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Mathematial Clari�ation of General Relativisti Variational Priniples

Mathematial Clari�ation of General RelativistiVariational PriniplesAndrás LÁSZLÓEötvös University, Budapest, Hungarylaszloa�szofi.elte.huAbstratIn this paper a mathematially preise global (i.e. not the usual loal) approah is pre-sented to the variational priniples of general relativisti lassial �eld theories.Problems of the lassi (usual) approahes are also disussed in omparison.The aim of developing a global approah is to provide a possible tool for future e�ortson proving global existene theorems of �eld theoretial solutions.1 IntrodutionAs one an �nd out from physis and mathematis literature, the known variational formulationsof general relativisti lassial �eld theories an be divided into three lasses. These lasses di�erin the de�nition of the ation funtional (in the de�nition of the integration domain of the ationfuntional), and in the notion of variation.1The �rst lass of approahes speify the ation funtional as an integral of a Lagrange form2over the spaetime manifold. This approah is mathematially ill de�ned, as the ation woulddiverge for some quite physial (e.g. stationary) �eld on�gurations, in general. (This fat anbe shown expliitly on spei� examples.)The seond lass spei�es the ation as the integral of the Lagrange form on a given ompatsubset of the spaetime manifold. The variation is then de�ned by using one-parameter familiesof �eld on�gurations (see e.g. [5℄, [8℄). This means a Gateaux-like notion of derivative.The third lass de�nes the ation funtional as the integral of the Lagrange form on thespaetime domain between two given time-slie. As time-slies may be nonompat in general,ertain fall-o� properties have to be introdued on the �eld on�gurations in order to makesense of the ation (otherwise, the ation ould diverge for spei� on�gurations). Afterspeifying appropriate regularity onditions, one an de�ne a natural Ck-type supremum normequivalene lass (for some nonnegative integer k), and the variation is simply de�ned as the(Fréhet) derivative of the ation funtional (with respet to this norm equivalene lass).1The onept of variation of the ation funtional is a notion of a kind of derivative. Some of the approahesuse one-parameter families of �eld on�gurations to de�ne the variation of the ation funtional. This derivative-like notion resembles to the Gateaux derivative (diretional derivative). Other approahes use more adequatenotion for the variation, whih orresponds to the Fréhet derivative (lassi derivative of a map between anormed a�ne spae and a topologial vetor spae, based on the notion of ordo funtions).2We all the produt of the Lagrangian density and the volume form the Lagrange form.1
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Mathematial Clari�ation of General Relativisti Variational PriniplesAll the three approahes have ertain undesired properties. The �rst formulation, as pointedout, is mathematially ill de�ned. The seond one is a loal kind of formulation, and the notionof variation is Gateaux-like. The Gateaux-like derivative is a muh weaker notion than theFréhet derivative: the most powerful tools in di�erential alulus (e.g. the Taylor formulas,some ritial point theorems et.) only work with Fréhet type derivative.3 Apart from thisargument of mathematial inelegane, we will disuss a further problem of this approah inSetion 3.2.2 (the argument of non-onstrutiveness), whih is in onnetion with boundaryvalue problems. The third approah is semi-global, as it is global in spatial sense, but loal in thetimelike diretion, furthermore the notion of variation is Fréhet type, whih is potentially morepowerful, when trying to prove e.g. some ritial point theorems. However, there are severaldi�ulties onerning this kind of formulation, whih are disussed in the end of Subsetion3.2.2 (the problem of spaetime splitting and the problem of spatial fall-o� onditions).Inspired by the above mentioned problems, we developed a global kind of approah, whihuses Fréhet type notion of variation. The domain of integration an be viewed as the onformalompati�ation of the arising spaetime model, and the notion of variation is simply the(Fréhet) derivative of the ation funtional, with respet to the natural Ck-type supremumnorm equivalene lass (for some nonnegative integer k) on the �eld on�gurations.The presented approah resembles to Palatini formulation of general relativity, as the o-variant derivation is taken to be an independent dynamial �eld quantity. The formalism analso handle theories using ovariant derivations with nonvanishing torsion. A main result on-erning theories with nonvanishing torsion an be found in Setion 4, in Theorem 15 (whihpresents the �eld equations and boundary onstraints for the ase of nonzero torsion).The lass of spaetime manifolds, whih an be generated by this formulation, are theorientable, asymptotially simple models4.A global approah, whih uses Fréhet type notion of variation, an possibly be applied infuture as a tool of proving global existene theorems in general relativisti �eld theories.2 Building up a �eld theory by using variational priniples2.1 Base manifoldLet us take a real C3 manifold M , whih is orientable. M will be alled the base manifold.5Let us use the following notation: m := dimM . In the followings, we will denote by R the realnumbers, and by N the positive integers.3It is also a well known fat, that the Fréhet di�erentiability property of a funtion at a point is a muhstronger ondition than the Gateaux (diretional) di�erentiability. Although, in �nite dimensions, the ontinu-ous Gateaux di�erentiability on an open set is known to be equivalent to the ontinuous Fréhet di�erentiability,this is not true in in�nite dimensions (i.e. in our ase).4In the de�nition of asymptoti simpleness, we do not inlude the ondition of asymptoti emptiness.5The base manifold is going to be the manifold, where the integration is arried out in order to de�ne theation funtional. In the lassi formalism, the base manifold plays the role of spaetime manifold. However, inSetion 4 and 5, we shall arry out an argument that the base manifold should not be diretly interpreted asthe spaetime manifold, but as the so alled onformal ompati�ation of the arising spaetime model. Thus,we do not refer to the base manifold as spaetime manifold.
2



