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Preface

1. Undoubtedly, a branch of theoretical physics formalized in a more exact
mathematical way is more reliable. Mathematization means that we have to use
mathematically exact notions, ruling out tacit assumptions which are ‘natural’,
‘evident’ notions, properties, facts ‘not to be explained’. Such tacit assumptions
cause, in general, troubles and misunderstandings in a theory. Namely, in different
situations the same ‘evidence’ is interpreted differently, and it happens frequently
that ‘natural properties’ contradict each other. For instance, the notion of set in
earlier mathematics was a tacit assumption and the set of all sets was an evidence;
moreover, the following two facts were considered trivial: 1. if there is a one-to-one
correspondence between the elements of two sets, then the two sets contain the
same amount of elements, 2. a proper subset of a set contains less elements than
the set itself. Nowadays, having the precise logical setup of set theory, we know
that the set of all sets does not exist and assertions 1 and 2 cannot hold simulta-
neously (point 1 is accepted in set theory). Of course, not all tacit assumptions
are misleading, but we can have confidence only in a theory not appealing to tacit
assumptions.

Classical mechanics, quantum mechanics, classical electromagnetism are
mathematically developed branches of physics which work well though they are not
free of tacit assumptions. In a sharp contradistinction, thermodynamics is essen-
tially characterized by a contradictory and confused system of tacit assumptions
which is well illustrated as follows.

2. In usual thermodynamics equilibrium is a fundamental concept, and it is
always underlined that all other notions – such as temperature – have a meaning
only in equilibrium. Equilibrium is an ‘evident’ notion, ‘everybody knows what it
is’. However, observing more thoroughly, we find that equilibrium is used in several
different senses. For instance, one speaks about ‘the equilibrium of a body’ and
one says, too, that ‘two bodies are in equilibrium with each other’. Perhaps the
reader does not notice the trouble, but changing the words body and equilibrium,
we can see that something is not right: ‘the illness of a man’ and ‘two men are in
illness with each other’.

Equilibrium has the tacitly accepted property that it is unvaried, constant in
time. Furthermore, on the basis of some simple everyday experience, a fundamen-
tal property of equilibrium is formalized as the zeroth law of thermodynamics: an
intensive state function corresponds to every interaction in such a way that their
equal value on the bodies is a necessary and sufficient condition of equilibrium.
Then it is deduced – because this must hold for any two parts of a body, too
– that the homogeneity of the intensive quantities is the necessary and sufficient
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condition of the equilibrium of a body. However, this is not true as shown by the
following examples.

It is a simple fact that the pressure of a gas (liquid) in a container resting on
the Earth is not homogeneous, growing downwards because of the gravity. Thus
homogeneity in equilibrium does not hold necessarily in the presence of exterior
volume force (which is proportional to the density).

The pressure of a gas consisting of electrically charged particles in equilibrium
in a spherical container is not homogeneous, growing radially from the centre
towards the container wall (gravity neglected). Thus homogeneity in equilibrium
does not hold necessarily in the presence of interior volume force.

Let us take an elastic ball resting in the atmosphere, and let us neglect gravity.
The three bodies in equilibrium, the air in the ball, the elastic hull and the atmo-
sphere, have different pressures. The pressure of the air inside is larger than that
of the atmosphere, and the pressure of the hull is not homogeneous (it is larger on
the internal surface than on the external surface), though no volume force acts on
the hull. Thus homogeneity in equilibrium does not hold necessarily even in the
absence of volume force.

In the previous examples we have made explicit that the bodies in question
are at rest with respect to the Earth considered inertial. It is not hard to see that
equilibrium is a relative notion, i.e. it depends on observers (reference systems).
The pressure of a neutral gas in equilibrium in a container resting on a rotating
disk is not homogeneous, growing radially from the rotation axis outwards (grav-
ity neglected). Thus homogeneity in equilibrium with respect to a non-inertial
observer does not hold necessarily.

Finally, let us note that according to the mentioned zeroth law, a body whose
temperature and pressure are homogeneous at every instant but change in time
would be in equilibrium but this contradicts the other tacitly accepted property
that no change occurs in equilibrium.

3. Simple examples have demonstrated that the zeroth law of thermodynam-
ics is not fulfilled, in general, which undermines our confidence: are the first and
second laws correct? Our mistrust increases if we observe that the formulation
of the first and second laws concerns state changes though usual thermodynamics
admits only equilibrium as meaningful. To overcome this difficulty, one introduces
the notion of quasi-static process: a process in which the body is always in equi-
librium; a quasi-static process is a sequence of equilibria. Though it is emphasized
that such a process is an idealization, a limiting case of real processes when the
change is very slow, we can doubt that such an idealization is correct. Namely,
let us take a mechanical analogue: a body is in equilibrium if it does not change
position and has zero velocity (e.g. rests on a horizontal plane). We can carry
the body in another equilibrium very slowly (in such a way that it be approxi-
mately in equilibrium at every instant), and even more and more slowly, but in
the quasi-static limit – when its velocity is always zero – there is no process. Is
not a quasi-static process an absurdity?

The first law, we shall see, is essentially correct in its usual form. On the
other hand, the diverse and hardly conceivable forms of the second law make us
suspicious that at this point the theory suffers from tacit assumptions. It is worth
citing some formulations of the second law.



25

Original, earlier formulations:

Kelvin–Planck:

It is impossible to construct a periodically operating device which produces no
effect, except the raising of a weight and the cooling of a heat reservoir.1

It is impossible to devise an engine which, working in a cycle, shall produce no
effect other than the extraction of a heat from reservoir and the performance of an
equal amount of mechanical work.2

No process is possible whose sole result is the complete conversion of heat into
work.3

Clausius:

Heat cannot pass by itself from a colder to a warmer body.

It is impossible to devise an engine which, working in a cycle, shall produce no
effect other than the transfer of heat from a colder to a hotter body.

No process is possible whose sole result is the transfer of heat from a colder to
a hotter body.

Sometimes one ‘demonstrates’ that the Kalvin-Planck formulation and the
Clausius formulation are equivalent; we point out the error of such a ‘proof’ in
13.16 and in 12.16 we show that the two types of assertions are not equivalent at
all.

Some recent formulations are based on the zeroth law which, as we have seen,
is not correct:

In an isolated system, the macroscopic processes induced by the inhomogeneities
(spontaneous processes) always decrease the inhomogeneities. As a consequence,
the system approaches an equilibrium. This trend of being homogeneous is the
second law of thermodynamics.4

The following law determines the direction of processes: the inhomogeneities of
the intensive quantities try to vanish, compelling the extensive quantities to flow
in a direction which helps the inhomogeneities to disappear.5

Carnot’s formulation6:

1. Every thermodynamical system has a state function (called entropy) S in
such a way that δQ ≤ TdS for the heat absorbed in any infinitesimal quasi-static
process and equality holds only for reversible processes.

2. The entropy of a closed system can never decrease; it increases in an irre-
versible process and remains constant in a reversible one.

On the basis of Carnot’s formulation, the second law is stated nowadays mostly
with the aid of entropy:

1D.Haar–H.Wergeland: Elements of Thermodynamics, Addison–Wesley,1960
2A.B.Pillard:Elements of Classical Thermodynamics, Cambridge Univ. 1966
3C.J.Adkins: Equilibrium Thermodynamics, Cambridge University Press, 1983, 3rd edition
4A. Harmatha: Termodinamika műszakiaknak, Műszaki Kiadó, Budapest, 1982, p. 61
5I.Fényes: Termosztatika és termodinamika, Műszaki Könyvkiadó, Budapest, 1968, p. 203
6K. Denbigh: The Principles of Chemical Equilibrium, Cambridge Univ. Press, 1966; pp.

36-38
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When the stable equilibrium has been reached in an isolated system, the entropy
has a maximum.

The spontaneous processes in an isolated system have such a direction which
forces the entropy to increase. 7

It has been considered for a long time that the entropy maximum in equilibrium
and the increase of entropy in non-equilibrium processes are equivalent. Nowadays
this is known to be false which will be clearly shown in our treatment, too (cf.
12.11.1 and 13.15.1).

We can immediately see why the quoted formulations are not sufficient: the
isolated or closed system, the spontaneous process, the direction of a process are
all tacit assumptions, so the forms of the second law concerning them are com-
pletely inconceivable. Moreover, the entropy maximum in equilibrium is mean-
ingful only if the entropy of equilibrium is compared with the entropy of non-
equilibrium states not defined in the theory; similarly, the law of entropy increase
involves non-equilibrium processes, not defined in the theory. This mentioned flaw
of entropy maximum is ruled out formally by introducing ‘equilibria with inside
constraints’ and requiring the maximum for the equilibrium without constraint but
then it is taken as evidence that with the constraints removed, a process starts in
which the entropy increases.8

Last but not least we mention that the quoted formulations of the second law
are unnaturally one sided: they concern only closed (isolated) systems; we expect
a more general law on the direction of processes.

4. The second law – no matter, in what formulation – is regarded as a law of
irreversibility. It is worth citing some usual assertions in this respect, too.

The direction of change of state functions is not determined in a reversible
process, so the process can run equally in every direction.

In an irreversible process the change of state functions is restricted, the process
can run spontaneously only in one direction.

If the state of a thermodynamic system changes in such a way that there is
a possible process running through the same states but in reversed order then the
process is reversible, otherwise it is irreversible.

These statements (assertions? definitions?) are inconceivable, too: the possible
processes, the spontaneous processes, the running of a process, etc. are all tacit
assumptions.

Reversibility is often identified with the invariance under time reversal, and it
is stated that “a purely mechanical process is always reversible", because the New-
tonian equation is invariant under time reversal. We have to make two comments
in this respect.

The first concerns the relation between the above ‘definition’ of reversibility
and the time reversal. Let us consider, for instance, the Earth revolving around
the Sun: we see the ellipse and the Earth moving on it. Reversing this motion
in time, we see the same ellipse and the Earth moving on it in the opposite di-
rection. However, the mechanical state is not only the position, but the position
and the momentum together: the process runs in the phase space. If the position

7A. Harmatha, loc. cit. pp. 69-72
8H.B.Callen: Thermodynamics, Wiley and Sons, NY. 1985, p. 39.
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of the reversed motion coincides with some position of the original motion, the
momentum of the reversed motion is opposed (not equal) to the momentum of the
original motion. The reversed motion does not run through the same states as the
original one: time reversal invariance does not correspond to the desired notion of
reversibility.

Our second remark is that it is doubtful whether reversibility and time reversal
have something in common at all. We do not know what reversibility is, we have
only some vague idea of it, but we can be convinced that it cannot depend on
observers. On the other hand, we have an exact definition of time reversal, and
we also know that it depends on observers. Without expounding precisely, we
illustrate this by the previous example. If A rests with respect to the Sun and
observes the Earth, he sees it running on an ellipse. Reversing this motion, he
sees that the Earth runs backward on the same ellipse. If B moves uniformly with
respect to the Sun and observes the Earth, he sees it running on a right-handed
spiral. Reversing this motion, he sees that the Earth runs backward on the same
spiral. However, if B observes the motion reversed by A, he sees that the Earth
runs forward on a left-handed spiral.

5. There are, of course, mathematically exact formulation of the second law
in diverse axiomatic frameworks. There is a lot of axiomatic frameworks, so there
is a lot of second laws 9. The main trouble is not the diversity of the second
laws but the fact that though all those have highly abstract forms, they refer to a
rather restricted family of phenomena (processes); e.g. mostly they are formulated
only for cycles, furthermore they do not concern processes of bodies with varying
particle number (diffusion, phase transition, chemical reaction) as well as processes
with electromagnetic phenomena.

These axiomatic frameworks – though contributed significantly to the develop-
ment of thermodynamics – do not provide well working theories for the description
of natural phenomena.

6. In well-working branches of theoretical physics – classical mechanics, quan-
tum mechanics, classical electromagnetism – the process is the fundamental no-
tion which is defined as a solution of differential equations: Newtonian equation,
Schrödinger equation, Maxwell equations. Equilibria are special processes which
do not vary in time. Thus processes, in particular equilibria, are well-defined
objects.

Real processes, varying in time appear in thermodynamics, too, ‘near to equi-
librium’ which are treated by Onsager’s theory. Nonequilibria are not meaningful
in usual thermodynamics, thus the insufficiency of the Onsager theory is well
demonstrated by the following questions: which non-meaningful objects are near
to equilibrium and in what sense are they near to it?

Thermodynamics will be a well-established theory if we build it up in such
a way that its fundamental notion is the process governed by some differential
equation. To do this, first of all we must abandon the old belief that quantities
– such as temperature – have meaning only in equilibrium. In all branches of
physics, the measuring instructions of quantities require slow changes (‘approxi-
mate equilibrium’). Consider, for instance, an electric field: taking a charge, we

9New Perspectives in Thermodynamics, ed. J. Serrin, Springer, 1986
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have to measure the force acting on it. In such a way we are not able to measure
the electric field in a light beam, but this does not prevent us from accepting the
electric field as a meaningful, existing quantity in a light beam. Similarly, we can
accept that temperature, too, is an existing and meaningful quantity in a large
class of nonequilibrium processes.

The diverse theories of continuum physics (irreversible thermodynamics) are
theories similar to the mentioned well-working ones: the quantities are considered
to be varying in time and space, thus processes are functions defined in spacetime
which are governed by partial differential equations. These theories only have a
technical flaw: they are rather complicated from a mathematical point of view.

Neglecting thermodynamical phenomena in continuum physics, we arrive at
continuum mechanics. This theory describes every mechanical phenomena. In
some special cases, however – if deformation is negligible – the continuum de-
scription is unnecessarily complicated, and it can be replaced with a simpler one
in which the bodies are considered as rigid, and so, instead of partial differential
equations, we can deal with ordinary differential equations. We know, of course,
that in reality a body is never rigid, it is deformed under the action of a force, and
a sufficiently large force causes a significant deformation, but we take into account
only such processes in which deformations are negligible.

7. A correct formulation of usual thermodynamics – which we call ordinary
thermodynamics – can be achieved in analogy of the above facts. If we can
neglect the mechanical aspects of the phenomena and we can consider the bodies
homogeneous (i.e. every quantity characterizing the body has the same value at
all points of the body), then the continuum thermodynamical description can be
replaced by a theory in which the processes are determined by ordinary differential
equations.

We have seen that in usual thermodynamics equilibrium is identified with the
homogeneity of quantities (which is not right) and a quasi-static process is such
that the body is in equilibrium at every instant. Changing the word equilibrium
to homogeneity, we give a right meaning to a quasi-static process: a nonequilib-
rium process in which all quantities are homogeneous at every instant. In what
follows we prefer to say homogeneous process instead of quasi-static process. In a
homogeneous process the properties of a body vary only in time, while they are
constant in space.

Thus ordinary thermodynamics is based on the assumption that the quantities
are homogeneous in the processes. We have seen, however, that this does not
hold necessarily even in equilibrium. Nevertheless, this does not mean that such a
theory is useless and worthless. We have to bear in mind only that – as every theory
– it is applicable only for a restricted class of phenomena. A theory itself does
not answer the question, under what circumstances it gives a good description:
classical mechanics does not specify when a body can be considered as rigid or
point-like, and ordinary thermodynamics does not reveal us when the bodies can
be considered homogeneous.



Introduction

1. It is well known that our common objects consist of several times 1023

molecules which chase, attract and repulse each other, emit and absorb electro-
magnetic radiation. This chaotic inner life mostly appears outwards as relatively
uniform, still because of the large number of microscopic phenomena, it results in a
macroscopic average quiet. Continuum physics describes this average phenomena.
To understand ordinary thermodynamics, we have to survey continuum physics.

2. Let us consider a body consisting of equal, neutral molecules. Of course,
the neutral molecules consist of charged particles which emit and absorb elec-
tromagnetic radiation, so electromagnetism plays a significant role in this case,
too.

The average velocity of molecules is a characteristic of the state of the body.
Let us imagine that the body (a glass of water) is at rest with respect to us. Then
we observe that every point of the body is at rest with respect to us: the average
velocity is zero at every point of the body. Our experience regarding the Brown
motion tells us that indeed only the average velocity is zero. Let us stir the water:
it will flow and, of course, the Brown motion remains in the flowing water, too.
Accordingly, we distinguish between the macroscopic motion (flow) of the body
and the microscopic motion inside the body. The flow of the body (continuum) is
characterized by the average velocity of molecules which is described by assinging
velocity values to space and time points. Regarding a solid body, the word ‘flow’
seems strange but the oscillation of a solid body is really a flow. By the way, quiet
and flow are relative notions (a quiet with respect to us is a flow with respect
to another observer). After all, we can state that the history of a continuum is
described by a velocity field which is a function assigning (absolute) velocity
values to spacetime points.

Another characteristic of the body is its density, i.e. the mass contained in a
unit volume element. The density, in general, is different at different points and
varies in time; thus the density, too, is a function defined in spacetime.

Mass, momentum and energy flow from one place to another in the body.
We distinguish between two types of such flows: the convective currents and the
conductive currents. The convective current is related to the macroscopic mo-
tion, so to the velocity field, the conductive current is related to the microscopic
motion. It is evident that if a part of a body flows from one place to another,
then mass, momentum and energy flow as well. Momentum and energy can flow
without macroscopic motion: the molecules hustle each other, emit and absorb
electromagnetic radiation.

A current describes the quantity flowing through a unit surface in a spacepoint
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in a unit time interval (this can be made more precise from a mathematical point
of view); thus a current, too, is a function defined in spacetime and having values
in an appropriate set. The density of a quantity multiplied by the velocity field
yields the corresponding convective current.

The mass density is already mentioned. The momentum density equals the
product of the mass density and the velocity field because the resultant momentum
of microscopic motion is zero.

The energy density consists of two components. The macroscopic kinetic energy
density equals the half of the product of mass density and the square of the velocity
field. The internal energy density of a body comes from the kinetic energy
due to the microscopic motion, the interaction energy and the chemical energy of
molecules. The internal energy density is a characteristic of the body.

Furthermore, the conductive currents, too, are characteristic of the body. It is
evident that mass has no conductive current. The conductive current of momen-
tum is just the stress tensor: the momentum flowing through a unit surface in
a unit time interval equals the force acting on the unit surface. The conductive
current of internal energy is called heat flow because the usual heat conduction
is just the flow of internal energy. Namely, let us accept roughly that the tem-
perature is proportional to the microscopic kinetic energy. Let two bodies with
different temperature be in contact with each other. On the contact surface the
molecules of the bodies interact (collide), the faster molecules give kinetic energy
to the slower ones. internal energy flows from one body to another which, from a
macroscopic point of view, appears as a heat flow.

The conservation of mass, moment and energy is expressed by balance equa-
tions.

3. Instead of mass density, it will be convenient to use its reciprocal, the
specific volume, the volume of a unit mass. At the same time, instead of internal
energy density, we use specific internal energy, the energy of a unit mass; it
equals the quotient of internal energy density by mass density.

Let e, u , v, k and P denote the specific internal energy, the velocity field, the
specific volume, the heat flow and the stress tensor, respectively; recall that all
these are functions defined in spacetime, and now it is underlined that we consider
a nonrelativistic theory. If the total mass of the body is constant and there is
no exterior force acting on the body, then the balance of energy, momentum and
mass yields the equations

Due = − v(∇ · k + P : ∇u),

Duu = − v∇ · P ,
Duv = v∇ · u

where Du is the differentiation with respect to the velocity field u , usually called
the substantial derivation, ∇ is the spacelike differentiation, while the dot and
the colon denote the scalar product of two vectors and two tensors, respectively.
We do not go into more detail because we shall use all this only for heuristic
considerations.

We see that there are more unknowns than equations: we need further relations.
Let us accept now that a process of the continuum is uniquely determined by the
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quantities on the left-hand side, i.e. by (e,u , v). Then P and k are to be given
as functions of (e,u , v); in this case we have just as many unknowns as equations
(which gives only a hope to have a unique solution).

4. Besides the fact that the conductive current of internal energy is called heat
flow, up to this point there has been no indication, how the previous considerations
concern heat phenomena, because all the quantities in question are mechanical
ones. We explained the term heat flow by supposing a relation between internal
energy and temperature. Indeed, heat phenomena enter the equations at this
point. More closely: the internal energy, though it has a clear meaning, cannot be
measured directly. Instead of it we have the temperature T as a simply available
quantity. The temperature appears in usual formulae for the conductive currents,
too. For instance, the static pressure P (deriving from the stress tensor) of an
ideal gas has the form Pmv = kT where m is the mass of a molecule and k is
the Boltzmann constant. Similarly, our rough experience that “heat flows from a
hotter place to a colder one" is expressed by Fourier’s law, k = −λ∇T where λ is
a positive constant.

Thus the equations refer to (e,u , v) but the conductive currents are naturally
given as functions of (T,u , v). As a consequence, we must have a relation between
e and T ; more precisely, we have to give e as a function of (T,u , v).

5. The zeroth and second law of thermodynamics, as we have seen in the
Preface, are doubtful. On the contrary, the first law is essentially right in its usual
form. We can recognize the first law in the above balance of internal energy: the
internal energy changes due to the heat conduction −v∇ · k and the mechanical
working −vP : ∇u . Supposing P = PI , where P is the usual elastic pressure
of a gas or a liquid and I is the identity tensor, we get the more familiar form
−vP : ∇u = −vP∇ · u = −PDuv.

The balance equations describe the changes only inside the body; the changes
connected with the surface of the body are taken into account by boundary condi-
tions. If we consider the body as a whole, i.e. we do not look for how the energy
is distributed in the body and are interested only in its total energy, then inte-
grating the balance equation and taking into account the boundary conditions, we
get that the difference between the energy E(t2) and E(t1) at the instants t2 and
t1, respectively, equals the sum of the energy (heat) Q(t1, t2) conducted to the
body during the time interval [t1, t2], the work W (t1, t2) done on the body and
the energy L(t1, t2) conveyed by mass transport to the body:

E(t2) − E(t1) = Q(t1, t2) +W (t1, t2) + L(t1, t2).

This is the first law of thermodynamics. Mostly one considers the case when
the mass of the body is constant; then the third term is missing. Furthermore, we
have to mention that the above form is valid only for a body consisting of equal,
neutral molecules. If, for instance, electric phenomena can take place, too, then an
additional term appears referring to energy change due to electricity. In general,
there are as many terms on the right-hand side as many interactions.

Such a form of the first law of thermodynamics is valid for any processes, it is
not restricted to ‘quasi-static’ ones.

The energy values on the left hand side contain both the the kinetic energy
and the internal energy: E = Ekin + Ein. Thermodynamics is concerned with
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the case when the kinetic energy of the body is zero at the instants in question,
i.e. the points of the body are at rest with respect to an inertial observer in both
instants t1 and t2; in other words, Ekin(t2) = Ekin(t1) = 0, so E(t2) and E(t1)
are purely internal energy values. It is important that when E is replaced by Ein,
the equality above does not hold for arbitrary instants, only for those when the
kinetic energy is zero.

6. As mentioned in the Preface, we should like to obtain ordinary thermody-
namics from continuum thermodynamics in such a way that we take into account
only homogeneous processes. Then the ∇ operator applied to every quantity yields
zero; however, this implies that the time derivatives are zero as well: there is no
change in time, everything is constant. There is no nontrivial homogeneous pro-
cess. Nevertheless, this does not prevent us from constructing a good model for
homogeneous processes, in the same way, as we treat rigid bodies in mechanics,
though we know that in reality rigid bodies do not exist.

To establish ordinary thermodynamics, we accept that the velocity field is
constant (zero with respect to an inertial observer) but we consider specific internal
energy and specific volume changing in time. Thus ordinary thermodynamics
involves implicitly an inertial observer with respect to which the bodies are at
rest. Then substantial time derivative becomes ordinary time derivative, denoted
as usual by a dot.

