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Spacetime without Reference Frames:
An Application to the Velocity Addition

Paradox

T. Matolcsi*, A. Gohers

Much conceptualisation in contemporary physics is bogged down by unne-
cessary assumptions concerning a speci"c choice of coordinates which often
leads to misunderstandings and paradoxes. Considering an absolute (coor-
dinate-free) formulation of special relativistic spacetime, we show clearly
that the velocity addition paradox emerged because the use of coordinates
obscures that the space of relativistic observers is &more relative' than the
space of non-relativistic observers. ( 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

Paradoxes in physics appear mostly because tacit assumptions, true in some
special domain, are applied in another domain where they are not valid. The
only tool for ruling out tacit assumptions and the possibility of paradoxes is to
construct complete mathematical models for physical objects, mathematical
models in which every notion related to the object in question is formalised
mathematically.

The usual treatment of special relativity is in terms of coordinates with respect
to inertial observers. Inertial observers, coordinate axes and several other
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1A trivial fact from a physical point of view: the space relative to someone sitting near a road is
constituted by the houses, the trees, etc.; a car travelling on the road is not a part of that space; the
seats, the dashboard, etc. constitute the space for someone sitting in the car.

notions in that treatment are intuitive*not formalised*notions. Incorrect tacit
assumptions deriving from the use of coordinates have resulted in new para-
doxes in the last decade: the velocity addition paradox (Mocanu, 1992) and the
light speed paradox (Selleri, 1997).

It has been shown (Matolcsi, 1998) that the light speed paradox is based on
the tacit assumption that a particular value of an unmeasured relative velocity
makes sense, an assumption which is acceptable only in the non-relativistic case
where absolute time exists. Taking a positivistic approach in which only directly
measured quantities make sense, we realise that a particular value of a relative
velocity in the relativistic case presupposes a synchronisation. The use of
coordinates hides that the relative velocity of a material point or a light signal with
respect to an observer depends on the synchronisations and thus has meaning only if
a synchronisation is given*the paradox emerged because this fact was neglected.

The velocity addition paradox was discussed by Ungar (1989) and Good
(1995). However, their arguments and mathematical formulas in terms of coordi-
nates do not give an evident physical explanation of the paradox, though it
became clear that the paradox was related somehow to the Thomas rotation.

We shall now demonstrate that the paradox is based on the tacit assumption
that the space of observers in special relativity is as relative as the space of
observers in the non-relativistic case. The use of coordinates hides that the space
of relativistic observers is &more relative' than the space of non-relativistic ob-
servers*disregarding this fact one encounters the velocity addition paradox.

It is frequently emphasised, as a main feature of special relativity, that time is
relative (not absolute); but, in general, no hint is made regarding space. Of
course, space is related to observers, too; this holds even in non-relativistic
physics,1 which is re#ected by the Galilean transformation t@"t, x@"x!vt.
The Lorentz transformation in its usual form t@"i(t!xv), x@"i(x!vt)
shows that both time and space are relative but it produces the impression that
the degree of relativity of space is the same as in the non-relativistic case.

As mentioned previously, tacit assumptions and the possibility of paradoxes
can be ruled out by constructing mathematical models of spacetime in which
every notion is mathematically de"ned.

General relativity is a mathematically developed physical theory, whose
modern setting is based on the global objects of manifolds (see Wald, 1983):
vector "elds, di!erential forms, covariant derivations, etc. These global objects
can be called absolute from a physical point of view because they are not related
to observers (reference frames, coordinate systems). In the last years several
attempts have been made to formalise non-relativistic spacetime in a similar
mathematical way (Appleby and Kadianakis, 1986; Rodrigues et al., 1995),
which clearly shows the demand for an absolute formulation of physical
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theories. It is evident nowadays that the mathematical structure of spacetime
can (and must) be formulated without observers.

Let us take this opportunity to emphasise the following: the frequently stated
assertion that special relativity is the theory of inertial observers and general
relativity is the theory of arbitrary observers (see e.g. M+ller, 1972) is to be
replaced by the statement that general relativity describes gravity and special
relativity concerns the lack of gravity (Synge, 1955, 1964).

