik,

Fi5 (
k50

n

Fik , Gi5 (
k50

n

Gik ,

and

QikªQZiZk
„Ti~Ei ,Vi ,Ni !,Pi~Ei ,Vi ,Ni !,Ni ,Tk~Ek ,Vk ,Nk!,Pk~EkVk ,Nk!,Nk…,

if kÞ0 and

Qi0ªQZiZ0
„T i~Ei ,Vi ,Ni !,Pi ,~Ei ,Vi ,Ni !,Ni ,Ta ,Pa ,N0…,

etc., whereZi andZk are the phases whose closure contains (Ei /Ni ,Vi /Ni) and (Ek /Nk ,Vk /Nk),
respectively.

Remarks:The dynamical quantities with subscripts 0i do not appear in the dynamical law
thus they are superfluous; we involved them only for an economic formulation. If the the dyn
cal quantities with subscriptsi0 are given, puttingQZ0Zi

(@0#,@ i #)ª2QZiZ0
(@ i #,@0#), etc. we

make all the requirements satisfied.
The particle numberN0 of the environment is irrelevant to the interaction~the environment is

‘‘infinitely large’’ !, the dynamical quantities do not depend onN0 ; it is involved as a dummy
variable only for an economic formulation.

The dynamical quantities with subscriptsii are zero by the mutuality property.
The condition imposed on the equality in the dissipative property is a strong requireme

the dynamical quantities, because equality holds evidently ifTi5Tk , Pi5Pk , and m i(Ti ,Pi)
5mk(Tk ,Pk), so these relations must imply that the dynamical quantities take the zero val

Since all the bodies are supposed to be single component, it is understood that ifGZiZk
Þ0

then the substance of thei th body coincides with that of thekth body.
Definition 6: A constant solution of the dynamical law—i.e., a state at which the right-h

side of the dynamical law takes a zero value—is called astandstill. A standstill is anequilibrium
if all the dynamical quantities take a zero value at the corresponding state.

Proposition 3: If at least one of the dynamical quantities does depend on the process
environment, then standstill can exist only if the process of the environment is constant.

C. Thermodynamical forces and the conductivity matrix

For the sake of brevity, in the following the subscriptsZiZk will be substituted byik.
The coefficients of the dynamical quantities in the dissipative inequality~15! are known as the

thermodynamical forces; more precisely, we accept the following definition.
2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Definition 7: The function

S 1

T i
2

1

Tk
,
Pi

T i
2

Pk

Tk
,2

mi

T i
1

mk

Tk
D :Di3Dk→~1/K !13~Pa/K !3~J/K !,

is called thethermodynamical forcebetween thei th andkth body.
Definition 8: The dynamical quantitiesQik ,Fik ,Gik are calledquasilinearif

S Qik

Fik

Gik

D 5S l ik k ik q ik

a ik b ik g ik

r ik s ik w ik

D S 1

Ti
2

1

Tk

Pi

Ti
2

Pk

Tk

2
m i~Ti ,Pi !

Ti
1

mk~Tk ,Pk!

Tk

D , ~17!

wherel ik , etc. are continuous function defined onF i3Fk . Equivalently,

S A ik

Fik

Gik

D 5S l̃ ik k̃ ik q̃ ik

a ik b ik g ik

r ik s ik w ik

D S 1

Ti
2

1

Tk

Pi

Ti
2

Pk

Tk

2
m i~Ti ,Pi !

Ti
1

mk~Tk ,Pk!

Tk

D , ~18!

where

l̃ ikªl ik2Pia ik1m ir ik , k̃ ikªk ik2Pib ik1m is ik , q̃ ikªq ik2Pig ik1m iw ik .

The matrix vector on the right-hand side of equality~18! is called theconductivity matrix
between thei th and thekth body.

Note that the conductivity matrix is, in fact, a matrix-valued function. It is a simple fact
the conductivity matrix is not uniquely defined. To see this, it suffices to show that

S l̃ k̃ q̃

a b g

r s w
D S 1

Ti
2

1

Tk

Pi

Ti
2

Pk

Tk

2
m i~Ti ,Pi !

Ti
1

mk~Tk ,Pk!

Tk

D 50, ~19!

can hold if the matrix above—which represents the difference of two conductivity matrice
not zero. This is the case, for example, ifl̃ªPi /Ti2Pk /Tk , k̃ª21/Ti11/Tk , and the other
entries are zero.

