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Abstract If M is a 4-dimensional connected, orientable flat spacetime manifold endowed
with a time-arrow, and if the existence of a finite speed limit to energy/information transfers
over M can be assessed, then the “twin paradox” necessarily follows (and indeed, the full
special relativity theory). Two other implicit ingredients of the paradox are also identified.
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1 Introduction

As W.G. Unruh wrote more than 20 years ago, “the twin paradox has generated one of the
longest standing controversies in twentieth century physics” [27]. Of course, there is a big
deal of literature on the subject, and it seems that publications are still going on.

Indeed, if the mathematical concept of a (pseudo-) Riemannian manifold is adequate
to the description of History, envisaged as the set of all spacetime events, then, it must
definitely be stated that any sort of Langevin’s twin paradox gets substantially re-interpreted.
This is so because of a one, long known fact. With Sommerfeld’s own words, “As Minkowski
once remarked to me, the element of proper-time is not an exact differential” [23]. Proper-
time lapses are therefore worldlines functionals. This statement ruins the possible bases of
any twin paradox, at least as understood originally, and is a general, geometric property of
Riemannian and, to some extend, of pseudo-Riemannian manifolds.

For compact Riemannian manifolds, in effect, the Hopf-Rinow theorem ensures that M
is also geodesically complete, and that any pair of points can be joined by a geodesic of
minimal length. If two points are separated enough, they may be joined by another geodesic
whose length can differ from the minimal one. Differential ageing along intersecting world-
lines will therefore arise as an intrinsic geometrical property of the Riemannian manifold
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itself, whatever the worldlines. In the physically interesting case of compact or so-called
“t-complete” Lorentzian manifolds, geodesic completeness has been shown to extend to the
timelike and lightlike cases, that are relevant to the twin paradox [4].

This could be the end of the story. However, one may consider a geometrical description
as a final, effective description which, when achieved, has erased the physical mechanisms
at its origin, providing us with the result, geometrical, of all the forces having shaped it.
A striking illustration of this claim can be learned out of the approach outlined in [1]. That
is, however elegant and satisfying in some respects, a geometrical description may hide
some fundamental physical principle at the origin of a given phenomenon.

In this article, our intention is to unfold somewhat the kind of geometrical description
alluded to above, so as to pin up the mechanism and/or principle responsible for the non-
trivial differential ageing phenomenon. One may think, in effect, that present days technolo-
gies have shed new and decisive lights on questions that pure speculations revealed unable
to fully elucidate. And it is conceivable that here is also one of the most compelling reason
at the origin of a so long and vivid controversy. After all, “Science, has the same age as its
technology”, Wisdom says.

A rapid review of the twin paradox is given in Sect. 2. To begin with, Sect. 3 considers a
confusion at the origin of the famous paradox; in order to preserve a long used terminology,
the paradox appellation is re-defined. Then, for the sake of a later geometrical synthesis, the
closely related Thomas-Wigner rotations phenomenon is introduced. Eventually the defin-
ition of the proper-time lapse functional is given. Within elementary differential geometry
settings, the matter of Sect. 4 is the relation of the re-qualified twin paradox to the principle
of causality, and Sect. 5 concludes the article.

2 Paradox Settings

As is well known, the famous paradox lies in its reciprocity. For either twin, in effect, non-
trivial differential ageing should manifest itself in exactly the same way, an obvious contra-
diction if the phenomenon is to be real. That is, the matter of reciprocity is to be examined
with the one of reality.

Is this a sound consideration? A glance at History, even recent enough, should let no
doubt about the answer [3]. Major physicists, as well as philosophers, have long thought
of relativistic effects in terms of appearances, to fade away as soon as real comparisons of
twins or clocks are duly achieved [6, 10]. Indeed, nothing in the special relativity formalism
could prevent them to think so, quite on the contrary. From the onset, in effect, clocks and
rods are assumed to be identical, in all of the inertial frames of reference (see [23], for
example, pp. 72, 82 and 88, note 13).

In this respect, one may notice that even recent enough terminologies, like the one of par-
allax effects for time dilatation factors, for example, entail that connotation of appearances,
though in a context where the relation real/apparent is clearly exposed [15].

It would seem that the issue of reality should be disposed of easily. In effect, if special
relativity parallax effects are nothing but pure appearances, then, the latter could simply
fade away at the worldlines intersecting points: H. Bergson and H. Dingle are right (to
make a long story short!), there is neither any real differential ageing, nor any paradox
whatsoever. If on the contrary the so-called parallax effects are real, in the sense of persistent
and actually measurable, then differential ageing is real in the same acceptation, and an
established reciprocity (symmetry) or non-reciprocity (asymmetry) has to be explained.

