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Vector operators

by
T. Matolcsi

1. Introduction

Usual quantum mechanical observables are self-adjoint
operators, or better to say, families of self-adjoint operators.
For instance, position, a so called vectorial cobservable, is
considered as a family of three self-adjoint operators that are
interpreted as the components of position relative to a basis
of the physical space. If we want to get rid of bases of the
physical space and to look for a coordinate free description,
we are faced the problem, what mathematical objects represent
quantum mechanical vectorial observables. The notion of vector
operators is introduced to answer this question. Here we inveé—
‘txgate‘oﬂxy*métnem&trcé;‘propettres‘dx"veétor‘cperators‘aﬁq

we do not enter into physical applications.

2. Preliminaries

In the sequel H and 2 denote a complex Hilbert space
and a finite dimensional complex vector space, respectively.

Inner products are denoted by the symbol ( , ) and



are taken to be linear in the second variable.

H®Z is the algebraic tensor product of H and Z. It
is well known that if we equip 2 with an inner product then
H®Z turns into a Hilbert space with the inner product de-

fined by

hez, [ = h, v
oz g x>ﬂ@z < cJ>H < x>z
'(h,gen, z,x€2) .

The corresponding topology on H®2Z 1is independent of the par-
ticular inner product chosen on Z. That is why we consider
H®Z as a topological vector space without giving an inner
product on 2.

If Z1s Zyr eeeer Zy is a basis of 2 then‘every ele-

N
ment of H®Z can be written in the form 3> hke z, -
k=1

* stands for the dual of 2 and the bilinear map of

Z
duality is denoted by ( { ) . We are given a continuous bi-

linear map

(1 ):2"x@ez) — u , defined by

(p[ne@z) := (plz)h (pez’ nezenoz),
and a continuous sesquilinear map
&, >: ixH®z) — z , defined by

49, h@zYy := &G,h)> z (geH, h®@z¢H@z).
H

We have the following relation between these two maps:



<g, (p[a))>H = (p| s a.)) (pez", gEH, a€ u@z).

If pl, Por ceer pN is a basis of 2F then the elements
a and b of H®Z are equal if and only if (pk[ a) = (pk|b)
(k = 1,....',N).

3. Basic facts about vector operators

Definition 1. A linear map defined in H and having
values in H®2Z is called a Z valued vector operator in H.
If A is a vector operator and pé& Z% then we define

the linear operator
{o[a) : B> Dom A > H , hh—#(p‘Ah)

Remark 1.(i) A € valued vector operator is a usual
operator.

(ii) since H®Z has a distinguished topology, we can
speak about continuous vector operators and closed vector ope-
rators. The continuity of a vector operator is equivalent to
its boundedness relative to every inner product derived in the
previously given way.

(iii) Let 2z, z,, ..., zy be a basis of 2 and let
Pys Pyr -e-s Py be the corresponding dual basis of z* (i.e.
(pi[ zk) = Sik , 1,k = 1,...,N). Then we can consider

(p,l 2) (x=1,....8) .



as the components of the vector operator A relative to the

given basis of 2. We have the equality
N
Ah = glkp"“» h] @z, (hepom a).
Consequently, if we are given a family Al' Az’ ceer By
of operators with common domain D in H , then we can con-
struct the vector operator

h+—> kzzl (ah)®z, (hep)

whose components are précisely the given operators.
As a consequence, two 2 valued vector operators are
equal if and only if their components relative to any basis of
Z coincide.

Examples. (i) If 2zé€&€2 then
®z : H-2H®Z , h—>h®z

is a continuous vector operator, and (rlez) = (plz)idy .

(11) Let V be a real vector space of finite dimensions.
LZ(V) denotes the Hilbert space of the equivalence classes of
complex valued functions defined on V that are square integ-
rable by the translation invariant measure of V (this latter
is unique up to a constant factor). Similarly, if 2 is a fi-
nite dimensional complex vector space, Lz(v,z) denotes the
vector space of the equivalence classes of 2Z valued functions
defined on V that are square integrable relative to some
(hence for every) norm on Z . We use the following canonical

identification



tiAv)ez = 1¥(v,z2) , f@z s(vv—vf(v)z) .

The symbol Vc stands for the complexification of V.

The so called identity multiplication operator M

defined on

2 2
Dom M :={f6L (v) : f£iq, €L (v,vc)}
by
£ > £id, := (v —> £(v)v)
is a VC valued vector operator in Lz(v) s If Tireees Iy
is a basis in v* then (rklm» is contained in the operator
of multiplication by the k -th coordinate (k =1,..., N).
-- Let f : V-—>C be a differentiable function. Then
Df (v) , its derivative at V€V, is a linear map V-—>€ that
can be extended uniquely to a complex linear map Ve —>»C ;
. x
in other words, we can consider Df as a map V—)(VC)=(vx)c =:Vz

The so called differentiation operator D defined on

. *
Dom D := {feLz(V) : £ is differentiable, DfeLz(V,Vc )}
by
f +—> Df
is a V: valued vector operator in LZ W). If vy, e vy
is a basis in V =(V*)* then £kaD) is contained in the
k -th partial differentiation operator (k = 1,..., NJ.