Of course, if the conductivity matrix is constant then it is uniquely determined.
Proposition 4: Suppose (19) holds and the bodies are entropic; ifm i(T,P)5mk(T,P), then

we have

l̃~T,P,Ni ,T,P,Nk!1k̃~T,P,Ni ,T,P,Nk!P1q̃~T,P,Ni ,T,P,Nk!„m i~T,P!1Tsi~T,P!…50,

a~T,P,Ni ,T,P,Nk!1b~T,P,Ni ,T,P,Nk!P1g~T,P,Ni ,T,P,Nk!„m i~T,P!1Tsi~T,P!…50,
2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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r~T,P,Ni ,T,P,Nk!1s~T,P,Ni ,T,P,Nk!1w~T,P,Ni ,T,P,Nk!~m i~T,P!1si~T,P!T!50,

k̃~T,P,Ni ,T,P,Nk!2q̃~T,P,Ni ,T,P,Nk!vi~T,P!50,

b~T,P,Ni ,T,P,Nk!2g~T,P,Ni ,T,P,Nk!vi~T,P!50,

s~T,P,Ni ,T,P,Nk!2w~T,P,Ni ,T,P,Nk!vi~T,P!50,

wheresi and vi are the specific entropy and the specific volume of the ith body as a function of
temperature and pressure in the corresponding phase.

Proof: Let PªPiªPk ,TªTkÞTi , divide ~19! by Ti2T, and take the limitTi→T. Accord-
ing to our hypothesism i(T,P)5mk(T,P) and to the Gibbs–Duhem relations, we have

lim
Ti→T

m i~Ti ,P!2mk~T,P!

Ti2T
52si~T,P!,

from which we infer the first three equalities. The further ones follow fromTªTiªTk , PªPk

ÞPi , and

lim
Pi→P

m i~T,Pi !2mk~T,P!

Pi2P
5vi~T,P!.

h

The elements (T,P,Ni ,T,P,Nk)PF i3Fk for which m i(T,P)5mk(T,P) holds will be called
central.

We see that if the bodies cannot change particles—i.e.,q̃50,g50,r50,s50, w50—then
the values of the conductivity matrix are uniquely defined at the central values; otherwise th
not.

Definition 9:The conductivity matrix between thei th andkth body is~1! strictly Onsagerian
if it is constant and symmetric,~2! Onsagerian if its every value is symmetric,~3! weakly Onsa-
gerian if its values at central elements are symmetric.

Usually one considers strictly Onsagerian conductivity matrices; however, the Onsa
formalism is said to be a linear approximation around equilibrium, so the usual Onsager m
corresponds to a value of our conductivity matrix at a central element. Thus, the usual form
corresponds, in fact, to the weakly Onsagerian case.

It is a remarkable result26 that if a twice continuously differentiable conductivity matrix
weakly Onsagerian then—using its nonuniqueness—we can take it to be symmetric in a
borhood of the central values.

IV. GENERAL MATHEMATICAL FORMULAS

A. The dynamical law and the nominal thermodynamical force

A state of a system consisting ofn bodies,

xª~xiª~Ei ,Vi ,Ni !u i 51,...,n!, ~20!

is in

XDªÃ
i 51

n

~R1* Di !, ~21!

which is a subset of the vector space,

Xª„~J!3~m3!3R…n. ~22!
2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Now we find it convenient to considerkT instead of the temperatureT, where k is the
Boltzmann constant. The physical dimension ofkT is that of energy, i.e.,kTP(J).

The dual of a one-dimensional vector space is its ‘‘reciprocal’’27 and the duality map is the
~tensorial! multiplication that is well reflected in our present notation: an element from (1J)
multiplied by an element from~J! results in a real number. The dual of a Cartesian produc
identified with the Cartesian product of the duals by the usual rule: take the sum of the pro
of the components.

Thus we have that the intensive quantities are elements in the dual space of the ex
quantities, namely,

yªS yiªS 1

kTi
,

Pi

kTi
,
m i~Ti ,Pi !

kTi
D U i 51,...,nDPX* 5S S 1

JD3S 1

m3D 3RD n

. ~23!

Consequently, the constitutive functions map from the state space into its dual:

yªÃ
i 51

n

yiªÃ
i 51

n S 1

kT i
,

Pi

kT i
,2

mi

kT i
D :X→X* , ~24!

whose domain isXD .
Using the notation

y0ª~1/kT0 ,P0 /kT0 ,2m0~T0 ,P0!/kT0!PZ0 ,

let us introduce

Rik~xi ,xk!ª~A ik ,Fik ,Gik!„yi~xi !,yk~xk!…,
~25!

Ri0~xi ,y0!ª~A i0 ,Fi0 ,Gi0!„yi~xi !,y0…,

for xPXD ,i ,k51,...,n.
Note that in these notations the mutuality property of the dynamical quantities become

Rik~xi ,xk!52Rki~xk ,xi ! ~xPXD ,i ,k51,...,n!. ~26!

Putting

R~x,y0!ªS Ri~x!ªRi0~xi ,y0!1 (
k51

n

Rik~xi ,xk!U i 51,...,nD , ~27!

for xPXD andy0PZ0 , we can rewrite the dynamical law~16! in the form

ẋ5R~x,ya!. ~28!

Note that ift°x(t) is a function defined in time and having values inX, thenẋ has values in
X/s, wheres denotes ‘‘second.’’ Thus,R(x,y0)PX/s for all x andy0 .