A general relativistic spacetime model is a triplet (M, I, g) where M is a four-
dimensional manifold, I is the measure line of spacetime distances and g is an
I?I valued Lorentz form on M. A special relativistic spacetime model is a par-
ticular general relativistic one in which M is an a$ne space and g is constant (as
Weyl (1922) stated some seventy years ago).

A thorough treatment of non-relativistic spacetime models and special rela-
tivistic spacetime models based on the a$ne structure has been given by
Matolcsi (1984, 1993). These models will serve to clarify how one is misled by the
use of coordinates in the velocity addition paradox.

2. Fundamentals of Spacetime Models

We recapitulate brie#y the fundamental notions of spacetime models as given
by Matolcsi (1993).

An a$ne space < over the vector space V is a non-void set with a given map
<]<PV, (x, y)Cx!y such that (x!y)#(y!z)#(z!x)"0 for all
x, y, z3< and <PV, xCx!y is bijective for all y3<.

A map A:<P; between a$ne spaces is a$ne if there is a linear map
A:VPU such that Ax!Ay"A(x!y) for all x, y3<.

The tensorial quotient of a vector space V by a one-dimensional vector space I is
de"ned to be a vector space V/I whose dimension equals the dimension of V and the
map V](ICM0N)PV/I, (x,t)Cx/t obeys the usual rules of division by numbers.

2.1. Non-relativistic spacetime models

A non-relativistic spacetime model is a quintet (M, I,q,D, ) ) where:
}M is a four-dimensional oriented a$ne space (spacetime) (over the vector space
M),
} I is a one-dimensional oriented a$ne space (absolute time) (over the vector
space I, the measure line of time periods), q:M to I is a$ne surjection (time
evaluation) (over the linear map s: M to I),
} D is a one-dimensional oriented vector space (measure line of distances),
} ) :E]EPD?D is a positive de"nite symmetric bilinear map (Euclidean
structure), where

E :"Ker s (1)

is the (three-dimensional) linear subspace of spacelike vectors.
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2The terms &observer' and &reference frame' are used in several senses in the literature. &Observer'
frequently means a single worldline, and &reference frame' refers to a collection of worldlines; but
&observer' can refer to a collection of worldlines, too, and &reference frame' involves, implicitly or
explicitly, coordinates or a basis (&tetrad') (Synge, 1955, Secs I.9, I.8, II.7; Synge, 1964, Sec. III.5).
Since worldline is a customary notion, there is no need to rename it &observer', so a collection of
worldlines is accepted to be an observer and the name &reference frame' will be retained for observers
with given coordinates (see Matolcsi, 1993).

A worldline function is a twice continuously di!erentiable function r:IPM
such that q(r(t))"t for all t3I. A worldline is the range of a worldline function;
a worldline is a curve in M. A worldline represents the history of a classical
masspoint.

Absolute velocities are the derivatives of worldline functions; their set is

<(1) :"Gu3
M

I Ks(u)"1H. (2)

Given a u3<(1), every spacetime vector can be uniquely split into the sum of
a timelike vector, parallel to u, and a spacelike vector; in other words, we can
give the u-splitting

MPI]E, xC (s(x),pu (x)), (3)

where

pu(x) :"x!s(x)u. (4)

An observer,2 physically, is a collection of masspoints (a continuous medium)
which could be given as a collection of worldlines. It is more convenient,
however, to describe it by the tangent vectors of the corresponding worldlines.
Thus we accept that an observer is a velocity "eld, i.e. a smooth mapping

U :MP<(1). (5)

The maximal integral curves of such a vector "eld are worldlines, representing
the histories of the material points constituting the observer; thus it is quite
evident that an integral curve of U is a space point of the observer; the set of the
maximal integral curves of U is the space of the observer, or U-space in brief.
This is the most important*but trivial*fact concerning observers: a space
point of an observer is a curve in spacetime.

Observers and their spaces are well-de"ned simple and straightforward
notions. The spaces of diwerent observers are evidently diwerent.