Hence the specific internal energy and the specific volume vary in time; ac-
cordingly, the first law of thermodynamics, on the analogy of the first balance
equation, is written in the form ė = q + w where q is the specific heating, w is
the specific working. Note that q and w are quantities referring to a unit time
interval, so they are of power type.

There is no counterpart of the second balance in ordinary thermodynamics,
because we consider the velocity as constant. The divergence of the velocity field
stands on the right-hand side of the third balance equation, and the velocity field
is determined by the stress tensor according to the second balance equation. Thus
the right-hand side of the third balance equation is obtained indirectly from the
stress tensor which must be given as a function of the process. As a consequence,
the third balance equation suggests us v̇ = f where the springing f – and, of
course, q and w, too – are to be known as functions of the process.

7. The stress tensor in continuum physics is decomposed in the form P =
R + V , where R is the elastic part and V is the viscous part. The energy
dissipation – the fact that only a part of the internal energy can be converted into
other energy while other energies can be converted into internal energy completely
– is formulated by the Clausius–Duhem inequality

−k · ∇T
T

− V : ∇u ≥ 0

which restricts how the heat flow and the viscous tensor can depend on the process
(e, v,u).

The energy dissipation in ordinary thermodynamics will occur on the analogy
of the above inequality.

8. Let us resume the results of our previous heuristics.
In continuum theory a process is (e,u , v) defined in spacetime and determined
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by the balance equations in Paragraph 3; the quantities P and k on the right-hand
side of the balance equations are to be given as functions of the process (e,u , v)
in such a way that the Clausius–Duhem inequality fulfils.

In ordinary thermodynamics a process is (e, v), a function of time determined
by the dynamical equations

ė =q + w,

v̇ =f,

where the dynamical quantities q, w and f are given functions of the process (e, v)
and they fulfil a convenient dissipation inequality (treated later).

The heat phenomena appear in ordinary thermodynamics in the same way as
in continuum physics: the quantities on the right-hand side of the equations can
be given in a natural way depending on the temperature T instead of internal
energy e.

Ordinary thermodynamics fixes exactly what brings forth the processes of a
homogeneous body (the dynamical quantities), how they do it (the dynamical
equations) and in what direction processes can run (dissipation inequality).

We have to mention that the first law treated in Paragraph 5 is stronger than
the first law appearing in the dynamical equations because this latter concerns
processes in which kinetic energy is missing.

9. The previous heuristics concerns bodies which have constant mass and con-
sist of equal, neutral particles. Now we do not touch the bodies whose particles can
be different or electrically charged, etc. (such bodies will be thoroughly treated
in the book) because we only wanted to depict the tasks and the methods of or-
dinary thermodynamics. However, it is worth describing the dynamical equations
for bodies with varying mass which occur in diffusion processes.

If g denotes the mass density change in unit time, ug and eg the velocity and
the specific energy of the mass coming to the body, then

Due = − v

(

∇ · k + P : ∇u − 1

2
g|ug − u |2 − geg

)

,

Duu = − v
(

∇ · P − g(ug − u)
)

,

Duv = v(∇ · u − vg).

10. Finally, we say a few words about the structure of treatment, the mathe-
matical tools and the notations.

Concerning the treatment, the topics will be first introduced heuristically, their
physical meaning will be enlightened in a mathematically loose way, then we come
to the exact mathematical definitions and propositions.

The thermodynamical quantities as variables of functions are denoted by the
usual simple letters e, v, T , P , etc. If one of them is expressed as a function of
some others, then we use special types. More closely, T and v being the variables,
the functions are denoted by script letters: e, P, etc.; e and v being the variables,
the functions are denoted by boldface letters: T, P, etc. Our formulae take into
account the physical dimension of the quantities in the SI system. For more detail
see App. 2.
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Besides the fundamental notions of analysis – open set, the closure of a set,
continuity, differentiability – we often apply the inverse function theorem and the
implicit function theorem and the notion of submanifolds which can be found in
App. 3 and App. 5, respectively.

Beside the well-known existence and uniqueness theorem of differential equa-
tions, the notions and theorems of stability theory are applied throughout the
book, because one of the main tasks of ordinary thermodynamics is to investi-
gate the trend to equilibrium which is based on Liapunov’s stability theory. The
necessary knowledge in this area is summarized in App. 7 and certain questions
regarding definiteness, important from the point of view of stability, are given in
App. 1.



I SIMPLE MATERIALS

1 Constitutive functions

1.1 The fundamental thermodynamical quantities

According to our experience, the fundamental characteristics of a material consist-
ing of equal, electrically neutral molecules are the following: the specific inter-
nal energy e, the specific volume v, the temperature T , the pressure P and
the chemical potential µ. In classical thermodynamics, contrary to continuum
mechanics, instead of the quantities per unit mass, one uses the quantities per
molecule; we, too, accept that specific means per molecule. A simple relation
holds between quantities per unit mass and quantities per molecule if the material
consists of equal particles. If v̂ is the volume per unit mass and m is the mass
of a molecule, then v = mv̂. Thus, it does not matter which quantity is used for
materials of equal molecules. The relation between v̂ and v is more complicated
if the material is the mixture of different molecules; in this case the treatment
is simpler if we take quantities per molecule. We mention that sometimes one
considers molar quantities. If V̂ is the molar volume, then V̂ = Lv, where L is the
Avogadro number (Loschmidt number) which approximately equals 6 · 1023.

We sall use the SI measuring units of the quantities listed above, which are J,
m3, K, Pa and J, respectively. The specific internal energy, the specific volume
and the temperature always have positive values. App. 2 contains the notions and
notations concerning measure lines.

A significant part of a number of books on classical thermodynamics is dedi-
cated to the definition and measurement of absolute temperature. This is indeed
an important question, like the definition and measurement of mass in mechanics.
However, treatments of theoretical mechanics start with the knowledge of mass;
similarly, we take now the scale of absolute temperature as known.

The first four ‘everyday’ quantities from the above-listed ones have been re-
ferred to in the Introduction, too. The physical meaning of chemical potential will
be clarified later; now we mention only that it plays a fundamental role in diffusion
and phase transition processes and it expresses the entire internal energy change
due to the change of the particle number.

The listed five quantities are not independent: their relations characterize the
material. Measuring the simultaneously possible values of these quantities, we can
establish their relations at least in principle. The particle number, the volume
– consequently, the specific volume –, the pressure and the temperature can be
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measured directly.

It is worth emphasizing this assertion because one frequently expresses scruples
regarding the temperature, saying that it can be measured only in equilibrium
and it is doubtful, how very low and very high temperature is measured where our
devices do not work. As mentioned in Paragraph 6 of the Preface, the measuring
prescription of almost all physical quantities refers to ‘near equilibrium’ when the
quantities do not change too rapidly. Moreover, measuring very small and vary
large values is problematic for all quantities; how to measure, e.g. such a huge
pressure which breaks down every device? How to measure the mass of a house?
Thus, we can neglect those scruples.

Let us return to what we have said: knowing the mass of a molecule and
measuring the mass of a body, we can determine the particle number. Thus
the specific volume, the pressure and the temperature are directly measurable
quantities, in contradistinction to the internal energy and the chemical potential.

Chemical potential is related to the change of particle number end expresses the
internal energy change, thus we can suppose without worry that internal energy
does not depend on chemical potential if the particle number is constant. Then the
first law gives a possibility for measuring the internal energy. We take a thermally
insulated body (a given amount) of the material in question, then starting from
a ‘ground state’ with determined specific volume v0, temperature T0 and pressure
P0 (and unknown specific internal energy e0), we do diverse amounts of work on
it; then we measure its volume, temperature and pressure. According to the first
law – because now the heating is zero –, the internal energy of the final states
differs from that of the ground state in the amount of works done. Thus internal
energy – at least in principle – can be brought into relation with specific volume,
temperature and pressure (apart from an additive constant).

Knowing how the specific internal energy of a material is related to specific
volume, temperature and pressure, we can use this material for measuring heat-
ing, according to the first law: if the particle number is constant, heating is the
difference between the time rate of internal energy and working.

Then we give the following prescription for measuring chemical potential: let
a body in a state determined by specific volume v, temperature T and pressure
P be connected with an environment (a body having a huge number of particles)
of the same material and having the same state in such a way that diffusion may
occur between the body and the environment. Let us conduct a ‘little amount’
∆Q of heat to the body in such a way that its specific volume, temperature and
pressure remains v, T and P , respectively. Then ∆N particle diffuses into the
environment (the change of particle number can be measured by the mass change
of the body). Then the equality ∆Q = (e+ Pv − µ)∆N – where e is the specific
internal energy corresponding to v, T and P – reveals to us how the chemical
potential is connected with specific volume, temperature and pressure.

In this way we can determine for a material the set Σ of simultaneously possible
values of e, v, T , P and µ, which characterizes the material from the thermody-
namical point of view, which suggests us the following mathematical definition.

Definition A non-void subset Σ of (J)+ × (m3)+ × (K)+ × (Pa) × (J) is called a
general simple material. The elements of Σ are the states of the material.
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The adjective simple now has the physical meaning “consisting of equal, elec-
trically neutral molecules" and the adjective general refers to the fact that this is
the most general possibility.

1.2 Other thermodynamical quantities

A state of a material is denoted by (e, v, T, P, µ) and we agree that the same
symbols, e, etc. denote the maps Σ → (J)+, (e, v, T, P, µ) 7→ e, etc., too. Using
these symbols, we introduce several functions regarding the material which will be
important later.

Definition Let Σ be a general simple material. Then

– s :=
e+ Pv − µ

T
: Σ → (J/K) is the specific entropy of the material,

– h := e+ Pv = µ− Ts : Σ → (J) is the specific enthalpy of the material,
– f := e−Ts = µ−Pv : Σ → (J) is the specific free energy of the material.

1.3 Rules for the relations among
the thermodynamical quantities

According to our simple and direct experience, the thermodynamical quantities
obey some general rules valid for all materials, such as: “if a material absorbs heat
(gets internal energy), then its temperature grows", “if the material is compressed,
then its pressure grows". More precisely,

– for fixed volume, more internal energy correspond to higher temperature,
– for fixed temperature, larger pressure correspond to smaller volume.
However, a deeper examination shows that the second rule is not valid nec-

essarily: at boiling temperature, the same pressure corresponds to the smaller
specific volume of liquid water and the larger specific volume of vapour. It seems,
this rule only holds locally, i.e. for volume values near to each other.

According to another, seemingly general experience “for fixed volume, larger
pressure corresponds to higher temperature", but this does not hold for water in
the interval between 0oC and 4oC.

All that warns us to be careful, not to generalize too hastily our experience. In
addition, accepting something as a general rule, we do not assert that
it necessarily holds in reality; doing so we only restrict the area of our
investigations, determine precisely the validity domain of the theory in
question.

1.4 Formalization of the basic rules

Let us suppose that specific internal energy and pressure can be given as a function
of specific volume and temperature in the forms (v, T ) 7→ e(v, T ) and (v, T ) 7→
P(v, T ), respectively (this will be detailed in the next paragraph). Then we can
state

– for fixed v, the assignment T 7→ e(v, T ) is strictly monotone increasing,
– for fixed T , the assignment v 7→ P(v, T ) is locally strictly monotone decreas-

ing.
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To avoid misunderstanding, we give the precise meaning of the last notion: if
(v0, T ) ∈ DomP, then v0 has a neighbourhood in which for all v1 and v2 such
that (v1, T ), (v2, T ) ∈ DomP, the relation v1 < v2 holds if and only if P(v1, T ) >
P(v2, T ).

If P is continuous, then P(·, T ) is strictly monotone decreasing on every interval
in its domain.

Let us recall that the required properties are fulfilled where the functions are
continuously differentiable and

∂e

∂T
> 0,

∂P
∂v

< 0

hold.
These inequalities play a fundamental role in the sequel: the ‘really good’

materials exhibit them on a ‘sufficiently large set’.

1.5 Simple materials

The properties listed in the previous paragraph are summarized in the following
mathematical definition.

Definition The general simple material Σ is called simple material if there are
(i) D ⊂ (m3)+ × (K)+, the constitutive domain,

(ii) e : D → (J)+, P : D → (Pa), u : D → (J)
continuous functions, the constitutive functions, whose graph equals Σ i.e.

Σ =

{

(

e(v, T ), v, T,P(v, T ), u(v, T )
)

| (v, T ) ∈ D

}

;

furthermore, the function T 7→ e(v, T ) is strictly monotone increasing for all pos-
sible v, and the function v 7→ P(v, T ) is locally strictly monotone decreasing for
all possible T ,

(iii) the subset R of D, the regular domain, on which the constitutive func-
tions are continuously differentiable and satisfy the intrinsic stability condi-
tions

∂e

∂T
> 0,

∂P
∂v

< 0

is an open subset dense in D (i.e. the closure of R contains D).

In the case of simple materials the elements of D are called states; this little
abuse does not cause misunderstanding because D and Σ determine each other
uniquely. We can interpret also that ‘the state (v, T )’ is an abbreviation for ‘the
state determined by (v, T )’.

Later on a simple material will referred to by the symbol

(D, e,P, u, R).

The quantities introduced in 1.2 which are functions defined on Σ, can be given
as functions of specific volume and temperature:
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– s(v, T ) :=
e(v, T ) + P(v, T )v − u(v, T )

T
,

– h(v, T ) := e(v, T ) + P(v, T )v,
– f(v, T ) := e(v, T ) − T s(v, T ),

where (v, T ) runs over the set D.

1.6 Entropic property

Thermodynamical investigations indicate that the constitutive functions are not
independent, even, there are strong relations among them which can be given
with the aid of specific entropy. We accept these relations as particular, restrictive
properties rather than generally valid rules.

Definition A simple material (D, e,P, u, R) is entropic or has the entropic
property if

T
∂s

∂T
=

∂e

∂T
, T

∂s

∂v
=
∂e

∂v
+ P

is fulfilled on the regular domain.

If the specific entropy is twice differentiable, then

T
∂P
∂T

=
∂e

∂v
+ P

holds which can be deduced easily from the equality ∂2s
∂v∂T = ∂2s

∂T ∂v . This relation
and the definition of the entropic property yield that

∂s

∂v
=
∂P
∂T

.

Thus the two equalities above are necessary for the entropic property (in case
of twice differentiability); if the regular domain is simply connected, they are
sufficient as well.

It follows immediately from the definition of simple materials:

Proposition The simple material (D, e,P, u, R) has the entropic property if and
only if

∂u

∂v
= v

∂P
∂v

,
∂u

∂T
= −s + v

∂P
∂T

(∗)

holds on the regular domain.

The relations (∗) are called Gibbs–Duhem relations.

1.7 A special kind of material with entropic property

In usual textbooks on thermodynamics one deals tacitly – without precise defini-
tion – with simple materials and mostly considers only the constitutive function of
pressure, though this is not enough for the thermodynamical characterization of
the material. However, it will be ‘almost sufficient’ if continuous differentiability
and entropic property are required.
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Namely, let us suppose that we have the continuously differentiable function
(v, T ) 7→ P(v, T ) on the non-void open set R0 ⊂ (m3)+ × (K)+ such that ∂P

∂v < 0
everywhere. If entropic property holds, then the function e satisfies

∂e

∂v
= T

∂P
∂T

− P

according to 1.6, from which we deduce that

e(v, T ) = ε(T ) + r(v, T )
(

(v, T ) ∈ R0

)

,

where r is the primitive function with respect to v of the function on the right-
hand side of the previous equality and ε : (K)+

 (J)+ is a function which will be
supposed to be continuously differentiable. Let R1 be the largest possible subset
of R0 on which the function e(v, ·) is strictly monotone increasing for all v. For all
T the function v 7→ r(v, T ) is continuously differentiable but this does not imply
that r itself is continuously differentiable (in both variables). Let us suppose that
the interior R of the set

{

(v, T ) ∈ R1 | r is continuously differentiable , ε′(T )+
∂r(v, T )

∂T
> 0

}

is not void.
Let P and e be later on the restrictions of those functions onto R. Then specific

entropy as a function of (v, T ) on R is determined by the relations

∂s

∂T
=

1

T

∂e

∂T
,

∂s

∂v
=
∂P
∂T

which come from the formula of 1.6.
Finally, on the basis of the definition of specific entropy, we obtain the chemical

potential as a function of (v, T ) on R.
R will be the regular domain of the material and the constitutive domain D

can be an arbitrary set containing R and contained in the closure of R in such
a way that all the constitutive functions can be continuously extended to D (for
instance D = R).

Note that this procedure determines both the specific internal energy and the
specific entropy only up to an additive constant.

It is worth mentioning that we can choose another way to construct the consti-
tutive functions. Namely, on the basis of exercise 2 in 1.9, the specific free energy
is of the form

f(v, T ) = R(v, T ) + ϕ(T )

where R is the primitive function of P with respcet to v and ϕ is an arbitrary
constinuously differentiable function. Then the specific entropy is obtained by
exercise 2 in 1.9, so we can derive all the constitutive functions.

1.8 The Nernst property

The first and second laws, mentioned in the Preface and the Introduction, concern
processes. The third law – called also the Nernst law – refers to the properties
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of constitutive functions near to absolute zero temperature. Thus the third law
precedes the first and second ones from a logical point of view. The third law,
too, has several different formulations. Most frequently it is stated that entropy
tends to zero when temperature tends to zero. We give a precise formulation as a
restricting property instead of a generally valid ‘law’.

Definition A simple material (D, e,P, u, R) has the Nernst property if
– it is entropic,
– OD := D ∩

(

(m3)+ × {0}
)

6= ∅,
– s and Ds continuously extendable to OD in such a way that the extensions

are constant on OD.

In other words:
– there is a v0 ∈ (m3)+ such that (v0, 0) is the accumulation point of D,
– specific entropy s, ∂s

∂v and ∂s
∂T have limits in all accumulation points (v0, 0)

of D and the limits do not depend on v0.
Thus for a Nernst material the limit

lim
(v,T )→(v0,0)

s(v, T ) =: s0,

exists for all accumulation points (v0, 0) of D and s0 is the same for all v0. The
specific entropy is determined up to an additive constant, thus we can choose
s0 = 0 for a Nernst material (the entropy is zero at zero temperature).

We call attention to the fact that (v0, 0) can be an accumulation point of D in
such a way that (v0, T ) /∈ D for any T in the neighbourhood of zero, thus the limit
of s in (v0, 0) cannot be obtained as lim

T →0
s(v0, T ) (a good example is the point

(b, 0) for van der Waals materials treated in 2.2).
For fixed v the function T 7→ e(v, T ) is strictly monotone decreasing and

bounded below, thus if (v0, 0) is an accumulation point of R such that (v0, T ) ∈ D
for (positive) T -s in a neighbourhood of zero, then lim

T →0
e(v0, T ) exists (for all ma-

terials) but this limit can depend on v0. If, moreover, the material has the Nernst
property, then the specific free energy has (because of its definition) a limit in
(v0, 0), too, and

lim
T →0

f(v0, T ) = lim
T →0

e(v0, T ).

On the basis of the entropic property in 1.6, we deduce for Nernst materials
that the limits of ∂e

∂T and ∂e
∂v + P in the points of OD are zero.

1.9 Exercises

1. Deduce the necessary conditions given in 1.6 for the entropic property.
2. Prove that the entropic property is equivalent to

∂f

∂v
= −P, ∂f

∂T
= −s.

3. Construct the constitutive functions by the method described in 1.7 starting
from the following pressure functions.
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a) Given the positive constants a and b (having convenient physical dimension)
and the temperature T0,

R0 := {(v, T ) | a (T − T0 log(T/T0)) − bv > 0} ,

P(v, T ) := a (T − T0 log(T/T0)) − bv.

b) Given the positive constants a, b and c (having convenient physical dimen-
sion),

R0 :=
{

(v, T ) | 2a(v − bT ) − c

v2
< 0
}

,

P(v, T ) := a(v − bT )2 +
c

v
.

c) Given the positive constants a, b and c (having convenient physical dimen-
sion),

R0 := {(v, T ) | aT (b− v) +
c

v2
> 0},

P(v, T ) := aT (b− v) +
c

v
.

4. Give R for the previous exercises and the largest possible D.
5. The Nernst law (‘postulate’) is often formulated in such a way that the

limit of specific entropy exists at zero temperature and one tacitly accepts that
this limit is independent of specific volume values.

Then considering the equality s = e−f
T , one states that e and f have the same

limit at zero temperature. But this is true only if at least one of them has a limit,
which does not hold necessarily (except the case when the limit can be obtained
in the form lim

T →0
.)

Then referring to the L’Hospital rule, one states that the limit of ∂e
∂T − ∂f

∂T at
zero temperature equals the limit of s, i.e. zero. Then according to the relations
of exercise 2, one concludes that the limit of ∂e

∂T at zero temperature is zero.
The L’Hospital rule, however, says that if

∂e
∂T − ∂f

∂T

1
(∗)

has a limit as T tends to 0, then

e − f

T
= s (∗∗)

has a limit, too, and the limits are equal. Conversely is not true: the existence of
the limit of (∗∗) does not imply the existence of the limit of (∗).

Consequently, if only the existence of the limit of s at zero temperature is
supposed, we cannot deduce the existence of the limit of ∂e

∂T (neither in the case
when the limit of s is obtained in the form lim

T →0
).

Further, with a different reasoning, but essentially deriving from the fact that
the limit of entropy at zero temperature is independent of specific volume, one
deduces that the limit of ∂s

∂v is zero, too, which is ‘trivial’ from

0 = lim
T →0

∂s(v, T )

∂v
= lim

T →0
lim

v′→v

s(v′, T ) − s(v, T )

v′ − v
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if the limit can be obtained in the form T → 0 and the order of the two limits can
be interchanged; but these are not fulfilled, in general.

Now we ask the reader to examine in what conditions the equality

lim
T →0

∂P(v, T )

∂T
= 0

holds.

2 Some special simple materials

Here and later on k is the Boltzmann constant:

k = 1, 38... · 10−23J/K.

Now we suppose that all materials to be treated have the entropic property,
that the constitutive functions are continuously differentiable, and we construct
the constitutive functions according to 1.7. We give only the results, the details
are left to the reader.

2.1 Ideal gases

R0 := (m3)+ × (K)+, P(v, T ) :=
kT

v
.

Then
e(v, T ) = ε(T ),

where ε : (K)+
 (J)+ is a continuously differentiable function, supposed to be

defined on an interval, and having everywhere positive derivative. The intrinsic
stability condition regarding pressure is fulfilled everywhere, thus

R = (m3)+ × Domε.

Put c := ε′.
Fixing a temperature T0 and introducing the function

η(T, T0) := exp





T
∫

T0

c(τ)

c(T0)τ
dτ



 ,

we get that

s(v, T ) = c(T0) log η(T, T0) + k log
v

v0

(

(v, T ) ∈ R
)

where v0 is a fixed specific volume.
The properties of logarithm suggest us to reduce the right-hand side, but we

must be careful not to make an error: e.g. c(T0) cannot be put as an exponent
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under the logarithm because it is not a real number (an element of (J/K)). A
right formula is

s(v, T ) = k log

(

η(T, T0)
c(T0)

k
v

v0

)

.

Finally, for the chemical potential we obtain

u(v, T ) = ε(T ) + kT − T s(v, T )
(

(v, T ) ∈ R
)

.

It is worth examining the special case when c is constant,

ε(T ) = λkT + e0 (T ∈ (K)+) ,

where λ and e0 are positive constants. Then R = (m3)+ ×(K)+ and η(T, T0) = T
T0

,
consequently,

s(v, T ) = k log

(

(

T

T0

)λ
v

v0

)

,

and

u(v, T ) = kT

(

λ+ 1 − log

(

(

T

T0

)λ
v

v0

))

+ e0.