The collection of the thermodynamical forces between the bodies and the environmen
play and important role that is why we introduce the following notion.

Definition 10:The function

F:XD3Z0→X* , F~x,y0!ª„yi~xi !2y0u i 51,...,n…, ~29!

is called thenominal thermodynamical forcein the system.
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B. The dissipative property and its consequences

The dissipative property of the dynamical quantities in the previously introduced co
notations reads as follows:

„y~xi !2yk~xk!…•Rik~xi ,xk!>0 ~xPXD ,i ,k51,...,n!,

„yi~xi !2y0…•Ri0~xi ,y0! ~xPXD ,y0PZ0 ,i 51,...,n!,

where equality holds if and only ifRik(xi ,xk)50 andRi0(xi ,y0)50; the dot denotes the sum o
the product of the components.

Proposition 5: The dissipative property of the dynamical quantities imply

F~x,y0!•R~x,y0!>0 ~xPXD ,y0PZ0!, ~30!

where equality holds if and only Rik(xi ,xk)50 and Ri0(xi ,y0)50 for all i ,k51,...,n.
Proof: Let us introduce the formal quantitiesRi0(xi ,x0)ª2R0i(x0 ,xi)ªRi0(xi ,y0), and let

us putykªyk(xk) for the sake of brevity. Then we have

~yi2yk!•Rik~xi ,xk!>0 ~ i ,k50,1...,n!,

from which we infer by the mutuality property of the dynamical quantities that

0<
1

2 (
i ,k50

n

~yi2yk!•Rik~xi ,xk!

5
1

2 (
i ,k50

n

~yi2y0!•Rik~xi ,xk!2
1

2 (
i ,k50

n

~yk2y0!•Rik~xi ,xk!

5 (
i ,k50

n

~yi2y0!•Rik~xi ,xk!

5(
i 51

n

~yi2y0!•(
k50

n

Rik~xi ,xk!,

where equality holds if and onlyRik(xi ,xk)50 for all i ,k50,1,...,n. The last formula coincides
with the left-hand side of~30!.

Of course, equality holds ifR(x,y0)50; thus we have the following.
Proposition 6: R(x,y0)50 if and only if Rik(xi ,xk)50 and Ri0(xi ,y0)50 for all i ,k

51,...,n.
This has an interesting and important consequence.
Proposition 7: Every standstill of the dynamical law (28) is an equilibrium.
Proof: There can be a standstill if and only if either all the dynamical quantities are inde

dent of the environment orya ~the process of the environment! is constant. In both cases the sta
x is a standstill if and only ifR(x,ya)50 that is equivalent by the previous result to the fact t
all the dynamical quantities take a zero value atx, i.e., x is an equilibrium.

C. The quasilinear case

Let Cik denote the conductivity matrix between thei th andkth body as a function of the
extensive variables@i.e., putTiªT i(Ei ,Vi ,Ni), etc. in them#. Then we have forxPXD and y0

PZ0 ,

Rik~xi ,xk!5Cik~xi ,xk!•„yi~xi !2yk~xk!…, Ri0~xi ,y0!5Ci0~xi ,y0!•„yi~xi !2y0…,

for i ,k51,...,n. It follows from the mutuality property that
2013 to 134.100.220.72. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Cik~xi ,xk!•„yi~xi !2y~xk!…52Cki~xk ,xi !•„yk~xk!2yi~xi !5Cki~xk ,xi !•„yi~xi !2yk~xk!…,

which does not imply

Cik~xi ,xk!5Cki~xk ,xi ! ~xPXD ,i ,k51,...,n!; ~31!

since these matrices play a role only when multiplied byyi(xi)2yk(xk), we do not restrict the
generality by requiring equality~31!.

Moreover, we have that

Ci0„yi~xi !,y0…•„yi~xi !2y0…1(
i 51

n

Cik~xi ,xk!•„yi~xi !2yk~xk!…5(
i 51

n

Bik~x,y0!•„yk~xk!2y0…,

where

Bik~x,y0!ªH Cik~xi ,xk!, if iÞk,

Ci0~xi ,y0!1(
i 51

n

Cik~xi ,xk!, if i 5k.
~32!

Thus, introducing

B~x,y0!ª„Bik~x,y0!u i ,k51,...,n…, ~33!

and using the nominal thermodynamical force defined in~29!, we get

R~x,y0!5B~x,y0!•F~x,y0!, ~34!

and the dynamical law has the form

ẋ5B~x,ya!•F~x,ya!. ~35!

Definition 11: The functionB:XD3Z0→Lin(X* ,X/s) defined in~33! is called thenominal
conductivity matrixin the system.
Proposition 8: If Cik(xi ,xk) and Ci0(xi ,y0) are symmetric for all i,k51,...,n for a given x and
y0 , and (31) holds, then B(x,y0) is symmetric as well.