An observer is inertial if it is a constant mapping. We shall consider only
inertial observers (so the term inertial will occasionally be omitted). An inertial
observer can be given by its constant value, that is why we "nd it convenient to
say &an observer u3<(1)'. The space points of the inertial observer u are straight
lines in spacetime, parallel to u.
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The vector between two u-space points q
1

and q
2

is de"ned to be the vector
between simultaneous world points of the straight lines in question, i.e. the space
of the observer u, endowed with the subtraction

q
1
!q

2
:"x

1
!x

2
(x

1
3q

1
, x

2
3q

2
, s(x

1
!x

2
)"0) (6)

is an a$ne space over the vector space E; note that we have

q
1
!q

2
"pu (x1

!x
2
) (x

1
3q

1
, x

2
3q

2
). (7)

Thus in a non-relativistic spacetime model the diwerent spaces of di!erent
inertial observers are di!erent a$ne spaces over the same vector space. Conse-
quently, it has an &a priori meaning' that a vector in the space of an observer
equals a vector in the space of another observer, and this equality is a symmetric
and transitive relation.

2.2. Special relativistic spacetime models

A special relativistic spacetime model is a triplet (M,I, ) ) where:
}M is a four-dimensional oriented a$ne space (spacetime) (over the vector space
M),
} I is a one-dimensional oriented vector space (measure line of spacetime
distances),
} ) :M]MPI?I is a Lorentz product endowed with an arrow orientation which
determines the future directed timelike and lightlike vectors.

The set of absolute velocities is

<(1) :"Gu3
M

I Ku ) u"!1, u is future directedH. (8)

A worldline function is a twice continuously di!erentiable function r:IPM
such that r5 (t)3<(1) for all t3I. A worldline is the range of a worldline function;
a worldline is a curve in M. A worldline represents the history of a classical
masspoint.

Given a u3<(1), we de"ne

Eu :"Mx3M D u )x"0N, (9)

which is a three-dimensional linear subspace of M. The restriction of the
Lorentz product to Eu is a Euclidean product. The corresponding norm (length
of vectors) is denoted by D D.

Every spacetime vector can be uniquely split into the sum of a timelike vector,
parallel to u, and a spacelike vector in Eu ; in other words, we can give the
u-splitting

MPI]Eu , xC (!u ) x,pu (x)), (10)

where

pu (x) :"x#(u ) x)u. (11)
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An observer is a velocity "eld, i.e. a smooth mapping

U:MP<(1). (12)

The set of maximal integral curves of U (which are worldlines) is the space of
the observer, or U-space in brief; thus the space points of an observer are curves
in spacetime. The spaces of diwerent observers are evidently diwerent.

An observer is inertial if it is a constant mapping. We shall consider only
inertial observers (so the term inertial will occasionally be omitted). An inertial
observer can be given by its constant value, that is why we "nd it convenient to
say &an observer u3<(1)'.

The space points of the inertial observer u are straight lines in spacetime,
parallel to u.

According to Einstein's standard synchronisation corresponding to the
observer u, the world points x and y are u-simultaneous if and only if
u ) (x!y)"0, in other words, x!y3Eu .

u-simultaneous world points form an a$ne hyperplane over Eu . Such a hyper-
plane is considered a u-instant, and the set Iu of hyperplanes parallel to Eu is the
time of the observer, or u-time in brief. The time interval between the u-instants
t
1

and t
2

is de"ned to be the proper time passed along the u-space points
(straight lines parallel to u) between the hyperplanes t

1
and t

2
; thus Iu , endowed

with the subtraction

t
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!t

2
:"!u ) (x

1
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2
) (x

1
3t

1
,x

2
3t

2
), (13)

is an a$ne space over I.
The vector between two u-space points q

1
and q

2
is de"ned to be the vector

between u-simultaneous world points of the straight lines in question. Thus the
space of the observer u, denoted by Eu , endowed with the subtraction
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is an a$ne space over the vector space Eu ; note that we have
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2
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Thus in the special relativistic spacetime model the diwerent spaces of di!erent
inertial observers are di!erent a$ne spaces over diwerent vector spaces. Conse-
quently, it has no &a priori meaning' that a vector in the space of an observer
equals a vector in the space of another observer.