We mention that one often takes the constant e0 to be zero. Then the internal
energy would be zero at zero temperature. If the internal energy meant only
the kinetic energy (and the interaction energy of molecules which is zero for an
ideal gas), this would be correct. However, as mentioned, the thermodynamical
treatment of chemical reactions requires that the energy of chemical bonds be a
part of internal energy; e0 gives account of this part of internal energy.

The constitutive functions of ideal gases are well applicable to describe real
gases at high temperature and large specific volume. To get better descriptions of
real gases, several other constitutive functions were suggested by diverse assump-
tions on the interaction of gas molecules. Some of them will be given in the next
paragraphs.

2.2 van der Waals materials

Given the non-negative constants a and b (of convenient physical dimension),

R0 :=

{

(v, T )

∣

∣

∣

∣

v > b, − kT

(v − b)2
+

2a

v3
< 0

}

,

P(v, T ) =
kT

v − b
− a

v2
.

Note that the second inequality in the definition of R0 determines just the set
on which the formula of the function P has negative partial derivative with respect
to v. Then

e(v, T ) = ε(T ) − a

v
,
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where ε : (K)+
 (J)+ is a continuously differentiable function, supposed to be

defined on an interval, and having positive derivative everywhere. Then

R := {(v, T ) ∈ R0 | T ∈ Domε}.

Now, with the functions c and η introduced in the previous paragraph,

s(v, T ) = c(T0) log η(T, T0) + k log
v − b

v0 − b

(

(v, T ) ∈ R
)

.

Again, the special case

ε(T ) = λkT + e0 (T ∈ (K)+)

is worth mentioning where λ and e0 are positive constants; then η(T, T0) = T
T0

, so

s(v, T ) = k log

(

(

T

T0

)λ
v − b

v0 − b

)

and

u(v, T ) = kT

(

λ+
v

v − b
− log

(

(

T

T0

)λ
v

v0

))

+ e0.

If b = 0 and a = 0, we regain the constitutive functions of the ideal gases.

Further, we see that if v ≫ b and kT ≫ a(v−b)
v2 and ε(T ) ≫ a

v , the present
functions are well approximated by the functions of the ideal gases.

Perhaps it is not superfluous to emphasize that it is not right to say that the
ideal gas functions well approximate the van der Waals ones if b ≈ 0 and a ≈ 0
because such approximate equalities make no sense. Similarly, we cannot impose
the condition v ≫ a (which formally seems good) for the approximation, because
a and v cannot be compared: they have different physical dimensions, namely
a ∈ (Jm3) and v ∈ (m3).

2.3 The Clausius materials

Given the non-negative constants a, b and c,

R0 :=

{

(v, T )

∣

∣

∣

∣

v > b,
kT 2

a
>

(v − b)2

(v + c)2

}

,

P(v, T ) =
kT

v − b
− a

T (v + c)
.

Then

e(v, T ) = ε(T ) +
2a

T
log

v + c

v0 + c
,

where v0 is a specific volume value and ε : (K)+
 (J)+ is a continuously differ-

entiable function, supposed to be defined on an interval, and

R :=

{

(v, T ) ∈ R0

∣

∣

∣

∣

ε′(T ) >
2a

T 2
log

v + c

v0 + c

}

6= ∅.
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With the aid of the functions c and η introduced for ideal gases now we have

s(v, T ) = c(T0) log η(T, T0) + k log
v − b

v0 − b
+

a

T 2
log

v + c

v0 + c

(

(v, T ) ∈ R
)

.

If b = 0 and a = 0 – for arbitrary c and v0 – we regain the constitutive

functions of ideal gases. Further, we see that if v ≫ b and kT 2 ≫ a(v−b)
v+c and

ε(T ) ≫ 2a
T

∣

∣

∣log v+c
v0+c

∣

∣

∣, the present functions are well approximated by the functions

of the ideal gases.

2.4 The Berthelot materials

Given the non-negative constants a and b,

R0 := {(v, T ) | v > bT, kT 2v2 > a(v − bT )2},

P(v, T ) =
kT

v − bT
− a

Tv
.

Then

e(v, T ) = ε(T ) +
2a

T
log

v

v0
− bkT 2

v − bT
,

where v0 is a specific volume value and ε : (K)+
 (J)+ is a continuously differ-

entiable function, supposed to be defined on an interval, and

R :=

{

(v, T )

∣

∣

∣

∣

ε′(T ) − 2a

T 2
log

v

v0
− 2bkT

v − bT
− b2kT 2

(v − bT )2
> 0

}

6= ∅.

With the aid of the functions c and η introduced for ideal gases now we have

s(v, T ) = c(T0) log η(T, T0)+k log
v − bT

v0 − bT0
− bkT

v − bT
+

a

T 2
log

v

v0

(

(v, T ) ∈ R
)

.

If a = 0 and b = 0, we regain the constitutive functions of ideal gases. Further,

we see that if v ≫ bT , kT 2 ≫ a(v−bT )
v and ε(T ) ≫ 2a

T

∣

∣

∣log v
v0

− bkT 2

v−bT

∣

∣

∣ the present

functions are well approximated by the functions of the ideal gases.

2.5 The Kammerlingh Onnes materials

We start with the pressure function

P(v, T ) =
kT

v

(

1 +

∞
∑

n=1

cn(T )

vn

)

where cn : (K)+ → ((1/m3)n)+ are differentiable functions, called virial coeffi-
cients.

R0 is the largest open subset consisting of the pairs (v, T ) for which the series

∞
∑

n=1

cn(T )

vn
and

∞
∑

n=1

n
cn(T )

vn
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are absolute and uniformly convergent and for which

−1 −
∞
∑

n=1

(n+ 1)
cn(T )

vn
< 0.

If we require that also the series

∞
∑

n=1

c′
n(T )

vn

be absolute and uniformly convergent, then

e(v, T ) = ε(T ) − kT 2
∞
∑

n=1

c′
n(T )

nvn
,

where ε is the function known from the previous examples and, of course, it is
required that the set is not void where the partial derivative of e with respect to
T is positive.

Now, with the usual notations we have

s(v, T ) = c(T0) log η(T, T0) + k log
v

v0
− k

∞
∑

n=1

cn(T ) + Tc′
n(T )

nvn
.

2.6 Concluding remarks

The cited constitutive functions were introduced for the description of thermody-
namical properties of some materials. They are well applicable for gases in some
domain of the variables. Thus these functions model some materials under rather
restricted circumstances. A real material is too complicated to be described by
analytic functions. The everywhere differentiability of the constitutive functions
is a too strong requirement; we shall see that some phases of the materials are
separated by the break of these functions.

The constitutive functions in the exercises of the previous section do not cor-
respond to real materials; being rather simple, they serve only for training.

2.7 Exercises

1. Describe the Callendar materials with the non-negative constants a and
b, starting from the pressure function

P(v, T ) =
kT

v − b+ a
T

which is defined on the pairs (v, T ) where the nominator is positive and the partial
derivative with respect to v is negative.

2. Give the van der Waals materials in Kammarlingh Onnes form using the
series expansion

1

v − b
=

1

v

1

1 − b/v
=

1

v

(

1 +
∞
∑

n=1

(

b

v

)n
)
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which is valid for v > b.
Give also the Clausius, Berthelot and Callendar materials in Kammerlingh

Onnes form.
3. Derive the constitutive functions of the materials treated above using the

specific free energy (see the end of Section 1.7). For van der Waals materials,

f(v, T ) = kT log
v − b

v0 − b
+
a

v
+ ϕ(T ).

4. An ideal gas cannot have the Nernst property: because of the form of R
according to 2.1, there are only two possibilities:

(i) R has no accumulation point of form (v, 0),
(ii) (v, 0) is an accumulation point of R for all v.
In the latter case, as it is obvious from the expression in 2.1, the limit of the

entropy in (v, 0), if exists, depends on v.
R has at most one accumulation point for van der Waals, Clausius and Berth-

elot materials; can these materials have the Nernst property?
What can we say about the Callendar materials?
5. Let

c(T ) := λk exp

(

−T0

T

)

where λ > 0 (e.g. λ = 3/2), and T0 is a given temperature value. The well-known
properties of the exponential function imply

lim
T →∞

c(T ) = λk, lim
T →0

c(T )

Tn
= 0

for all non-negative real number n. In particular, for n = 1, T 7→ c(T )
T is a

continuous function, whose limit at zero is zero.
Using this function, examine the properties of η(T, T0) defined in 2.1.
6. Describe the specific enthalpy and the specific free energy of ideal gases as

functions of (v, T ) in the case c = λk.

3 Change coefficients

3.1 Convention about notations

In this section we treat some formal properties of processes of simple materials,
without specifying, how such processes can be induced (can they be induced at
all?). Our investigations yield information on important measurable properties of
materials such as specific heat, thermal expansion coefficient, etc.

A process of a general simple material means that the state of the material
varies in time, which is described by functions t 7→ e(t), t 7→ v(t), t 7→ T (t), t 7→
P (t) and t 7→ µ(t) defined on a time interval. In the case of a simple material, t 7→
v(t) and t 7→ T (t) determine the others: e(t) = e(v(t), T (t)), P (t) = P(v(t), T (t)),
µ(t) = u(v(t), T (t)). Now we shall consider exclusively processes which run in the
regular domain and are continuously differentiable.
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This is the first point where we meet the ambiguity that the same latter de-
notes two different – but strongly related – objects. For instance, T denotes a
temperature value, i.e. an element of (K)+ and T denotes a function defined on a
time interval and having values in (K)+. Accordingly, if ϕ is a function of specific
volume and temperature, then ϕ denotes the function (v, T ) 7→ ϕ(v, T ) as well as
the function t 7→ ϕ(v(t), T (t)). This ambiguity makes the formulas easy to survey
and therefore offers much more benefit than the danger of misunderstanding.

3.2 Processes of special type

Some special processes having particular importance are the following:
– isochoric processes when the volume is constant,
– isothermal processes when the temperature is constant,
– isobaric processes when the pressure is constant,
– isentropic processes when the entropy is constant.
Now we shall refer to the first law of thermodynamics mentioned in Paragraph

6 of the Introduction, considering ideal working, i.e.

ė = q − P v̇.

The processes are supposed to run in the regular domain, therefore we can
rewrite this equation for time derivative of the specific volume and the tempera-
ture:

(

∂e

∂v
+ P

)

v̇ +
∂e

∂T
Ṫ = q.

A process is called adiabatic if the heating is zero (i.e. in the case of heat
insulation); then ė = −P v̇.

If the material is entropic, then the function t 7→ s(t) := s(v(t), T (t)) satisfies
T ṡ = ė+ P v̇, consequently the adiabatic processes equal the isentropic ones.

3.3 Other processes with constraints

The processes listed above correspond to some ‘constraint’, the specific volume
or the temperature does not change (isochoric and isothermal processes), or their
changes are not independent (isobaric, isentropic and adiabatic processes), more
closely the time derivatives of specific volume and temperature are submitted to
the following relations:

∂P
∂v

v̇ +
∂P
∂T

Ṫ = 0,

∂s

∂v
v̇ +

∂s

∂T
Ṫ = 0,

(

∂e

∂v
+ P

)

v̇ +
∂e

∂T
Ṫ = 0

where, according to our convention about notations, the symbols before the time
derivatives mean the functions t 7→ ∂P

∂v

(

v(t), T (t)
)

, etc.
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As a generalization, we shall consider processes in which the changes of volume
and temperature are submitted to a constraint, given by continuous functions
a : (m3)+ × (K)+

 (u/m3) and b : (m3)+ × (K)+
 (u/K) (where u is an

arbitrary measure unit) in such a way that

av̇ + bṪ = 0.

Of course, we applied again our convention about the notations: the symbols before
the time derivatives mean the functions t 7→ a(v(t), T (t)) and t 7→ b(v(t), T (t)).
Such processes are the ones (but not only those) in which a continuously differen-
tiable quantity M : (m3)+ × (K)+

 (u) is constant:

Ṁ =
∂M
∂v

v̇ +
∂M
∂T

Ṫ = 0.

Such a process – if it has no special name (like isobaric) – will be called an a-b
process. Note that

v̇ ⊃ −b

a
Ṫ , Ṫ ⊃ −a

b
v̇ (∗)

where the symbol ⊃ shows that the left-hand side can be defined on a larger set
than the right hand-side which is meaningful only where the denominator is not
zero.

3.4 Thermal expansion coefficients

Dividing the previous relation (∗) by v, we get the relative change of the volume
on the left-hand side, and the right-hand side is proportional to the temperature
change. Therefore, the proportionality coefficient (the function ‘deprived of the
time change’)

−1

v

b

a
: (m3)+ × (K)+

 (1/K)

is called the a−b-thermal coefficient (of course, if the a-b process has a particular
name – e.g. isobaric – then the thermal expansion coefficient is named similarly).

A simple special case is the isobaric thermal expansion coefficient (a and b are
the partial derivatives of P),

α :=
1

v

(

∂P
∂T

− ∂P
∂v

)

,

which is defined on the whole regular domain.
Another simple case is the adiabatic thermal expansion coefficient, when b =

∂e
∂T , a = ∂e

∂v + P, defined in the subset where a is not zero.

3.5 Compressibility factors

The equality

Ṗ =
∂P
∂v

v̇ +
∂P
∂T

Ṫ
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and the second relation of (∗) in 3.3 yield

Ṗ ⊃ v

(

∂P
∂v

− ∂P
∂T

a

b

)(

v̇

v

)

.

The change of pressure is proportional to the relative change of volume; the
negative reciprocal of the proportionality coefficient, i.e. the function

1

v
(

− ∂P
∂v + ∂P

∂T
a
b

) : (m3)+ × (K)+
 (Pa)

is called the a−b-compressibility factor.
A simple special case is the isothermal compressibility factor (a and b are the

partial derivative of temperature, i.e. a = 0, b = 1),

κ :=
1

v

1
(

− ∂P
∂v

) .

Another simple special case is the adiabatic compressibility factor.

3.6 Strain coefficients

The first relation of (∗) in 3.3 and the equality written for the pressure in the
previous paragraph yield

Ṗ

P
⊃ 1

P

(

−∂P
∂v

b

a
+
∂P
∂T

)

Ṫ .

The relative change of pressure is proportional to the temperature; the propor-
tionality coefficient, the function

1

P

(

−∂P
∂v

b

a
+
∂P
∂T

)

: (m3)+ × (K)+
 (1/K)

is called the a−b-strain coefficient.
A simple special case is the isochoric strain coefficient (a and b are the partial

derivatives of specific volume, i.e. a = 1, b = 0),

β :=
1

P
∂P
∂T

.

Another simple special case is the adiabatic strain coefficient.

3.7 Specific heats

The first law for an a-b process and the first relation of (∗) in 3.3 yield

(

∂e

∂T
− b

a

(

∂e

∂v
+ P

))

Ṫ ⊂ q.
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Heating is proportional to the change of temperature; the proportionality co-
efficient, the function

∂e

∂T
− b

a

(

∂e

∂v
+ P

)

: (m3)+ × (K)+
 (J/K)

is called the a-b specific heat or the a-b heat capacity.
An important special case is the isochoric specific heat (specific heat at constant

volume) (a = 1, b = 0),

cv :=
∂e

∂T
,

and the isobaric specific heat (specific heat at constant pressure) (a and b are the
partial derivatives of P),

cp :=
∂e

∂T
+

(

∂P
∂T

− ∂P
∂v

)

(

∂e

∂v
+ P

)

,

which are defined on the whole regular domain.
We recall that here the specific heat refers to one molecule. The specific heat

used in practice is ‘heat per unit mass’ which is the quotient of the present one by
the mass of a molecule.

The third law (‘Nernst postulate’) is often stated in the form that the absolute
zero temperature cannot be reached which is a consequence of the fact that perfect
heat insulation does not exist and near to the absolute zero a small heat produces
a large temperature change. The exact formulation of the latter assertion is the
following: according to what has been said at the end of 1.8, if a

b
is bounded near

to the zero temperature, then the a−b specific heat of a Nernst material has zero
limit at zero temperature.

3.8 Latent heats

The first law for isothermal processes yields
(

∂e

∂v
+ P

)

v̇ = q.

Heating is proportional to the volume change; the proportionality coefficient,
i.e. the function

lv :=
∂e

∂v
+ P : (m3)+ × (K)+

 (Pa)

is called the expansion heat.
Let us consider now the change of a quantity M in an isothermal process; then

Ṁ = ∂M
∂v v̇, and consequently

(

∂e

∂v
+ P

)

1
∂M
∂v

Ṁ ⊂ q.

Heating is proportional to the change of M; the proportionality coefficient, i.e.
the function

lM :=
lv

∂M
∂v

is called the M-latent heat.
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3.9 Normal dilation

Our simple experience indicates that the expansion heat is positive: if a body
absorbs heat and its temperature remains constant then it expands. This is not
true, however, for water in the interval between 0oC and 4oC. Recall that water
was a counterexample in 1.3 also from another point of view: in the interval in
question, the pressure increases with decreasing temperature and constant volume.
These two ‘abnormal’ properties balance each other, corresponding to the following
important definition.

Definition The simple material (D, e,P, u, R) is of normal dilation if
(

∂e

∂v
+ P

)

∂P
∂T

≥ 0

on the regular domain.

If the material is entropic and the entropy is twice differentiable, then according
to 1.6, the material is of normal dilation.

3.10 Practical importance of the change coefficients

It is irrelevant for the coefficients introduced previously how the processes advance
in time; only the quality and the quantity of the state change is important. Ap-
plying the usual ‘delta symbol’ for the changes of the constitutive variables, we
can write e.g. that in isobaric processes

∆v

v
≈ α(v, T )∆T.

Most of the change coefficients in question can be measured easily (the internal
energy change does not appear in the formulae), and provide some information on
the constitutive functions, because e.g.

α

βκ
= P, α

κ
=
∂P
∂T

(more precisely, only the relation ⊂ holds instead of equality).
The constitutive function of pressure and the isochoric specific heat determine

the constitutive function of the specific internal energy, at least locally, and for
entropic materials the specific entropy, too, at least locally. Indeed, according to
1.7,

e(v, T ) = e(v0, T0) +

T
∫

T0

cv(v,τ)dτ +

v
∫

v0

(

T
∂P(ν, T )

∂T
− P(ν, T )

)

dν,

for (v, T ) in the neighbourhood of an arbitrarily given (v0, T0) ∈ R, and for entropic
material

s(v, T ) = s(v0, T0) +

T
∫

T0

cv(v,τ)

τ
dτ +

v
∫

v0

∂P(ν, T )

∂T
dν.
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3.11 Change coefficients of ideal gases

We easily deduce for ideal gases that

1

α(v, T )
=

1

β(v, T )
= T,

1

κ(v, T )
= lv(v, T ) =

kT

v
,

moreover cv and cp do not depend on specific volume and

cp − cv = k.

Experience and theoretical considerations (in statistical mechanics) show that
for not too low temperature and for small density (large specific volume) the iso-
choric specific heat for one-atomic gases is approximately 3

2k, for two-atomic gases
it is approximately 5

2k. That is why it is generally accepted that the isochoric spe-
cific heat of ideal gases is independent of temperatureand (the constants denoted
by simple letters)

– cv = 3
2k for the one-atomic gas,

– cv = 5
2k for the two-atomic gas.

Correspondingly,
– cp = 5

2k for the one-atomic gas,

– cp = 7
2k for the two-atomic gas.

3.12 Transition heat

So far we have considered processes in which phase transition does not occur.
Phase transitions will be treated later but some of their aspects belong logically
to this section; therefore we ask the reader to skip this paragraph and to return
after having studied Section 6 whose notions and notations are used here.

Let us take two bodies whose states are in different phases of the same material;
let the phases have a first-order connection. The number of particles in the bodies
change in a phase transition, thus the first law for the two bodies reads

Ė1 = Q1 − P1V̇1 + µ1Ṅ1,

Ė2 = Q2 − P2V̇2 + µ2Ṅ2.

As a matter of fact, we consider processes in which the total number of the bodies
is constant: Ṅ1 + Ṅ2 = 0.

We examine the (idealized) case when the phase transition happens at tem-
perature T and pressure P on the phase line Γ. (As an example imagine a glass
of water in an atmosphere with sufficiently low temperature. The water cools,
reaches the freezing point, starts to freeze; then, during freezing, both the wa-
ter and the ice have approximately the same constant pressure and temperature.)
Then the specific internal energy and specific volume, too, are constant in both
phases and the first law has the form

e1Ṅ1 = Q1 − Pv1Ṅ1 + µ1Ṅ1,

−e2Ṅ1 = Q2 + Pv2Ṅ1 − µ2Ṅ1
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where, of course, v1 = v1(T, P ) etc. Then it follows

Q1 +Q2 = T (s1(T, P ) − s2(T, P ))Ṅ1.

The sum of heatings is proportional to the change of particle number, the propor-
tionality coefficient,

Γ → (J), (T, P ) 7→ T
(

s1(T, P ) − s2(T, P )
)

is called the transition heat from the second phase into the first one.
Note that the chemical potentials of the phases coincide on Γ, consequently the

transformation heat can also be written in the form h1(T, P ) − h2(T, P ), where h

is the specific enthalpy as a function of temperature and pressure.
We recall that here the transformation heat refers to one molecule. The trans-

formation heat used in practice is ‘heat per unit mass’ which is the quotient of the
present one by the mass of a molecule.

3.13 Exercises

1. Show that
cp = cv + αlvv.

Moreover, the normal dilation property is equivalent to αlv ≥ 0. If the material
has this property, then cp ≥ cv.

2. Prove that for entropic material

lvκ = αT,

which implies

cp − cv =
vTα2

κ
.

3. Demonstrate that for entropic material

cv = −T ∂2f

∂T 2
.

4. Give the form of the adiabatic thermal expansion coefficient α̂, the adiabatic
compressibility factor and demonstrate that

κ

κ̂
=

cp

cv
.

5. The partial derivative with respect to the specific volume of the continuously
differentiable function P on the regular domain is negative; as a consequence of
the inverse function theorem, the assignment v 7→ P(v, T ) is locally injective for
all T , i.e. it has a local inverse: specific volume can be given locally as a function
of temperature and pressure. Let (T, P ) 7→ v(T, P ) be such a function. Prove that

α(v(T, P ), T ) =
1

v(T, P )

∂v(T, P )

∂T
, κ(v(T, P ), T ) = − 1

v(T, P )

∂v(T, P )

∂P
.
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6. Use the notations of the previous exercise. Specific internal energy, too,
can be locally given as a function of temperature and pressure: (T, P ) 7→ e(T, P ).
Then the specific enthalpy has the form (T, P ) 7→ h(T, P ) := e(T, P ) +Pv(T, P ).
Demonstrate that

cp(v(T, P ), T ) =
∂h(T, P )

∂T
.

7. Prove that for van der Waals materials

1

α(v, T )
= T

v

v − b
− 2a(v − b)

kv2
,

1

β(v, T )
= T − a(v − b)

kv
,

1

κ(v, T )
=

kTv

(v − b)2
− 2a

v2
,

consequently,

α(v, T )

β(v, T )
=

k

v − b
, lv(v, T ) =

kT

v − b
.

8. Deduce for Clausius and Berthelot materials the change coefficients treated
in this section.

9. What conditions imply the validity of the following equalities

lim
T →0

cp(v, T )=0, lim
T →0

α(v, T )=0, lim
T →0

β(v, T )=0, lim
T →0

κ(v, T )=0

which are often stated in connection with the Nernst property (third law) in usual
treatments of thermodynamics.

4 State curves

4.1 Introductory remarks

According to the previous section, the processes of a material are functions
t 7→

(

v(t), T (t)
)

, which are supposed now to run in the regular domain and
to be continuously differentiable. The process determines the function t 7→
(

e(t), v(t), T (t), P (t), µ(t)
)

, whose range is called a state curve. The state curves
will be studied through their projections onto convenient planes. Because internal
energy and chemical potential are not directly measurable, only the projections
onto the v–T , v–P and T–P planes are of practical importance.