Mathematial Clari�ation of General Relativisti Variational Priniples2.2 Field quantitiesAs usually in a lassial �eld theory, the �eld quantities will be setions of a �xed real vetorbundle over the base manifold, and ovariant derivations over the vetor bundle.6If W (N) is a real C k̆ (k̆ ∈ {0, . . . , k}) vetor bundle over a real Ck manifold N , then the C l(l ∈ {0, . . . , k̆}) setions of it will be denoted by Γl(W (N)). Furthermore let Dl(W (N)) be thespae of C l ovariant derivations over W (N). Let X(N) be a real C k̄ (k̄ ∈ {0, . . . , k}) vetorbundle over N . We use the natural injetion of Dl̆(W (N))×Dl̄(X(N)) into Dl(W (N)×X(N))(l̆, l̄ ∈ {0, . . . ,min(k̆, k̄)} and l ∈ {0, . . . ,min(l̆, l̄)}).Remark 1. Let F (N) be N×R as a real Ck vetor bundle. Let T (N) be the tangent vetorbundle of N as a real Ck vetor bundle. Let W (N) be a real C k̆ (k̆ ∈ {0, . . . , k}) vetor bundle.A C l (l ∈ {0, . . . , k̆}) ovariant derivation in Dl(T (N))×Dl(W (N)) an be uniquely extendedto a C l ovariant derivation over all the mixed tensor and ross produts of F (N), T (N),
W (N) and their duals by requiring the Leibniz rule, the ommutativity with ontration, andthe orrespondene to the exterior derivation on F (N). We an refer to this unique extensionby the original ovariant derivation, beause they determine eah other uniquely. For exampleif s ∈ Γ2(W (N)) and ∇ ∈ D2(T (M))×D2(W (N)), then ∇(∇(s)) is well de�ned, if k and k̆ isgreater or equal to 2.The C l ovariant derivations in Dl(T (N))×Dl(W (N)) form an a�ne spae over the vetorspae of Γl−1

(

T ∗(N)⊗
(

(T (N)⊗T ∗(N))×(W (N)⊗W ∗(N))
)) setions, that is over the vetorspae of the so alled C l−1 diagonal Christo�el tensor �elds of T (N)×W (N). This means, thatif we subtrat two suh ovariant derivation, their ation orresponds to the ation of a C l−1Christo�el tensor �eld of T (N) (that is, to a C l−1 setion of T ∗(N)⊗T (N)⊗T ∗(N)) on thesetions of T (N), and to the ation of a C l−1 Christo�el tensor �eld of W (N) (that is, to a

C l−1 setion of T ∗(N)⊗W (N)⊗W ∗(N)) on the setions of W (N). This fat follows from thebasi properties of the ovariant derivations: we refer to textbooks e.g. [5℄ and [8℄.Let us �x a C3 real vetor bundle V (M) over M . Let us introdue a sub �ber bundle V̆ (M)of the vetor bundle V (M), with the same �ber dimension as V (M) (thus, for eah p ∈ M the�ber V̆p(M) is a sub manifold of Vp(M) with dimension dim(Vp(M))). Let D̆3(T (M), V (M))be a losed sub a�ne spae of the a�ne spae D3(T (M))×D3(V (M)), where the topology isunderstood to be the topology de�ned in De�nition 8 in Subsetion 3.1. The �eld variables ofthe theory are going to be the elements of Γ3(V̆ (M))×D̆3(T (M), V (M)), that is the ovariantderivations are also dynamial.2.3 The Lagrange formWe introdue a entral notion of the variational priniples: the Lagrange form. It is going toreplae the notion of Lagrangian density funtion of the lassi formalism. This notion is wellknown in literature, but there is no generally aepted label for it. (In the lassi formalism,the Lagrange form an be obtained as the produt of the Lagrangian density and the volumeform.)6This kind of notion of �eld quantities is used in the Palatini type formulation of general relativisti variationalproblems. In our approah, the torsion of the ovariant derivation is not assumed to be zero a priori.3



Mathematial Clari�ation of General Relativisti Variational PriniplesLet us take a map
dL : Γ3

(

V̆ (M)
)

×Γ2
(

T ∗(M)⊗V (M)
)

×Γ2
(

2
∧T ∗(M)⊗

(

(T ∗(M)⊗T (M))×(V ∗(M)⊗V (M))
)

)

→ Γ2
(

m
∧T ∗(M)

)whih is pointwise, that is
∀p∈M :

∀v, v
′

∈Γ3(V̆ (M)), w, w
′

∈Γ2(T ∗(M)⊗V (M)),

r, r
′

∈Γ2
(

2
∧T ∗(M)⊗

(

(T ∗(M)⊗T (M))×(V ∗(M)⊗V (M))
)

)

:

(v(p) = v
′

(p) and w(p) = w
′

(p) and r(p) = r
′

(p)) =⇒ dL(v, w, r)(p) = dL(v
′

, w
′

, r
′

)(p).Given suh a map dL, for every p∈M we an naturally de�ne the map
dLp : V̆p(M)×

(

T ∗
p (M)⊗Vp(M)

)

×
(

2
∧T ∗

p (M)⊗
(

(T ∗
p (M)⊗Tp(M))×(V ∗

p (M)⊗Vp(M))
)

)

→
m
∧T ∗

p (M)with the restrition of dL (this new funtion maps between �nite dimensional vetor spaes).If for every p∈M dLp is C2, then we all dL a Lagrange form. (The above requirements mean,that a Lagrange form an also be viewed as a C2 �ber bundle homomorphism.)Remark 2. Let us take a Lagrange form dL. Let us denote the partial derivative of dLp inits r-th variable (r ∈ {1, 2, 3}) by DrdLp (p∈M). Let us take any setion
(v, w, r)∈Γ3(V̆ (M))×Γ2(T ∗(M)⊗V (M))×Γ2

(

2
∧T ∗(M)⊗

(

(T ∗(M)⊗T (M))×(V ∗(M)⊗V (M))
)

)

.Then the derivative DrdLp(vp, wp, rp) (r ∈ {1, 2, 3}) an be viewed as a tensor at p∈M of theappropriate type, beause it is a linear map between the appropriate vetor bundle �bers at
p∈M . Furthermore, the tensor �eld de�ned by p 7→DrdLp(vp, wp, rp) (r ∈ {1, 2, 3}) is C1. Thisfollows from the following fats. The map dLp is C2 for every p∈M . Furthermore, the map
p 7→ dLp(vp, wp, rp) is C2 for every (v, w, r) setion as above. Therefore, by taking a oordinatehart on an open subset of M and trivializations of the appropriate vetor bundles over it, wesee that the funtion dL (taken in oordinates) is C2 in its manifold oordinate variable, and is
C2 in its vetor bundle �ber oordinate variable. Thus, we have that dL (taken in oordinates)possesses the C2 property.7 Therefore, any of its partial derivatives are C1: for example thepartial derivative, whih orresponds to DrdL (r ∈ {1, 2, 3}) is also C1 (in oordinates). Bythis fat, the C1 property of the tensor �eld p 7→DrdLp(vp, wp, rp) (r ∈ {1, 2, 3}) is implied overan arbitrary oordinate neighborhood, thus on the whole manifold.2.4 The ation funtionalThe entral notion of variational priniples is the ation funtional. If one is trying to �ndan elegant formulation of lassial �eld theories, the key step is the proper de�nition of the7This follows from the following theorem: given a map between a �nite produt of �nite dimensional vetorspaes and a �nite dimensional vetor spae, then it is C1 if and only if it is partially C1 all in its variables.4