D. Constraints

1. Heuristic considerations

A system of interacting bodies, in general, is subjected to some constraints. As examp
us consider the following systems.

~1! A body with a constant particle number in a given constant environment, the press
the body is held constant, equaling the pressurePa of the environment; then

Ṅ50,
]P~E,V,N!

]E
Ė1

]P~E,V,N!

]V
V̇50.

~2! A heat insulated body with a constant particle number in a given environment,

Ṅ50, E52P~E,V,N!V̇. ~36!

~3! A body with constant volume in a given environment,

V̇50.
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~4! Two bodies that are totally insulated from the environment,

Ė11Ė250, V̇11V̇250, Ṅ11Ṅ250. ~37!

The constraints are not characterized completely by the previous formulas that conce
‘‘fluxes,’’ i.e., the time derivative of the extensive variables. Constraints are intimately relat
forces, too. Namely, the real driving forces in the examples are~1! the temperature differenc
between the body and the environment;~2! the pressure difference between the body and
environment;~3! the temperature difference between the body and the environment;~4! the tem-
perature difference, the pressure difference, and the chemical potential difference between
bodies.

Now we shall show how we get these real forces from the nominal one.
The nominal thermodynamical force for the examples~1!–~3!, taken at the process of th

environment is—in a loose notation—

S 1

kT
2

1

kTa
,

P

kT
2

Pa

kTa
,2

m

kT
1

ma

kTa
D .

~1! Equality ~36! and the first lawĖ5Q2PaV̇ result in that the heating is proportional to th
springing,Q5aF, thus the dynamical equation becomes

Ė5~a2Pa!F, V5F, N50.

The right-hand side of the equation is a multiple of the vector (a2Pa,1,0).
Let us apply the nominal thermodynamical force~as an element of the dual space! to this
vector:

S 1

kT
2

1

kTa
D~a2Pa!1SPa

kT
2

Pa

kTa
D5aS 1

kT
2

1

kTa
D.

We have got~a multiple of! the really acting thermodynamical force whose zero value de
mines the equilibrium if the environment is constant.

~2! In the case of a heat insulated body with a constant particle number, the right-hand side
dynamical law,

Ė52PF, V̇5F, Ṅ50,

is a multiple of the vector (2P,1,0).
Applying the nominal thermodynamical force to this vector, we get

S 1

kT
2

1

kTa
D~2Pa!1S P

kT
2

Pa

kTa
D5 1

kt
~P2Pa!,

which is ~a multiple of! the really acting thermodynamical force whose zero value determ
the equilibrium if the environment is constant.

~3! In this example the dyamical law has the form

Ė5Q1mG, V̇50, Ṅ5G,

whose right-hand side is spanned by the multiple of the vectors~1, 0, 0! and ~0, 0, 1!.
Applying to these vectors the nominal thermodynamical force, we get

S 1

kT
2

1

kTa
,2

m

kT
1

ma

kTa
D ,
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which is the really acting thermodynamical force whose zero value determines the equili
if the environment is constant.

~4! In this example the dynamical law has the form

Ė15Q12P1F11m1G1 , V̇15F1 , Ṅ15G1 ,

Ė25Q22P2F21m2G2 , V̇25F2 , Ṅ25G2 ,

moreover, relation~37! holds; thus the right-hand side of the dynamical equation is spanned b
multiple of the vectors~1, 0, 0,21, 0, 0!, ~0, 1, 0, 0,21, 0!, and~0, 0, 1, 0, 0,21!. Applying to
these vectors the nominal thermodynamical force,

S 1

kT1
2

1

kTa
,

P1

kT1
2

Pa

kTa
,2

m1

kT1
1

ma

kTa
,

1

kT2
2

1

kTa
,

P2

kT2
2

Pa

kTa
,2

m2

kT2
1

ma

kTa
D ,

we get

S 1

kT1
2

1

kT2
,

P1

kT1
2

P2

kT2
,2

m1

kT1
1

m2

kT2
D ,

which is the really acting thermodynamical force whose zero value determines the equilibr

2. Mathematical formulation of constraints

Definition 12:We say that the dynamical law~28! is subjected to a constraint if there is a s
G of continuous mapsXD→X* , such that$p(x)upPG% is linearly independent for allxPXD ;
p(x) ẋ50 holds for allpPG and for all processesx @solutions of the dynamical law~28!#, which
is equivalent to

R~x,ya!PK~x!/s ~xPXD!, ~38!

where

K~x!ª ù
pPG

Ker p~x!. ~39!

is the constraint subspaceat x; R(x,ya)50 if and only if F(x,ya)uK(x)50.
The function

XD→X* , x°FG~x,ya!ªF~x,ya!uK~x! , ~40!

is called theeffective thermodynamical forcecorresponding to the constraint.
Now we apply well-known notions of the theory of manifolds. IfU is a u-dimensionalCr

submanifold inXD , then a parametrization~the inverse of a local coordinatization! of U around
x0PU is a mapp:Ru→X, such thatx0PRanp,U; p is injective,p21 is continuous;p is r times
continuously differentiable; Dp(x) is injective for allxPDomp.