According to the names introduced in 3.2, we speak, among others, about
isochors, isobars, isotherms and adiabats.

The projection of isotherms onto the v–T plane are ‘horizontal’ lines, onto the
T–P plane are ‘vertical’ lines; therefore only their projection onto the v–P plane
are interesting; they are, for fixed temperature T , the sets {(v, P ) | P(v, T ) = P},
in other words, the graph of the function v 7→ P(v, T ).

The isobars have non-trivial projections only onto the v–T plane; they are sets
of form {(v, T ) | P(v, T ) = const}.
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4.2 Adiabats

The adiabatic processes are characterized by the relation

lv v̇ + cvṪ = 0, (∗)

where the notations of the previous section are used. It is known from the theory of
differential equations that the range of such processes in the v–T plane is described
by the differential equation

dT

dv
= − lv(v, T )

cv(v, T )
.

Making v̇ explicit from Ṗ = ∂P
∂v v̇ + ∂P

∂T Ṫ , and putting it into equality (∗), we
get for an adiabatic process

lpṖ + cpṪ = 0;

similarly, with Ṫ , we obtain

∂P
∂v

cpv̇ − cvṖ = 0.

Consequently, the projections of adiabats onto the T–P and v–P planes are
described by the differential equations

dT

dP
= − lp

cp
,

dP

dv
=
∂P
∂v

cp

cv
,

respectively (except the points where cp and cv have zero value).
If the material is entropic and its specific entropy is known, then the projection

of adiabats onto the v–T plane can be given in the form {(v, T ) | s(v, T ) = const},
too.

4.3 State curves of ideal gases

We take an ideal gas whose specific internal energy is defined for all temperatures
(see 2.1).

4.3.1 Isotherms

The isotherm, with given temperature T , of the ideal gas on the v–P plane is the
set

{(v, P ) | Pv = kT = const.},
which is a branch of hyperbole. A ‘higher’ hyperbole corresponds to a higher
temperature (Figure 4.1). This helps us to imagine the graph of the function P
(called sometimes the thermal state surface): we translate the isotherms behind
the plane of the page in a distance corresponding to their temperature, and so we
draw the surface shown in Figure 4.2.
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Figure 4.3

4.3.2 Isobars and isochors

The isobar, with given pressure P , of the ideal gas on the v–T plane is the set
{

(v, T )
∣

∣ T =

(

P

k

)

v

}

,

which is half line starting from the origin. A line with larger slope corresponds to
a higher pressure (Figure 4.3).

Similar straight lines are the isochors on the T–P plane.

4.3.3 Adiabats

The ideal gas is entropic, so its adiabats are just the isentropic curves; according
to the expression in 2.1, they are

{(v, T ) | η(T, T0)c(T0)/kv = const.}.
If cv = λk (where λ is a positive number, e.g. 3/2 or 5/2), then the adiabats in
the v–T plane are

{(v, T ) | Tλv = const.},
or

{(v, T ) | Tvγ−1 = const.},
with the usual notation

γ :=
cp

cv
= 1 +

1

λ
.

The adiabats on the other two planes have the form

{(v, P ) | Pvγ = const.},
and

{(T, P ) | T γP 1−γ = const.},
respectively.
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4.4 State curves of van der Waals materials

4.4.1 The regular domain

The regular domain of the van der Waals material given in 2.2 is the part of

R0 :=

{

(v, T )

∣

∣

∣

∣

v > b, − kT

(v − b)2
+

2a

v3
< 0

}

determined by the restriction imposed on specific internal energy . This restriction
does not influence our considerations, therefore we can disregard it.

R0 is an open set whose boundary

{(v, T ) | v = b} ∪
{

(v, T )

∣

∣

∣

∣

− kT

(v − b)2
+

2a

v3
= 0

}

can be made evident. The first condition gives a ‘vertical line’, the second one,
being equivalent to

{

(v, T ) | T =
2a

k

(v − b)2

v3

}

,

gives the graph of the function v 7→ 2a
k

(v−b)2

v3 which can be studied with the aid of
the differential calculus. We get that it has a maximum at 3b with value 8a/27kb
(Figure 4.4). The area under the graph does not belong to the constitutive domain,
so R0 is the marked part.

4.4.2 Isotherms

The isotherm, with given temperature T , of the van der Waals material on the
v–P plane is the subset of the graph of the function

v 7→ kT

(v − b)
− a

v2
(v > b),
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where its derivative is negative.
Let us introduce the critical values

vc := 3b, Tc :=
8a

27kb
, Pc :=

a

27b2
.

Then, according to the previous paragraph, if
– T > Tc, then the derivative is everywhere negative,
– T = Tc, then the derivative is everywhere negative, except the point vc,
– T < Tc, then the derivative is zero at certain points v1 and v2, such that

v1 < vc < v2, and it is positive on the interval ]v1, v2[, it is negative for values
smaller than v1 and for ones larger than v2.

The isotherms on the v–P plane are illustrated in Figure 4.5. They are drawn
by dashed lines outside the constitutive domain according to the formula of P.
The bold curves passing through the minima and maxima of the formal isotherms
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v
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correspond to the boundary of the constitutive domain; they are usually called
spinodal curves.

This helps us imagine the graph of the function P (called sometimes the thermal
state surface): we translate the isotherms behind the plane of the page in a distance
corresponding to their temperature, and so we draw the surface shown in Figure
4.6.

4.4.3 Isobars

The isobar, with given pressure P , of the van der Waals material on the v–T plane
is the set

{

(v, T )

∣

∣

∣

∣

v > b, T >
2a

k

(v − b)2

v3
, T =

1

k

(

P +
a

v2

)

(v − b)

}

,

which is the graph of the expression on the right-hand side as a function of v
which can be studied with the aid of the differential calculus. Figure 4.7 shows
some isobars.

4.4.4 Adiabats

The van der Waals material is entropic, thus its adiabats are the isentropic curves
which can be given in the form

{(v, T ) | η(T, T0)c(T0)/k(v − b) = const.},
according to 2.2. If cv = λk, then they are

{(v, T ) | Tλ(v − b) = const.}.

4.5 Exercises

1. Deduce the form of the adiabats of the ideal gas without the entropy from
the differential equation given in 4.2.
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2. Describe the adiabats of the van der Waals material on the v–P and the
T–P planes.

3. For arbitrary van der Waals material (for arbitrary a and b), introducing
the dimensionless quantities

ν :=
v

vc
, τ :=

T

Tc
, π :=

P

Pc
,

we can represent the thermal state surface in the form

π =
8τ

3v − 1
− 3

v2
.

Outline the constitutive domain, the critical points, the isotherms and the isobars
in these variables.

4. Prove that for van der Waals materials

cp(vc, T ) − cv(vc, T ) =
kT

T − Tc
,

κ(vc, T ) =
3k

4b

1

T − Tc
,

where, of course, T > Tc.
5. Demonstrate that for van der Waals materials

∂P
∂v

(vc, Tc) =
∂2P
∂v2

(vc, Tc) = 0.

6. Examine the isotherms, isobars and adiabats of the materials given in Ex-
ercise 3 of 1.9.

7. Examine the isotherms, isobars and adiabats of the Clausius and Berthelot
materials.

8. A piezotropic point of a material is a point (v, T ) of the constitutive domain

where ∂P(v,T )
∂T = 0; the set of piezotropic points is the piezotrope.

Find the piezotropes of the ideal gas, the van der Waals materials, the Clausius
and Berthelot materials and the materials given in Exercise 3 of 1.9.

5 Canonical variables

5.1 Fundamental relations

A fundamental property of simple materials is that the specific internal energy is
a strictly monotone increasing function of temperature; consequently, the temper-
ature can be given as a function of specific internal energy and specific volume,
called the canonical variables. This means that we have the function T on the
set

D := {(e(v, T ), v) | (v, T ) ∈ D}
in such a way that

T(e(v, T ), v) = T
(

(v, T ) ∈ D
)
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and
e(v,T(e, v)) = e

(

(e, v) ∈ D
)

.

Then the pressure, too, can be given as a function of the canonical variables,
for which

P(e, v) := P(v,T(e, v))
(

(e, v) ∈ D
)

and
P(v, T ) = P(e(v, T ), v)

(

(v, T ) ∈ D
)

hold from which we deduce for the partial derivatives

∂T

∂e
=

1
∂e
∂T

•, ∂T

∂v
= −

∂e
∂v
∂e
∂T

•,

∂P

∂e
=

∂P
∂T
∂e
∂T

•, ∂P

∂v
=

(

∂P
∂v

− ∂P
∂T

∂e
∂v
∂e
∂T

)

•,

∂e

∂T
=

1
∂T
∂e

•, ∂e

∂v
= −

∂T
∂v
∂T
∂e

•,

∂P
∂T

=
∂P
∂e
∂T
∂e

•, ∂P
∂v

=

(

∂P

∂v
− ∂P

∂e

∂T
∂v
∂T
∂e

)

•

which, of course, are valid where the functions are differentiable. As to the nota-
tions, we refer to App. 3.

It can be seen that

R :=
{(

e(v, T ), v
)

| (v, T ) ∈ R
}

is the set where the function (T,P) is continuously differentiable and the inequal-
ities

∂T

∂e
> 0, (∗)

∂P

∂v

∂T

∂e
− ∂P

∂e

∂T

∂v
< 0 (∗∗)

hold.
Note that the right-hand side of the second inequality is the determinant of

the derivative of the function (T,P), i.e. of the matrix





∂T
∂e

∂T
∂v

∂P
∂e

∂P
∂v



 .

Of course, all other quantities, such as chemical potential, specific entropy,
specific enthalpy and specific free energy can be given as functions of the variables
(e, v):

– µ(e, v) := u(v,T(e, v)),
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– s(e, v) := s(v,T(e, v)),
– h(e, v) := h(v,T(e, v)),
– f(e, v) := f(v,T(e, v)).
The variables v and T are the natural variables from a practical (experimental)

point of view, but the canonical variables e and v are more suitable for theoretical
investigations. A technical difficulty of thermodynamics is that the function T
cannot be explicitly given even for a relatively simple e.

5.2 Canonical form of simple materials

According to the previous considerations, a simple material can also be given by
the canonical variables (e, v) as a quintet

(D,T,P,µ,R),

where
(i) D ⊂ (J)+ × (m3)+, is the canonical constitutive domain,

(ii) T : D → (K)+, P : D → (Pa), µ : D → (J)
the canonical constitutive functions are continuous,

(iii) the canonical regular domain R is the nonvoid open subset of D in
which the constitutive functions are continuously differentiable and the intrinsic
stability conditions (∗) and (∗∗) of the previous paragraph hold.

In this case, too, the pairs (e, v) in the canonical constitutive domain are called
states (see 1.5).

In the sequel we omit the attribute canonical regarding constitutive domain,
constitutive functions, etc. if it does not cause misunderstanding.

5.3 Entropic property in the canonical variables

The condition of entropic property becomes simpler in the canonical variables.
Namely, if the material is entropic, then the equalities in 5.1 imply for the partial
derivatives of the entropy function

s(e, v) := s(v,T(e, v))
(

(e, v) ∈ D
)

that

∂s

∂e
=

1

T
,

∂s

∂v
=

P

T
, in other words Ds =

(

1

T
,

P

T

)

on the canonical regular domain.
If specific entropy is twice continuously differentiable, then the necessary condi-

tion for the entropic property – because of the equality of second partial derivatives
in different order – is that

∂T

∂v
= P

∂T

∂e
− T

∂P

∂e

be fulfilled. If the canonical regular domain is simply connected and (T,P) is
continuously differentiable, then this is sufficient, too.
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The specific entropy of an entropic material is twice differentiable and has the
second derivative

D
2s = − 1

T2





∂T
∂e

∂T
∂v

P ∂T
∂e − T ∂P

∂e P ∂T
∂v − T ∂P

∂v



 .

The matrix in parentheses is symmetric (because of the necessary condition
mentioned in the previous paragraph) and has the determinant

T

(

−∂T

∂e

∂P

∂v
+
∂T

∂v

∂P

∂e

)

.

According to the intrinsic stability conditions, the first matrix entry and the
determinant of the matrix are positive; equivalently, the matrix is positive definite.
Because of the negative multiplier before the matrix, we can state:

Proposition The second derivative of the specific entropy of an entropic material
as a function of the canonical variables (e, v) is negative definite on the regular
domain.

We call attention to the fact that the above assertion for the second derivative
of the specific entropy is true only in the variables (e, v), it does not hold for the
second derivative of (v, T ) 7→ s(v, T ).

5.4 Canonical form of ideal gases
and van der Waals materials

If the ideal gas has constant specific heat, then e(v, T ) = cT+e0, thus temperature
can be given explicitly as a function of specific internal energy :

D = {(e, v) | e > e0, v > 0}, T(e, v) =
e− e0

c
.

If the van der Waals material has constant specific heat, temperature can be
given explicitly as a function of specific internal energy and specific volume:

D =
{

(e, v)
∣

∣ e > e0 − a

v
, v > b

}

, T(e, v) =
e− e0 + a

v

c
.

5.5 Exercises

1. Which examples of Exercise 3 in 1.9 allow us to give explicitly temperature
as a function of specific internal energy and specific volume?

2. Show that for an entropic material

∂µ

∂e
= v

∂P

∂e
− s

∂T

∂e
,

∂µ

∂v
= v

∂P

∂v
− s

∂T

∂v
,

hold on the regular canonical domain; the above relations can be written in the
form





∂µ

∂e

∂µ

∂v



 = (−s, v)





∂T
∂e

∂T
∂v

∂P
∂e

∂P
∂v



 ,
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or
Dµ = (−s, v)D(T,P).

3. If the material is entropic, then ∂s
∂e = 1

T
> 0, consequently, specific internal

energy can be given, at least locally, as a function of specific entropy and specific
volume. Let ê be such a function. Then, of course, all the other quantities can
be given as functions of s and v, which will be denoted by a ‘hat’ over the usual
symbols. Demonstrate that

∂ê

∂s
= T̂ ,

∂ê

∂v
= −P̂ .

4. Examine the state curves on the e–v plane. Prove that the adiabats are

determined by the differential equation
de

dv
= −P(e, v).

6 Phases

6.1 Introductory remarks

A phase of a material is a characteristic form in which the material appears.
Everyday phases are the solid, the liquid and the gaseous ones, but a material can
have other phases, such as different crystalline phases. The solid–liquid and liquid–
gaseous phase transitions, in general, are well observable, spectacular processes in
which specific volume abruptly increases or decreases, internal energy (heat) is
emitted or absorbed. Other phase transitions manifest themselves only in the
abrupt or ‘irregular’ change of other (nonconstitutive) quantities, e.g. specific
heat becomes ‘infinitely large’.

It is known that water is solid at certain temperatures and pressures and liquid
or gaseous at some other temperatures and pressures. The different crystalline
phases of a material, too, are characterized by the temperature and pressure values
in which they can exist. Experience shows that the phases of a material can be
determined by temperature and pressure. The phase diagrams in the T–P plane
are well known: they illustrate the phase lines which separate the different phases
(Figure6.1).

Here we are confronted with the well-known but rarely emphasized fact that
the line separating the liquid and gaseous phases ends at a critical point. Over
this point the liquid and gaseous phases are fused, they cannot be distinguished.

The chemical potential is supposed to play a fundamental role in determining
the phase lines which are usually deduced from the fact that the chemical potentials
– as functions of T and P – corresponding to the adjoining phases have equal
values: if µ1 and µ2 denote the chemical potential of two phases, then the phase
line between them would be the set

{(T, P ) | µ1(T, P ) = µ2(T, P )}.

This is, however, doubtful because of the mentioned fusion of the liquid and gaseous
phases.

The above facts point out that the usual notion of phases is not clear and give
us hints how we proceed:
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1. we have to define the exact notion of phases of simple materials which
reflects that

(i) phases can be characterized by temperature and pressure,
(ii) the processes in a single phase are ‘smooth enough’,

2. we have to describe the connections of phases (which replace the phase
lines).

6.2 Definition of phases

We find convenient now to introduce the notation

T : D → (K)+, (v, T ) 7→ T.

According to the previous statement 1. (ii), a phase is a subset of the regular
domain. We know that for fixed T the function v 7→ P(v, T ) is locally injective
(strictly monotone decreasing), that is why

(T ,P) : D → (K)+ × (Pa), (v, T ) 7→
(

T,P(v, T )
)

is locally injective, too. Where it is injective, its inverse gives v as a function of
(T, P ); in other words, there the state of the material can be characterized by
temperature and pressure. This suggests us the following:

Definition A phase of the simple material (D, e,P, u, R) is a connected open
subset Z of R on which (T ,P) is injective, and Z is maximal with this properties,
i.e. if N is a connected open subset of R on which (T ,P) is injective and Z ⊂ N ,
then Z = N .

Proposition Every element of R is contained in a phase.

Proof Let (v, T ) ∈ R. The point (v, T ) has a neighbourhood on which (T ,P)
is injective, thus the family of connected open subsets, which contain (v, T ) and
on which (T ,P) is injective is not void. Let us take a chain in this family; it is
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evident that the union of subsets in the chain belongs to the family in question
and this union is an upper bound of the chain. Then Zorn’s lemma implies that
there is a maximal element in this family.

Note that it is not excluded that a state belongs to more phases (this corre-
sponds to the fact that the liquid and gaseous phases are fused over the critical
point).

6.3 Phases of the van der Waals material

The van der Waals materials exhibit well the fusion of two phases (Figure 6.2).
Let us draw the isotherms according to Figure 4.5 and lay down an imaginary

horizontal line through the maximum of every isotherm, marking the point where
this horizontal line meets the same isotherm. The points give a curve L1. A
similar procedure with the minima gives the line L2. The domain over the curves
L1 and S2 corresponds to the gaseous phase, the domain over the curves S1 and L2

coresponds to the liquid phase. The common part of the two phases is represented
by the domain over the curves L1 and L2. The domain between the curves S1 and
L1 is the purely liquid phase and the domain between the curves S2 and L2 is the
purely gaseous phase (Figure 6.2).

6.4 Phases in the canonical variables

We can also use the canonical variables for describing phases. A phase of the simple
material (D,T,P,µ,R) in the canonical variables is a connected open subset Z of
R on which the function (T,P) is injective, and Z is maximal with these properties.

Indeed, if Z is a phase in the variables (v, T ) (as defined in 6.2), then

Z :=
{(

e(v, T ), v
)

| (v, T ) ∈ Z
}

has all the properties listed above; conversely, if Z is a subset with the above
properties, then

Z := {(v,T(e, v)) | (e, v) ∈ Z}
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is a phase in the sense of Definition 6.2. All that follows from the fact that the
function (e, v) 7→ (v,T(e, v)) is continuously differentiable on Z, maps Z onto
Z, moreover, (T ,P)|Z composed by this functions results in (T,P)|Z, which is
therefore a continuously differentiable injection on Z.

6.5 Characterization of phases by temperature and
pressure

Let us consider a phase Z of the material (D, e,P, u, R). The function (T ,P) is a
continuously differentiable injection on Z, its derivative

(

0 ∂P
∂v

1 ∂P
∂T

)

has non-zero determinant, thus the function

((T ,P)|Z)
−1

: (K)+ × (Pa)  (K)+ × (m3)+

is defined on a connected open subset and is continuously differentiable. The
second component of this function, denoted by vZ , give the specific volume as a
function of temperature and pressure. Then eZ(T, P ) := e(vZ(T, P ), T ) is specific
internal energy as a function of temperature and pressure in the given phase.

It is quite easy to see that

(eZ , vZ) = ((T,P)|Z)
−1
.

The chemical potential of the phase as a function of temperature and
pressure,

(T, P ) 7→ µZ(T, P ) := u(vZ(T, P ), T ) = µ(eZ(T, P ), vZ(T, P ))

will play a fundamental role in the sequel.
The Gibbs–Duhem relations (see 1.6) for an entropic material give

∂µZ

∂T
= −sZ ,

∂µZ

∂P
= vZ , (∗)

where sZ(T, P ) = s(vZ(T, P ), T )).
For convenient v, T and P we have

eZ(T,P(v, T )) = e(v, T ), vZ(T,P(v, T )) = v,

or
e(vZ(T, P ), T ) = eZ(T, P ), P(vZ(T, P ), T ) = P

from which we infer that

∂vZ

∂P
=

1
∂P
∂v

•, ∂vZ

∂T
= −

∂P
∂T
∂P
∂v

•,

∂eZ

∂P
=

∂e
∂v
∂P
∂v

•, ∂eZ

∂T
=

(

∂e

∂T
− ∂e

∂v

∂P
∂T
∂P
∂v

)

•,
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∂P
∂v

=
1

∂vZ

∂P

•, ∂P
∂T

= −
∂vZ

∂T
∂vZ

∂P

•,

∂e

∂v
=

∂eZ

∂P
∂vZ

∂P

•, ∂e

∂T
=

(

∂eZ

∂T
− ∂eZ

∂P

∂vZ

∂T
∂vZ

∂P

)

• .

6.6 Change of variables

According to the previous considerations, dealing only with a single phase,
we can choose at will the variables (v, T ) or (e, v) or (T, P ) (or (s, v) or (s, P ),
etc.) for describing the states of a material and we can use the known relations
regarding the partial derivatives of constitutive functions.

We emphasize that such a change of variables is not correct on the whole regular
domain.

6.7 A useful formalism

If (D, e,P, u, R) is a simple material, then

{e(v, T ), v, T,P(v, T ), u(v, T ) | (v, T ) ∈ R} =

= {e, v,T(e, v),P(e, v),µ(e, v) | (e, v) ∈ R}

is a two-dimensional submanifold in (J) × (m3) × (K) × (Pa) × (J) (the graph of
the continuously differentiable function (e,P, u)|R or (T,P,µ)|R) whose closure
contains the set Σ defined in 1.1.

Now we shall use some simple and well-known notions of the theory of manifolds
allowing us to deduce useful formulae which can be well applied without any
knowledge of manifolds.

The restriction of the functions e, etc. (see 1.2) onto the above manifold is
continuously differentiable. Using the same symbols e, etc. for these restrictions,
the equality

Ts = e+ Pv − µ

yields
sdT + Tds = de+ vdP + Pdv − dµ

for the differential of the functions.
The entropic property reads now

Tds = de+ Pdv,

or, equivalently (the Gibbs–Duhem relations),

dµ = −sdT + vdP.

Further, for the specific enthalpy h = e+ Pv

dh (= de+ vdP + Pdv) = Tds+ vdP,
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and for the specific free energy f = e− Ts

df (= de− sdT − Tds) = −Pdv − sdT.

Leaving the theory of manifolds, we can conceive these easy available equalities
as formal rules which summarize the relations among the partial derivatives of
the functions in question with respect to diverse variables in such a way that d

symbolize the derivative in arbitrary variables.
If the variables (v, T ) are used, then

dv =

(

∂v

∂v
,
∂v

∂T

)

= (1, 0), dT =

(

∂T

∂v
,
∂T

∂T

)

= (0, 1),

de =

(

∂e

∂v
,
∂e

∂T

)

, etc.

If the variables (e, v) are used, then

de = (1, 0), dv = (0, 1), dT =

(

∂T

∂e
,
∂T

∂v

)

, etc.

If the variables (T, P ) are used (which is always possible regarding a single
phase Z), then

dT = (1, 0), dP = (0, 1), dµZ =

(

∂µZ

∂T
,
∂µZ

∂P

)

, etc.

For instance, the condition

Tds = de+ Pdv

of the entropic property directly gives the formulae of 5.3 in the variables (e, v)
but it yields – in the variables (T, P ) for a given phase Z – also the relations

T
∂sZ

∂T
=
∂eZ

∂T
+ P

∂vZ

∂T
,

T
∂sZ

∂P
=
∂eZ

∂P
+ P

∂vZ

∂P
.