Mathematial Clari�ation of General Relativisti Variational Priniplesation funtional. The ation is the integral of the Lagrange form on the base manifold or ona properly spei�ed subset of it.8As a Lagrange form dL is volume form �eld valued, given a setion
(v, w, r)∈Γ3(V̆ (M))×Γ2(T ∗(M)⊗V (M))×Γ2

(

2
∧T ∗(M)⊗

(

(T ∗(M)⊗T (M))×(V ∗(M)⊗V (M))
)

)

,we an integrate the volume form �eld dL(v, w, r) all over M , if it is integrable. If M isompat, every ontinuous volume form �eld is integrable on M .De�nition 3. Let M be a ompat base manifold, and dL a Lagrange form. Then the ationfuntional de�ned by the Lagrange form is
S : Γ3(V̆ (M))×D̆3(T (M), V (M)) → R, (v,∇) 7→ Sv,∇ :=

∫

M

dL(v,∇v, F∇),where F∇ is the urvature tensor of the ovariant derivation ∇.Unfortunately, if M is nonompat, we annot proeed with the straightforwardness as inthe ompat ase. If we would like to extend our formalism to a nonompat base manifold, weshould proeed otherways. A possible way to realize the ation funtional, over a nonompatbase manifold, ould be to de�ne it as a real valued Radon measure on the subsets of themanifold. If we follow this idea, we an make the following de�nition.De�nition 4. Let the base manifold M be nonompat. If
(v,∇) ∈ Γ3(V̆ (M))×D̆3(T (M), V (M))and K is a ompat set in M , then let us de�ne Sv,∇(K) :=

∫

K

dL(v,∇v, F∇). The map
K 7→ Sv,∇(K) uniquely extends to a real valued Radon measure on the Baire quasi-σ-ring of
M . Let Rad(M,R) be the real vetor spae of the real valued Radon measures on the Bairequasi-σ-ring of M . Then, the ation funtional is de�ned as the Radon measure valued map

S : Γ3(V̆ (M))×D̆3(T (M), V (M)) → Rad(M,R), (v,∇) 7→ Sv,∇.Of ourse, this de�nition is also meaningful for the ompat ase, and the ation in the ompatase an be expressed as (v,∇) 7→ Sv,∇(M).3 The �eld equations as Euler-Lagrange equations3.1 Natural distribution topologies on the setions of a vetor bundleLet us take a real C k̆ vetor bundle W (N) over the real Ck manifold N (k̆ ∈ {0, . . . , k}). Thenwe an de�ne C l norm �elds (l ∈ {0, . . . , k̆}) on Γl(W (N)). Let us take a map
‖ · ‖ : Γl(W (N)) → Γ0(F (N)), s 7→ ‖s‖,8The de�nitions used by lassi literature di�er here: as pointed out earlier, there are three kinds of de�-nitions, and all the three approahes have ertain problems. The alternative de�nition, whih we give, mostlyresembles to the seond approah, as we de�ne the ation funtional (in the ase of a nonompat base mani-fold) as a real valued Radon measure on the Baire quasi-σ-ring of the base manifold (i.e. on the quasi-σ-ring,generated by the ompat subsets of the base manifold).5



Mathematial Clari�ation of General Relativisti Variational Prinipleswhih is pointwise, that is
∀p∈N : ∀s, s

′

∈ Γl(W (N)) : s
′

(p) = s(p) ⇒ ‖s
′

‖(p) = ‖s‖(p)holds (this means, that it an be viewed as a C0 �ber bundle homomorphism). If for every
p∈N the map ‖ · ‖p : Wp(N) → R, naturally de�ned by the restrition of ‖ · ‖, is a norm, thenwe all ‖ · ‖ a C l norm �eld. It is a fat that every C k̆ vetor bundle over a Ck manifold admits
C l norm �elds: by the paraompatness of manifolds9, there are C l Riemann metri tensor�elds on the given vetor bundle, and they naturally give rise to C l norm �elds by taking thepointwise norms generated by them (but not all C l norm �elds an be formulated in this way).Lemma 5. Let N , W (N) be as above. If ‖ · ‖ and ‖ · ‖

′ are C l norm �elds on W (N), thenthere exists a positive c ∈ Γk(F (N)), suh that ‖ · ‖′

≤ c‖ · ‖.Proof The proof is based on the paraompatness of the di�erentiable manifolds and on theequivalene of norms on a �nite dimensional vetor spae.Let us take a loally �nite atlas ((Ui, ϕi, fi))i∈I of N with partition of unity, suh that every
Ui (i ∈ I) has ompat losure. Let us denote the losure of a set U with U . Let n be thedimension of the �bers of W (N). Let us �x a trivialization (ei,j)j∈{1,...,n} of W (N) over eahhart (Ui, ϕi) (i ∈ I).As a onsequene of the equivalene of norms on a �nite dimensional vetor spae, for every
p ∈ N there is a positive number cp, suh that ‖ · ‖′

p ≤ cp‖ · ‖p. Furthermore, cp an be hosento be sup
sp∈Wp(N)\{0p}

‖sp‖
′

p

‖sp‖p
.It is easily heked, that the equality

sup
p∈Ui

sup
sp∈Wp(N)\{0p}

‖sp‖
′

p

‖sp‖p

= sup
p∈Ui

sup
S∈Rn,|S|=1

‖
n
∑

j=1

Sjei,j‖
′

(p)

‖
n
∑

j=1

Sjei,j‖(p)holds (i ∈ I). The rightside is a �nite positive number, beause it an be viewed as the maximumof a positive valued ontinuous funtion over the ompat manifold Ui ×Sn−1 (Sn−1 is the n−1dimensional unit sphere). Let us denote this positive number by ci. Then: ‖ · ‖′

≤ ci‖ · ‖ holdsover Ui (i ∈ I).As a onsequene of the previous inequality: fi‖ · ‖
′

≤ cifi‖ · ‖ holds all over the manifold
N for eah i ∈ I, as a onsequene of the fat that fi is nonnegative and supp(fi) ⊂ Ui. Thesum ∑

i∈I

cifi (whih has only �nite nonzero terms in a small neighborhood of every point, as aonsequene of the loal �niteness of the atlas) is a positive valued Ck funtion, furthermorethe sum ∑

i∈I

fi (whih also has only �nite nonzero terms in a small neighborhood of every point)is 1 by de�nition. Therefore ‖ · ‖
′

≤

(

∑

i∈I

cifi

)