One of the most important relations is that Ran Dp(x)5Tx(U), where the last symbol denote
the tangent space ofU at x.

A submanifold will mean aC1 submanifold.
A submanifoldU in XD is called aconstraint manifoldif Tx(U)5K(x) for all xPU. A

constraint manifoldU is invariant for the dynamical law, i.e., every process starting fromU
remains inU.

If the constraint is a foliation i.e., for everyx in the interior of XD there is a~maximal!
constraint manifold containingx then the interior ofXD is the disjoint union of constraint mani
folds.
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The constraint is calledholonom, if for all pPG there is aFp :XD→R, continuously differ-
entiable on the interior ofXD , such thatp.DFp . Then the constraint is a foliation and th
constraint manifolds are the subsets thatFp is constant on for allpPG.

If G5B then there is no constraint, i.e.,K(x)5X for all xPXD , and there is a single
constraint manifold; the interior ofXD .

In the quasilinear caseR(x,ya)5B(x,ya)F(x,ya)PK(x)/s does not imply, in general, tha
RanB(x,ya),K(x)/s even if F(x,ya)Þ0. Moreover, in general,R(x,ya) cannot be given as a
quasilinear function of the effective thermodynamical force. That is why we introduce the fo
ing notion.

Definition 13:The nominal conductivity matrixfits the constraintif for all xPXD there is a
BG(x,ya)PLin„K(x)* ,K(x)/s…, such that

B~x,ya!F~x,ya!5BG~x,ya!FG~x,ya!. ~41!

In this case the mapx°BG(x,ya) is called theeffective conductivity matrix.
The relation between the nominal conductivity matrix and the effective conductivity m

can be expressed by the canonical embeddingi (x):K(x)→X and its transposei (x)* :X*
→K(x)* as follows:

i ~x!BG~x,ya!i ~x!* 5B~x,ya! ~xPXD!. ~42!

Then we have the following results.
Proposition 9: (i) The nominal conductivity matrix fits the constraint if and only if for al

PXD we haveRanB(x,ya),K(x)/s andKerB(x,ya).(K(x))°, which is equivalent to the fac
that p(x)B(x,ya)50 and B(x,ya)p(x)50 for all pPG, where„K(x)…°ª$yPX* u i (x)* y50% is
the annullator of K(x).

(ii) The nominal conductivity matrix fits the constraint ifRanB(x,ya),K(x) and B(x,ya) is
symmetric for all xPXD .

Proof: ~i! If the kernel ofB(x,ya) contains the annullator ofK(x), then BG(x,ya) is well
defined byBG(x,ya) i (x)* yªB(x,ya)y (yPX* !; so the stated relations are sufficient. The sta
ment concerning the necesssity is trivial.

It is evident that the annullator ofK(x) is spanned by$p(x)upPG%, thus the equivalent
statement holds true as well.

~ii ! If B(x,ya) is symmetric, then its kernel contains the annullator of its ran
Simple arguments prove the following statements, too.

Proposition 10: Let the nominal conductivity matrix fit the constraint and use the prev
notations. Then for all xPXD : ~i! KerBG(x,ya)5$0% if and only if KerB(x,ya)5(K(x))0;
BG(x,ya) is symmetric if and only if B(x,ya) is symmetric; ~iii ! BG(x,ya) is positive semidefinite
if and only if B(x,ya) is positive semidefinite.

SinceR(x,ya)PK(x)/s, inequality~30! can be rewritten in the form

FG~x,ya!R~x,ya!>0 ~xPXD!, ~43!

where equality holds if and only ifR(x,ya)50, which is equivalent toFG(x,ya)50 by the
definition of constraints.

In the quasilinear case if the effective conductivity matrix exists then the above inequ
becomes

FG~x,ya!BG~x,ya!FG~x,ya!>0 ~xPXD!, ~44!

where equality holds if and only ifFG(x,ya)50.
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E. Onasager formalism

We call the constraintaffineif every constraint subspace is the same: there is a linear subs
K of X such thatK(x)5K for all xPXD . The constraint is affine in the previous examples 3 a
4 and is not affine in the examples 1 and 2.

Note the important fact that the effective conductivity matrix cannot be constant if the
straint is not affine; indeed,BG(x,ya) is a linear map fromK(x)* into K(x)/s; thus, if K(x)
ÞK(x8) thenBG(x,ya)ÞBG(x8,ya).

If the constraint is affine then the effective conductivity matrix can but evidently need n
constant.