6.8 Exercises

1. Give relations among the partial derivatives of T and P, and the partial
derivatives of eZ and vZ .

2. Let Z be a phase of a material and hZ := eZ + PvZ , i.e. hZ is the specific
enthalpy of the material as a function of temperature and pressure. (hZ(T, P ) =
h(vZ(T, P ), T )). Prove for entropic material that

∂hZ

∂T
= cp,

∂hZ

∂P
= vZ − T

∂vZ

∂T
,

where cp is the specific heat at constant pressure as a function of (T, P ).
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3. Demonstrate ∂sZ

∂T > 0 for an entropic material.
4. Deduce the formulae of Exercises 2 and 3 of 5.5 2. and 3. from the formalism

given in 6.7.
5. An ideal gas has only one phase. Suppose the specific heat of the ideal gas

is λk (where λ > 0) and give the specific internal energy and specific volume as a
function of temperature and pressure. Show that the chemical potential has the
form

µ(T, P ) = kT

(

(λ+ 1) − log

(

(

T

T0

)λ+1
P0

P

))

+ e0.

7 Phase connections

7.1 Introductory remarks

Now we examine what relations can have different phases of a material. The
relation between two phases can be classified roughly as follows: the two phases

– overlap,
– are bordering,
– do not contact.
According to this classification – to be refined later – and keeping the historical

names partly, we speak about zeroth-order, second-order and first-order phase
connections, respectively.

We retained the historical names regarding the order, but in usual terminology
one says phase transition instead of phase connection. The name phase transition
in this respect, is, however, somewhat misleading because transition in everyday
language means a process, thus phase transition should mean the process of phase
change. The classifications of Ehrenfest and Tisza, the Clausius–Clapeyron equa-
tion, etc. characterize the phase lines and phase surfaces that appear on the
well-known phase diagrams and do not refer to any processes. Using our termi-
nology, we say that a phase transition can occur between two phases being in a
phase connection.

The following considerations refer to a given simple material (D, e,P, u, R).

7.2 Zeroth-order phase connections

Definition The zeroth-order connection of the phases Z1 and Z2 of the simple
material is the set Z1 ∩ Z2 ∩ R. We say that the two phases have a zeroth-order
connection if their zeroth-order connection is not void.

Applying the usual notation for the boundary of sets (∂Z := Z \ Z, thus
Z = Z ∪ ∂Z) and some trivial set-theoretical identities, taking into account that
the phases are subsets of R, we can write the zeroth-order connection of the phases
in the form

(Z1 ∩ Z2) ∪ (Z1 ∩ ∂Z2) ∪ (∂Z1 ∩ Z2) ∪ (∂Z1 ∩ ∂Z2 ∩R).

The zeroth connection of two overlapping phases (like the liquid and gaseous
phases) is not void but disjoint phases, too, can have a zeroth-order connection.
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7.3 Second-order phase connections

Definition The second-order connection of the phases Z1 and Z2 of the simple
material is the set Z1∩Z2∩(D\R). We say that the two phases have a second-order
connection if their second-order connection is not zero.

Applying the previous simple set-theoretical identities and taking into account
that the phases are disjoint from (D \R), we can describe the second-order phase
connection in the form

∂Z1 ∩ ∂Z2 ∩ (D \R).

Thus the second-order connection contains only boundary points of the phases.

It is evident that a point cannot belong to both the zeroth-order connection
and the second-order connection. It may happen, however, that two phases can
have both zeroth-order connection and second-order connection. For instance,
the second-order connection of the liquid and gaseous phases of a van der Waals
material is the critical point as it is obvious from the formulae of 6.3.

The second-order phase connection contains boundary points of R; conse-
quently, in such points (e,P, u)

– is not continuously differentiable, or

– does not satisfy at least one of the conditions of intrinsic stability.

The points of the second-order phase connection in the canonical variables can
be characterized similarly: there (T,P,µ)

– is not continuously differentiable, or

– does not satisfy at least one of the conditions of intrinsic stability, i.e. the
derivative of (T,P) is not positive definite.

7.4 λ transitions

It is typical that in some points of the second-order phase connection the specific
heat becomes ‘infinite’, i.e. ∂e

∂T is not defined in such a point (vm, Tm) and its
reciprocal tends to zero at (vm, Tm).

This can be illustrated by a simple diagram in such a way that the horizontal
axis represents the states, one of the phases stands on the left of the point (vm, Tm),
the other on the right, and the specific heat values are represented on the vertical
axis (Figure 7.1).

If a process passes through the phase connection (e.g. it runs in the diagram
from the right to the left), then the specific heat becomes ‘infinite’: such processes
are called λ transitions because of the form of this curve.

Experience shows λ transitions in which specific heat increases infinitely only
on one side, and transitions in which specific heat has a finite jump (Figure 7.2).

It is worth examining the λ transitions in canonical variables, too. If specific
heat becomes infinite in both sides, then (T,P) is continuously differentiable but
∂T
∂e becomes zero in the transition point: the first condition of intrinsic stability
is not satisfied (the derivative of (T,P) is negative semidefinite there). If the
λ transition is infinite only on one side, then (T,P) is not differentiable in the
transition point.
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7.5 On the classification of second-order
phase connections

The considerations in the previous paragraph are only illustrations; a thorough
treatment of second-order phase connections requires the clarification of the notion
of one-sided derivatives which is not easy because the functions in question –
contrary to the illustrative diagrams – have two variables.

Lastly we mention that in the usual literature only the transitions with two-
sided infinity (called transitions of Tisza type) and transitions with finite jumps
(called transitions of Ehrenfest type) are treated.1

7.6 First-order phase connections

The first-order phase connections (‘transitions’) are usually defined by the equal
values of the chemical potentials of the phases (see 6.5).

This involves two problems. First, in this way the usual phase lines mentioned
in 6.1 would be obtained in the T–P plane but we want to get the phase connec-
tion as a subset in the v–T plane (or in canonical variables, in the e–v plane).
Second, the chemical potentials can be equal on a too large set, e.g. on the whole
intersection of the liquid and gaseous phases.

The second problem can be ruled out by excluding the intersection of the phases
from the definition (equivalently, by excluding the zeroth-order connections and
the second-order connections, which is a natural requirement).

Definition 1 Let Z1 and Z2 be two phases of a simple material. We say that
(v1, T ) ∈ Z1 \Z2 and (v2, T ) ∈ Z2 \Z1 are in first-order connection with each
other if P(v1, T ) = P(v2, T ) and u(v1, T ) = u(v2, T ).

Definition 2 Let C1 be the subset of states in Z1 \ Z2 which are in first-order
connection with some states in Z2 \ Z1 and let C2 be the similar set Z2 \ Z1. The
first-order connection of the phases Z1 and Z2 is the pair (C1, C2). The phases
are in first-order connection if the sets C1 and C2 are not void.

For fixed T the function v 7→ P(v, T ) is injective on the phases, therefore every
state in C1 is in first-order connection with exactly one state in C2, and vice versa;
thus ‘being in first-order connection’ is a bijection between C1 and C2.

The van der Waals material helps us grasp the essence of first-order phase
connections (see 7.9).

7.7 Clausius–Clapeyron equation

Let (C1, C2) be the first-order connection of the phases Z1 and Z2. Then we have

(T ,P)[C1] = (T ,P)[C2] =: Γ

and µ1(T, P ) = µ2(T, P ) if (T, P ) ∈ Γ where µ1 and µ2 are the chemical potentials
of the phases Z1 and Z2 as defined in 6.5. The converse of the latter assertion is
true also:

1A general study of second-order phase connections is given in the paper by T. Matolcsi:
Classification of Phase Transitions, ZAMP 47(1996)837–857
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Proposition 1

Ω := (T ,P)[Z1 \ Z2] ∩ (T ,P)[Z2 \ Z1] ⊂ (K)+ × (Pa)

is an open subset and

Γ = {(T, P ) ∈ Ω | µ1(T, P ) = µ2(T, P )}.

Proof (T ,P) is continuously differentiable and injective on the phases and this is
true for its inverses, too, so it maps open subsets of the phases onto open subsets.
Consequently, Ω is open. Further, the definition of first-order connections implies
trivially that µ1(T, P ) 6= µ2(T, P ) if (T, P ) ∈ Ω \ Γ.

Proposition 2 If the simple material is entropic, then C1 and C2 are curves in
Z1 \ Z2 and Z2 \ Z1, respectively. Γ is a curve in Ω which is determined by the
Clausius–Clapeyron differential equation (see below).

Proof If (T, P ) ∈ Γ, then
(

v1(T, P ), T
)

∈ C1 and
(

v2(T, P ), T
)

∈ C2, therefore
these elements cannot be equal, v1(T, P ) − v2(T, P ) 6= 0. The Gibbs–Duhem
relations (see 6.5 (∗)) and the implicit function theorem imply that every element
(T0, P0) of Γ – the set where µ1 − µ2 takes zero values – has a neighbourhood ∆
such that Γ∩∆ is the graph of a continuously differentiable function (K)+

 (Pa)
which is the solution of the differential equation

dP

dT
=

s1(T, P ) − s2(T, P )

v1(T, P ) − v2(T, P )
(∗)

with initial value P (T0) = P0. As a consequence, Γ is a one-dimensional subman-
ifold, i.e. a curve.

Then it is evident that C1 and C2 are curves, as images of Γ by the continuously
differentiable inverses of the functions (T ,P)|Z1

and (T ,P)|Z2
, respectively.

The differential equation (∗) is called the Clausius–Clapeyron equation.
Using the transformation heat

q12(T, P ) := Ts1(T, P ) − Ts2(T, P ) ((T, P ) ∈ Γ)

we can write the Clausius–Clapeyron equation in the form

dP

dT
=

q12(T, P )

T
(

v1(T, P ) − v2(T, P )
)

which is suitable because it refers to directly measurable quantities.
Now the reader is asked to revert to 3.12.

7.8 Critical points

Definition Let (C1, C2) be the first-order connection of the phases Z1 and Z2.
The points of the set C1 ∩C2 ∩D are called the critical points of the two phases.

Proposition The critical points of two phases belong to the second-order connec-
tion of the phase.
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Proof It is evident that the critical points are in the set Z1 ∩Z2 ∩D, thus we have
only to show that they are not in R. Let (vc, Tc) be a critical point and suppose it
is in R. Then it has a neighbourhood in which (T ,P) is injective and its inverse
is continuously differentiable. Consequently, – because (vc, Tc) is an element of
the closures of C1 and C2 – (Tc, Pc) :=

(

Tc,P(vc, Tc)
)

is in the closure of Γ. If
U is an arbitrary neighbourhood of (vc, Tc), then (T ,P)[U ] is a neighbourhood of
(Tc, Pc), thus Γ ∩ (T ,P)[U ] 6= ∅. This means that there are (v1, T1) in C1 ∩U and
(v2, T2) in C2 ∩ U such that T1 = T2 and P(v1, T1) = P(v2, T2). We arrived at
the contradiction that (T ,P) is not injective in any neighbourhood of (vc, Tc); as
a consequence, (vc, Tc) cannot be in R.

7.9 First-order phase connections of the van der Waals ma-
terial

Let us recall the purely liquid phase and the purely gaseous phase (see Figure
6.2) which correspond to Z1 \ Z2 and Z2 \ Z1 in the previous paragraph. The
curves C1 and C2 lay in these sets; temperature, pressure and chemical potential
take the same values in the corresponding points of C1 and C2. A horizontal line
intersects an isotherm below the critical temperature (Figure 7.3) in points where
temperature and pressure have the same values. We have to determine which
of the horizontal lines intersects the isotherm in points where also the chemical
potential has the same value.

Let us accept that the constitutive functions are valid in the form given in
2.2 outside the constitutive domain, too, i.e. in the part of the v–T plane where
∂P
∂v > 0 (which is the part below the spinodal lines). In this part, as in a phase,
the function v 7→ P(v, T ) is injective, thus in this part, too, specific volume can
be given as a continuously differentiable function of temperature and pressure;
let v0 be this function. Then the chemical potential can also be given there as a
continuously differentiable function of temperature and pressure and the Gibbs–
Duhem relations (see 6.5 (∗)) hold for this function µ0. The continuity of the
function u formally extended outside the constitutive domain implies that µ1 and
µ0 can be continuously extended to the spinodal line S1 where their extensions
coincide; similar can be said about µ2, µ0 and S2.

Let us fix a temperature T below the critical value and let Pmin(T ) and
Pmax(T ) be the pressure values where the isotherm with temperature T has min-
imum and maximum, respectively. According to the previous considerations, we
have µ1(T, Pmin(T )) = µ0(T, Pmin(T )) and µ0(T, Pmax(T )) = µ2(T, Pmax(T )).

Because

µ1(T, P ) − µ2(T, P ) =
[

µ1(T, P ) − µ1(T, Pmin(T ))
]

+

+
[

µ0(T, Pmin(T )) − µ0(T, Pmax(T ))
]

+
[

µ2(T, Pmax(T )) − µ2(T, P )
]

holds for an arbitrary pressure P , the Gibbs–Duhem relation regarding the partial
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derivative of the chemical potential yields

µ2(T, P ) − µ1(T, P ) =

=

Pmin(T )
∫

P

v1(T, π)dπ +

Pmax(T )
∫

Pmin(T )

v0(T, π)dπ +

P
∫

Pmax(T )

v2(T, π)dπ.

The points v1(T, P ) and v2(T, P ) on the isotherm with temperature T which
correspond to the curves C1 and C2, respectively are determined by the pressure
P for which the sum of the three integrals is zero. This means that the marked
areas on Figure 7.3 are equal which is called the Maxwell rule. We point out that
the equality of areas is the consequence of a formal calculation, it has no physical
meaning.

Now we can easily draw the image of C1 and C2 on the v–P plane (denoted by
the same letters C1 and C2 in Figure 7.3), called usually the binodal lines. It is
evident that the critical point according to definition 7.8 is just the critical point
of the van der Waals material defined in 4.4.2.

7.10 Exercises

Treat the first-order phase connections according to the following scheme.

1. Let Z1 and Z2 be two phases of a simple material in the canonical variables.
(e1, v1) ∈ Z1 \ Z2 and (e2, v2) ∈ Z2 \ Z1 are in first-order connection with each
other if (T,P,µ)(e1, v1) = (T,P,µ)(e2, v2).

2. The first-order conection of the two phases is the pair (C1,C2) where C1

consists of the states in Z1 \ Z2 which are in first-order connection with some state
in Z2 \ Z1 and C2 has a similar meaning.

3. ‘To be in first-order connection’ is a bijection between C1 and C2.

4. Γ = (T,P)[C1] = (T,P)[C2].
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8 Bodies

8.1 The notion of a body

A body is just a certain amount of a material: a glass of water, a piece of ice, a
tube of air, etc. The number of particles in the body can change: the water evap-
orates, the ice is melting, the air escapes, etc. A state of a body is characterized
by the state of its material and the particle number of the body. The values
of the particle number are actually positive integers but we consider them being
arbitrary positive real numbers, in other words, particle number is supposed to be
a ‘continuous variable’. This little deception corresponds to the everyday practice
that mass of a material is considered to be continuously distributed. Moreover,
we allow the zero value of the particle number, too, for the possibility of treating
processes in which the body disappears (e.g. the ice melted completely).

Definition A body consisting of a general simple material Σ is the set Σ × R
+
0 .

This definition is the most general one; in the sequel, however, we shall use
it only for bodies consisting of simple materials. A body consisting of a material
(D, e,P, u, R) will be denoted by

(D × R
+
0 , e,P, u, R), and (D × R

+
0 ,T,P,µ,R),

according to which variables are used.
The body is called entropic if its material is entropic.
At first sight we are inclined to call states the elements of D×R

+
0 but we must

be aware that only one state corresponds to the zero value of particle number,
therefore, (v1, T1, 0) and (v2, T2, 0) are the same state for all (v1, T1) and (v2, T2)
in D. That is why we accept that the elements of D×R

+ as well as the set D×{0}
are the states of the body.

If we examine processes of a body in which the particle number is constant,
then the zero value of particle number is uninteresting (nothing happens) and in
the case of non-zero value of particle number we can disregard the particle number
and we can regard the pair (v, T ) – or (e, v) – as the state of the body.

8.2 The entire quantities

Treating bodies and denoting by N the particle number, we find it suitable to use
the entire volume V := Nv as a variable instead of specific volume which means
exactly the following. The infinitely differentiable function

(m3)+ × (K)+ × R
+
0 → (m3)+

0 × (K)+ × R
+
0 ,

(v, T,N) 7→ (Nv, T,N) =: (V, T,N)

maps the set D× {0} (the state with zero value of particle number) into a subset
of 0 × (K)+ × 0 and establishes a bijection between (m3)+ × (K)+ × R

+ and
(m3)+ × (K)+ × R

+, and here it has the infinitely differentiable inverse

(V, T,N) 7→ (V/N, T,N).
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On the set
{(V, T,N) | N 6= 0, (V/N, T ) ∈ D}

we introduce the function

P̂(V, T,N) := P(V/N, T )

and similarly the function ̂u. For the sake of brevity and perspicuity, we accept the
usual ambiguous notation that we write P and u instead of P̂ and ̂u, respectively,
i.e. two different functions will be denoted by the same symbol. Then we easily
derive:

∂P
∂V

=
1

N

∂P
∂v

,
∂P
∂N

= − v

N

∂P
∂v

,

where, of course, the variables are (V, T,N) on the left-hand side, and (v, T ) =
(V/N, T ) on the right-hand side.

Furthermore, the entire quantities are used instead of the specific ones:
E(V, T,N) := Ne(V/N, T ) is the (entire) internal energy,
S(V, T,N) := Ns(V/N, T ) is the (entire) entropy,
H(V, T,N) := Nh(V/N, T ) is the (entire) enthalpy,
F(V, T,N) := N f(V/N, T ) is the (entire) free energy.
Then

∂E
∂V

=
∂e

∂v
,

∂E
∂T

= N
∂e

∂T
,

∂E
∂N

= e − v
∂e

∂v
,

and similar relations hold for S, H and F .
As a consequence, the partial derivatives of the entire quantities satisfy the

same relations as the derivatives of the specific quantities; e.g. for an entropic
body

T
∂S
∂V

=
∂E
∂V

+ P, T
∂S
∂T

=
∂E
∂T

,

∂F
∂V

= −P, ∂F
∂T

= −S,
moreover, we have

T
∂S
∂N

=
∂E
∂N

− u,
∂F
∂N

= u.

8.3 Entire canonical variables

It is often convenient to use the (entire) internal energy E and the (entire)
volume V instead of specific internal energy e and specific volume v, respectively.
The infinitely differentiable function

(J)+ × (m3)+ × R
+
0 → (J)+

0 × (m3)+
0 × R

+
0 ,

(e, v,N) 7→ (Ne,Nv,N) =: (E, V,N)

maps the set D × {0} (the state with zero value of particle number) into the
single element (0, 0, 0) and establishes a bijection between (J)+ × (m3)+ ×R

+ and
(J)+ × (m3)+ × R

+ and here it has the infinitely differentiable inverse

(E, V,N) 7→ (E/N, V/N,N).
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For an arbitrary subset H of (J)+ × (m3)+ we introduce the notation

H ∗ R
+ := {(Ne,Nv,N) | (e, v) ∈ H, N ∈ R

+}.

In the sequel we shall identify the sets D × R
+ and D ∗ R

+, i.e. in the case
N 6= 0, instead of the state (e, v,N) we shall use the corresponding (E, V,N),
called also state. Besides such states, (0, 0, 0) ∈ (J)+

0 × (m3)+
0 × R

+
0 is a state of

the body.

The quantities (E, V,N) are called the entire canonical variables. The use of
the entire canonical variables has the advantage that the state with zero value of
particle number is represented by a single element.

In what follows we always consider N 6= 0.

Using the variables (E, V,N), we introduce the function

T̂(E, V,N) := T(E/N, V/N)

and similarly the functions P̂ and µ̂ which are continuously differentiable on the
set R ∗ R

+.

For the sake of brevity and perspicuity, we accept the usual ambiguous notation
that we write T instead of T̂, i.e. two different functions will be denoted by the
same symbol. Then we easily derive:

∂T

∂E
=

1

N

∂T

∂e
,

∂T

∂V
=

1

N

∂T

∂v
,

where, of course, the variables are (E, V,N) on the left-hand side and (e, v) =
(E/N, V/N) on the right-hand side.

Furthermore,
∂T

∂N
=

1

N

(

−e∂T

∂e
− v

∂T

∂v

)

, (∗)

or, equivalently,

E
∂T

∂E
+ V

∂T

∂V
+N

∂T

∂N
= 0,

and similar formulae hold for P and µ, too.

For the functions

– S(E, V,N) := Ns(E/N, V/N),
– H(E, V,N) := Nh(E/N, V/N),

– F(E, V,N) := N f(E/N, V/N)

(using the ambiguous notations) we easily obtain

∂S

∂E
=
∂s

∂e
,

∂S

∂V
=
∂s

∂v

and
∂S

∂N
= s − e

∂s

∂e
− v

∂s

∂v

and similar formulae for H and F, too.
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8.4 Entropic property in the entire canonical variables

If the body is entropic, we have for the entire entropy in the entire canonical
variables

∂S

∂E
=

1

T
,

∂S

∂V
=

P

T
,

∂S

∂N
= − µ

T
,

in other words,

DS =

(

1

T
,

P

T
,− µ

T

)

.

The second derivative of the entropy is

D
2S = − 1

T2













∂T
∂E

∂T
∂V

∂T
∂N

P ∂T
∂E − T ∂P

∂E P ∂T
∂V − T ∂P

∂V P ∂T
∂N − T ∂P

∂N

−µ ∂T
∂E + T ∂µ

∂E −µ ∂T
∂V + T ∂µ

∂V −µ ∂T
∂N + T ∂µ

∂N













.

It is symmetric, thus some relations hold among certain partial derivatives. We
see immediately from the equality 8.3 (∗) and the similar equality for P and µ

that the last row of the matrix is a linear combination of the first ones, therefore,
the matrix has zero determinant. Furthermore, it is trivial that the inequalities
expressing the negative definiteness of specific entropy remain valid for the entire
entropy:

∂T

∂E
> 0,

∂T

∂E

∂P

∂V
− ∂T

∂V

∂P

∂E
< 0.

All these yield the following important result.

Proposition D
2S(E, V,N) is negative semidefinite for all (E, V,N) ∈ R ∗R+; its

kernel is one-dimensional, spanned by (E, V,N).

In usual treatments of thermodynamics one often requires that the second
derivative of the entire entropy be negative definite2, which is impossible.

It is worth noting here that the sum of two negative semidefinite forms is
negative semidefinite, too; if the intersection of their kernels is zero, then their
sum is negative definite. As a consequence, D

2S(E1, V1, N1) + D
2S(E2, V2, N2) is

negative definite if and only if (E1, V1, N1) and (E2, V2, N2) are not parallel, or
equivalently, (E1/N1, V1/N1) 6= (E2/N2, V2/N2).

8.5 A useful formalism

Corresponding to paragraph 6.7,

{E(V, T,N), V, T,P(V, T,N), u(V, T,N) | (V, T,N) ∈ R× R
+} =

= {E, V,T(E, V,N),P(E, V,N),µ(E, V,N) | (E, V,N) ∈ R × R
+}

is a three-dimensional submanifold in (J) × (m3) × (K) × (Pa) × (J) × R.

2H.B.Callen: Thermodynamics, Wiley and Sons, N.Y. 1985, p. 38
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The entire quantities can be considered as defined on this manifold, and ap-
plying the usual symbols, we can write

TS = E + PV − µN,

which yields

SdT + TdS = dE + V dP + PdV −Ndµ− µdN.

for the differential of the functions.
The entropic property reads now

TdS = dE + PdV − µdN,

or, equivalently (the Gibbs–Duhem relations),

Ndµ = −SdT + V dP.