3. Relative Velocities in Special Relativity

The history of a masspoint is observed by an observer u as a motion and is
described as a function assigning u-space points to u-instants. The motion
relative to the observer u, corresponding to the masspoint history represented by
the worldline C, is the mapping r

C,u
:IuPEu which assigns to t the u-space point

(straight line parallel to u) containing the unique intersection point C w t of the
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3We underline that this concerns the standard synchronisation; using another synchronisation, we
get another relative velocity.

line C and the hyperplane t, i.e.

r
C,u

(t)"C w t#u?I. (16)

The derivative of r
C,u

yields the relative velocity of the masspoint with respect
to the observer. If C is a straight line parallel to u@3<(1), then there is a t@3I such
that C w t

1
!C w t

2
"u@t@, thus we infer from (13) and (15) that

r
C,u

(t
1
)!r

C,u
(t
2
)

t
1
!t

2

"

pu (C w t
1
!C w t

2
)

!u ) (C w t
1
!C w t

2
)
"

u@#(u ) u@)u
!u ) u@

. (17)

That is why we de"ne

vu{u
:"

u@
!u ) u@

!u (18)

as the relative velocity of u@ with respect to u.3
We easily derive that

(i) vu{u
3Eu/I,

(ii) Dvu{u
D2"Dvuu{

D2"1!1/(u@ )u)2, implying

!u@ ) u"
1

J1!Dvu{u
D2

, (19)

(iii) if uOu@, then EuWEu{
is a two-dimensional linear subspace of M, and both

vu{u
and vuu{

are orthogonal to EuWEu{
,

(iv) vu{u
"!vuu{

if and only if u"u@ which is equivalent to vu{u
"vuu{

"0.

Thus we have the following important and far-reaching fact: if uOu@, then the
relative velocity of u with respect to u@ is not the opposite of the relative velocity of u@
with respect to u.

A light signal is a straight line parallel to a lightlike vector. The motion of
a light signal according to an observer is de"ned similarly to the motion of
a masspoint, and we get in an analogous way that a light signal parallel to the

lightlike vector k3
M

I
has the relative velocity

vku :"
k

!k ) u
!u (20)

with respect to the observer u3<(1). It is a simple fact that Dvku D"1.

4. Physical Equality (Parallelism) of Vectors in Di4erent Observer Spaces

The space vectors of di!erent observers u and u@ constitute di!erent three-
dimensional vector spaces Eu and Eu{

, respectively. Thus it has no &a priori'
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meaning, in general, that a vector (straight line) in the space of an observer is
parallel to a vector (straight line) in the space of another observer; incidentally,
this is obvious from a physical point of view, too. Consequently, &taking two
reference frames moving to each other and having parallel axes', a starting point
in the usual treatments based on coordinates, is dubious. Moreover, in these
usual treatments it is taken for granted that the relative velocities of observers
with respect to each other are opposite; we have seen, however, that the relative
velocity of u with respect to u@ is not the opposite of the relative velocity of u@
with respect to u.

Now we establish a physical procedure which establishes a correspondence,
called physical equality, between the space vectors of di!erent observers in such
a way that relative velocities of observers become physically opposite to each
other.

First of all we show that a light signal moving in the u-space in the direction of
vuu{

moves in the u@-space in the direction of !vu{u
. Let us introduce the unit

vectors in the directions of the relative velocities:

nu{u
:"

vu{u

v
, nuu{

:"
vuu{
v

, (21)

where v :"Dvu{u
D"Dvuu{

D.

Proposition 1. If k3M/I is a lightlike vector and

vku"nu{u
(22)

then

vku{
"!nuu{

. (23)

Proof. Multiplying equality (22) by k, we easily deduce that

!k ) u

!k ) u@
"S

1!v

1#v
(24)

which yields equality (23). h

Next we suggest that two observers relate their spaces to each other by the
following procedure. Take a vector a in the u-space, orthogonal to vu{u

. Send
light signals of di!erent colours from the starting point and the end point of the
vector, respectively, in the direction of vu{u

. The light signals arrive at the
observer u@ in the direction !vuu{

, and hit a plane orthogonal to vuu{
; these two

points determine a vector a@ which is considered physically equal to a.
Take a vector b in the u-space, parallel to vu{u

. Send light signals u-simulta-
neously from the starting point and the end point of the vector, in the direction
of vu{u

. The light signals arrive at the observer u@ in the direction !vuu{
, and
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4 If b"bnu{u
, then the time delay is determined by the fact that bnu{u

#u@t@ is lightlike, from which we

infer that b"t@J1`v
1~v

.

hit a plane orthogonal to vuu{
with a time delay t@; the vector b@ :"