Let us consider an affine constraint with constraint subspaceK. Let x0 be an equilibrium. Put
y0ªy(x0) andya

n
ª(ya ,...,ya). Then

05F~x0 ,ya!uK5~y02ya
n!uK ,

consequently,

FG~x,ya!5FG~x,y0!ª„y~x!2y0…uK ,

i.e., in this case the effective thermodynamical force can be expressed by the deviation
intensive quantities from their equilibrium values. In the quasilinear case the effective cond
ity matrix BG(x,ya) mapsK into K for all x; near the equilibriumx0 it can be approximated by its
equilibrium value, which is a linear mapK→K, too; thus the dynamical law can be approximat
by

ẋ5BG~x0 ,ya!FG~x,y0!.

This is the usual form of the Onsager formalism: the conductivity matrix is constant, the the
dynamical force is expressed by the difference between the intensive variables and their e
rium values~and the fluxes correspond to the time derivatives of the extensive quantities!.

On the other hand, if the constraint is not affine thenFG(x,ya)Þ„y(x)2y0…uK(x) , i.e., the
effective thermodynamical force cannot be expressed by the the deviation of the intensive
tities from their equilibrium values. Moreover, any approximation ofBG(x,ya):K(x)→K(x)/s
must be a mapK(x)→K(x)/s; thus the effective conductivity matrix cannot be approximated
its equilibrium valueBG(x0 ,ya):K(x0)→K(x0)/s. All these mean that the Onsger formalism do
not work for nonaffine constraints.

V. STABILITY

A. Some comments

One of the main problems of thermodynamical systems is the stability of equilibria.
stability investigations of classical thermodynamics are not satisfactory because stability
defined in a mathematically exact way and, indeed, the results concern only some cons
properties of the substances~intrinsic stability! and do not take into account dynamical propert
~which are formulated here by the dissipative property!. In continuum~irreversible! thermody-
namics the notion of stability is defined in a mathematically exact way referring to the ba
equations; however, the investigations are very hard from a mathematical point of view be
the equations describing the processes are partial differential equations.28–33

In ordinary thermodynamics stability investigations are based on mathematically corre
tions, and are much more easier than in continuum thermodynamics because here ordinary
ential equations govern the processes. Trend to equilibrium—a fundamental concept—corre
to the asymptotic stability of equilibria.
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B. Notions and results from the theory of stability

For the sake of simplicity, from now on we omitya from the notations of the function
introduced up to now, i.e., we writeR(x), B(x), F(x), etc. instead ofR(x,ya), B(x,ya),
F(x,ya), etc.; then, in particular, the dynamical law has the form

ẋ5R~x!.

Recall thatx0 is an equilibrium if and only ifR(x0)50.
Definition 14: Let U be a subset invariant for the dynamical equation~in particular, a con-

straint manifold!.

~1! An equilibrium x0PU is stable with condition Uif for each neighborhoodN of x0 there is a
neighborhoodG of x0 such that for every process starting fromGùU proceeds inNùU.

~2! An equilibrium x0PU is asymptotically stable with condition Uif it is stable with condition
U and there is a neighborhoodV of x0 such that for every processr starting fromVùU we
have limt→` r (t)5x0 .

~3! A set E,U of equilibria isstrictly asymptotically stable34 with condition Uif every equilib-
rium in E is stable with conditionU; every equilibrium inE has a neighborhoodV such that
if r is a process starting fromVùU then limt→` r (t) is in the closure ofE.

Besides the well-known and fundamental results of stability theory;35 we shall apply a less
common one,36 which reads in our formulation as follows.

Consider the differential equation

j̇5F~j!,

in Ru, whereF is continuously differentiable. LetD be the set of its equilibria and suppose~i!
there is a nontrivial linear subspaceZ,Ru, an elementa of Ru such thatD5(a1Z)ùDomF; ~ii !
for all jPD:—Ker DF(j)5Z,—the algebraic multiplicity and the geometric multiplicity of th
zero eigenvalue of DF(j) are equal—the real part of the nonzero eigenvalues of DF(j) is
negative.

ThenD is strictly asymptotically stable.

If L is a differentiable scalar-valued function defined inXD , thenL• (x)ªDL(x)R(x) is called
the derivative of L along the dynamical equation.

Proposition 11: Let U be a submanifold in XD , invariant for the dynamical law (in particular,
a constraint manifold). If x0PU is an equilibrium and there is a continuously differentiab
real-valued function L, defined in a neighborhood of x0 , such that (i) L has a strict local maxi

mum at x0 with condition U, i.e., L(x),L(x0) for all xPU in a neighborhood of x0 ; (ii) L• has a
(strict) local minimum at x0 with condition U, then the equilibrium x0 is (asymptotically) stable
with condition U.

Proof: Let u be the dimension ofU and take a local parametrizationp:Ru→U aroundx0 .
Then the restriction of the dynamical law onto the invariant submanifoldU is reduced to the
differential equation

j̇5Dp~j!21R„p~j!…, ~45!

for the functionjªp21+x.
Then j0ªp21(x0) is an equilibrium of the reduced dynamical equation. It is trivial thatL

ªL+p is a continuously differentiable function that has a strict maximum atj0 .
Since DL5(DL+p)Dp, the derivative ofL along the reduced equation,

L
•

5~DL+p!~R+p!5L• +p, ~46!

has a~strict! minimum atj0 .
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These imply by Lyapunov’s theory thatj0 is an ~asymptotically! stable equilibrium of the
reduced equation from which it follows thatx0 is an ~asymptotically! stable equilibrium with
conditionU.