At first, it is important to point out a confusion at the origin of the idea of a symmetrical
and paradoxical case.
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3 Parallax and Paradox

3.1 A Historical Avatar

It is worth recalling how the idea of a paradox emerged and developed. As recently put forth
in much details [23], standard special relativity formalisms are mixtures of Einstein’s kine-
matics and Poincaré’s group theory, that is, the group of scalar boosts in a given direction,
which is a commutative one dimensional group.

This remark elucidates a part of the twin controversy, because it has long reduced the
paradox discussions to an effective 1 time + 1 space dimensional case. There, as compared
to the 1 time + 2 or 3 space dimension case to be discussed, the inertial frames reciprocity
is so naturally preserved, that it is not easy to figure out how an asymmetrical twin situation
could possibly show up.

By inertial frames reciprocity, the following is meant. For any two given inertial frames
of reference, K(v) and K ′(v′) (a third inertial laboratory frame, K0, being understood with
respect to which v and v′ make sense), K ′(v′) is seen from K(v) the same, still opposite
way, as K(v) is seen from K ′(v′), in agreement with the postulated equivalence of inertial
frames [2, 11].

Literature keeps track of that difficulty, which H. Bergson and H. Dingle, for example,
could not think of another way than by appealing to appearances. A part of truth was indeed
contained in their point of view, the clue being that instead of a genuine paradoxical situ-
ation, to be re-defined shortly, the situation here is rather that of a parallax effect. Parallax
effects are not Lorentz invariants, and may be thought of as appearances. But then, an im-
portant proviso should be made: these appearances give rise to persistent, really measurable
effects, just like their 3-euclidean space homologous do.

Facts observed long ago in elementary particles accelerators are relevant to this situation.
The textbook example of π -meson beams can help fixing the idea and the terminology. At a
speed close to c, the π -mesons travel over distances corresponding to life-durations which
can be a hundred times longer than their lifetimes of 10−8 s. This is a physically measurable
effect, and a persistent one since it is even used to keep the π -meson factory away from the
experimental zone.

However, there is nothing more here than a pure parallax effect, due to the fact that
the 1 time + 1 space laboratory axes are hyperbolically rotated with respect to the inertial
beam spatio-temporal axes: the laboratory life-duration measurement is not performed in
the π -meson beam proper-frame, and provides the real measurement of a real parallax ef-
fect [16, 23]. Under the exchange of inertial reference frames, the perfect symmetry of this
parallax effect has led to the idea of a paradox when clocks (twins) had both to run fast with
respect to the other!

Now, concerning Lorentz invariant quantities, there is no paradox nor any asymmetry.
Proper-time lapses are the same in either cases, and a beam-embarked clock would deliver
the same indication as a laboratory one, an averaged lifetime of 10−8 s (the development to
come may suggest that there is more to say about this example which is reduced here to a
somewhat academic form. This form however, is sufficient to our immediate purpose)

Though sometimes misleading, Science does not often revoke its original terminologies,
and we will keep using the word of “paradox”. In the present case, however, it seems ap-
propriate to reserve the paradoxical epithet for those situations involving invariant quantities
only. In this way, any risk of confusion with parallax effects is avoided, right from the on-
set. In the more elaborate case of general relativity, a twin paradoxical situation will be
translated into the terms of the present article’s introduction: two point-events of a given
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spacetime manifold can be joined by arcs corresponding to different proper-time intervals
. . . a still rather counter-intuitive fact indeed, and a one already present at the more elemen-
tary scale of Minkowski space geometry, as we will see.

3.2 A Closely Related and Remarkable Mechanism

Other specific relativistic effects are worth of attention in themselves, as well as in their re-
lation to the twin paradox. Since only certain quadratic combinations of them form invariant
quantities, relativistic theories do not really discriminate spatial from temporal coordinates.
This is clearly read off a most classical transformation formulae like

x ′ = γ (x − vt), y ′ = y, z′ = z, ct ′ = γ

(
ct − vx

c

)
(1)

At the level of spatial coordinates, this symmetry could have helped anticipating the ex-
istence of the non trivial behaviours that are known presently under the spell of Thomas-
Wigner rotations.

At one more spatial dimensions in effect (2 instead of 1), the situation begins to change
in many respects. Considered from the laboratory frame K0, two successive boosts, K0 →
K(�v) → K ′( �v′), may have non-collinear velocity vectors, and then, the 1-space unescapable
inertial frames reciprocity looks jeopardized because from K0, K ′( �v′) is no longer seen the
same, still opposite way, as K0 is seen from K ′( �v′)!