‖ · ‖ holds, so the lemma is proved.We all this property the equivalene of C l norm �elds, in the analogy of the equivalene ofnorms on a �nite dimensional vetor spae.9A manifold is paraompat as a onsequene of its de�nition.6



Mathematial Clari�ation of General Relativisti Variational PriniplesLet us take a C k̃-type ovariant derivation ∇ from Dk̃(T (N))×Dk̃(W (N)) (k̃ ∈ {0, . . . , k̆}).If we take C k̃−l norm �elds
‖ · ‖l : Γk̃−l((

l

⊗T ∗(N))⊗W (N)) → Γ0(F (M))for eah l ∈ {0, . . . , k̃}, then we an formulate the quantity
k̃

∑

l=0

‖∇(l) · ‖l : Γk̃(W (N)) → Γ0(F (M)), s 7→

k̃
∑

l=0

‖∇(l)s‖l(this is not a norm �eld, beause it is not pointwise, but it is a similar quantity).Lemma 6. If we hoose norm �elds (‖·‖l)l∈{0,...,k̃}, and two C k̃ ovariant derivations ∇ and ∇
′as above, then there exists a positive Ck funtion c over N , suh that k̃

∑

l=0

‖∇
′(l)

·‖l ≤ c
k̃

∑

l=0

‖∇(l)·‖l.Proof This is a onsequene of the following fats:1. the ovariant derivation ∇
′ an be expressed as the sum of ∇ and a C k̃−1 diagonalChristo�el tensor �eld,2. the triangle inequality of the norms,3. the omposition of a norm with a linear map is a semi-norm,4. the sum of a norm and a semi-norm is a norm,5. Lemma 5.Corollary 7. If we take norm �elds (‖ · ‖l)l∈{0,...,k̃}, (‖ · ‖

′

l)l∈{0,...,k̃} and ovariant derivations ∇and ∇
′ as above, then there exists a positive Ck funtion c over N , suh that

k̃
∑

l=0

‖∇
′(l)

· ‖
′

l ≤ c

k̃
∑

l=0

‖∇(l) · ‖l.Proof This is a onsequene of Lemma 6 and Lemma 5.Corollary 7 lets us de�ne the notions of distribution topologies on the vetor spae ofsetions of vetor bundles.De�nition 8. Let E k̃(W (N)) := Γk̃(W (N)) with the natural real vetor spae struture. Letus hoose a lass of norm �elds (‖ · ‖l)l∈{0,...,k̃} and a ovariant derivation ∇ as before. Let
ψ, ϕn ∈ E k̃(W (N)) (n ∈ N), then the sequene n 7→ ϕn onverges to ψ in E k̃-sense, if andonly if the funtion k̃

∑

l=0

‖∇(l)(ψ− ϕn)‖l onverges to zero uniformly on every ompat set. Thisnotion uniquely haraterizes a topology on E k̃(W (N)), whih is alled the E k̃-topology. Note,that as a onsequene of Corollary 7, this notion is independent of the hosen norm �elds andovariant derivation. 7



Mathematial Clari�ation of General Relativisti Variational PriniplesDe�nition 9. Let Dk̃(W (N)) be the set of elements of Γk̃(W (N)), whih have ompat support.
Dk̃(W (N)) has a natural real vetor spae struture. Let us hoose a lass of norm �elds
(‖ · ‖l)l∈{0,...,k̃} and a ovariant derivation ∇ as before. Let ψ, ϕn ∈ Dk̃(W (N)) (n ∈ N), thenthe sequene n 7→ ϕn onverges to ψ in Dk̃-sense, if and only if there exists a ompat set K,suh that ∀n ∈ N : supp(ψ−ϕn) ⊂ K and the funtion k̃

∑

l=0

‖∇(l)(ψ−ϕn)‖l uniformly onvergesto zero. This notion uniquely haraterizes a topology on Dk̃(W (N)), whih is alled the Dk̃-topology. Note, that as a onsequene of Corollary 7, this notion is independent of the hosennorm �elds and ovariant derivation.De�nition 10. Let N be ompat. Then E k̃(W (N)) = Dk̃(W (N)), and the E k̃ and Dk̃-topologies are the same. Furthermore, if we hoose a lass of norm �elds (‖ · ‖l)l∈{0,...,k̃} and aovariant derivation ∇ as before, then the quantity sup
N

k̃
∑

l=0

‖∇(l) · ‖l is always �nite, and this isa omplete norm on E k̃(W (N)). If we take an other lass of norm �elds (‖ · ‖
′

l)l∈{0,...,k̃} and aovariant derivation ∇
′ as before, then there is a positive number c, suh that

sup
N

k̃
∑

l=0

‖∇
′ (l)

· ‖
′

l ≤ c sup
N

k̃
∑

l=0

‖∇(l) · ‖l,that is the two norms are equivalent. Let us all them C k̃-norms of E k̃(W (N)). It is easilyseen, that the E k̃-topology is the same as the topology generated by any C k̃-norm on E k̃(W (N)).These are the onsequenes of Corollary 7 and of the fat, that the ontinuous real valuedfuntions over a ompat manifold are bounded.3.2 The derivative of ation funtionalLet us take (v,∇), (v
′

,∇
′

) ∈ Γ3(V̆ (M))×D̆3(T (M), V (M)), then we an express the primedquantities as v′

= v + δv, ∇′

= ∇ + δC, where the vetor �eld δv is C3 and the diagonalChristo�el tensor �eld δC is C2.Theorem 11. Let (v,∇) and (δv, δC) be the above quantities, and K a ompat subset of M .Then
Sv+δv,∇+δC(K) = Sv,∇(K)+

∫

K

(

D1dL(v,∇v, F∇)δv+D2dL(v,∇v, F∇)(∇δv+δCv+δCδv)+D3dL(v,∇v, F∇)(F∇+δC−F∇)
)

+

∫

K

1

2

[

δv (∇δv + δCv + δCδv) (F∇+δC − F∇)
]

·
[

D(2)dL
]

(v + δv
′

,∇v + δA
′

, F∇ + δF
′

)·





δv
(∇δv + δCv + δCδv)

(F∇+δC − F∇)



for some setions δv′, δA′, δF ′, where for eah p ∈ K there exists a number cp ∈]0, 1[, suh that
δv

′

p = cpδvp, δA′

p = cp(∇δv|p + δCv|p + δCδv|p) and δF ′

p = cp(F∇+δC |p −F∇|p). Here the ation8



Mathematial Clari�ation of General Relativisti Variational Priniplesof a T ∗(M)⊗
(