Proposition 1. Let A and L be a 2 valued vector

operator and an operator, respectively. Then for all péz“t

(1) (plar) = (p[a) L, (1) (ple®14,)a) =1 (p(a) .



- N
Proof. (i) is trivial. To show (ii) write &ah =:z: h ® 2z,
k=1
and use that (L @idz\)(th z.) =(Lhk)®zk .

Definition 2. A bounded operator L is said to commute

with the vector operator A if AL D (idZQL)A .

Proposition 2. L commutes with A if and only if L
commutes with (p|A) for all p¢ 2"  which holds if and
only if L commutes with (pk]A)) (k =1,..., N) for an ar-

bitrary basis Pys ---r Py of ¢ .

4. The Neumann series for vector operators

Let us equip 2z with an inner product. For o« €2 we

define the linear map
X:H®Z —>H, h@z>{xz> h .
2

It is an easy task to show that

[}

2
Vey 1dy -

X o (®«)

2
(®u)o & }H@Co& = =l 19y geu -

As a consequence, if o 1is a unit vector, the restriction of
& to HE®Cx (the range of @«) is the inverse of @ .
Proposition 3. X is bounded, [[&| = focdy, -
Proof. Let Zys eeer 2y be an orthonormal basis of Z.

Then



and for all h€H
ﬂg‘(h&")ﬂn = =iz |nox|y gy -

Proposition 4. Let A be a bounded vector operator.
N .
Then ﬂAo(ﬂ = |alx] -
" Proof. It is well known that [Ax| <[All ixl Conversely,

if o+ 0 ,

2 2 . ini i o s
la | » sup {[]Ae«(h@z)uH@z P

sup {HA;Z (h@ ﬁ:llz)“HQZ + lhjy £ 1} = | a1 oy

Proposition 5. Let A be a bounded vector operator.

such that HAII {1 . Then for every unit vector « of 2z the
vector operator A - &L has a bounded inverse ( which is not

necessarily defined on the whole H@Z), namely

(r- @«)—l -2y Gaym
n=0

Ran (A - @)



Remark 2. The series on the right side is absolutely
convergent, hence it defines a bounded operator on the whole

H®Z.

5. The spectrum of a vector operator

In the sequel A denotes a given vector operator.

Definition 3. A linear subspace D of Dom A is called
invariant under A if A(D)cD®2Z.

Proposition 6. D is invariant under A if and only if
D 1is invariant under (p]A)} for all pe z* which holds
if and only if D is invariant under (pklA» (k =1,..., N)
for an arbitrary basis Pyr--+r Py of Z*.

Definition 4. An element A of 2 is called an eigen-

value of A if there is a non-zero h €Dom A such that
Ah = heX ,

and then the linear subspace {heH : Ah = h® %} is
the eigensvace of A corresponding to .
The set of the eigenvalues of A is denoted by Eig A .
Remark 3. The definition of eigenvalues would have a more’
familiar form if we considered 2Z®H valued linear maps instead
of H®Z valued ones. However, for the sake of the simplicity
of some other formulae we have not chosen this possibility.
Definition 5. A linear subspace T of H®Z is called
bulky if there is no proper closed linear subspace D of H

such that T < N®2Z.



Proposition 7. A linear subspace T of H®2Z is bulky

if and only if H is spanned by U {((p\a)) : aeTj .
pez™
Definition 6. An element A of 2 is a regular value

of A if
(i) A-®X is injective
(1) Ran(a - ®X\) is bulky,
(1ii) (A - @,\)_l is continuous.
The set

Sp A :=£>~&Z : XN 1is not a regular value of A}

is the spectrum of A.

Proposition 8. (i) Eig A © Sp A
and for all péz*

G1) (p|Eig A) < Eig (p|a) ,

(iii) {(plsp 2 ) < sp (pla).

Proof. (i) and (ii) are evident. To prove [iii) sup-
pose that X€sSp A, S(X) := A -3\ is injective, and dis-
tinguish the following two cases.

Firstly, assume that U,‘((p{Ran s(N) does not span H.
Then Ran(p|s(N) = (p|Ran S()?)e)z cannot be dense in ‘H, thus
(p{A) € sp(p(a) for all pe¢ z*.