With the axes of K(�v) taken parallel to those of K0, and the axes of K ′( �v′), parallel to
those of K(�v), it is assumed that �v is along the Ox direction of K0, and �v′ = d �v, along the
Oy direction of K(�v). Then, the K0 versus K ′ relative velocity, expressed in K ′ and in K0,
points to different directions. An expression like

dθ = |d�vOy |
|�vOx |

⎛
⎝1 −

√
1 − �v2

Ox

c2

⎞
⎠ (2)

is a typical textbook equation, which to first order, accounts for such an angular difference
[2, 11]. This shows that contrarily to the non-relativistic case, inertial frames parallelism is
not a transitive relation in special relativity theory.

In view of this, the simplest way to recover an essential inertial frames reciprocity, con-
sists in stating that seen from K0, the spatial axes of K ′( �v′) have rotated some angle dθ [16].

Now, an important point is that the Thomas-Wigner rotation also defines a fundamen-
tal connection between the invariant element of inertial frame proper-orientation, dθ , and
the invariant element of proper-time, dτ . In the most general circumstances, corresponding
to compositions of boosts along different directions, both non-exact differential forms are
simply proportional

dθ = ωth dτ (3)

where dτ , is the element of proper-time of K(�v) (or of K ′( �v′), at this order), and where,
along a given worldline, ωth is the instantaneous Thomas-Wigner rotation velocity.

From this “spatial side”, the character of reality is manifest, and bears on Lorentz invari-
ant quantities. The following is meant. Right after Thomas subtle discovery, it has become
possible to find out a missing factor of 1/2 (and not simply corrections of order v2/c2)
reconciling some fine structure of alkalis doublets calculations, with the corresponding ex-
perimental results.
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Today, accurate technologies, such as the Global Positioning System rely also on the
soundness, persistence and reality of Thomas-Wigner rotations at any scale [3]. Likewise,
in [13], new quantum mechanical phenomena are also presented in their relation to the
Thomas-Wigner rotation. Indeed, the reason for such a universality is that Thomas-Wigner
rotations are pure kinematical effects, and do not depend on the scale or dynamics of the
situation considered.

3.3 The Proper-Time Line Functional

It matters to specify how are defined the proper-time lapses. They are defined by means of
a stratagem first proposed by A. Einstein and since then, reformulated the same by others,
like A. Schild for example [24]. The stratagem consists in: “. . . imagining an infinity of iner-
tial frames moving uniformly, relative to the laboratory frame, one of which instantaneously
matching the velocity of the considered system, a twin, a clock, a particle. . . ” (23). Consid-
ering C , a worldline of the spacetime manifold M, the proper-time lapse along it is the line
functional

�(C; R) =
∫

dτC/R(p), ∀p ∈ C (4)

where R stands for some inertial “laboratory” frame of reference. R is arbitrary, but con-
veniently choosen in practice. Thanks to the above procedure, it is worth noticing that the
proper-time line functional is a mathematically well defined quantity for any worldline. In
particular, it is consistent, irrespective of the global spacetime manifold geometry. Gravi-
tation/curvature, if any, must show up as an emergent or reconstructed effect, once admit-
ted the equivalence principle (if gravitation is to be accounted for by general relativity, of
course) [22]. Moreover, as noticed by A. Schild, since in (4), dτ ′s add up to dτ ′s, no clock’s
synchronization difficulties are met along this procedure.

At the formal level, the stratagem finds a natural setting within the framework of differ-
ential geometry, in particular with the notions of tangent and cotangent fiber-bundles over a
manifold. Eventually, contrarily to what can be read in the literature sometimes [23], accel-
erations are not erased by the procedure. This point will be made explicit in (17).

Considering C′, another worldline with two points in common with C , say 0 and ι, (4)
will produce a differential aging result of

�(C, C′; R) =
∫ ι

0
dτC/R(p) −

∫ ι

0
dτC′/R(p′) ≡ δT (5)

As will be seen shortly, this result is non vanishing because of the path 4-velocity and 4-
acceleration dependences which differentiate C from C′ in the general case. It accounts for
any acceptable twin paradox and associated asymmetry, in the following sense. Exchanging
C′ and C just amounts, as it should, to change δT into −δT . This is in contradistinction
to the pure parallax effect of Sect. 3.1, where such an exchange, leaving the (non-Lorentz
invariant) measure of life-duration unaffected, had motivated the original idea of a paradox.

4 Twin Paradox and Causality

The tight connection which relates the non trivial differential ageing phenomenon to the
principle of causality is worth exploring. To do so, an important result must be recalled, and
a few geometrical tools introduced.
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4.1 A Theorem

The spacetime manifold M is assumed to be the connected 4D orientable affine Minkowski
spacetime, M , endowed with a time-arrow. At any point p of the spacetime manifold M , the
tangent space, TpM is assumed to be the vectorial Minkowski spacetime M.

A partial ordering can be defined on M , the affine Minkowski spacetime over the vecto-
rial one, M. This partial ordering expresses the principle of causality, attached to

(i) the existence of a finite speed limit concerning energy/information transfers, and
(ii) the existence of a time-arrow on M .