(T (M)⊗T ∗(M))×(V (M)⊗V ∗(M))
) type tensor �eld δC on a V (M) type tensor�eld δv is de�ned by the ontration of the projetion to the T ∗(M)⊗V (M)⊗V ∗(M) omponentof δC by δv.Proof This is a simple onsequene of the Taylor formula for one dimensional vetor spaevalued C2 funtions, applied to the Lagrange form, in every point of K:

dL(v + δv, (∇ + δC)(v + δv), F∇+δC) = dL(v,∇v, F∇)+

(

D1dL(v,∇v, F∇)δv+D2dL(v,∇v, F∇)(∇δv+δCv+δCδv)+D3dL(v,∇v, F∇)(F∇+δC−F∇)
)

+

1

2

[

δv (∇δv + δCv + δCδv) (F∇+δC − F∇)
]

·
[

D(2)dL
]

(v + δv
′

,∇v + δA
′

, F∇ + δF
′

)·





δv
(∇δv + δCv + δCδv)

(F∇+δC − F∇)



holds, with the notations in the statement of the theorem.We have to show only that the term under the last integral (the term with the seondderivatives) is integrable. This follows from the simple fat: we an express it via the termswith lower derivatives by using the Taylor formula. The terms with lower derivatives are C1 byRemark 2. Therefore, the term with the seond derivatives is C1, although the funtion p 7→ cpneed not be even measurable. So, the last term is integrable on K.3.2.1 The ase of ompat base manifoldOur intention is to interpret the linear term of the expression in Theorem 11 as a kind ofderivative of the ation funtional. If M is ompat, this an be realized quite straightforward,by using De�nition 10.Let us assume that M is ompat, without boundary. Let us take the standard topologyon R. Let us �x a C3-norm on E3(V (M)) and a C2-norm on
E2

(

T ∗(M)⊗
(

(T (M)⊗T ∗(M))×(V (M)⊗V ∗(M))
)

)

.Then we an �x a power q (whih is a real number greater or equal to 1, or in�nity) and takethe Lq produt norm of these norms on the produt spae. With this, the spae
Γ3(V (M))×

(

D3(T (M))×D3(V (M))
)forms an a�ne spae over the normed spae

E3(V (M)) × E2
(

T ∗(M)⊗
(

(T (M)⊗T ∗(M))×(V (M)⊗V ∗(M))
)

)

.In this sense, we an take the derivative of the ation funtional. The derivative is independentof the hosen C3 and C2-norms, and of the power q (that is, of the way of forming of the produtnorm), beause the notion of derivative depends only on the equivalene lass of norms.1010If we hoose other C3 and C2-norms on the previous spaes, and take an other power q for forming an Lqprodut norm, then we get a new norm, whih is equivalent to the previous one.9



Mathematial Clari�ation of General Relativisti Variational PriniplesTheorem 12. The ation funtional S is ontinuously di�erentiable, and its derivative at given
(v,∇) is the ontinuous linear map (δv, δC) 7→

∫

M

(

D1dL(v,∇v, F∇)δv +D2dL(v,∇v, F∇)(∇δv + δCv) +D3dL(v,∇v, F∇)2∇∧ δC
)

,where the wedge in the expression ∇∧ δC means antisymmetrization in the T ∗(M) variable of
∇ and the �rst T ∗(M) variable of δC in the expression ∇δC.Proof Note that this expression is the linear term from the expression in Theorem 11. First,we have to show that this linear map is a ontinuous linear map, and that the remainingbilinear term from Theorem 11 is an ordo funtion. By the di�erentiability properties of dL,and the ompatness of M , these fats are diret onsequenes of Lebesgue theorem. Finally,the derivative funtion of S is ontinuous, for the same reason.Theorem 13. The derivative of the ation funtional S an be expressed at given (v,∇) as theontinuous linear map
(δv, δC) 7→

∫

M

(

D1dL(v,∇v, F∇)δv− (∇·D2dL(v,∇v, F∇))δv − (TrT∇·D2dL(v,∇v, F∇))δv
)

+

∫

M

(

D2dL(v,∇v, F∇)δCv − 2(∇·D̂3dL(v,∇v, F∇))δC − 2(TrT∇·D̂3dL(v,∇v, F∇))δC
)

.Here T∇ is the torsion tensor of ∇, TrT∇ denotes the ontration of the seond T ∗(M) andthe T (M) variable of T∇. The hat in the D̂3dL expression means antisymmetrization in the�rst two T (M) variables. Finally, · means ontration of the T ∗(M) variable of ∇ and the �rst
T (M) variable of the tensor quantity after it, or the ontration of the T ∗(M) variable of TrT∇and the �rst T (M) variable of the tensor quantity after it, respetively.Let us all the equality of the above map and the derivative of S the Euler-Lagrange relation,and let us all the above map the Euler-Lagrange map.Proof We simply make transformations of the expression in Theorem 12.The term D3dL(v,∇v, F∇)2∇ ∧ δC is equal to 2D̂3dL(v,∇v, F∇)∇δC, this is easily seenfor example by using Penrose abstrat indies:

Dab
3 dL(v,∇v, F∇)(∇aδCb −∇bδCa) =

(

Dab
3 dL −Dba

3 dL
)

(v,∇v, F∇)∇aδCb,where the indies a, b indiate the T (M) or T ∗(M) variables in question.By the Leibniz rule
D2dL(v,∇v, F∇)∇δv + 2D̂3dL(v,∇v, F∇)∇δC =

∇ ·
(

D2(dL(v,∇v, F∇)δv
)

+ ∇ ·
(

2D̂3dL(v,∇v, F∇)δC
)

−

(

∇ ·D2(dL(v,∇v, F∇)
)

δv −
(

∇ · 2D̂3dL(v,∇v, F∇)
)