!t@J1#v/1!vnuu{
in the u@-space is considered physically equal to b.4

To formalise the above procedure, we introduce the following de"nition:

De5nition 1. A vector x@ in Eu{
is considered to be physically equal to a vector

x in Eu if
} the orthogonal projection of x@ onto EuWEu{

(which is the plane in Eu{
or-

thogonal to vuu{
) equals the orthogonal projection of x onto EuWEu{

(which is
the plane in Eu orthogonal to vu{u

), i.e.

x@!(nuu{
) x@)nuu{

"x!(nu{u
) x)nu{u

, (25)

} the orthogonal projection of x@ onto the direction of vuu{
is opposite to the

orthogonal projection of x onto the direction of vu{u
, i.e.

nuu{
) x@"!nu{u

) x. (26)

A vector x@ in Eu{
is physically parallel to a vector x in Eu if there is a real number

j such that jx is physically equal to x@ or x is physically equal to jx@.

It is quite evident that physical equality (parallelism) is a symmetric relation
but is not transitive, as can be seen from the following transparent mathematical
formulae.

5. Lorentz Boosts

The agreement about physical equality establishes a linear bijection EuPEu{
,

xCx@, x@ is physical equal to x, which can be extended to a linear bijection
MPM by the requirement uC u@. This linear bijection is uniquely determined
by the prescribed properties because they "x its values on vectors spanning M.
The explicit form of this linear bijection is given as follows.

Let u@?u denote the linear map MPM, xC u@(u ) x) and let 1 be the identity
map of M. Then the Lorentz boost from u@ to u,

B(u,u@) :"1#
(u#u@)?(u#u@)

1!u ) u@
!2u?u@, (27)

establishes the physical equality of vectors in the u-space to vectors in the
u@-space, because we have the following easily veri"able relations (see Matolcsi,
1993):

(i) B(u@,u)u"u@,
(ii) B(u@,u)x"x if x3EuWEu{

,
(iii) B(u@,u)vu{u

"!vuu{
,
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which imply that B(u@,u) preserves the Lorentz product, its arrow orienta-
tion and the orientation of M; furthermore,

(iv) B(u,u@)~1"B(u@,u).

Accordingly, the phrase &x boosted from Eu into Eu{
' will mean B(u@,u)x, which is

the vector in Eu{
physically equal to x.

In the usual treatments of special relativity, spacetime is considered to be
R]R3 in which R is &time' and R3 is &space'. All space vectors*space vectors of
di!erent observers*are taken to be elements of the same vector space R3. This
corresponds to the fact that an observer u and an orthonormal basis in the
u-space are chosen to coordinatise spacetime, i.e. an observer is &hidden' in the
coordinates and all space vectors are tacitly boosted into the space of the hidden
observer.

The Lorentz boost above is the absolute counterpart of the usual &pure
Lorentz transformation' or &Lorentz transformation without rotation': if n

1
, n

2
,

n
3

is an orthonormal basis (representing coordinate axes) in the u-space, then
B(u@,u)n

1
, B(u@,u)n

2
, B(u@,u)n

3
determine the coordinate axes in the u@-space that

are parallel to those in the u-space. Moreover, the matrix of B(u@,u) in the basis
n
0

:"u, n
1
, n

2
, n

3
becomes the well-known usual Lorentz matrix

A
i iv

1
iv

2
iv

3
iv

1
1# i2

1`iv21 i2

1`iv1v
2

i2

1`iv1v
3

iv
2

i2

1`iv2v
1

1# i2

1`iv22 i2

1`iv2v
3

iv
3

i2

1`iv3v
1

i2

1`iv3v
2

1# i2

1`iv23
B (28)

where i :"1/J1!Dvu{u
D2"!u ) u@ and v

i
:"n

i
) vu{u

"n
i
) u@/i (i"1,2,3).

Note that the Lorentz boost in the present context refers to two observers, i.e.
to two absolute velocities. The usual matrix of a Lorentz transformation refers to
a single relative velocity. Nevertheless, that matrix form, too, refers to two
observers, but one of them is &hidden' in the coordinate axes and the relative
velocity of another observer is taken with respect to the hidden observer.