Proposition 12: Let U be a submanifold, invariant for the dynamical equation (in particu
a constraint manifold) and let E be the set of equilibria in U. Suppose that~1! E is a submanifold;
~2! for all xPE, the linear mapDR(x)uTx(U) :Tx(U)→Tx(U) has the following properties: (i) its

kernel is Tx(E); (ii) the algebraic multiplicity and the geometric multiplicity of its zero eigenva
coincide; (iii) its nonzero eigenvalues have negative real part.

Then E is strictly asymptotically stable with condition U.
Proof: Let e andu be the dimensions ofE andU, respectively. There is a local parametriz

tion p:Re3Ru2e→U such thatp(•,0):Re→E is a parametrization ofE. Then

Ran„Dp~h,0!uRe3$0%…5Tp~h,0!~E!.

The set of equilibria of the reduced dynamical equation~45! is the manifold

p21~E!5Re3$0%ùDomp,

whose tangent space at~h, 0! equals

Re3$0%5Dp~h,0!21@Tp~h,0!~E!#.

The derivative of the right-hand side of the reduced dynamical equation at an equilibriu~h,
0!, is

D~h,0!ªDp~h,0!21DR~p~h,0!!Dp~h,0!.

As a consequence, the spectral properties ofD(h,0) coincide with those ofDR„p(h,0)… ~i.e.,
they have the same eigenvalues and multiplicities!; moreover,

KerD~h,0!5„Dp~h,0!…21@Ker DR~p~h,0!…#5Re3$0%.

Thus, according to the theorem cited above, the set of equilibria of the reduced dynamical
tion is strictly asymptotically stable, which implies that our assertion is true.

C. Stability in ordinary thermodynamics

There are nice stability results for several phenomena, including phase transitions~see Refs.
14–19!. It is remarkable that some of them is obtained without the use of entropy. The en
property, however, admits general results on stability.

The entropy of the environment—in a loose notation—is

S05
E01P0V02m0N0

T0
.

The total energy, the total volume and the total particle number of the bodies, and the
ronment together are constant,

(
i 50

n

Ei5const, (
i 50

n

Vi5const, (
i 50

n

Ni5const.

Let us suppose that the temperatureTa , the pressurePa ~thus the chemical potentialma , too!,
in the given process of the environment are constant~which is a necessary condition of th
existence of equilibrium if at least one of the dynamical quantities is not independent o
environment!. Then
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Lª(
i 51

n S Si2
Ei1PaVi2maNi

Ta
D

is the total entropy of the bodies and the environment together, up to an additive constant
Using the notations introduced previously, we can write the above function in the form

L~x!5(
i 51

n

„Si~xi !2ya•xi… ~xPXD!. ~47!

Further on we refer frequently to the set of states corresponding to the regular domain

XRª X
i 51

n

~R1* Ri !. ~48!

Suppose the bodies of the thermodynamical system are entropic. ThenL is twice differentiable
on XR ; the derivative ofL equals the nominal thermodynamical force,

DL~x!5F~x!, ~49!

for xPXR . Moreover,

D2L~x!5(
i 51

n

D2Si~xi ! ~50!

is negative semidefinite; its kernel is spanned by the vectors (x1,0,0,...,0),
(0,x2,0,...,0)̄ (0,0,0,...,xn).

Proposition 13: Let U be a constraint manifold and let us apply the previously introdu
notations. Let x0 be an equilibrium in UùXR . If (i) the bodies are entropic; (ii) L has a stric
local maximum at x0 with condition U, then x0 is asymptotically stable with condition U.

Proof: Condition ~ii ! implies thatx0 has a neighborhood in whichFG(x)55DL(x)uTx(U)

Þ0 for x0ÞxPU. As a consequence, the derivative ofL along the dynamical law,L
•

5(DL)R
5FR5FGR has a strict local minimum atx0 by ~43!; hence we infer the desired result fro
Proposition 11. h

Next, we give easily verifiable relations, which imply condition~ii ! and will be useful in
applications.

Proposition 14: Let the constraint manifold U be a C2 submanifold. Suppose x0 is an equi-
librium in UùXR and ~i! Ker„D2L(x0)…ùTx0

~U!50; (ii) there is a parametrization of U around

x0 such thatDL(x0)D2p„p21(x0)… is negative semidefinite; then L has a strict local maximum
x0 with condition U.

Proof: The functionLªL+p is twice differentiable, and

DL~j!5DL„p~j!…Dp~j!, ~51!