δCis true. 10



Mathematial Clari�ation of General Relativisti Variational PriniplesThe sum of the �rst two terms on the rightside of the equation an be written in the form
∇ · dA, where dA ∈ Γ1(T (M)⊗

m
∧ T ∗(M)) (that is dA is a C1 volume form valued vetor�eld). Let us take an other ovariant derivation ∇̃ on the tensor bundles of T (M), whih isthe Levi-Civita ovariant derivation of some semi-Riemannian metri tensor �eld g̃ over M .If C ∈ Γ3(T ∗(M)⊗T (M)⊗T ∗(M)) is the Christo�el tensor �eld on T (M) of ∇ relative to ∇̃,then one an �gure out the fat, that ∇ · dA = ∇̃ · dA + (Tr1C − Tr2C) · dA, where Tr1Cdenotes the ontration of the �rst T ∗(M) and the T (M) variable of C, and Tr2C denotesthe ontration of the seond T ∗(M) and the T (M) variable of C. It is easier to follow theprevious statement in Penrose abstrat indies: ∇adAa = ∇̃adAa + (Cb

ba − Cb
ab)dAa, beause

∇at
b = ∇̃at

b + Cb
act

c is valid for a tangent vetor �eld t, and ∇adv = ∇̃adv − Cb
abdv is truefor a volume form �eld dv. As ∇̃ is a Levi-Civita ovariant derivation, the (Tr1C − Tr2C)quantity orresponds to −TrT∇, beause the torsion of ∇̃ vanishes by de�nition. Thus, we anwrite ∇ · dA = ∇̃ · dA − TrT∇ · dA.The term with the torsion orresponds to the term with the torsion in the statement of thetheorem. To prove the theorem, we only have to show, that the integral of ∇̃ · dA is zero.Let us use the fat that M is orientable: there exists a nowhere zero C3 volume form �eld

dv. As the vetor spae of the volume forms, at a given point, is one dimensional, then we anuniquely de�ne a nowhere zero setion dp of the dual volume form bundle, suh that at everypoint, dp maps dv into 1. By using oordinate harts, it an be seen, that dp is also C3. Thenby ontrating the quantity dp⊗dA in the volume form and dual volume form variables, onean de�ne a C1 vetor �eld (as dA is C1). Let us denote this by dA/dv. With the introduednotation, one has dA = dv⊗(dA/dv).Let d̃v be one of the two anonial volume form �elds assoiated to g̃. Then ∇̃d̃v = 0holds, whih implies by the Leibniz rule: ∇̃ · dA = d̃v ∇̃ · (dA/d̃v). It is a theorem, that if Xis a tangent vetor �eld, then d̃v ∇̃·X = m d(X.d̃v), where m is the dimension of M , d meansthe exterior derivation, and the dot . means ontration of X with the �rst T ∗(M) variable of
d̃v (see for example [5℄). By using the observations in the previous paragraph, we an statethat (dA/d̃v).d̃v = TrdA, where Tr means the ontration of the T (M) variable of dA withthe �rst T ∗(M) variable of dA. We get, that the expression d̃v ∇̃ · (dA/d̃v) is independentof the hoie of the semi-Riemannian metri tensor �eld g̃, and it is equal to d(mTrdA), theexterior derivative of the (m − 1)-form �eld mTrdA. The integral of this term vanishes as aonsequene of Gauss theorem, beause M is a ompat manifold without boundary. So theformula, stated in the theorem, is valid.Remark 14. IfM is a ompat manifold with boundary, then the presented statements remaintrue, but the Euler-Lagrange map in Theorem 13 has an extra term, whih is a boundaryintegral, as a onsequene of the Gauss theorem. Namely, the derivative of S at given (v,∇) isthe ontinuous linear map
(δv, δC) 7→

∫

M

(

D1dL(v,∇v, F∇)δv− (∇·D2dL(v,∇v, F∇))δv − (TrT∇·D2dL(v,∇v, F∇))δv
)

+

∫

M

(

D2dL(v,∇v, F∇)δCv − 2(∇·D̂3dL(v,∇v, F∇))δC − 2(TrT∇·D̂3dL(v,∇v, F∇))δC
)

+

m

∫

∂M

Tr
(

D2(dL(v,∇v, F∇)δv + 2D̂3dL(v,∇v, F∇)δC
)

,11



Mathematial Clari�ation of General Relativisti Variational Prinipleswhere ∂M is the boundary of M .As a summary, we an de�ne a lassial �eld theory over a ompat base manifoldM (withor without boundary) as a quartet (M,V (M),dL, S), where V (M) is a vetor bundle as in thetext, dL is a Lagrange form, and S is the ation funtional, de�ned by dL. The �eld equationis the equation
(

(v,∇) ∈ Γ3(V̆ (M))×D̆3(T (M), V (M))
)

? DS(v,∇) = 0,where DS denotes the derivative of S. Let us all DS the Euler-Lagrange funtional.3.2.2 The ase of nonompat base manifoldIf the base manifold is nonompat, the vetor spaes of setions of a vetor bundle do not havenatural normed spae struture, they only have natural E or D distribution topologies.Let us take a map Q : R → S, where R and S are some spaes. To be able to de�ne thelassial (Fréhet) notion of derivative of Q, the spae R has to be a normed a�ne spae, and Shas to be a topologial vetor spae (in order to be able to de�ne the notion of ordo funtions).In the ase of the ation funtional, when the base manifold is nonompat, the �rst spae isthe spae Γ3(V (M))×
(

D3(T (M))×D3(V (M))
), whih forms an a�ne spae over the topolog-ial vetor spae E3(V (M)) × E2

(

T ∗(M)⊗
(

(T (M)⊗T ∗(M))×(V (M)⊗V ∗(M))
)

). The seondspae is the spae of real valued Radon measures Rad(M,R), whih is a vetor spae, and itpossesses a natural topology, uniquely haraterized by the following notion of limes: a sequeneof Radon measures onverges to a Radon measure, if both evaluated on any �xed ompat setof M , the sequene of values (real numbers) onverges to the value of the given Radon measure(real number). (This is the pointwise, or the setwise topology on the Radon measures.)As we see, when M is nonompat, the notion of the derivative of S annot be de�ned: theobstrution is that Γ3(V (M))×
(

D3(T (M))×D3V (M))
) only has a natural topologial a�nespae struture, instead of a natural normed a�ne spae struture. Thus, if we want to proeedin the nonompat ase, and want to de�ne a similar quantity to an Euler-Lagrange funtional,we an not interpret it as a (Fréhet) derivative.There are known onstrutions, whih are based on a formulation popular in physis litera-ture, even in mathematial physis literature (see e.g. [5℄, [8℄). It de�nes (v,∇) 7→ DSv,∇(K) byusing one-parameter families of �eld on�gurations, whih are �xed on the boundary of a �xedompat set K with smooth boundary. (We will refer to these formulations as one-parameterfamily formulations.) To de�ne the �eld equations, they take a overing (Ki)i∈I of M withsuh ompat sets, and on every set they require DS(Ki) = 0 (i ∈ I). It an be proved, that