Our treatment rules out hidden observers and coordinates.
The simple form (27) of the Lorentz boost allows us to exhibit a simple form

for two successive Lorentz boosts: let u,u@,uA3<(1). Then

B(uA,u@)B(u@,u)"1#
(uA#u@)?(uA#u@)

1!uA ) u@
#

(u@#u)?(u@#u)

1!u@ ) u

!

(uA#u@)?(u@#u)(1!uA ) u@!u@ ) u@!u ) uA)
(1!uA ) u@)(1!u@ ) u)

, (29)

from which we easily derive that the Lorentz boost from u to u@ followed by the
Lorentz boost from u@ to uA is, in general, not the Lorentz boost from u to uA.
More precisely, we have

B(uA,u@)B(u@,u)"B(uA,u) i! u, u@ and uAare coplanar. (30)
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This shows that the physical equality (and physical parallelism) of vectors in
di!erent observer spaces is not a transitive relation: it may be that

(i) x@3Eu{
is physically equal to x3Eu i.e. x@"B(u@,u)x, and

(ii) xA3EuA is physically equal to x@3Eu{
i.e. xA"B(uA,u@)x@, but

(iii) xA is not physically equal to x: xAOB(uA,u)x.

Let us remark that in the usual treatments of special relativity, using relative
velocities and coordinates, one states that the product of two pure Lorentz
transformations is a pure Lorentz transformation if and only if the correspond-
ing relative velocities are colinear. There, all the space vectors*relative vel-
ocities as well*are tacitly boosted in the space of the observer hidden in the
coordinates. The two relative velocities in question would be vu{u

and vuAu{
; the

latter one, however, is to be boosted into the u-space. Thus

v :"vu{u
, w :"B(u,u@)vuAu{

(31)

correspond to the relative velocities in the usual treatments. Then the statement
mentioned above derives from the following:

Proposition 2. u,u@,uA are coplanar if and only if vu{u
and B(u,u@)vuAu{

are colinear.

6. Thomas Rotation

We can reformulate (30) as follows:

Ru (u@,uA) :"B(u,uA)B(uA,u@)B(u@,u) (32)

is the identity transformation if and only if u, u@ and uA are coplanar.
We easily "nd from the properties of the Lorentz boosts:

Proposition 3.

(i) Ru (u@,uA)u"u,
(ii) the restriction of Ru(u@,uA) onto Eu is an orientation and Euclidean product

preserving linear bijection from Eu onto Eu , i.e. it is a rotation,
(iii) excluding the trivial case when the three absolute velocities are coplanar,

the axis of rotation (the set of invariant vectors) is the one-dimensional linear
subspace EuWEu{

WEuA .

We continue to consider the linear bijection de"ned on M rather than its
restriction to Eu . That is why we accept the following de"nition:

De5nition 2. Ru (u@,uA) is called the Thomas rotation of u corresponding to u@
and uA.

We emphasise that the Thomas rotation is de"ned without coordinate axes,
so its fundamental meaning is not connected with the rotation of axes and it
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corresponds to no real rotation. The Thomas rotation measures the deviation of the
physical equality from being transitive.

Note that three absolute velocities are involved in the above de"nition. In the
usual formulation based on coordinates, the matrix of the Thomas rotation (see
Ungar, 1989) involves two relative velocities because an observer is hidden in the
coordinate axes.

Of course, we should like to deduce from the previous de"nition the expres-
sion for the Thomas rotation in terms of relative velocities. Since Ru (u@,uA) is
a rotation in the u-space, and space in the usual matrix formalism always means
the space of the hidden observer, u now corresponds to the hidden observer and
the two relative velocities in question would be vu{u

and vuAu{
; however, the latter

one is to be boosted in the u-space, i.e. we have to take the velocities de"ned in
(31). It is easy to check that v and w are in the rotation plane of the Thomas
rotation, i.e. they are orthogonal to the rotation axis EuWEu{

WEuA . Introducing

a :"!u@ ) u"
1

J1!DvD2
, (33)

b :"!uA ) u@"
1

J1!DwD2
, (34)

c :"!uA ) u"ab(1#v )w), (35)

we can recover the absolute velocities u@ and uA from u and the relative velocites
v and w:

u@"a(u#v), (36)

uA"b(u@#B(u@,u)w)"cu#bw#

a(b#c)
1#a

v. (37)

The Thomas rotation in terms of relative velocities is

Tu(v,w) :"RuAa(u#v),cu#bw#

a(b#c)
1#a

vB. (38)

A lengthy but straightforward calculation yields the following result:

Proposition 4.