‘Secondly, suppose that the inverse of S(XN is not con-
tinuous. Then there are elements h_ ~ (n€&N) of H such that
the sequence nr—»hn is not bounded but the sequence
n> SONh is bounded. Consequently, the sequence nl—»(pis(x)hnY
is bounded, thus (p[ S(A)) cannot have a continuous inverse

(it can have no inverse at all), and (pIN\) € sp (piAa)Y (pé z').



Proposition 9. Let A be co--inuous. Equip Z with an
inner product. Then the set i)\éz : l!)\[(z > llAl]} is dis-

joint from Sp A

Proof. We have a conjugate linear bijection 2 —7Z*,
X —» x* such that (x*(z) := (x,z}z (x,ze z). Moreover,
((x‘lA) = %X oA (see Proposition 3), thus H(x'{ A)vsﬂxhz 1A] .

If A is an element of 2 such that [|X, > !A| then
Z i3

5 It ! A >\
R I ATy )
. 2

has a bounded inverse by Proposition 5. We have to show only
that Ran(a - ®\) is bulky.

Since | ((X’{A)u < “)x“i , l()\“; = ()\‘IX) is not in the
spectrum of ()f[A) as it is well known from usual operator
theory , consequently Ran [(():[A)) - ()\.I)\)idH]= (():(Ran(A - eN)
is dense in H. Apply Proposition 7 to and the proof.

Remark 4. (i\ If Z = ¢, Definition 6 gives back the usual
definition of spectrum. If Z is one dimensional, the spectrum
of a vector operator has the usual properties.

(ii) It is not known at present, whether the spectrum of
a continuous vector operator is closed, yes or no.

(iii) In contradistinction to the case of usual operators,
the spectrum of a continuous vector operator can be void. For
instance, consider the following example. Let H be two dimen-

sional and let hl’ h2 be an orthonormal basis of H , put

271

l:=h1, A,hy, :=h, + h
C Azhz::h + h



-
[
1

and extend A; and A to linear operators on H. Let 2Z be

2

two dimensional and let Zy0 2, be a basis of 2. Then the
vector operator
H-—> H®2Z, h +—> (Alh\azl +(A,hi@ z,

has a void spectrum.

(iv) In contradistinction to the case of usual operators,
the spectrum of a vector operator defined on a finite dimen-
sional Hilbert space does not consist necessarily of eigen-

values. For instance, take the previous H and 2 , put

+ h B

2! 2h
B B2h2

= hl 1 ¢ o,
o} h

1 +vh,

and extend Bl and B2 to linear onmerators on H. Then the
zero is not an eigenvalue but it is in the spectrum of the vec-

tor operator

H—> H®Z, hH(Blh)Ozl +(Bzh)azz

(v) Observe that the norm qf vector operators depends on
the inner product on 2. It is interesting that even the set
{?~éz : ﬂAﬂz >|AI} depends on it. To see this let H and
Z as previously, let Pl and P2 be the projections onto
the subspaces spanned by h1 and h2' respectively. Then the

vector operator
H—>H®7Z, he(p h)ez, +(P,h)ez,

1as the same norm whatever be the inner product on Z such

that §z 1.

]_h Z = 1‘ zz?".z=
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6. Spectral theorem for vector operators

If T is a Hausdorff topological space, B(T) denotes

the algebra of Borel subsets of T. A projection valued measure

F on B(T) is a map assigning a projection P(E) on H to

ever} Borel subset E of T such that

P(T) = idy P(ENF) = P(E)P(F),

and if En (p éN) are pairwisely disjoint Borel subsets of T

then

P(U E ) = (strong)z P(E_).
n new "

né€N

An element t of T 1is called a sharp value of P
if P({t}># O . The set of sharp values is denoted by Sharp P.

The support of P is the set
Supp P := {tET : P(G) # O for all open G, té€ G},

which is a non-void closed subset of T.

If h and g are elements of H then
E>p (E) := &n, P(RYG)

is a complex measure on B(T).
Definition 6. A Z valued vector operator A in H is
called

(i) partially .normal if

- (élAﬁ is closable and its closure is normal for
all pez*,

~ DomA = f\ Dom(pla) ;
pez*



- 13 -

(ii) totally normal if it is partially normal and
- @;T;j and 6;7;3 strongly commute for all
p,q € Z
Remark 5. A partialiy normal vector operator is neces-
sarily densely defined and closed.
Proposition 10. Let A be a totally normal vector ope-
rator. Then there exists a unique projection valued measure

R on B(Z) such that

&h, agy =/idz CL (hen, genom a).
Z

Proof. Let Pysec-er Py be a basis in Z*

and let

the projection valued measure Ry be the spectral resolution

of the normal operator (p,(a) i.e.