Further, for the entire enthalpy H = E + PV

dH(= dE + V dP + PdV ) = TdS + V dP + µdN,

and for the entire free energy F = E − TS

dF (= dE − SdT − TdS) = −PdV − SdT + µdN.

Leaving the theory of manifolds, we can conceive these easily available equal-
ities as formal rules which summarize the relations among the partial derivatives
of the functions in question with respect to diverse variables in such a way that d

symbolize the derivative in arbitrary variables.

8.6 Legendre transforms

Our considerations in this paragraph concern the regular domain.
For an entropic body, the partial derivatives of the entire entropy in the canon-

ical variables are simple combinations of the constitutive functions. Therefore the
‘natural variables’ of the entropy are (E, V,N).

The Legendre transform (see App. 4) of the entropy with respect to E is
S − E

T , having
(

1
T , V,N

)

as natural variables. Multiplying it by −T , we get the
free energy, having (T, V,N) as natural variables (or, in our usual order (V, T,N).

We can argue in another way. Entropy is a (locally) strictly monotone function
of the energy, thus E can be expressed as a function of (S, V,N) which are the
‘natural variables’ of energy, because, as it is easily seen from the previous para-
graph, the partial derivatives of energy are T , −P and µ as functions of (S, V,N).
The Legendre transform of the energy with respect to the entropy is the free en-
ergy having (V, T,N) as natural variables; the partial derivatives of the free energy
then are −P , −S and µ.

The free energy and the Legendre transform of the energy with respect to the
entropy and the particle number play a fundamental role in statistical physics.
The latter one is

J := E − TS − µN,
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having (V, T, µ) as natural variables:

dJ = −PdV − SdT −Ndµ,

where P , S and N are functions of (V, T, µ).

8.7 Exercises

1. Deduce relations for the partial derivatives of the entire free energy in the
canonical variables.

2. Give the pressure as a function of (V, T,N) and then as a function of
(E, V,N) for a body consisting of an ideal gas and a body consisting of a van der
Waals material, if the specific heat is constant.





II SYSTEM OF SIMPLE BODIES: A

SURVEY

9 Dynamics of processes

9.1 Introductory remarks

In the previous chapter the kinematics (formal properties) of processes were
treated; in the present chapter we examine the dynamics of processes.

Systems of bodies, dynamics of their processes, dynamical quantities, etc. ap-
pear in this chapter heuristically; the exact definitions will be given in Chapter
IV.

The state of a body is the joint of its volume, temperature and particle number,
or its internal energy, volume and particle number; according to what has been
said earlier, the state – except the one with zero particle number – can be described
by (v, T,N) or (e, v,N) or (V, T,N) or (E, V,N).

The total canonical variables (E, V,N) are the most convenient for general
considerations; of course, everything can be formulated in other variables, too,
and in some special cases other variables can be used more efficiently.

A process of a simple body is the time change of its state: a function t 7→
(

E(t), V (t), N(t)
)

defined on a time interval. For the notations see 3.1.

The internal energy of a body can change in three ways: by conduction, by
doing work and by gaining (or losing) particles.

We shall follow the usual way of speaking, originating from the early period
of thermodynamics, which suggests as if there were a ‘heat quantity’, but we
emphasize that this is not true. The word ‘heat’ always refers to some special
change of internal energy. For instance, one speaks about ‘the heat given to a
body’ which means in a right setting ‘the internal energy given to the body by
conduction’. A further usual notion is the freezing heat which means in reality the
difference of internal energy in a liquid state and in a solid state and this amount
of internal energy is conducted to the environment when freezing.

9.2 The dynamical equation

As said in the Introduction, our basic concept is that the dynamics of processes is
described by differential equations: a process t 7→

(

E(t), V (t), N(t)
)

governed by
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the following dynamical equation:

Ė = Q+W + L, V̇ = F, Ṅ = G.

The dynamical quantities on the right-hand side are the following:
– the heating Q is the internal energy conducted to the body in unit time,
– the working W is the work done on the body in unit time,
– the transferring L is the internal energy conveyed by particles to the body

in a unit time,
– the springing F is volume change in unit time,
– the converting G is the particle number change in unit time,

which are functions defined on D ∗ R
+ (e.g. Q = Q(E, V,N)) but this is not

written for the sake of brevity.
The first member of the dynamical equation is the first law of thermody-

namics. We emphasize that it is only one member of the dynamical equation,
which is not sufficient for determining processes.

Let us note that
1. the first law here concerns only homogeneous processes, thus it is less general

than that mentioned in Paragraph 5 of the Introduction,
2. the quantities Q, W and L refer to unit time, contrary to the quantities

denoted by the same letters in Paragraph 5 of the Introduction.

9.3 About working and transferring

Working always contains a part due to the extension (contraction) of the body.
The force the body exerts on a surface element equals the product of the pressure
and the surface element, and the work performed on the surface element equals the
product of force and displacement. Consequently, the expansion work performed
in unit time is −PV̇ (the negative sign appears because working in the first law is
positive if it increases the internal energy of the body). Working can contain other
parts, too; for instance, during expansion the body works against viscous friction.

Working is called ideal if
W = −PF.

As mentioned, the chemical potential expresses the internal energy change due
to the arrival of a particle at the body. This means that if the transferring is ideal
then

L = µG.

Nonideal transferring occurs e.g. if the average kinetic energy of the arriving
particles differs from that of the particles in the body.

We suppose that the nonideal parts of working and transferring are propor-
tional to the square of springing and converting, respectively; thus the working
and transferring have the form

W = −PF + πF 2, L = µG+ ξG2

where π ≥ 0, the mechanical lost coefficient and ξ ≥ the material lost
coefficient are ‘small near to equilibrium’; the exact notion of the expression in
quotations marks will be given in 10.7.
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9.4 A few words about the first law

In usual treatments one writes the first law in the form

dE = δQ+ δW (1)

considering tacitly bodies with constant particle number. This correspond to our

Ė = Q+W, more precisely Ė = Q(E, V ) + W(E, V ). (1’)

One says that dE is a total differential while the ‘infinitesimal heat’ δQ and
the ‘infinitesimal work’ δW are not total differentials. This means in our frame-
work that there is no function (E, V ) 7→ Φ(E, V ) such that Q(E(t), V (t)) =
d
dt Φ(E(t), V (t)).

Furthermore one says that in a quasi-static reversible process δQ = TdS and
δW = −PdV , thus

dE = TdS − PdV. (2)

Since then one considers only quasi-static reversible processes, the above equality
is identified with the first law; (1) and (2) are considered equivalent for quasi-static
reversible processes.

Equality (2), in our framework, is the expression of entropic property (for
constant particle number) (see Paragraph 8.5). In other words, if the body is
entropic, then the formulae of Paragraph 8.4 result in

Ė = T Ṡ − PV̇ , i.e. Ė = T(E, V )S(E, V )̇ − P(E, V )V̇ . (2’)

Note that relations (1’) and (2’) are far from being equivalent in any circum-
stances. Namely, (1’) is a differential equation for E where Q and W are given
functions of (E, V ), whereas (2’) is a simple equality regarding constitutive func-
tions. Of course, if working is ideal, we get T Ṡ = Q, i.e. T(E, V )S(E, V )̇ =
Q(E, V ) but this does not give any information about heating (about the function
Q): this is just an alternative expression of the differential equation (1’).

Thus, in usual terms, (1) and (2) are not equivalent for any processes: (1) is
an equation while (2) is an equality (see the Appendix).

9.5 The specific dynamical quantities

We can use specific internal energy and specific volume to describe processes.
Then, according to Paragraph 9 of the Introduction, the dynamical law becomes

ė = q + w + gα, v̇ = f + gβ, Ṅ = gN,

where q is the specific heating, w is the specific working, f is the specific
springing, g is the specific converting, α and β are quantities, ‘small near to
equilibrium’. For processes ‘near to equilibrium’ and with ideal working and ideal
transferring we have

ė = q − Pf, v̇ = f, Ṅ = G.



90 II System of simple bodies: a survey

Then
Ė = Q− PF + µG, V̇ = F, Ṅ = G,

moreover V̇ = Ṅv +Nv̇ and Ė = Ṅe+Nė, thus we infer that

Nf = F −Gv, Nq = Q−G(Ts).

The formula for the springing is transparent: the change of specific volume
consists of two parts: one is due to the change of total volume and the other is
due to the change of particle number.

Similarly, the formula for heating is transparent: the specific heating consists
of two parts: one corresponds to the total heating, the other to the internal energy
change due to the change of particle number.

9.6 System of bodies

If several bodies interact with each other, then a process of the system is the joint
of the processes of the bodies, and the process of the system is governed by the
joint of differential equations concerning the processes of the bodies.

If one of the bodies is very large compared to the others, then its state will be
approximately independent of the state of the other bodies (the temperature of
the room does not change while a glass of tea is cooling). Thus, in this case we
consider that the large body, called the environment acts on the other bodies
which do not act on the environment. The states (processes) of the environment
are independent of the processes of the bodies connected to the environment.

The environment is described as a material (Da,Ta,Pa,µa,Ra) with a given
process t 7→ (ea(t), va(t)) ∈ Da (the particle number of the environment is con-
sidered to be ‘very large’ and constant).

Thus, the process of n ≥ 1 interacting bodies in a given environment is
(

(Ei, Vi, Ni) | i = 1, . . . , n
)

, governed by the dynamical equation

Ėi = Qi +Wi + Li, V̇i = Fi Ṅi = Gi

(i = 1, . . . , n).

The heating Qi of the i-th body is the internal energy conducted to the body
in unit time; evidently, it consists of the heatings due to the other bodies and of
the heating due to a heat source in the body:

Qi = Qi,s +

n
∑

k=a,1

Qik,

where Qik is the heating due to the k-th body (environment for k = a) and Qi,s

is the heating due to the heat source.
Similarly, the converting Gi of the i-th body consists of the convertings due to

the other bodies and the converting due a particle source in the body:

Gi = Gi,s +

n
∑

k=a,1

Gik;
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furthermore,

Fi =

n
∑

k=a,1

Fik, Wi =

n
∑

k=a,1

Wik.

The quantities Qik, etc. are called dynamical quantities of the system.
It will be convenient to introduce the notations

Aik := Qik +Wik + Lik, Ai :=

n
∑

k=a,1

Aik.

9.7 Independence of interactions

We accept – as in mechanics – that the interaction of two bodies is independent
of other interactions of the bodies in question. This means that the dynamical
quantities with subscript ik depends only on the states of the i-th and k-th bodies.

10 Properties of dynamical quantities

10.1 Convention about notations

As a consequence of the independence of interactions, it suffices to take into ac-
count two bodies for the investigation of the properties of the dynamical quantities.
In the sequel we denote the quantities of a chosen body in the usual way, and we
write a subscript ∗ for the quantities of another body. Thus (E, V,N) is a state of
the chosen body, and (E∗, V∗, N∗) is a state of the other body, T and T∗ are the
corresponding temperatures, etc.

The values of the functions T, P and µ will be denoted by T , P and µ,
respectively, and similar notation will be applied for the quantities with subscript

∗.
The dynamical quantities as functions will be denoted by the letters Q, F, etc.,

Q, F , etc. standing for their values.
It will often be convenient to write the values of the functions in some formulae

instead of the functions if this does not cause misunderstanding. We have to be
cautious only in one situation, namely Q = 0 and Q = 0 have different meaning:
the first says that the function Q is ‘identically zero’, i.e. it has only zero values,
the second says that the value in question of Q is zero. We shall sharply distinguish
between these two cases (of course, between F = 0 and F = 0, etc., too).

10.2 Exact form of the dynamical quantities

According to what has been said, we are given functions

(E, V,N,E∗, V∗, N∗) 7→































Q(E, V,N,E∗, V∗, N∗),

F(E, V,N,E∗, V∗, N∗),

G(E, V,N,E∗, V∗, N∗),

π(E, V,N,E∗, V∗, N∗),

ξ(E, V,N,E∗, V∗, N∗)
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defined on the set (D∗R+
0 )×(D∗∗R+

0 ). These dynamical quantities are supposed to
be continuous, moreover continuously differentiable on the interior of their domain.
The assumption of continuity excludes some interactions (e.g. the converting in
the case of a valve is not continuous; but also the assumption of homogeneity is
doubtful for a valve).

Let us introduce the notations

W := −PF + πF2, L := µG + ξG2,

A := Q + W + L

(which make sense in such a way that P and µ are considered as functions of
(E, V,N,E∗, V∗, N∗) not depending on (E∗, V∗, N∗)).

Of course, we are given the functions Q∗, etc. on the set (D∗ ∗R+
0 ) × (D ∗R+

a ),
for which similar properties and notations are accepted as above.

10.3 Mutuality

The number of particles passing from one body to the other is evidently equal
to the negative of the number of particles passing from the second body to the
first. The same is true for the volume change and for the internal energy change.
Therefore we accept the ‘law of action-reaction’, called here mutuality

A(E, V,N,E∗, V∗, N∗) = −A∗(E∗, V∗, N∗, E, V,N),

F(E, V,N,E∗, V∗, N∗) = −F∗(E∗, V∗, N∗, E, V,N),

G(E, V,N,E∗, V∗, N∗) = −G∗(E∗, V∗, N∗, E, V,N).

Note that such a mutuality does not necessarily hold for heating, working and
transferring as explained in the next paragraph.

10.4 Indirect heat conduction

Heating is the conducted internal energy – the transport of internal energy due
to the collision of the molecules – in unit time. Then it seems natural to expect
that mutuality holds for heatings, too. Mutuality for internal energies and that
for heatings, however, exclude each other.

For a clear explanation, let us consider two bodies which interact only with
each other (the two bodies are isolated together). Then mutuality for internal
energies gives for any processes that

Ė + Ė∗ = 0.

The bodies in ordinary thermodynamics are considered homogeneous; so this
theory can be well applied only to phenomena in which inhomogeneity is negligible.
In reality every nontrivial process is inhomogeneous. Because of the assumption
of homogeneity, only internal energy appears in the description, kinetic energy is
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neglected, though kinetic energy is present in real processes: a body expands, its
points are moving. Thus, having the above equality, i.e. E + E∗ = const., we do
not formulate energy conservation quite correctly because we do not (cannot) into
account kinetic energy.

Retaining energy conservation expressed by mutuality for internal energies, we
modify our idea on heating. A body expanding, pushes the molecules of another
body near the contact surface, so gives them kinetic energy which, as a consequence
of viscosity, becomes later internal energy. This procedure can be considered as
a heating in two steps: a part of the internal energy of a body turns into kinetic
energy of the other body which then dissipates into internal energy. Then we
can conceive that heating consists of two parts: the direct heating due to the
(microscopic) collision of the molecules and the indirect heating due to the
(macroscopic) pushing of the molecules; mutuality occurs for direct heatings but
it does not for indirect ones.

A similar situation occurs in particle transport. The particles passing from a
hotter body to a colder one have larger average kinetic energy, the excess energy
dissipates into internal energy because of viscosity. Again we can conceive either
that the transferring is not ideal or that heating consists of a direct part and an
indirect one.

10.5 Convention about the dynamical quantities

The previous consideration is quite reasonable but in practice we cannot describe
the direct heating and the indirect one separately: heating as a dynamical quantity
given in Paragraph 10.2 contains both the direct part and the indirect part.

Our reasoning have shown that indirect heating and non-ideal working are
closely related. In fact, we could always consider ideal working and transferring,
the non-ideal parts conceived as indirect heatings. This is not always convenient,
however.

Namely, heat insulation means that direct heating is missing (but indirect one
is not necessarily!). Thus if we want to express heat insulation by Q = 0 (we
have no other possibility), then, in general, we cannot consider ideal working and
transferring.

Recapitulating: we can suppose that

– if Q 6= 0, then π = 0 and ξ = 0,

– if Q = 0, then π = 0 and ξ = 0 if these equalities do not lead to a contradic-
tion.

10.6 Forbidden interactions

A non-permeable wall between two bodies blocks particle transport, a rigid wall
makes volume change impossible, there is no energy conduction through a heat-
insulated wall. It seems, we would say that

– particle transport is forbidden if and only if G = 0,

– volume change is forbidden if and only if F = 0,

– energy conduction is forbidden if and only if Q = 0.
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These are, however, too strong requirements; namely, the blocking, in general,
is realized only in some circumstances. Let us consider a seed: it has a hull through
which water cannot pass under a given temperature (to hinder sprouting). Simi-
larly, a body can have a wall which is absolutely rigid below a given temperature
but is elastic above it. Thus a right setting of an impossible interaction requires
only that the corresponding dynamical quantity should be zero on a convenient
domain, as follows.

Transferring is impossible in the state (E, V,N) of the body if it has a (math-
ematical) neighbourhood such that for all (E′, V ′, N ′) in that neighbourhood and
for all states (E∗, V∗, N∗) of the other body

G(E′, V ′, N ′, E∗, V∗, N∗) = 0

holds. This property will be denoted by

G||(E,V,N) = 0.

Of course, the notations

F||(E,V,N) = 0, Q||(E,V,N) = 0.

have the same meaning for springing and for heating.
Then it is evident what G||(E,V,N) ≥ 0 means. Lastly, G||(E,V,N) 6= 0 de-

notes that transferring is possible in the state (E, V,N). This means that to
every (mathematical) neighbourhood of (E, V,N) there are an (E′, V ′, N ′) in that
neighbourhood and a state (E∗, V∗, N∗) of the other body in such a way that
G(E′, V ′, N ′, E∗, V∗, N∗) 6= 0.

Note that this does not exclude that G(E, V,N,E∗, V∗, N∗) = 0 for the given
(E, V,N) and for some – possibly for all – (E∗, V∗, N∗).

In what follows, for the sake of simplicity, forbidden interactions will be ex-
pressed by G = 0, F = 0, Q = 0 which can be replaced with the above weaker
requirements if necessary.

10.7 Equilibrium properties

Constant processes of body systems (processes not varying in time) are called
standstill. It is evident – with the notations of 9.6 – that Qi + Wi + Li = 0,
Fi = 0 and Gi = 0 for all i in a standstill. If every dynamical quantity is zero, not
only their sums, i.e. Qik = 0, Wik = 0, Lik = 0, Fik = 0 and Gik = 0 for all i and
k, then the standstill is an equilibrium; a non-equilibrium standstill is called a
stationary state.

It was pointed out in the Preface that the zeroth law is not valid in general.
This does not mean, however, that it must be discarded; we have also seen that in
reality homogeneous processes do not exist, nevertheless we retained the notion of
homogeneous processes as a suitable approximation for certain phenomena.

We accept the zeroth law as a restriction instead of a general truth:
we shall deal only with phenomena in which “the equal values of the
corresponding intensive quantities of the possible interactions are the
necessary and sufficient condition for equilibrium".
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The exact meaning of the phrase between quotation marks is expressed by the
equilibrium properties of the dynamical quantitities which will be precisely for-
mulated in Section 14.1; some of them is illustrated below where T := T(E, V,N),
P := P(E, V,N), T∗ := T∗(E∗, V∗, N∗), etc.

1. Let us suppose that converting is forbidden, i.e. G = 0.
1a) If springing is also forbidden, F = 0 (and, of course, Q 6= 0 in order to

have a nontrivial case), then there is no indirect heating, so we can suppose that
Q(E, V,N,E∗, V∗, N∗) = 0 if and only if T = T∗.

1b) If heating is also forbidden, Q = 0 (and, of course, F 6= 0), then purely
mechanical interaction occurs, so we can suppose that F(E, V,N,E∗, V∗, N∗) = 0
if and only if P = P∗.

1c) If neither heating nor springing is forbidden, then it seems right to accept
the sufficient condition: if T = T∗ and P = P∗, then Q(E, V,N,E∗, V∗, N∗) =
0 and F(E, V,N,E∗, V∗, N∗) = 0. A necessary condition can be the following:
mechanics suggests that equilibrium cannot exist if the pressures differ (regardless
of temperature), so we accept that F(E, V,N,E∗, V∗, N∗) = 0 implies P = P∗.
Now indirect heating is not excluded but it disappears when volume does not
change; in turn, direct heating disappears only when the temperatures are equal.
Thus we accept that if Q(E, V,N,E∗, V∗, N∗) = 0 and P = P∗, then T = T∗.

2. If converting is not forbidden, i.e. G 6= 0, then it seems right to accept that
for zero values of G, heating and springing satisfy the same relations as above.

A further fundamental assumption is that if particle transport is not influenced
by a semipermeable wall (G can have both positive and negative values), then
G(E, V,N,E∗, V∗, N∗) = 0 implies that µ = µ∗.

If there is a semipermeable wall between the bodies, e.g. G ≤ 0 then
G(E, V,N,E∗, V∗, N∗) = 0 implies that µ ≥ µ∗.

Finally, we mention the equilibrium properties of the lost coefficients (‘small
near equilibrium’): if P = P∗, then π(E, V, V,E∗, V∗, N∗) = 0 and if µ = µ∗, then
ξ(E, V, V,E∗, V∗, N∗) = 0.

10.8 The dissipation inequality

A fundamental experimental fact is that the processes in Nature are irreversible.
Another fact is, however, that at present there is no exact general definition of
irreversibility in physics. One tries to express irreversibility by the second law in
thermodynamics but we have seen in the Introduction that the usual formulations
are not precise and their meaning is doubtful.

We can summarize our everyday experience about irreversibility by saying that
the ‘direction of processes is not arbitrary’: ‘heat flows a hotter place to a colder
one’, ‘matter flows from a place with higher pressure to a place with lower pressure’.
All these are strongly related to the fact that energy dissipates in processes, i.e. in
every process a positive amount of internal energy is produced from other forms of
energy; as a consequence, internal energy cannot be transformed completely into
other (mechanical, electric, etc.) energy.

Processes are determined by the dynamical equation. Some properties of the
dynamical quantitities must reflect that “the direction of processes is not arbi-
trary". In continuum theory energy dissipation is expressed by the Clausius–
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Duhem inequality (see Paragraph 7 of Introduction) whose counterpart is looked
for ordinary thermodynamics. The difference here corresponds to the gradient
there, thus the term regarding heat conduction suggests us to accept − Q

T (T −T∗);

accordingly, the term regarding working is accepted to be − W
P (P−P∗), and a simi-

lar formula is used for transferring, too: the dissipation inequality of dynamical
quantitities is suggested to be

− Q

T
(T − T∗) + F (P − P∗) −G(µ− µ∗) ≥

(π + π∗)F 2 + (ξ + ξ∗)G2 ≥ 0 (*)

supplemented by the requirement that equality holds if and only if Q = 0, F = 0
and G = 0 (implying W = 0 and L = 0, too).

The content of this inequality is evident. If we consider the special case when
all the three terms are positive, then

– if T > T∗, then Q < 0: heat flows from a hotter body to colder one;
– if P > P∗ and P > 0, then W < 0: a body with higher pressure works on

the body with lower pressure, i.e. the body with higher pressure expands;
– if µ > µ∗ and µ > 0, then L < 0: particles transfer energy from a body with

higher chemical potential to a body with lower chemical potential.
We emphasize, however, that only the sum of the three terms must be positive,

the terms separately need not be positive, in general.
A = Q+W + L yields

Q = A+ PF − µG− πF 2 − ξG2

which allows us to transform the dissipation inequalityinto

A

(

1

T
− 1

T∗

)

+ F

(

P

T
− P∗
T∗

)

+G

(

−µ

T
+
µ∗
T∗

)

≥
(

π

T
+
π∗
T∗

)

F 2 +

(

ξ

T
+
ξ∗
T∗

)

≥ 0, (**)

This form of the dissipation inequality plays a fundamental role for entropic bodies.

10.9 Other two inequalities

We have from the previous equality that

Q ≤ A+ PF − µG;

if F and G are not zero, equality holds only when the lost coefficients are zero, in
other words, in the ideal case.