Tu (v,w)"1#a2
1!b

(1#a)(1#c)
v?v#b2

1!a
(1#b)(1#c)

w?w

ab
(1#a)(1#c)#(b#c)(1!a)

(1#a)(1#b)(1#c)
v?w!ab

1

1#c
w?v. (39)

This very nice form allows us to deduce easily all the results regarding the
Thomas rotation which are di$cult to obtain in the matrix formalism.
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Proposition 5. Let e denote the angle of rotation of Tu (v,w) and let h denote the
angle between v and w. Then

cos e"1!
(a!1)(b!1)

1#c
sin2h. (40)

Proof. It su$ces to "nd the cosine of the angle between x and Tu (v,w)x for some
special x in the rotation plane. Let us choose x such that DxD"1, w )x"0 and
v )x'0. Then v )x"DvDsin h and cos e"x )Tu (v,w)x, so we get the desired result
immediately. h

The above formula is simple but it contains four quantities which are not
independent:

c"ab#Ja2!1Jb2!1cos h. (41)

Eliminating h, we get

cos e"1!
1#2abc!(a2#b2#c2)

(1#a)(1#b)(1#c)
. (42)

Eliminating c and introducing

k :"S
(a#1)(b#1)

(a!1)(b!1)
,

(43)

we get

cos e"1!
2sin2 h

1#k2#2kcos h
"

(k#cos h)2!sin2 h
(k#cos h)2#sin2 h

. (44)

The orientation (the positive direction of the rotation axis) of the Thomas
rotation is the direction of x]Tu(v,w)x where x is an arbitrary non-zero vector
in the rotation plane and ] denotes the vectorial product.

Proposition 6. The orientation of the Thomas rotation Tu (v,w) is given by w]v.

Proof. The map jCTu(v,w#jv) (j3R) is continuous. Since there are two
disjoint orientations, a continuous map cannot change the orientation; conse-
quently, the orientation is the same for all j as for j"0. Let j

0
be such that

(w#j
0
v) ) v"0. Then we easily "nd that

v]Tu (v, w#j
0
v)v"!

abDvD2
1#c

(v]w), (45)

which proves our assertion, because all the coe$cients on the right-hand side
are positive. h
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7. The Velocity Addition Paradox

The velocity addition paradox can be described as follows. Let us consider
three observers: me, you and him for the sake of easy formulation. Your velocity
v relative to me and his velocity w relative to you determine his velocity v=w to
me by the formula (see Mocanu, 1992)

v=w"

ab
c Av#w#

a
1#a

v](v]w)B"
a(b#c)
c(1#a)

v#
b
c
w. (46)

Similarly, your velocity w( relative to him and my velocity v( relative to you
determine my velocity w( =v( relative to him by the same formula. We &evidently'
have w("!w, v("!v and w( =v("!v=w; however, the actual formula for
the addition = shows that, in general,

(!w)=(!v)O!(v=w), or, equivalently, w=vOv=w. (47)

We shall soon see that the paradox arose in the usual matrix formalism from
the fact that instead of vectors in the spaces of di!erent observers one tacitly
considers the corresponding physically equal vectors in the space of the hidden
observer (every space vector is tacitly boosted into the space of the hidden
observer), which implies the incorrect tacit assumption that physical equality is
a transitive relation. In fact, relative velocites v and w as well as w( and v( are
considered to be elements of R3, their sum and vectorial product appear in the
formulae v=w and w( =v( , yielding elements of R3.

Now let us return to the notations u (me), u@ (you) and uA (he). Then vuAu would
be v and vuAu{

would be w. However, vu{u{
and vuAu{

are in the di!erent three-
dimensional vector spaces Eu/I and E@u/I respectively, their linear combination
does not lie in either Eu/I or E@u/I, and their vectorial product is not meaningful.

The velocity addition formula (46) is meaningful and holds true only if the second
relative velocity is boosted into the space of the observer to which the xrst velocity
and the resulting one are related.