DS(Ki) = 0 means Euler-Lagrange equations over the interior of the given ompat set Ki(i ∈ I), so after all, over the whole spaetime manifoldM . This statement is true, but we haveone more onstraint: the �eld values are �xed on the system of boundaries (∂Ki)i∈I .As one an see, the one-parameter family onstrution is quite umbersome. Furthermore,it is not onstrutive in the following sense. Let us �x a ompat set with sooth boundary,and a �eld on�guration on the boundary. If the Euler-Lagrange equations are �rst orderhyperboli (e.g. when the Dira equation is part of the �eld equations), then generally there isno suh �eld on�guration on the ompat set, whih satis�es the �eld equations and has the(arbitrarily) hosen boundary values. Thus, one an not generate solutions inside a ompatset by speifying (arbitrary) boundary values.12



Mathematial Clari�ation of General Relativisti Variational PriniplesThere are onstrutions known in physis literature, whih are de�ned otherways. We shallrefer to these as time-slie onstrutions. These assume a ylindri base manifold, i.e. a manifolddi�eomorphi to R × C for some manifold C (whih will be referred as spae or time-slie).The ation is de�ned as the integral of the Lagrange form on the domain between two spei�time-slie. Certain spatial fall-o� properties have to be introdued in order to be able to de�nethe ation funtional, if C is not ompat. The Euler-Lagrange funtional is then de�ned asthe derivative of the ation with respet to appropriate Ck supremum norms (for some k ∈ N),similar to the ase of ompat base manifold. The problem is: how to formalize the spatialregularity onditions. In the literature this problem is arefully overlooked, if possible. Themost self-suggesting solution seems to be to introdue a global oordinate system on C (this is,of ourse, not always possible), and treat the fall-o� properties with respet to the oordinates.This method would be quite inelegant (as it refers to global oordinate hart), furthermore itwould highly depend on this preferred oordinate system.For the above problem Philip E. Parker suggested us a partial solution, whih avoids oor-dinate systems. He drew our attention to his work [1℄, whih partly deals with a problem offall-o� properties. In his paper, he uses the topologial approah to in�nities of manifolds: theset of ends of the manifold C an be de�ned as E(C) := liminv
K⊂Compat π0(C \K), where π0(C \K)means the set of the onneted omponents of C \K, and liminv is the so alled inverse limes,known in topology. An end represents an in�nity in the topologial sense. Then, he is able tode�ne when two Riemannian metri tensor �elds (of some vetor bundle) falls o� at a givenin�nity in the same way (notion of order relatedness). This notion provides an equivalene lassonept between Riemannian metri tensor �elds. Given suh an equivalene lass of Rieman-nian metri tensor �elds, one an de�ne the notion of rapidly dereasing �eld on�gurations,whih an be used to introdue fall-o� properties. However, as indiated, this onept highlydepends on the used metri tensor �eld equivalene lass, the (physial) meaning of whih isquite unlear (just as in the ase of preferring a global oordinate system on C). Furthermore,the method would also highly depend on the initial splitting of the spaetime manifold into

R × C, whih on�its with the philosophy of the theory of relativity.4 DisussionWe have seen, that the variational formulation of general relativisti �eld theories an bede�ned with a signi�ant mathematial elegane over ompat base manifolds (with or withoutboundary). Over nonompat base manifolds, the variational priniples an be de�ned with agreat e�ort, the known onstrutions are not elegant at all in mathematial sense, furthermorethey do have problems with the interpretation.11In physis, it is held as a priniple, that the equation of motion of �elds arise from someEuler-Lagrange equations (that is, as some equation DS(v,∇) = 0). If we want to preserve thispriniple, and want to avoid the rather questionable onstrutions in the nonompat ases atthe same time, we an make a hoie to solve the problem.1. We an restrit the spaetime models to ompat orientable ases.11The problem of non-onstrutiveness in the ase of one-parameter family onstrutions, furthermore theproblem of spaetime splitting and the metri tensor �eld equivalene lass dependene of fall-o� properties inthe ase of time-slie onstrutions. 13



Mathematial Clari�ation of General Relativisti Variational Priniples2. We do not interpret the base manifold as the spaetime manifold itself, but as a kind ofompati�ation of it.The �rst ase is unaeptable: it is a theorem, that every ompat spaetime model admitslosed timelike urves. So, a ompat spaetime model, arising from any kind of formulation,annot be onsidered physially realisti.The other ase does not have physial obstrutions, and has a ertain mathematial elegane.But then, the question arises: if we do not interpret the base manifold diretly as the spaetimemanifold, how do we interpret it?For this problem, a possible solution is the ondition of asymptoti simpleness of a spaetime.(See e.g. [5℄, [8℄.) If this ondition holds, then one an de�ne the notion of onformal in�nitiesof the spaetime and the onformal ompati�ation of the spaetime, whih will be a ompatmanifold with boundary.From the above argument, it is likely to onsider only the ompat ase of a base manifold(with boundary), and interpret it as the onformal ompati�ation of the spaetime manifold.Theorem 15. Let the base manifold M be ompat with boundary. Let
(v,∇) ∈ Γ3(V̆ (M)) × D̆3(T (M), V (M)).Then the ondition DS(v,∇) = 0 is equivalent to the followings:1. the Euler-Lagrange equations, that is the equations

D1dL(v,∇v, F∇) − (∇·D2dL(v,∇v, F∇)) − (TrT∇·D2dL(v,∇v, F∇)) = 0,

D2dL(v,∇v, F∇)(·)v − 2(∇·D̂3dL(v,∇v, F∇))(·) − 2(TrT∇·D̂3dL(v,∇v, F∇))(·) = 0are satis�ed on the interior of M , and2. the boundary onstraints, that is the equations
Tr(D2(dL(v,∇v, F∇)) = 0,

Tr(2D̂3dL(v,∇v, F∇))(·) = 0are satis�ed on the boundary of M .Proof Let us take suh setions (δv, δC), that their support is in the interior ofM . Then, theboundary term is zero in the Euler-Lagrange relation in Remark 14. By the Lagrange lemma,ondition 1 is implied.We know now, that ondition 1 holds. This means that the non-boundary term in theEuler-Lagrange relation in Remark 14 is zero. Now taking any setions (δv, δC), ondition 2 isimplied, by using the Lagrange lemma on the boundary of M .The question arises: what do the boundary onditions and the boundary of the base manifoldmean? In the next setion, we shall investigate the physial meaning of the boundary onditionson the example of empty general relativisti spaetime: we shall show that the boundaryrepresents the onformal boundary (onformal in�nity) of the arising spaetime model.14