Writing x < y, if an event at x can influence another event at y, we will write [28],

x < y ⇐⇒ Q(y − x) ≡ (y0 − x0)
2 − (�y − �x)2 > 0, and y0 − x0 > 0 (6)

Let f be a function, not even assumed to be linear or continuous, defining a one-to-one
mapping of M into itself. If f and f −1 preserve the partial ordering (6), in the very sense
that

∀x, y ∈ M, x < y 
⇒ f (x) < f (y) and f −1(x) < f −1(y) (7)

then, f is said to be a causal automorphism of M .
Causal automorphisms of M form a group, G , the M-causality group, and a theorem

states that at 3 spatial dimensions, the Minkowski space causality group G , coïncides with
the inhomogeneous orthochronous Lorentz group, augmented with dilatations of M (multi-
plication by a scalar) [28].

4.2 A Few Geometrical Tools

We have assumed an absolute [7] affine Minkowski spacetime manifold, M , made out of
event-points. Now, this one and absolute History can be reported to many different space
and time projections, at many different points choosen as origins.

Note that the partial ordering (6) itself, relies on an implicit temporal/spatial separation
of the possible coordinates defined on M . Now, M is a spacetime entity, whose projection on
temporal and spatial dimensions is not given a priori. A canonical procedure exists, though,
which, given a unit timelike vector u, allows to decompose any vector v ∈ M into the direct
sum of two pieces

v = (v · u)u ⊕ (v − (v · u)u) (8)

These two pieces can be defined the temporal and spatial components of v relative to u, and
the decomposition (8) is frequently given the name of a splitting of v. Concerning the twin
problem, the following related aspects are worth putting forth.

(i) In Minkowski spacetime, timelike worldlines play a most important role because they
have been proved to “encode” the geometrical, differential and topological structures
of M [17]. This is why the space and time projections of M relative to the 4-velocity
field of a timelike worldline are of special interest. And this is particularly so for the
twin paradox under consideration.

(ii) In the latter situation in effect, the travelling twin goes along a timelike worldline C ∈
M , image of a twice differentiable mapping r(s) of an interval of R, [si, sf ], into M .
To this timelike worldline are associated a 4-velocity field, ṙ(s) and a 4-acceleration
field, r̈(s). This means that at each instant s, the traveller disposes of a space and time
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ṙ(s)-projection of M , hereafter denoted by Mr(s), which is the vectorial space Mṙ(s)

endowed with the point r(s) choosen as the origin.
(iii) The vectorial space Mṙ(s) is of course identical to M, the vectorial Minkowski space,

since both are made out of vectors that are geometrical frame-independent objects.
However, vectors are not known in themselves, but solely through the projections which
determine their components relative, here, to a given 4-velocity field, ṙ(s). In other
words, M and Mṙ(s) are identical with respect to their content, and still define different
physical spaces, because their commun content is captured by means of different space
and time projections.

In the literature, past and recent, these remarks allow to pin a most frequently overlooked
consequence. So long as M and Mṙ(s) are not put into correspondence some way or other,
there is no possible comparison of vectors belonging to M to vectors of Mṙ(s) (in the re-
cent years, for example, neglecting this fact has lead to another relativistic paradoxical case
known as “the velocity addition paradox” (in [20]).

Such a correspondence is proposed now.
Let Mu and Mu′ be two spaces tangent to M at points p and p′ respectively. The space

and time projections of M are performed along the unit 4-velocity vectors u at p, and u′ at
p′ and they define the spaces Mu and Mu′ . We will here propose that a natural correspon-
dence between the spaces Mu and Mu′ be provided by the pure boost from u to u′, whose
geometrical, frame-independent expression reads [5, 20]

B(u′, u) = 1 − (u′ + u) ⊗ (u′ + u)

1 + u′ · u + 2u′ ⊗ u (9)

The scalar product of (9) is given by the metric g = diag (+1,−1,−1,−1), and the symbol
u′ ⊗ u stands for the linear mapping of M into itself,

∀x,u,u′ ∈ M, u′ ⊗ u : x −→ u′(u · x) (10)

The linear bijection so established possesses several interesting properties. It preserves
(1) the scalar product g, (2) the orientation of M and, (3) its time-arrow. Eventually, it allows
to compare spatial 3-vectors which belong to different inertial spacetimes, and to define a
notion of physical equality (and parallelism) for these vectors.

This point deserves a few words of explanation. Let Eu (Eu′ ) be the simultaneity local
space of an observer located at point p(p′) with 4-velocity u(u′). These 3-dimensional linear
spacelike subspaces of M satisfy a definition, Eu = {x ∈ M| x · u = 0} which comes from
the Einstein synchronization procedure. Considering v ∈ Eu and w ∈ Eu′ , v and w will be
said to be physically equal if the relation v = B(u,u′)w holds (on account of this relation
of physical equality, it is worth pointing out that the velocity addition paradox alluded to
above, finds an elegant and consistent solution (in [20]).