3 ’ \
<h,_ (o I2)gy = fidc d(R)p, g (h €H, g €pom ((p, |A).
[
for k=1,..., N .
Then Rl, ooy RN are commuting projection valued

N
measures, hence their product & Rk exists, which is the
=1

unique projection valued measure on B(CN) determined by

( N
2,

Let b deﬁote the inverse of the linear bijection

N

N
(k)=<lEk) - LG

4 —-)CN, zb-a(pk[z): k=1,..., N), and put .



Then for all k =1,..., N, hé€H and gé€Dom A

Gologda) sp = [iag ak)y g -
J |

( Py [€h BgY)

N
= pr. d(@R.) = fp d =
{ x SB R g kx B, g
[ Z
=(pk{ fidz dR.h’g)
2
where P CN — C is the k -th canonical projection,
and we used Py e b = PIy and the well known integral trans-

formation formula.

The uniqueness of R follows from the uniqueness of

R, -s and from the equalities

IF- X R 5y - ne 5

Definition 7. The projection valued measure R is

called the spectral resolution of the totally normal vector

operator A.

Remark 6. We can define the integral of measurable func-
tions T —> 2 by projection valued.measures defined on B(T)
as a 2 valued vector operatér. It can be shown that such vec-
tor operators are totally normal, In other words, only the totally
normal vector operators have spectral resolutions.

Proposition 11. A bounded operator L commutes with a
totally normal vector operator A if and only if L commutes

with the spectral resolution of A,



- 15 _

Proof. Use Proposition 2, the well known similar theorem

for normal operators and the proof of the previous proposition.

The following assertion ‘requires a number of notions and
particular results from the theory of integration by projection
valued measures. Who is familiar with them, can argue s;milarly
as in the case of usual normal opertors (see [1]) , he must
involve only one new step, a consideration on bulky subspaces.
We omit the lengthy enumeraticn of notions and reasoning with
them having referred to the literature.

Proposition 12. Let A be a totally normal vector ope-

rator having R as its spectral resolution. Then
Eig A = Sharp R , Sp A _= Supp R_.

Remark 7. As a consequence, the spectrum of a totally
normal vector Cperator has tixe properties of the spectrum of
a usual operator (cf. Remark 4 (ii)-(iv)).

Definition 8. Let V be a finite dimensional real vector
space. A vc valued vector operator A in H is called

(i) partially self-adjoint if

- (r|a). is closable and _its closure is self-adjoint
for all rev* ,

- Dom A = n‘Dom(-r(_AS) ;
rev

(i:i.) totally self-adjoint if it is partially self-adjoint and
- (r(a) and (s|a) strongly commute for all r,sev*.
Proposition 13. A totally self-adjoint vector operator

is totally normal.

Proof. Use that V: = {r + is ¢ r,sevf i :=\/-1} .
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Proposition 14. The spectrum of a Vc valued totally
self-adjoint vector operator A i;eéubset of V ; the spectral
resolution of A can be viewed as a projection valued measure
given on B(V).

Proof. Take a basis Tys eeer Iy in V* (it is a
in V‘, too, with respect to the complex structure) and repeate
the arguments of the proof of Proposition 11 , taking (rk{A»
instead of (p.|A).

Remark 8. (i) A partially self-adjoint vector operator
is necessarily densely defined and closed.

(ii) A partially self-adjoint vector operator need not
be partially normal. For instance, the operator given in Remark
4 (iii), if 2z =Vg, z,, z,€V, is partially self-adjoint
without being partially normal.

(iii) In physical apélications angular momentum (spin)
is partially self-adjoint but it is neither partially normal
nor totally self-adjoint. Position and momentum are totally
self-adjoint, as it follows ffbm the examples below.

Examples. (i) For .z €%, the vector operator ez
is totally normal, its spectral resolution is the projection
valued measure concentrated to z.

(ii) The identity multiplication operator in tz(v)
is totally self-adjoint. Its spectral resolution is the projec-
tion valued measure that assigns to E GB(V) the operator of
multiplication by the characteristic function of E (which is

the projection onto L2(E) < Lz(v)).
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(iii) The differentiation operator in L?(v) is closable,
its closure multiplied by the imaginary unit is totally self-
adjoint. Its spectral resolution is the projection valued mea-
sure that assigns to SéB(V’) the projection F-l K(S)F ,
where K(s) is the projection onto Lz(s)'cLz(V') and

F : L2(v) —13(v*) is the Fourier transformation defined by

(Ff)(r) := fei(rlv)f(v)dv (f GLz(V) ﬂLl(V), rev'),

v

and the translation invariant measure on B(V‘) is chosen

such that F be unitary.

Reference:

[1] W. Rudin : Functional Analysis, McGraw-Hill, New York,1973.