Thus we have to take v"vuAu{
and w"B(u,u@)vuAu{

in accordance with (31) and
then

v=w"vuAu . (48)

Regarding the other addition in the paradox involving w( and v( , we must be
careful: since the velocity of u relative to uA is calculated by the addition formula
from the velocity of u@ relative to uA and from the velocity of u relative to u@, this
last relative velocity must be boosted into the uA-space, so

w( :"vu{uA , v( :"B(uA,u@)vuu{
(49)

and then

w( =v("vuuA . (50)
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Note that w( and !w as well as v( and !v are in di!erent spaces: the "rst ones in
the uA-space, the second ones in the u-space. The &evidence' used in the formula-
tion of the paradox that w( equals !w and v( equals !v would indeed imply
that w( and v( are physically equal to !w and !v, respectively. But the vectors
in the u-space, physically equal to w( and v( , respectively, are

B(u,uA)w("B(u,uA)vu{uA"!B(u,uA)B(uA,u@)vuAu{

"!B(u,uA)B(uA,u@)B(u@,u)w"!Ru (u@,uA)w, (51)

B(u,uA)v("B(u,uA)B(uA,u@)vuu{

"!B(u,uA)B(uA,u@)B(u@,u)vuAu{
"!Ru (u@,uA)v. (52)

We see that w( is not physically equal to !w and v( is not physically equal to !v,
contrary to the &evidence' which leads to the paradox. Then it is not surprising
that w( =v( is not physically equal to v=w either. All this is the consequence of the
non-transitivity of physical equality.

Formulae (51) and (52) indicate that the velocity addition formula will
be &commutative' if we replace w( and v( by !Ru(u@,uA)w"Tu (v,w)w and
!Ru (u@,uA)v"Tu (v,w)v, respectively.

Proposition 7.

Tu (v,w)w=Tu (v,w)v"Tu (v,w)(w=v)"v=w. (53)

Proof. In the next lemma we demonstrate that a Lorentz transformation (in
particular, the Thomas rotation) is &linear' with respect to the addition =, which
implies the "rst equality.

To prove the second equality, we apply the inverse of the Thomas rotation
and we take into account the properties of Lorentz boosts, as well as equalities
(48)}(50):

Tu (v,w)~1(v=w)"B(u,u@)B(u@,uA)B(uA,u)vuAu

"!B(u,u@)B(u@,uA)vuuA

"!B(u,u@)B(u@,uA)(vu{uA=B(uA,u@)vuu{
)

"(B(u,u@)vuAu{
)=vu@u"w=v. (54)

Lemma 1. If L is a Lorentz transformation*i.e. a Lorentz product preserving
linear bijection of M*then

L(v=w)"(Lv)=(Lw). (55)

Proof. According to (46), v=w is a linear combination of v and w with coe$-
cients composed of DvD2, DwD2 and v )w. Then our assertion is quite trivial, since
L is linear and DLvD2"DvD2, DLwD2"DwD2, (Lv) ) (Lw)"v )w. h
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8. Discussion

A spacetime structure which is free of observers, reference frames and coordi-
nates admits a treatment of special relativity based on absolute objects, i.e.
objects not involving reference frames and coordinates. Such a treatment makes
it evident that the spaces of di!erent observers are di!erent a$ne spaces over
diwerent vector spaces, in contrast to the non-relativistic case. A physical
procedure has been given to relate the spaces of di!erent observers to each
other, establishing a notion of physical equality and physical parallelism of
vectors in di!erent observer spaces. The physical equality is described
by Lorentz boosts, whose explicit form in terms of absolute velocities allows
us to very easily make calculations; in particular, we easily obtain that
the product of two successive Lorentz boosts is, in general, not a Lorentz boost,
which shows that physical equality is not a transitive relation, in contrast to the
non-relativistic cases. The Thomas rotation, simply de"ned by the succession of
three Lorentz boosts, measures how much the relation of physical equality of
vectors deviates from being transitive. An explicit form of the Thomas rotation
has been deduced which is much more convenient to apply than the usual
matrix forms.

The absolute formulation of spacetime illuminates that the velocity
addition paradox is a consequence of the facts that in the treatments using
coordinates

1. the space of every observer is tacitly considered through the corresponding
physically equal vectors in the space of the observer hidden in the coordi-
nates,

2. physical equality is tacitly taken to be a transitive relation.
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