The physical equality so defined is reflexive, B(u′, u)−1 = B(u,u′), but it is not transitive.
Referred to the coordinate axes of a given inertial space, those of the “stayed home twin”
for example, the Thomas-Wigner rotation is an expression of this non-transitivity. For any
3 non-coplanar 4-velocity vectors, u, u′ and u′′ (equivalent to 2 non-collinear relative 3-
velocities), the composition of 3 successive boosts, without rotation, is not a boost without
rotation . . . but a rotation without boost!

B(u,u′′) ◦ B(u′′, u′) ◦ B(u′, u) = Ru(u
′, u′′) (11)
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Qualifying the three vectors, u,u′ and u′′ so as to get the two relative velocities, �vOx and
d�vOy of Sect. 3.2, one can check that the above Ru(u

′, u′′) just reproduces the Thomas-
Wigner rotation of (2), while providing it with a rigourous derivation: in textbooks in effect,
it is tacitly assumed that 3-vectors, elements of Eu-spaces, undergo trivial parallel displace-
ments, as if they were immersed in some larger ambient euclidean space.

Before using these elements, an important remark is in order.
However natural the isomorphism (9) may be, it does not proceed from first principles

and would not provide a canonical correspondence between Mu and Mu′ spaces [5, p. 261].
This is because the correspondence based on (9) integrates a peculiar convention of syn-
chronization, the Einstein convention, when several others look possible [9]. But on the
other hand, it has been recognized recently how inherent to the relativity theory the Ein-
stein’s convention must be regarded: to be really consistent, a change of convention should
only be thought of within a full modification of the relativity theory itself [19].

4.3 Application to the Twins

For the sake of twin paradox, M , the Minkowski spacetime will be referred to the inertial
stayed home twin space with corresponding constant 4-velocity field u0: M-time is therefore
u0-time, and M-space, the u0-space [20]. M is thus the point O-referred affine Minkowski
spacetime over Mu0 .

It is endowed with a pseudo-distance d , defined through the Lorentzian non degenerate
quadratic form Q of (6),

∀p,p′ ∈ M, d(p,p′) = Q(p − p′) (12)

As advertised, the travelling twin history is accounted for by a mapping r(s) of an interval
[si, sf ] into M , whose range is the twin’s worldline C = {r(s) | s ∈ [si, sf ] ⊂ R}.

With r(si) = O , the mapping r(s) satisfies relations which identify s to the traveller
proper-time:

∀s ∈ [si, sf ], dr(s)

ds
≡ ṙ(s), ṙ2(s) ≡ ṙ(s)·ṙ(s) ≡ g(ṙ(s), ṙ(s)) = Q(ṙ(s)) = 1 (13)

The usual frame-independent relation of M-time, t , to s reads

dt = u0 · ṙ(s) ds (14)

and besides r(si) = O , there is no loss of generality in completing the “initial data” of the
travelling twin journey with the condition ṙ(si) = u0 (this corresponds solely to a given
experimental protocol).

In this geometrical setting, it is easy to see that the causal relations of M pass to Mr(s),
the instantaneous traveller’s Minkowski spacetime. That is, if x and y are any two events
of M such that the causal relation (6) holds, i.e. x < y, then the same relation holds also
in Mr(s).

The following proof can be given.
The difference of points y and x, elements of the affine space M , defines a vector of M,

y − x, that is a geometrical frame-independent object (point (iii) after (8)). Since the metric
tensor g is constant over M , its length, Q(y − x), does not depend on the point r(s) where
it is taken, and it is conserved.

Further, we denote by I +, the future-directed part of the light-cone at r(si). By definition
of C , a continuous future-directed timelike worldline, for all s ∈ [si, sf ], one has ṙ(s) ∈ I +.
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Now, ṙ(si) and ṙ(s) are timelike 4-vectors, and so is v = y − x in virtue of the hypothesis
x < y, which tells also that v · ṙ(si) ≡ v0(si) > 0. Then, one can rely on the following
Lemma: two timelike vectors a and b belong to the same I ± part of the light-cone if and
only if a · b > 0, in order to conclude that v · ṙ(s) ≡ v0(s) > 0, and complete the proof that
the causal order of M passes to Mr(s).