D2L~j!5D2L„p~j!…+„Dp~j!3Dp~j!…1DL„p~j!…D2p~j!, ~52!

for all jPDom p.
Put j0ªp21(x0). Since x0 is an equilibrium, we have DL(x0)uTx0

(U)50, consequently

DL(j0)50. Moreover, atj5j0 , the first term on the right-hand side of~52! is negative definite
by ~i!; the second one is negative semidefinite by~ii !, so the sum is negative definite.

As a consequence,L has a strict maximum atj0 that is equivalent to thatL has a strict
maximum atx0 with conditionU. h
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Property~ii ! in the previous proposition holds ifU is a subset of an affine subspace; thenp can
be taken to be affine and its second derivative is zero.

Proposition 13 can be applied when every body has a constant particle number. Indee
the third, sixth, ninth, etc. components of the elements inK(x) are zero, thus only the zero is bot
in K(x) and in the kernel of D2L(x). A similar assertion holds when everybody has const
volume.

Asymptotic stability of an equilibrium implies that the equilibrium is locally unique. In g
eral, e.g., in the first-order phase transitions and in diffusions when the particle number a
volume of the bodies changes, equilibria are not locally unique; they constitute a nonzero d
sional submanifold.37 Then instead of the previous proposition we can apply the following o

Proposition 15: Let the constraint manifold U be a C2 submanifold and let E be the set o
equilibria in UùXR . If (i) the bodies are entropic, (ii) the dynamical quantities are quasiline
and the nominal conductivity matrix fits the constraint, (iii) E is a submanifold; and for al0

PE, (iv) BG(x0) is symmetric and positive definite, (v)Ker„D2L(x0)…ùTx0
(U)5Tx0

(E), (vi)

there is a parametrization p of U around x0 such thatDL(x0)D2p„p21(x0)… is negative semidefi
nite; then E is strictly asymptotically stable with condition U.

Proof: The dynamical equation is of the form

ẋ5BG~x!~DL !G~x!

and

E5$xPUu~DL !G~x!50%.

Let x0 be an arbitrary element ofE and letp be a parametrization ofU aroundx0 . Then for
the functionLªL+p andj0ªp21(x0) we have the equalities~51! and ~52!.

The dynamical equation reduced by the parametrization becomes

j̇5C~j!DL~j!, ~53!

where

C~j!ªDp~j!21BG„p~j!…„Dp~j!* …21.

The set of equilibria of the reduced dynamical equation is

fª$jPDompuDL~j!50%. ~54!

Now we show that

Tj0
~f!5Ker D2L~j0!.

The relation, follows from ~54! trivially. The relation. can be verified as follows: ifp has
property~vi! andv is in the kernel of D2L(j0), then~52! implies that Dp(j0)vPTp(j0)(U) is in
the kernel of D2L(x0), thus it is an element ofTx0

(E) according to property~v!; this is equivalent
to thatvPTj0

(f).
The derivative of the right-hand side of the reduced dynamical equation~53! at j0 equals

C~j0!D2L~j0!.

Property~iv! implies thatC(j0) is symmetric and positive definite, and according to~52! and
property~vi!, D2L(j0) ~which is necessarily symmetric! is negative semidefinite. Therefore th
kernel ofC(j0)D2L(j0) equals the kernel of D2L(j0), which is the tangent space off at j0 ;
and38 the geometric multiplicity and the algebraic multiplicity of the zero eigenvalue
C(j0)D2L(j0) coincide, all the nonzero eigenvalues ofC(j0)D2L(j0) are negative.

As a consequence of Proposition 12, the set of equilibria of the reduced dynamical equa
strictly asymptotically stable~without a condition!, which implies thatE is strictly asymptotically
stable with conditionU.
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Property~iv! in the previous proposition is equivalent to~see Proposition 10! ~iv! B(x0) is
symmetric, positive semidefinite and KerB(x0)5Tx0

(U) +, which is very useful in practice.

VI. DISCUSSION

A general mathematical theory of thermodynamical systems consisting of single-comp
homogenous bodies has been expounded. Substances, phases, bodies, systems, thermo
forces, constraints, etc., all the usual notions have got a mathematical definition. The basic
is the dynamical law, a differential equation whose solutions are the processes of the s
Equilibria are the constant processes. The first law is a part of the dynamical law~as in continuum
thermodynamics, where the first law is one of the balance equations!; the second law is expresse
by a condition imposed on the dynamical quantities, called the dissipative property~an analogon
of the Gibbs–Duhem relation in continuum thermodynamics!; the dissipative property is some
thing like positive entropy production but is formulated without the notion of entropy and ca
applied for some systems of nonentropic bodies, too.39 Constraints can be treated by the notions
manifolds. The Onsager formalism is a well-defined linear approximation of the dynamica
around equilibrium if and only if the constraint is affine. General results on~strict! asymptotic
stability ~trend to equilibrium! are obtained for a system of entropic bodies.
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