The same equality gives

Q

T
=
A+ PF − µG− πF 2 − ξG2

T

and
Q∗
T∗

=
A∗ + P∗F∗ − µ∗G∗ − π∗F 2

∗ − ξ∗G2
∗

T
.
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Summing up these equalities, using the mutuality properties and the dissipation
inequality, we get

Q

T
+
Q∗
T∗

≥ 0. (+)

Now let us suppose that the bodies in question are entropic (see Paragraph 9.4),
and let us consider a process; then A = Ė, F = V̇ and G = Ṅ . Consequently, the
first inequality results in

Q ≤ T Ṡ,

and the other inequalities give

(S + S∗)̇ ≥ 0. (++)

10.10 A few words about the second law

Let us recall Carnot’s formulation of the second law (see the Preface):
1. Every thermodynamical system has a state function (called entropy) S in

such a way that δQ ≤ TdS for the heat absorbed in any infinitesimal quasi-static
process and equality holds only for reversible processes.

2. The entropy of a closed system can never decrease; it increases in an irre-
versible process and remains constant in a reversible one.

Now we can see the precise meaning of these assertions.
The first assertion corresponds to inequality (+) which folows only from the

non-negativity of the lost coefficients.
The second assertion corresponds to inequality (++) which follows from the

dissipation inequality.
As cited in the Preface, several authors says that the second law is the en-

tropy increase in non-equiligrium processes. This icrease is the consequence of the
dissipation inequality.

Others says the second law is that the entropy of a closed system is maximal in
equlibrium. Later we shall see that this is the consequence of the intrinsic stability
conditions.

Moreover it is often asserted that the second law implies the trend to equilib-
rium. Later we shall see that the trend to equilibrium i.e. asymptotic stability of
equilibrium is a consequence of

– both the intrinsic stability conditions
– and the dissipation inequality.
We apply these precisely defined notions and do not formulate a second law.

11 Thermodynamical forces

11.1 Introductory remarks

Internal energy, volume and particle number are called extensive quantities,
temperature, pressure and chemical potential are called intensive quantities.
The extensive quantities are characterized by the following property: if a body is
cut in two halves, then the energy, etc. of each half becomes the half of the original
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energy, etc. (this allows us to use specific quantities). The intensive quantities are
characterized by the following property: if a body is cut in two halves, then the
temperature, etc. of each half remains the original temperature.

The dynamical equation describes the change of extensive quantities, the dy-
namical quantitities are considered as given functions of the extensive quantities
but their equilibrium property is formulated by the intensive quantities (see 10.7).

11.2 The notion of thermodynamical forces

We said that if particle interchange is forbidden (the converting is the zero func-
tion) then T − T∗ = 0 and P − P∗ = 0 imply that Q = 0; if particle interchange
is not forbidden, then µ− µ∗ = 0 is a third sufficient condition for the zero value
of heating. Similar can be said about springing and converting: if the difference
of the corresponding intensive quantities of the bodies take zero value, then the
dynamical quantitities do the same.

The collection of the difference of the corresponding intensive quantities of two
bodies is called the thermodynamical force between the bodies. More closely,

(

−(T − T∗), P − P∗,−(µ− µ∗)
)

is the thermodynamical force acting on the chosen body from the side of the other
body (denoted by ∗).

Because the dynamical equation concerns the extensive quantities, investiga-
tions in most cases are simpler if we use the canonical variables. Then the ‘every-
day’ intensive quantities T , P and µ are replaced with the canonical intensive
quantities 1

T , P
T and − µ

T which are the partial derivatives of the total entropy
for an entropic body:

∂S

∂E
=

1

T
,

∂S

∂V
=

P

T
,

∂S

∂N
= − µ

T
.

Correspondingly, a pairing is made among the extensive and intensive quantities:
1
T is coupled to E, P

T to V and − µ
T to N .

Of course, the intensive quantities and the canonical intensive quantities de-
termine each other uniquely.

The collection of the difference of the corresponding canonical intensive quan-
tities of two bodies is called the canonical thermodynamical force. More
closely,

(

1

T
− 1

T∗
,
P

T
− P∗
T∗
,−
(

µ

T
− µ∗
T∗

))

is the canonical thermodynamical force acting on the chosen body from the side
of the other body (denoted by ∗).

The thermodynamical force and the canonical thermodynamical force deter-
mine each other uniquely by the following formulae:

−(T − T∗) = TT∗

(

1

T
− 1

T∗

)

,
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P − P∗ = − PT∗

(

1

T
− 1

T∗

)

+ T∗

(

P

T
− P∗
T∗

)

=

= − P∗T

(

1

T
− 1

T∗

)

+ T

(

P

T
− P∗
T∗

)

,

and the same relation holds for µ− µ∗, too.

It is suitable to write the above formulae in a matrix form:





−(T − T∗)
P − P∗

−(µ− µ∗)



 = T∗





T 0 0
−P 1 0
µ 0 1













1
T − 1

T∗

P
T − P∗

T∗

−
(

µ
T − µ∗

T∗

)









=

= T





T∗ 0 0
−P∗ 1 0
µ∗ 0 1













1
T − 1

T∗

P
T − P∗

T∗

−
(

µ
T − µ∗

T∗

)









,







1
T − 1

T∗

P
T − P∗

T∗

−
(

µ
T − µ∗

T∗

)






=

1

TT∗





1 0 0
P T 0

−µ 0 T









−(T − T∗)
P − P∗

−(µ− µ∗)



 =

=
1

TT∗





1 0 0
P∗ T∗ 0

−µ∗ 0 TT∗









−(T − T∗)
P − P∗

−(µ− µ∗)



 .

Lastly, we mention that, according to our earlier convention, we omit the at-
tribute canonical if there is no risk of confusion.

11.3 Pseudolinear dynamical quantitities

We say that the dynamical quantitities are pseudolinear functions of the ther-
modynamical force or briefly pseudolinear if they can be represented as linear
combinations of the components of the thermodynamical force or the canonical
thermodynamical force in which the coefficients are functions of the states, i.e.

Q = −λQ(T − T∗) + βQ(P − P∗) − ϑQ(µ− µ∗) =

= λc
Q

(

1

T
− 1

T∗

)

+ βc
Q

(

P

T
− P∗
T∗

)

− ϑc
Q

(

µ

T
− µ∗
T∗

)

,

F = −λF (T − T∗) + βF (P − P∗) − ϑF (µ− µ∗) =

= λc
F

(

1

T
− 1

T∗

)

+ βc
F

(

P

T
− P∗
T∗

)

− ϑc
F

(

µ

T
− µ∗
T∗

)

,
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G = −λG(T − T∗) + βG(P − P∗) − ϑG(µ− µ∗) =

= λc
G

(

1

T
− 1

T∗

)

+ βc
G

(

P

T
− P∗
T∗

)

− ϑc
G

(

µ

T
− µ∗
T∗

)

,

where the coefficients λQ, λc
Q, etc. are continuous functions of

(E, V,N,E∗, V∗, N∗).
It is evident that pseudolinear dynamical quantitities take zero value for the

zero value of the thermodynamical force.
According to our experience, the main driving force of material, mechanical

and thermal interaction is the difference of chemical potentials, the difference
of pressures and the difference of temperatures, respectively. The terms in the
pseudolinear form of dynamical quantitities which are not proportional to the
corresponding main driving force are consequences of cross effects. Indirect
heating is such a cross effect.

The above formulae can be written in a matrix form:





Q
F
G



 =





λQ βQ ϑQ

λF βF ϑF

λG βG ϑG









−(T − T∗)
P − P∗

−(µ− µ∗)



 =





λc
Q βc

Q ϑc
Q

λc
F βc

F ϑc
F

λc
G βc

G ϑc
G











1
T − 1

T∗

P
T − P∗

T∗

−
(

µ
T − µ∗

T∗

)






.

The matrices above are called the (canonical) dynamical matrices for which
we deduce





λc
Q βc

Q ϑc
Q

λc
F βc

F ϑc
F

λc
G βc

G ϑc
G



 =





λQ βQ ϑQ

λF βF ϑF

λG βG ϑG









T 0 0
−P 1 0
µ 0 1



T∗ =

=





λQ βQ ϑQ

λF βF ϑF

λG βG ϑG









T∗ 0 0
−P∗ 1 0
µ∗ 0 1



T,





λQ βQ ϑQ

λF βF ϑF

λG βG ϑG



 =





λc
Q βc

Q ϑc
Q

λc
F βc

F ϑc
F

λc
G βc

G ϑc
G









1 0 0
P T 0

−µ 0 T





1

TT∗
=

=





λc
Q βc

Q ϑc
Q

λc
F βc

F ϑc
F

λc
G βc

G ϑc
G









1 0 0
P∗ T∗ 0

−µ∗ 0 T∗





1

TT∗
.

11.4 The pair conductance matrices

We have already introduced the quantity A := Q + W + L which appears in the
dynamical equation and in the dissipation inequality. Then





A
F
G



 =





λc
A) βc

A ϑc
A

λc
F βc

F ϑc
F

λc
G βc

G ϑc
G











1
T − 1

T∗

P
T − P∗

T∗

−
(

µ
T − µ∗

T∗

)






.
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Definition The matrix above is called the canonical pair conductance matrix,
respectively.

The world pair refers to the interaction of two bodies. Later we introduce the
conductance matrix for a system consisting of more bodies.

It is not hard to show that the dynamical matrices and the pair conductance
matrix determine determine each other uniquely.

11.5 Mechanically strong springing

Our experience indicates that a higher pressure overcomes a lower one for arbitrary
(possibly non-equal) temperatures of the bodies, the body with higher pressure
expands at the cost of the body with lower pressure.

We say that in the case of zero converting springing is mechanically strong,
if P(E, V,N) > P∗(E∗, V∗, N∗), and P(E, V,N) < P∗(E∗, V∗, N∗) imply that
F(E, V,N,E∗, V∗, N∗) > 0, and F(E, V,N,E∗, V∗, N∗) < 0, respectively. Then
P(E, V,N) = P∗(E∗, V∗, N∗) implies that F(E, V,N,E∗, V∗, N∗) = 0. According
to 1c) in 10.7, for mechanically strong springing F(E, V,N,E∗, V∗, N∗) = 0 if and
only if P(E, V,N) = P∗(E∗, V∗, N∗).

This is expressed in the pseudolinear case that λF = 0 (though it may be
otherwise because of the non-uniqueness); thus if converting is zero and springing
is mechanically strong, then

(

Q
F

)

=

(

λQ βQ

0 βF

)(

−(T − T∗)
P − P∗

)

.

11.6 The dissipation inequality in the pseudolinear case

If the dynamical quantitities have the form given in 11.3 and working and trans-
ferring are ideal, then the dissipation inequality reads

(

−(T − T∗) P − P∗ −(µ− µ∗)
)





λQ

T
βQ

T
ϑQ

T
λF βF ϑF

λG βG ϑG









−(T − T∗)
P − P∗

−(µ− µ∗)



 ≥ 0,

or

(

1
T − 1

T∗

P
T − P∗

T∗
−
(

µ
T − µ∗

T∗

))





λ̂c
A β̂c

A ϑ̂c
A

λc
F βc

F ϑc
F

λc
G βc

G ϑc
G











1
T − 1

T∗

P
T − P∗

T∗

−
(

µ
T − µ∗

T∗

)






≥ 0,

where

λ̂c
A := λc

Q − Pλc
F + µλc

G, β̂c
A := βc

Q − Pβc
F + µβc

G, ϑ̂c
A := ϑc

Q − Pϑc
F + µϑc

G.

This tempts us to believe that the conductance matrix is positive semidefinite
which is not necessarily true because the matrix and the vectors are functions.
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11.7 Symmetry properties
of the canonical conductance matrix

Conductance matrices are used in continuum physics, and in Onsager’s theory,
too. According to Onsager, the conductance matrix – at least in equilibrium – is
symmetric. We should point out that such a statement can be right only for the
canonical conductance matrix, the symmetry of the conductance matrix makes
no sense. Namely, the symmetry of the conductance matrix would require that
βQ + (λ) be equal to λF which is impossible because these coefficients have the
physical dimension J/sPa and m3/Ks, respectively.

According to our habit, instead of requiring that the canonical pair conductance
matrix be symmetric, we define symmetricity as a special property. Remember
that the canonical conductance matrix is a matrix-valued function.

Definition The canonical pair conductance matrix given in 11.4 is
(i) strongly Onsagerian if it is constant and symmetric,
(ii) Onsagerian if it is symmetric (i.e. its every value is symmetric),
(iii) weakly Onsagerian if the zero value of the canonical thermodynamical

force implies that its corresponding value is symmetric.

Thus the conductance matrix in 11.4 is weakly Onsagerian if T(E, V,N) =
T∗(E∗, V∗, N∗), P(E, V,N) = P∗(E∗, V∗, N∗) and µ(E, V,N) = µ∗(E∗, V∗, N∗)
imply that λc

F (E, V,N,E∗, V∗, N∗) = (βc
Q + (β))(E, V,N,E∗, V∗, N∗), etc.

11.8 Concluding remarks

The simple relation between the thermodynamical force and the canonical ther-
modynamical force can evoke the feeling that they are equivalent, i.e. it does not
matter which of them is used. This is not so. Usually one characterizes equilibri-
um by the zero value of the thermodynamical force. If there is no constraint, this
is right for both forces, because e.g.

T − T∗ = 0, P − P∗ = 0

if and only if
1

T
− 1

T∗
= 0,

P

T
− T∗
P∗

= 0.

However, if the temperature difference is not a driving force (when the bodies
are heat insulated), then T−T∗ = 0 is not necessary for equilibrium, and P−P∗ = 0
is not equivalent to P/T − P∗/T∗ = 0. P − P∗, whose zero value is necessary for
equilibrium, is a combination of two components of the canonical thermodynamical
force.

This will be clearly explained in Paragraph 15.3.2 by the precise definition of
constraints.

11.9 Exercises

1. Suppose that the heating has the form
(i) (aP 2T∗ − bP∗T 2),
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(ii) (bPT 2
∗ − aP 2

∗ T ),
where a and b are functions depending only on the particle number N .

Give the coefficients λ, λc etc. according to 11.3.
2. Let us call two (canonical) dynamical matrices equivalent if they result in

the same dynamical quantitities. Show that this is really an equivalence relation.





III SIMPLE SYSTEMS WITHOUT

PARTICLE CHANGE

We treat special systems in this chapter. The dynamical quantitities, their fun-
damental properties and the dynamical equation will be formulated according to
Chapter II.

The existence and stability of equilibria will be the main questions in each sys-
tem. Trend to equilibrium is expressed mathematically by the asymptotic stability
of a locally unique equilibrium and by the strict asymptotic stability of the set of
other equilibria for which the knowledge summarized in App. 7 is indispensable.

The study of these special systems helps the reader master the principles and
methods of the dynamical description of systems, understand the importance of the
properties of the dynamical quantitities, to be prepared for the general treatment
in the next chapter.

12 One body in a given environment

12.1 Introductory remarks

We investigate a system consisting of a body and an environment, supposing that
there is no particle source in the body, the body and the environment cannot
interchange particles (converting is zero), thus the particle number of the body is
constant.

Because the particle number of the body is constant (particle number is not an
explicit variable), we can use the specific extensive quantities for describing a state
of the body. Accordingly, the specific dynamical quantitities enter the dynamical
equation.

12.2 General formulae

12.2.1 General framework of the description

Based on Chapter II, the description of a system now will be the following:
1. There are a body of material (D,T,P,µ,R) and an environment of material

(Da,Ta,Pa,µa,Ra).
2. There are the specific heating q, the specific springing f , the lost coefficient

π, defined on the set D×Da; furthermore, w := −(P+π)f is the specific working.
These dynamical quantitities satisfy
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– the equilibrium properties:
0) π(e, v, ea, va) = 0 if P(e, v) = Pa(ea, va),
1)(a) if f = 0, q 6= 0, then q(e, v, ea, va) = 0 if and only if T(e, v) = Ta(ea, va),
1)(b) if q = 0, f 6= 0, then f(e, v, ea, va) = 0 if and only if P(e, v) = Pa(ea, va),
1)(c) if f 6= 0 and q 6= 0, then
∗ if f(e, v, ea, va) = 0, then P(e, v) = Pa(ea, va),
∗ if q(e, v, ea, va) = 0 and P(e, v) = Pa(ea, va), then T(e, v) = Ta(ea, va),

∗ ∗ if T(e, v) = Ta(ea, va) and P(e, v) = Pa(ea, va), then q(e, v, ea, va) = 0 and
f(e, v, ea, va) = 0,

– the dissipation inequality:

− q

T
(T − Ta) − w

P
(P − Pa) ≥ 0,

where equality holds if and only if q(e, v, ea, va) = and f(e, v, ea, va) = 0. If
working is ideal, then

(q − Pf)

(

1

T
− 1

Ta

)

+ f

(

P

T
− Pa

Ta

)

≥ 0.

3. There is a given process t 7→ (ea(t), va(t)) ∈ Da of the environment which is
a continuous function defined on a time interval.

4. There is the given specific heat source t 7→ qs(t) which is a continuous
function defined on a time interval.

5. The process t 7→
(

e(t), v(t)
)

of the body is determined by the dynamical
equation

ė = qs + q(e, v, ea, va) + w(e, v, ea, va),

v̇ = f(e, v, ea, va).

Remark The symbol ∗ in item 3 refers to a property saying how the equal val-
ues of intensive quantities follow from the zero value of the dynamical quantitities;
the symbol ∗ ∗ refers to the joint inversion of the former relations: how the equal
values of intensive quantities imply the zero value of the dynamical quantitities.

12.2.2 Other variables

The body and the environment do not interchange particles, thus the material of
the environment is not important from the point of view of processes. In practice
environmentcan be well characterized by its temperature and pressure, therefore
in the sequel the variables (ea, va) will be replaced with (Ta, Pa) (but the same
letter will stand for the dynamical quantitities, so we write, e.g. q(e, v, Ta, Pa)
and the process of the environment is considered in the form t 7→

(

Ta(t), Pa(t)
)

.
Sometimes it will be convenient to use the variables (v, T ) instead of (e, v).

Then with the notations

q(v, T, Ta, Pa) := q(e(v, T ), v, Ta, Pa),

f(v, T, Ta, Pa) := f(e(v, T ), v, Ta, Pa),
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and

cv(v, T ) :=
∂e(v, T )

∂T
,

n(v, T, Ta, Pa) :=
∂e(v, T )

∂v
+ P(v, T ) + π(e(v, T ), v, Ta, Pa)

the dynamical equation becomes

cv(v, T )Ṫ = qs + q(v, T, Ta, Pa) − n(v, T, Ta, Pa)f(v, T, Ta, Pa),

v̇ = f(v, T, Ta, Pa).

We mention that the symbol f has been previously used for the specific free
energy in the variables (v, T ); unfortunately, there are more quantities than let-
ters, so we are forced sometimes to apply the same symbol for different objects.
Now this will not cause confusion because we shall not involve free energy in the
investigations.

12.2.3 Equilibrium

According to 10.7, a standstill is a time-independent process (a constant solution of
the dynamical equation). There is no standstill if the heat source and the process
of the environment are not constant. In the sequel (except Paragraph 12.8 and
the exercises) we take a zero heat source and a constant environment process:

qs = 0, Ta = const., Pa = const.

Then every standstill is evidently an equilibrium (when every dynamical quan-
tity takes zero value). The state (eo, vo) is an equilibrium if and only if

q(eo, vo, Ta, Pa) = 0, f(eo, vo, Ta, Pa) = 0,

or, equivalently, the state (vo, To) is an equilibrium if and only if

q(vo, To, Ta, Pa) = 0, f(vo, To, Ta, Pa) = 0.

12.2.4 Entropic body

If the body is entropic, the function (written in the usual symbolic form)

L := s− e+ Pav

Ta
(∗)

will play an important role; this function, up to an additive and multiplicative
constant, is the total specific entropy of the body and the environment-
together.

The specific entropy of the environment is

sa =
ea + Pava − µa

Ta
.
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The body and the environment constitute a closed system, i.e. their total energy
and total volume are constant. If N and Na are the particle numbers of the body
and the environment, respectively, then

Ne+Naea =: Es = const., Nv +Nava =: Vs = const..

Then the entropy of the environment is

Nasa = −N e+ Pav

Ta
+
Es + PaVs −Naµa

Ta
.

Temperature, pressure, chemical potential are constant in the given process of the
environment (and, of course, the particle number of the environment is constant,
too), so so the sum of the entropies Ns + Nasa is a multiple of the function (∗)
plus a constant.

The symbolic function (∗) will be actually given both in the variables (e, v)
and in the variables (v, T ):

(e, v) 7→ L(e, v) := s(e, v) − e+ Pav

Ta
,

and

(v, T ) 7→ L(v, T ) := s(v, T ) − e(v, T ) + Pav

Ta
.

These functions are continuously differentiable on the regular domain R and
R, respectively, and if the body is entropic, then

∂L

∂e
=

1

T
− 1

Ta
,

∂L

∂v
=

P

T
− Pa

Ta
,

∂L
∂v

=

(

1

T
− 1

Ta

)

∂e

∂v
+

P
T

− Pa

Ta
,

∂L
∂T

=

(

1

T
− 1

Ta

)

∂e

∂T
.

12.3 Processes without constraint

12.3.1 Properties of the dynamical quantitities

The body and the environmentare coupled both mechanically and thermally, q 6= 0
and f 6= 0, thus the equilibrium properties are the following:

– P(v, T ) = Pa implies π(v, T, Ta, Pa) = 0,

∗ f(v, T, Ta, Pa) = 0 implies P(v, T ) = Pa,

∗ q(v, T, Ta, Pa) = 0 and P(v, T ) = Pa imply T = Ta,

∗ ∗ T=Ta, and P(v, T )=Pa imply q(v, T, Ta, Pa)=0 and f(v, T, Ta, Pa)=0.

As a consequence, equality holds in the dissipation inequality if and only if
T = Ta and P(v, T ) = Pa.
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12.3.2 Uniqueness of equilibrium

The equilibrium properties imply that (vo, To) in the constitutive domain is an
equilibrium if and only if

To = Ta, P(vo, Ta) = Pa.

Evidently, equilibrium can exist only if Ta and Pa are possible temperature
and pressure of the body. The equilibrium, in general, is not unique: the same
pressure value can correspond to different values of specific volume (e.g. in the
case of a van der Waals material the same temperature and pressure value can
correspond to a pure liquid state and to a pure gas state, too).

Because v 7→ P(v, Ta) is injective on a phase, we have:

Proposition The equilibrium (if exists) is unique in every phase.

12.3.3 Stability of equilibrium

Let us suppose that the dynamical quantitities are pseudolinear (and let us apply
now the notations of 11.3 for the specific quantities):

q = −λq(T − Ta) + βq(P − Pa),

f = −λf (T − Ta) + βf (P − Pa),

where (v, T, Ta, Pa) 7→ λq(v, T, Ta, Pa), etc. are continuous functions.
Then the dynamical equation in 12.2.2 becomes

(

c(v, T )vṪ
v̇

)

=

(

−λq+nλf βq−nβf

−λf βf

)(

T − Ta

P(v, T ) − Pa

)

,

where, of course, λq = λq(v, T, Ta, Pa) etc. and n = n(v, T, Ta, Pa).
It seems reasonable to assume that the cross effects are negligible near to equi-

librium, i.e. heating is not affected significantly by the pressure difference and
springing is not affected significantly by the temperature difference near equilibri-
um (the latter is trivially true for mechanically strong springing).

Proposition If

βq(vo, Ta, Ta, Pa) = 0, λf (vo, Ta, Ta, Pa) = 0,

λa := λq(vo, Ta, Ta, Pa) > 0, βa := βf (vo, Ta, Ta, Pa) > 0,

and the body is of normal dilation (see 3.9), then the equilibrium (vo, Ta) ∈ R is
asymptotically stable.