That is, for all s ∈ [si, sf ], a causal isomorphism can be found, ϕs,si : Mr(si ) → Mr(s),
sending the Mr(si ) base-point, r(si) = O , onto the base-point of Mr(s), and mapping the (O-
and ṙ(si) -referred) partial ordering (6) of Mr(si ), onto the (r(s)- and ṙ(s) -referred) partial
ordering (6) of Mr(s),

∀q ∈ Mr(si ), ϕs,si (q) ∈ Mr(s), ϕs,si (q) − r(s) = Ls,si (q − r(si)) (15)

where, in virtue of Sect. 4.1 (and of the equivalence of active and passive points of view),
Ls,si is an element of L↑

+, the homogeneous orthochronous Lorentz group, or a dilatation,
which, both, act on vectors of Mṙ(si ) (≡ M).

In view of the Einstein stratagem of Sect. 3.3, the Ls,si can be further specified, and to
do so, it is crucial to make contact with the closely related mechanism of Sect. 3.2, the
Thomas-Wigner rotations.

At base-point r(si) = O , one can attach a tetrad of orthonormal basis vectors spanning
the vectorial Minkowski space Mṙ(si ) = M, the set {e0(si) ≡ ṙ(si), ej (si); j = 1,2,3}. If the
mapping r(s) is of class C4, the tetrad can be constructed along the Serret-Frenet procedure
which extracts the basis vectors out of the first four differentiations of r(s) with respect
to s. Identifying e0(s) with ṙ(s), at all proper instant s, the tetrad of Serret-Frenet complies
with the Einstein stratagem of Sect. 3.3 which requires the same identification. The other
three spacelike vectors, ej (s), j = 1,2,3, can be physically realized as gyroscopes on C ,
and formally thought of as gyroscopic vectors on r(s) [21, 26].

For all s, in effect, one has by construction of the tetrad

(e0(s) ≡ ṙ(s))2 = 1, ṙ(s) · ej (s) = 0, ei(s) · ej (s) = −δij (16)

Since the affine Minkowski spacetimes Mr(si ) and Mr(s) are mapped into each other by
the causal isomorphism ϕs,si , the tetrad {ϕs,si ∗ e0(si), ϕs,si ∗ ej (si); j = 1,2,3} spans the
vectorial Minkowski space Mṙ(s), where, in a standard notation, ϕs,si ∗ is the differential of
the application ϕs,si , at r(si). That is, ϕs,si ∗ = Ls,si , in view of (15).

When relations (16) are satisfied, the tetrad is said to be Fermi-Walker transported
along C , and for the tangent mapping ϕs,si ∗, one gets for all s ∈ [si, sf ]

Ls,si = T exp
∫ s

si

ds ′ ṙ(s ′) ∧ r̈(s ′) (17)

where the symbol a ∧ b is a shortand standard notation for the antisymmetric product

∀z ∈ M, (ṙ ∧ r̈)z = ṙ(r̈ · z) − r̈(ṙ · z) (18)

and where the symbol T stands for a prescription of time-ordering, because taken at different
times, Fermi-Walker operators, ṙ(s ′) ∧ r̈(s ′), do not commute.

This can be seen as follows.
As (16) is satisfied, one can define a compass, a couple (r, ej ) of mappings, where ej is

a vector-valued function of s ∈ [si, sf ] on the worldline r [21, 26]. For all j = 1,2,3, the
stratagem of 3.3, makes of (r, ej ) a locally inertial compass, or, a gyrovector. This means
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that as vectors on r , the ej ’s remain locally equal to themselves, preserving their own proper
directions. Within the terms of Sect. 4.1, the physical equality of ej (s + ds) ∈ Mṙ(s+ds) and
ej (s) ∈ Mṙ(s) reads ej (s + ds) = B(ṙ(s + ds), ṙ(s))ej (s). Iterating the latter relation from
proper instant si to s, it is immediate to realize that the tangent mapping Ls,si is made out of
a string of infinitesimal boosts ranging from si to s, along C ,

Ls,si = B(ṙ(s), ṙ(s − ds)) ◦ · · · ◦ B(ṙ(si + ds), ṙ(si))

� T

s∏
s′=si

◦ (
1 + ds ′(ṙ(s ′) ∧ r̈(s ′))

)
(19)

where the second equality is approximated at first order in the proper-time increment ds ′.
Then, a first order differential equation is readily formed out of (19), for Ls,si , whose solution
at initial condition Ls=si ,si = 1, is given by (17).

In the proof just given, the all important point is that the physical equality of the ej ’s
holds in a local sense, and not globally. Note also that a correct identification of the tangent
mapping makes it mandatory to take the full tetrad evolution into account: a relation such as
e0(s) ≡ ṙ(s) = B(ṙ(s), ṙ(si))ṙ(si), while being satisfied also by Ls,si , does not extend to the
other three spacelike basis vectors, the ej (s) at j �= 0.