Mathematial Clari�ation of General Relativisti Variational Priniples5 Boundary as onformal in�nity: the example of emptygeneral relativisti spaetimeLet the base manifoldM be 4 dimensional, and let us require thatM admits C3 semi-Riemannmetri tensor �elds with Lorentz signature (this is known to hold if and only if there exists anowhere zero C3 tangent vetor �eld on M).Let us take the vetor bundle V (M) := F (M)×
2
∨ T ∗(M) (∨ means symmetrized tensorprodut). We de�ne the sub �ber bundle V̆ (M) by the restrition of the �bers of V (M) in thefollowing way: for eah point p ∈M the �ber is restrited to R×Lp(M), where Lp(M) denotesthe subset of semi-Riemannian metri tensors with Lorentz signature in 2

∨T ∗
p (M). It an beeasily shown, that V̆ (M) is suh a sub �ber bundle of the vetor bundle V (M), as required inthe text.Let us take the sub a�ne spae ofD3(T (M))×D3(V (M)), whih has the following property:the sub a�ne spae should onsist of those pairs (∇,∇

′

), where the ovariant derivation ∇
′over V (M) orresponds to the ovariant derivation obtained by the unique extension of ∇ to

F (M)×
2
∨ T ∗(M), by using Remark 1. This sub a�ne spae an be naturally identi�ed with

D3(T (M)), therefore we an de�ne a ovariant derivation from this sub a�ne spae to betorsion-free if and only if the orresponding ovariant derivation from D3(T (M)) is torsion-free. Let D̆3(T (M), V (M)) be the sub a�ne spae of torsion-free ovariant derivations of theprevious sub a�ne spae. It an be easily shown, that this is a losed sub a�ne spae withrespet to the topology de�ned in De�nition 8.In this subsetion we will apply the usual formalism of Penrose abstrat indies, to denotetensor quantities and various ontrations of them.If gab(p) is a metri tensor with Lorentz signature from 2
∨T ∗

p (M) (p∈M), then the inversemetri of it (the orresponding Lorentz metri in 2
∨Tp(M)) will be denoted by gab(p). Let ustake an orientation of M . One of the two assoiated volume forms to a gab(p) Lorentz metri(that one, whih orresponds to the hosen orientation) will be denoted by dvg(p).If ∇ is a ovariant derivation on T (M), the orresponding Riemann-tensor will be denotedby R∇.With the above notations, let us take the Lagrange form

dL : ((ϕ, gab), (Dϕ,Dgcd), (Refg
h)) 7→ dvgϕ

2gikδj
lRijk

l,whih is the abstration of the Einstein-Hilbert Lagrangian. The �eld ϕ will play the role ofthe geometrized oupling fator to gravity, that is the inverse of the Plank length.Theorem 16. The Euler-Lagrange equations of the present �eld theory are
2dvgϕg

acδb
d(R∇)abc

d = 0,

−dvgϕ
2
(

gaegfcδb
d(R∇)abc

d −
1

2
gefgacδb

d(R∇)abc
d
)

= 0,

−∇a

(

dvgϕ
2(gacδb

d − gbcδa
d)

)

− (T∇)e
ae

(

dvgϕ
2(gacδb

d − gbcδa
d)

)

= 0,whih hold in the interior of M . 15



Mathematial Clari�ation of General Relativisti Variational PriniplesThe boundary onstraints are
0 = 0,

0 = 0,

(dvg)afghϕ
2(gacδb

d − gbcδa
d) = 0,whih hold on the boundary of M .Proof One an get these equations, by simply substituting dL into the formulae in Theorem15, and by using the identities ∂dvg

∂gef
= 1

2
gefdvg and ∂gac

∂gef
= −1

2
(gaegfc + gafgec), whih an bederived easily, but also an be found in [5℄ or [8℄.It is easily seen, that the �rst Euler-Lagrange equation follows from the seond one on thedomains, where ϕ is nowhere zero. Furthermore, the �rst two boundary onstraint is trivial.Let us denote the torsion-free part of ∇ with ∇̃. Then the third Euler-Lagrange equation isequivalent to the equation −∇̃a

(

dvgϕ
2(gacδb

d − gbcδa
d)

)

= 0.Lemma 17. On those open sets, where ϕ is nowhere zero, the equation
−∇̃a

(

dvgϕ
2(gacδb

d − gbcδa
d)

)

= 0is equivalent to the equation ∇̃a(ϕ
−2gbc) = 0.Proof The proof will be performed separately in the two impliation diretions.

(⇐) This way is trivial, it an be shown by diret substitution.
(⇒) To prove this way, let us ontrat the �rst equation in its b and d indies. We get

−∇̃a

(

dvgϕ
23gac

)

= 0. Therefore, the �rst equation implies ∇̃a

(

dvgϕ
2gbc

)

= 0. Let us intro-due the resaled metris Gab := ϕ2gab and Gab := ϕ−2gab. Then the implied equation an bewritten into the form ∇̃a

(

dvGG
bc
)

= 0. It an be easily seen, for example by using oordi-nates and the relation ∂dvg

∂gef
= 1

2
gefdvg, that ∇̃advG = 1

2
dvGG

bc∇̃aGbc for arbitrary ovariantderivatives ∇̃, from whih, by the Leibniz rule we infer that dvG(∇̃aG
bc − 1

2
GbcGde∇̃aG

de) = 0.We an drop dvG from this equation, beause it is nowhere zero on the domain in question.Furthermore, by taking its ontration with Gbc, one gets −Gde∇̃aG
de = 0. Therefore, by usingthis and the previous equation: ∇̃aG

bc = 0, so �nally ∇̃a(ϕ
−2gbc) = 0 is implied.We an summarize now the Euler-Lagrange equations: they are equivalent to

∇̃a(ϕ
2gbc) = 0,

ϕ2
(

(R∇)acb
c −

1

2
(ϕ2gab)(ϕ

−2gef)(R∇)ecf
c
)

= 0on those domains of the interior ofM , where ϕ is nowhere zero. From the de�nition of V̆ (M) and
D̆3(T (M), V (M)) we know, that ϕ2gab has Lorentz signature on the above domains, furthermore
∇̃ = ∇. Thus, the vauum Einstein equations turned out to be equivalent to the Euler-Lagrangeequations on those domains of the interior of M , where the �eld ϕ is nowhere zero.We an summarize the boundary onstraints: they are equivalent to ϕ|∂M = 0, whih isalso equivalent to (ϕ2gab)|∂M = 0. The latter means that the boundary of M is the onformalin�nity of the arising spaetime model.The resaled metri ϕ2gab an be interpreted physially, as the metri, measured in suhunits, where the oupling fator of gravity (that is, the inverse of the Plank length) is takento be 1. 16
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