Now, we possess all of the elements that are necessary to a complete description of the
twin’s histories. To summarize, a causal series of M-automorphisms can be constructed, the
{ϕs,si ; s ∈ [si, sf ]}, which entails the travelling twin timelike worldline,

{ϕs,si (r(si)) | s ∈ [si, sf ]} = {r(s) | s ∈ [si, sf ]} = C (20)

the instantaneous, frame-independent relation of M-time to Mr(s)-time, expressed as

dt = ṙ(si) · ϕs,si ∗(ṙ(si))ds (21)

as well as the instantaneous Thomas-Wigner rotation of the spatial coordinate axes,
the ej (s), with respect to the stayed home twin axes, provided that e0(s) = ṙ(si). This con-
dition, in effect, is mandatory in order to have identical 3-dimensional spaces, and define
meaningful rotations [21, 29],

ej (s) = ϕs,si ∗(ej (si)), s ∈ [si, sf ], j = 1,2,3. (22)

In the end, one and the same causal series, {ϕs,si ; s ∈ [si, sf ]}, encodes not only the con-
tinuous timelike curve C itself (20), but also all of its local (differential) and global (inte-
grated) characteristics:

– The fact that the twin’s spaces may be found rotated with respect to each other, even
though no torque has been met during the trip, (22).

– The non-trivial differential ageing phenomenon, by integration along C of the non-exact
differential proper-time 1-form (21). Effectively, an equality of proper-time lapses, tf − ti
and sf − si does not hold in the general case where one has, if again ṙ(sf ) = ṙ(si),

∫ sf

si

dt (s) = t (sf ) − t (si) ≡ tf − ti =
∫

C
sf

si

dsṙ(si) · ϕs,si ∗(ṙ(si)) ≥ sf − si (23)

for those of the tangent automorphisms, ϕs,si ∗ that are in L↑
+. If, instead, ϕs,si ∗ are con-

tractions, i.e., dilatations by factors smaller than 1, then the opposite relation obviously
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results, of tf − ti < sf − si , indicating that causality alone does not tell whom, of either
twin, is ageing faster.

Note that (23) is more familiar if we keep in mind that the scalar product ṙ(si) ·
ϕs,si ∗(ṙ(si)) can be thought of as the usual γ factor of

√
1 − �v2(s)/c2

−1 ≥ 1. However,
this sends us back to the paradigm of inertial frames of reference and their relative uniform
velocities, whereas in the present geometrical context (23) enjoys a direct derivation where
causality is the key argument.

The proof is as follows.
Causality is implemented on M through the partial ordering relation (6), that is, through

the Lorentzian non-degenerate quadratic form Q, or, identically, the scalar product g. Now,
because ṙ(si) is timelike, the inverted Cauchy-Schwarz inequality holds,

∀v ∈ M, g(ṙ(si), ṙ(si)) × g(v, v) ≤ g2(ṙ(si), v) (24)

where there is equality whenever v and ṙ(si) are linearly dependent. Furthermore, since
ṙ(si) is of unit length (ṙ2(si) = 1), for those of the tangent automorphisms ϕs,si ∗ that are
in L↑

+, one has ṙ(si) · ϕs,si ∗(ṙ(si)) ≥ 1 in view of (24), and the twin paradox (23) follows.
We can conclude this section with two remarks, the first of which on the role of acceler-

ation, the second one, on two extra and implicit ingredients at the origin of the re-qualified
twin paradox (23).

(i) In the twin paradox, in effect, accelerations have been the matter of long debates [9].
In (23), the integrand may be made explicit with the help of (15) and (17), and reads

ṙ(si) ·
(

T exp
∫ s

si

ds ′ṙ(s ′) ∧ r̈(s ′)
)

ṙ(si) (25)

Then, it appears clearly that if the 4-acceleration field of the travelling twin worldline is
identically zero, then tf − ti = sf − si , and there is no differential ageing whatsoever.

In Minkowski spacetime, a flat manifold, this point has long been understood as due to
the unescapable necessity for the travelling twin to accelerate in order to come back and meet
his brother again. A disymmetry shows up between the twin’s worldlines, and a non-trivial
differential ageing becomes possible.

(ii) Staring at (23), one may notice two implicit, essential ingredients entering the twin
paradox recepee, with, first, in the right hand side, a chronogeometrical axiom according to
which the geometrical elements of length divided by c,

√
ds2/c2, do coincide with times

recorded by (ideal) clocks, that is their proper-times,
√

dτ 2. And then, on the simpler left
hand side, the (conventional) differential standard of time, taken out of inertial motion, and
defined so as motion looks simple [22].

In effect, given any two timelike worldlines C and C′, with two intersecting points in
common, O and ι, a standard of time, inertial here, allows a consistent comparison of their
respective lengths between O and ι. And provided the initial and final absolute 4-velocities
coincide, one obtains an invariant well defined result. In (4) and (5), this point was meant
by explicitly quoting the reference to some arbitrary inertial frame, R. In the lack of such a
standard of time, it seems impossible to decide which of either twin is ageing faster. More
precisely, each twin can equally draw the same conclusion concerning his brother, and a
definite motion must be choosen as a standard reference for time, so as to break a new sym-
metrical, still undefined case. This point could be worth analyzing in more details elsewhere,
in view of its relations to other aspects of relativity theories.
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5 Discussion

Since it was launched by P. Langevin in 1911 (and was indeed explicit in the Einstein’s
1905 famous article), the twin paradox has been at the origin of more than 25,000 articles
in the literature. The paradox proper framework was soon identified with general relativity
theory because of accelerations to be considered along a twin worldline, at least. This point
of view was adopted by Einstein and supported by M. Planck. However, it has long been
recognized to be at fault, for both theoretical and experimental reasons [22]. In particular,
as long known by particle physicists, accelerations can be consistently dealt with in flat
spacetime manifolds, and should no way be mistaken for gravitation [7, 22].

In this article, our intention has been to look for the principle at the origin of a so counter-
intuitive, but established fact as “the non-trivial differential ageing phenomenon”. And to
this end, it was certainly appropriate to look for such a principle in the simpler structure
where the phenomenon is manifest, that is over the local scale of a Minkowski spacetime
manifold. It is worth noticing that long ago, A. Schild had also developed serious arguments
in favour of this point of view [24].

At first, the twin paradox has been re-qualified into the fact of path-functional dependence
of proper-time lapses, while preserving the name so as to keep in touch with the original
terminology.

In the end, we have seen that, given a chronogeometrical hypothesis and a definite con-
vention of time, then, one and the same series of M-causal automorphisms contained all of
the local and global physical properties of the paradoxical case. Not only the non-trivial dif-
ferential ageing phenomenon itself, but also the somewhat related Thomas-Wigner rotations.
These are the ingredients of the re-qualified twin paradox.

Ten years ago, causality was advocated to provide a global constraint on the possible
twins histories, labelled, each, by some experimental/theoretical synchronization device [9].
Here, more than an overall constraint on the twin’s histories, one can see how the sole prin-
ciple of causality stands at the very source of the twin paradox. That is, how preservation of
causality along continuous timelike worldlines necessarily involves an explicit dependence
of proper-time lapses on the paths 4-velocity and 4-acceleration fields.

In this respect, the famous paradox may be looked upon in analogy with those situa-
tions encountered in Mathematics, where unquestionable axioms can sometimes generate
counter-intuitive . . . if not “paradoxical” consequences [12].

Now it is obvious that contrarily to the Galilean case, the causality dealt with in this ar-
ticle comes from the existence of a finite speed limit to the energy and information transfers
on M . So that eventually, the twin paradox (and beyond, the whole special relativity theory
itself) should be understood as a consequence of the existence a finite speed limit on M .

This point of view complies with that of Malament 1986, whose considerations start
from general relativity. In particular the relation of general relativity to Newtonian physics
is investigated, and the all important difference between the two theories comes out to be
that the maximal speed goes from finite to infinite. A noticeable by-product of the analysis
is that in the limiting process, the proper-time non-exact differential becomes exact, and that
the twin paradox disappears accordingly.

This begs the question of knowing how to set up the existence of such a limit. As well
known, such a limit was originally postulated by Einstein together with the principle of
relativity; the experimental support being the famous Michelson-Morley experiment. Later
on, the sole principle of relativity, in particular its group structure requirements, revealed
sufficient a constraint to infer the existence of a universal constant with the dimensions
of a velocity [8, 15]. The latter has been identified with the velocity of electromagnetic
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waves propagation in the vacuum, but this identification is not mandatory [14]. Along this
route though, in order to develop the full special relativity theory, one has to consider extra
assumptions like linearity, spacetime homogeneity, space isotropy [8, 15], some of them
hard to support nowadays (E. Bois, private communication).

As clearly stated by Zeeman’s theorem, such is not the case if one posits a finite speed
limit in M . In terms of postulates, this may be the more economic way to establish and
develop the relativity formalisms. This appears the more so as, starting from general rel-
ativity, all of the so peculiar relativistic features fade away as the infinite speed limit is
taken [18]. The issue of a finite speed limit is therefore of utmost importance in physics, and
it is a formidable challenge, from experimental, theoretical and epistemological standpoints.
However, one must acknowledge that this position is not shared by all authors. For example,
in a recent presentation of relativity theory [25], it is explained that “. . . (the speed of ) light
has nothing to do with the essence of relativity”, and a construction is proposed to display
how “natural” is the Minkowskian character of our spacetime environment! We would rather
think of it as a somewhat involved (re-)construction, though, and simply remind that when
he discovered his theory under the Minkowskian formulation, A. Einstein had experienced
some difficulties at recognizing it!
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