Proof Let us divide the first equation by cv. The right-hand side of the dynamical
equation is a differentiable function of the variables (v, T ) at the equilibrium (λq

etc. are continuous, (v, T ) 7→ T − Ta and (v, T ) 7→ P(v, T ) − Pa are differentiable
and have zero value at the equilibrium). Putting

ca := cv(vo, Ta),
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νa := Pa +
∂e

∂v
(vo, Ta), ξa :=

∂P
∂T

(vo, Ta), ρa := −∂P
∂v

(vo, Ta)

and taking into account our assumptions and π(vo, Ta) = 0, we get the derivative
in the equilibrium of the right-hand side of the dynamical equation:





− λa+νaβaξa

ca

νaβaρa

ca

βaξa −βaρa



 .

This matrix has the characteristic polynomial

x 7→ x2 +

(

βaρa +
λa + νaξaβa

ca

)

x+ βaρa
λa

ca
;

our conditions imply that all the coefficients are positive, thus the eigenvalues of
the matrix have a negative real part.

According to the linearization method of the stability theory, the equilibrium
is asymptotically stable.

12.3.4 Stability of equilibrium of an entropic body

Our previous result requires, among others, the normal dilation property which is
satisfied if the body is entropic. Note that according to our convention in 10.5, we
can take ideal working.

Proposition If the body is entropic and working is ideal, then every equilibrium
in the regular domain is asymptotically stable.

Proof Now we use the canonical variables. Let (eo, vo) ∈ R be an equilibrium
which is equivalent to

T(eo, vo) = Ta, P(eo, vo) = Pa.

The first derivative of the function L given in Paragraph 12.2.4 is zero in equi-
librium, its second derivative equals the second derivative of the specific entropy
which is negative definite (see 5.3); as a consequence, L has a strict local maximum
at (eo, vo).

The derivative of L along the dynamical equation, the function

•
L(e, v) :=

(

1

T(e, v)
− 1

Ta

)

(

q(e, v, Ta, Pa) − P(e, v)f(e, v, Ta, Pa)
)

+

+

(

P(e, v)

T(e, v)
− Pa

Ta

)

f(e, v, Ta, Pa)

takes zero value only in equilibrium and everywhere else it is positive (because

of the dissipation inequality); in other words,
•
L has a strict local minimum at

(eo, vo).
Therefore, L is a Liapunov function for asymptotic stability of equilibria.
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12.4 Isochoric processes

12.4.1 Properties of the dynamical quantitities

We examine a system in which the volume of the body is constant, i.e. the body
and the environment are coupled only thermally. Then f = 0 and π does not
matter. The equilibrium property of heating reads (see 12.2.1):

∗ q(v, T, Ta, Pa) = 0 if and only if T = Ta.

The dissipation inequality is

−q(T − Ta) ≥ 0 or q

(

1

T
− 1

Ta

)

≥ 0

where equality holds if and only if T = Ta.

12.4.2 Uniqueness of equilibrium

For all vo ∈ (m3)+

U(vo) := {(vo, T ) ∈ D | T ∈ (K)+}
is an invariant set of the dynamical equation

cv(v, T )Ṫ = q(v, T, Ta, Pa), v̇ = 0.

U(vo) is the isochoric curve in the v−T plane (a ‘vertical line’ in the constitutive
domain). Its part in the regular domain is a one-dimensional submanifold,

With a given a vo, (vo, To) is an equilibrium if and only if

To = Ta;

the set of equilibrium is the part of the isotherm corresponding to Ta (a ‘horizontal
line’ in the constitutive domain). Then it is trivially true:

Proposition Equilibrium on every isochoric curve (if exists) is unique.

12.4.3 Stability of equilibrium

Proposition For all vo the equilibrium (vo, Ta) ∈ U(vo) ∩ R is asymptotically
stable in U(vo).

Proof Let us parameterize the invariant submanifold near the equilibrium by
temperature. Then the reduced dynamical equation becomes:

cv(vo, T )Ṫ = q(vo, T, Ta, Pa).

The function T 7→ Λ(T ) := −(T − Ta)2 is continuously differentiable and has
a strict maximum at Ta.

The derivative of Λ along the reduced dynamical equation, the function

T 7→
•
Λ(T ) = −2(T − Ta)

q(vo, T, Ta, Pa)

cv(vo, T )
;

has a strict local minimum at Ta by the uniqueness of the equilibrium, the dissi-
pation inequality and the positivity of specific heat.
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12.4.4 Stability of equilibrium of an entropic body

Though the previous result is most general, it is worth considering an entropic
body.

Let us use the canonical variables; then parameterizing U(vo) by internal en-
ergy, we find the reduced dynamical equation

ė = q(e, vo, Ta, Pa).

The equilibrium eo is determined by T(eo, vo) = Ta. We can easily show that

e 7→ Λ(e) := L(e, vo) = s(e, vo) − e+ Pavo

Ta

is a Liapunov function for asymptotic stability of equilibrium.
Indeed, it is continuously differentiable in a neighbourhood of equilibrium and

Λ′(e) =
1

T(e, vo)
− 1

Ta
.

Thus the first derivative of Λ at eo is zero, its second derivative

Λ′′(e) = − 1

T(e, vo)2

∂T(e, vo)

∂e
< 0,

consequently Λ has a strict local maximum at eo.
The derivative of Λ along the reduced dynamical equation, the function

e 7→
•
Λ(e) :=

(

1

T(e, vo)
− 1

Ta

)

q(e, vo, Ta, Pa)

takes zero value only in equilibrium, everywhere else it is positive according to the
dissipation property, in other words, it has a strict minimum at eo.

12.5 Adiabatic processes

12.5.1 Properties of the dynamical quantitities

Let us suppose that the body is heat insulated from the environment, i.e. the
body and the environment are coupled only mechanically: q = 0. Let us recall
(see Paragraph 10.5) that in this case we can suppose ideal working only if it
does not lead to a contradiction. Now we take non-ideal working though it is not
necessary.

The equilibrium properties of the dynamical quantitities (see 12.2.1) are the
following:

– π(v, T, Ta, Pa) = 0 if P(v, T ) = Pa,
∗ f(v, T, Ta, Pa) = 0 if and only if P(v, T ) = Pa,
The dissipation inequality is

−w

P
(P − Pa) ≥ 0,
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where equality holds if and only if P = Pa. Let us note that − w
P =

(

1 + π
P

)

f and
π has zero value if P = Pa; thus

f(v, T, Ta, Pa)(P(v, T ) − Pa) ≥ 0 (∗)

in a neighbourhood of the isobaric curve corresponding to Pa and equality holds
if and only if (v, T ) is on that curve, i.e. P(v, T ) = Pa.

12.5.2 Uniqueness of equilibrium

The dynamical equation in the variables (v, T ) now has the form

cv(v, T )Ṫ = −n(v, T, Pa)v̇, v̇ = f(v, T, Pa). (∗)

Because of the special form of the dynamical equation, the volume and the
temperature do not change independently. Namely, the range of a process is a
generalized adiabat, the graph of a solution of the differential equation

dτ

dv
= −n(v, τ, Pa)

cv(v, τ)

(we say generalized adiabat because adiabat means the corresponding curve in the
case of ideal working (see Section 3)).

In other words, generalized adiabats are invariant sets of the dynamical equa-
tion (∗).

(vo, To) is an equilibrium if and only if

P(vo, To) = Pa;

in other words, the set of equilibria is the isobaric curve L corresponding to Pa.
Thusn equilibria on a generalized adiabat C are the intersection points of C

and the isobaric curve L.
If (vo, To) ∈ C ∩ L is in the regular domain, then both C and L are one-

dimensional submanifolds in a neighbourhood of (vo, To); their tangent vectors at
(vo, To) are

(

−∂P
∂v

,
∂P
∂T

) ∣

∣

∣

∣

(vo,To)

, and (cv(vo, To),−n(vo, To, Pa)),

respectively. π takes zero value in equilibrium, thus

n(vo, To, Pa) = Pa +
∂e

∂v
(vo, To).

It is a simple fact that if the body is of normal dilation (see 3.9), then the two
tangent vectors are not parallel, thus C and L have no other intersection point in
a neighbourhood of (vo, To); as a consequence, we have:

Proposition If the body is of normal dilation, then the equilibrium in every gen-
eralized adiabat (if exists) is locally unique in the regular domain.
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12.5.3 Stability of equilibrium

Proposition Let C be a generalized adiabat. If the normal dilation property is
satisfied, then every equilibrium (vo, To) ∈ C ∩R is asymptotically stable in C.

Proof The submanifold C is parameterized by the function v 7→
(

v, τ(v)
)

. Then
the reduced dynamical equation becomes

v̇ = f(v, τ(v), Ta, Pa).

The conditions of intrinsic stability and the normal dilation property imply
that

d

dv
P(v, τ(v))

∣

∣

∣

∣

v=vo

=

(

∂P
∂v

− ∂P
∂T

P + ∂e
∂v

cv

)

(vo, To) < 0,

thus, the derivative of the function v 7→ P(v, τ(v)) (which is continuous) is negative
in a neighbourhood of vo.

The function

v 7→ Λ(v) := −
(

P(v, τ(v)) − Pa

)2

is continuously differentiable in a neighbourhood of vo and has a strict local max-
imum at vo (because of the local uniqueness of equilibrium in C).

The derivative of Λ along the reduced dynamical equation, the function

v 7→
•
Λ(v) = −2(P(v, τ(v)) − Pa)

(

d

dv
P(v, τ(v))

)

f(v, τ(v), Ta, Pa)

has a strict local minimum in vo because of d
dv P(v, τ(v)) < 0, the local uniqueness

of equilibrium and the dissipation inequality (∗).

12.5.4 Stability of equilibrium of an entropic body

Let us examine adiabatic processes of an entropic body if working is ideal. Then
adiabatic processes are isentropic, and

cv(v, τ(v))
dτ(v)

dv
= −

(

P(v, τ(v)) +
∂e

∂v
(v, τ(v))

)

= −τ(v)
∂P
∂T

(v, τ(v)).

The previous proposition is valid in this case, too, but it is worth noting that
now

v 7→ Λ(v) := L(v, τ(v)) = s(vo, To) − e(v, τ(v)) + Pav

Ta

is another Liapunov function for asymptotic stability. It is defined and continu-
ously differentiable in a neighbourhood of vo and

TaΛ′(v) = −
(

∂e

∂v
(v, τ(v)) +

∂e

∂T
(v, τ(v))

dτ(v)

dv
+ Pa

)

= P(v, τ(v)) − Pa.
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Consequently, the first derivative of Λ at vo is zero; furthermore,

TaΛ′′(v) =
∂P
∂v

(v, τ(v)) − ∂P
∂T

(v, τ(v))
dτ(v)

dv
=

=
∂P
∂v

(v, τ(v)) − τ(v)

cv(v, τ(v))

(

∂P
∂T

(v, τ(v))

)2

< 0,

thus Λ has a strict local maximum at vo.
The derivative of Λ along the reduced dynamical equation, the function

v 7→
•
Λ(v) =

P(v, τ(v)) − Pa

Ta
f(v, τ(v), Ta, Pa)

takes zero value only at vo and is positive in a neighbourhood of vo because of the
dissipation inequality and the local uniqueness of equilibrium; in other words, it
has a strict minimum at vo.

12.6 Isothermal processes

12.6.1 Properties of the dynamical quantitities

Let us examine processes in which the body has constant temperature To. The
previous constraints – constant volume, heat insulation – were described by an
evident manner by the dynamical quantitities. The constraint of constant temper-
ature is reflected in the dynamical quantitities, too, but in a more involved way:
heating and working are not independent. This seems natural: we experience that
a body becomes warmer when being compressed; in order that the body does not
become warmer (isothermal process) in spite of compressing, we must cool it, i.e.
extract heat from it. The faster the compression, the larger the heat extraction
per unit time.

The relation between heating and working can be obtained most easily in the
variables (v, T ); then a process has the form t 7→

(

v(t), To

)

, and the dynamical
equation becomes

0 = q(v, To, , Ta, Pa) − n(v, To, Ta, Pa)f(v, To, Ta, Pa),

v̇ = f(v, To, Ta, Pa).

We see that heating is proportional to springing:

q = n f.

As a consequence, (vo, To) is an equilibrium if and only if f(vo, To, Ta, Pa) = 0;
then q(vo, To, Ta, Pa) = 0, too, so by the equilibrium properties of the dynamical
quantitities (see 12.2.1) we have P(v, T ) = Pa and To = Ta. Thus if To 6= Ta,
then f(v, To, Ta, Pa) 6= 0: there is no equilibrium. This is understandable from a
physical point of view: if, e.g. To > Ta, then the body heats the environment,
and we have to compress the body permanently in order to keep its temperature
constant.
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Thus (vo, Ta) is an equilibrium if and only if P(vo, Ta) = Pa or, equivalently,
∗ f(vo, Ta, Ta, Pa) = 0 if and only if P(vo, Ta) = Pa,
The dissipation inequality gives – as in the previous paragraph – that

f(v, Ta, Ta, Pa)(P(v, Ta) − Pa) ≥ 0

for all (v, Ta) in a neighbourhood of (vo, Ta) and equality holds if and only if
v = vo.

12.6.2 Uniqueness of equilibrium

U(To) := {(v, To) | v ∈ (m3)+}, the isotherm with temperature To is an invariant
set of the dynamical equation. We have seen that if To 6= Ta, then there is no
equilibrium, and (vo, Ta) is an equilibrium if and only if

P(vo, Ta) = Pa.

Because the function v 7→ P(v, Ta) is injective in every phase, we have:

Proposition The equilibrium on the isotherm U(Ta) (if exists) is unique in every
phase.

12.6.3 Stability of equilibrium

Proposition Every equilibrium (vo, Ta) in the regular domain is asymptotically
stable in U(Ta).

Proof The reduced dynamical equation is

v̇ = f(v, Ta, Ta, Pa).

The function v 7→ P(v, Ta) is continuously differentiable and strictly monotone
decreasing in a neighbourhood of vo. Consequently, the function

v 7→ Λ(v) := −
(

P(v, Ta) − Pa

)2

has a strict local maximum at vo. The derivative of Λ along the reduced dynamical
equation, the function

v 7→
•
Λ(v) = −2(P(v, Ta) − Pa)

∂P(v, Ta)

∂v
f(v, Ta, Ta, Pa)

has a strict local minimum at vo because of the local uniqueness of the equilibrium,

the dissipation inequality and the intrinsic stability condition ∂P(v,Ta)
∂v < 0.

12.6.4 Stability of equilibrium of an entropic body

Though the previous result is most general, it is worth considering an entropic
body.

Then

v 7→ Λ(v) := L(v, Ta) = s(v, Ta) − e(v, Ta) + Pav

Ta
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is another Liapunov function for asymptotic stability: continuously differentiable
in a neighbourhood of vo and

Λ′(v) =
P(v, Ta) − Pa

Ta
,

thus the first derivative of Λ is zero at vo. Furthermore,

TaΛ′′(v) =
∂P(v, Ta)

∂v
< 0,

so Λ has a strict local maximum at vo.
The derivative of Λ along the reduced dynamical equation, the function

v 7→
•
Λ(v) :=

P(v, Ta) − Pa

Ta
f(v, Ta, Ta, Pa)

has a strict local minimum at vo because of the local uniqueness of the equilibrium
and the dissipation inequality.

12.7 Isobaric processes

12.7.1 Properties of the dynamical quantitities

Let us examine processes in which the body has constant pressure Po. The con-
straint of constant pressure establishes a relation between working and heating.
This seems natural: we experience that by heating a body, the pressure of the
body increases; in order to keep the body pressure constant in spite of heating,
the body has to expand. The stronger the heating, the faster the expansion.

To obtain the relation between heating and working, let us use again the vari-
ables (v, T ). v and T do not change independently:

P(v, T ) = Po (∗)

must hold implying

∂P
∂v

v̇ +
∂P
∂T

Ṫ = 0.

This relation and the dynamical equation allows us to deduce

(

cv + n
∂P
∂T

− ∂P
∂v

)

f =
∂P
∂T

− ∂P
∂v

q.

If q(vo, To, Ta, Pa) = 0 – implying that f(vo, To, Ta, Pa) = 0, too – then the
equilibrium properties of the dynamical quantitities (see 12.2.1) give To = Ta and
P(vo, Ta) = Pa . We consider processes satisfying equality (∗); thus if Po 6= Pa,
then q(vo, To, Ta, Pa) 6= 0: there is no equilibrium. This is understandable from a
physical point of view: if, e.g. Po > Pa, then the body expands, is not in equilib-
rium; we can hinder expansion by extracting heat from the body but this is not
an equilibrium either.
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Thus we shall consider (v, T )-s for which

P(v, T ) = Pa (∗∗)

holds. As a consequence – the pressure of the body equals the pressure of the
environment – the lost coefficient takes zero values in such processes, so the relation
between springing and heating can be written if the form

cpf =
∂P
∂T

− ∂P
∂v

q,

where cp is the specific heat at constant pressure (see 3.7).

Moreover, (vo, To) is an equilibrium if and only if To = Ta or, equivalently,

∗ q(vo, To, Ta, Pa) = 0 if and only if To = Ta.

The dissipation inequality gives

−q(v, T, Ta, Pa)(T − Ta) ≥ 0

for all (v, T ) satisfying (∗∗) and equality holds if and only if T = Ta.

12.7.2 Uniqueness of equilibrium

We infer from the relation between heating and springing that

U(Po) := {(v, T ) | P(v, T ) = Po},

the isobaric curve corresponding to Po is an invariant set of the dynamical equation
12.2.2. We have seen that if Po 6= Pa, then there is no equilibrium, and (vo, To)
is an equilibrium if and only if To = Ta and P(vo, Ta) = Pa. We can argue as
previously, to prove:

Proposition On the isobaric curve with pressure Pa, the equilibrium (if exists) is
unique in every phase.

12.7.3 Stability of equilibrium

Proposition If the specific heat at constant pressure is positive, then every equi-
librium (vo, Ta) ∈ U(Pa) in the regular domain is asymptotically stable in U(Pa).

Proof Let us express volume as a function of temperature in a neighbourhood
of (vo, Ta) from the implicit relation P(v, T ) = Pa; let ν be this function. Then
the reduced dynamical equation becomes (on the basis of the relation between
springing and heating)

cp(ν(T ), T )Ṫ = q(ν(T ), T, Ta, Pa).

The function

T 7→ Λ(T ) := −(T − Ta)2
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has a strict local maximum at Ta and its derivative along the reduced dynamical
equation, the function

T 7→
•
Λ(T ) = −2(T − Ta)

q(ν(T ), T, Ta, Pa)

cp(ν(T ), T )

has a strict local minimum at Ta because of the dissipation inequality.
The condition imposed on the specific heat at constant pressure may seem

curious, because “it is well known" that cp is positive; but this is not necessarily
valid in our framework. It holds if the body has the normal dilation property
which follows if the body is entropic.

12.7.4 Stability of equilibrium of an entropic body

It is worth noting that for an entropic body

T 7→ Λ(T ) := L(ν(t), T ) = s(ν(T ), T ) − e(ν(T ), T ) + Paν(T )

Ta

is another Liapunov function for asymptotic stability. It is continuously differen-
tiable in a neighbourhood of Ta and because of

dν(T )

dT
= −

∂P
∂T
∂P
∂v

(ν(T ), T )

we have

Λ′(T ) =

(

1

T
− 1

Ta

)

cp(ν(T ), T ),

i.e. its first derivative is zero at Ta.
For an entropic body the specific heat at constant pressure is positive, thus

Λ′′(Ta) = − 1

T 2
a

cp(ν(T ), T ) < 0,

therefore, Λ has a strict local maximum at Ta.
The derivative of Λ along the reduced dynamical equation, the function

T 7→
•
Λ(T ) :=

(

1

T
− 1

Ta

)

q(ν(T ), T, Ta, Pa)

has a strict local minimum at Ta because of the dissipation inequality.

12.8 Non-zero heat source

Let a heat source qs 6= 0 be in the body. Then (with the usual loose notations)

ė = qs + q + w, v̇ = f.

In a standstill ė = 0 and v̇ = 0; the latter implies w = 0, thus q = −qs:
a standstill is a stationary process. Furthermore, if the body is heat insulated,
(q = 0, adiabatic process), then there is no standstill.
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We can say less about the stability of stationary states.
Let us suppose that the heat source qs, the temperature Ta and the pressure

Pa of the environment are constant, furthermore, the dynamical quantitities are
pseudolinear:

q = −λq(T − Ta) + βq(P − Pa),

f = −βf (P − Pa) + βf (P − Pa),

where λq > 0 is constant. Let us use the variables (v, T ). We easily find that
(vo, To) is a stationary state if and only if P(vo, To) = Pa and To = Ta + qs

λ .
Putting qs = λ(To − Ta) into the dynamical equation, we get the same form as in
Paragraph 12.3, Ta replaced by To. Therefore the linearization method allows us
to deduce the same result on asymptotic stability, too.

It is not evident, however, how we could use entropy for assuring asymptotic
stability; can we use it at all?

12.9 Elastic hull

Now we treat a system which is theoretically different from, but practically similar
to, the previous ones. Let us imagine a gas in an elastic hull (ball, tyre) put
in the atmosphere. The pressure (strain) of the elastic hull is considered to be
homogeneous (but it is not, as said in Paragraph 2 of the Preface) and to depend
on the enclosed volume: the larger the volume, the larger the pressure.

Besides the customary data (body and environment), we suppose to have a
continuously differentiable function p : (m3)+ → (Pa) (the pressure of the hull
as a function of volume) whose derivative is positive everywhere (the pressure is
strictly monotone increasing). Then we accept that

– the dynamical equation has the usual form,
– the dynamical quantitities satisfy the usual conditions (equilibrium property,

dissipation inequality) in such a way that the pressure Pa of the environment is
replaced by Pa + p.

As a consequence, (eo, vo) ∈ R is an equilibrium if and only if

T(eo, vo) = Ta, P(eo, vo) = Pa + p(vo).

Proposition If the body is entropic and working is ideal and there is no constraint,
then every equilibrium in the regular domain is asymptotically stable.

Proof Let r be a primitive function of p. Then the function

(e, v) 7→ Λ(e, v) := s(e, v) − e+ Pav + r(v)

Ta

is twice differentiable on the regular domain; its derivative

∂Λ

∂e
=

1

T
− 1

Ta
,

∂Λ

∂v
=

P

T
− Pa + p

Ta

is zero in equilibrium. Its second derivative

D
2Λ = D

2s +

(

0 0

0 − p′

Ta

)

,
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is negative definite (the sum of a negative definite and a negative semi-definite
matrix). Thus Λ has a strict local maximum in equilibrium.

The derivative of Λ along the dynamical law, the function

•
Λ(e, v) =

=

(

1

T(e, v)
− 1

Ta

)(

q(e, v, Ta, Pa + p(v)) − P(e, v)f(e, v, Ta, Pa + p(v))

)

+

+

(

P(e, v)

T(e, v)
− Pa + p(v)

Ta

)

f(e, v, Ta, Pa + p(v)).

has a strict local minimum in equilibrium because of the local uniqueness of equi-
librium and the dissipation inequality.

12.10 Zeroth-order and second-order phase transitions

The particle number is not a dynamical variable in zeroth-order and second-order
phase transitions, the whole body passes from one phase into another. Hence,
such phase transitions are described corresponding to the previous scheme. As an
illustration, let us consider the simplest system: a body in a given environment.
Then we apply 12.2.1 and we are interested in processes ‘connecting’ two phases
in zeroth-order or second-order phase connection. We explain the expression in
quotation mark for a second-order phase transition; the reader is asked to do it
for the zeroth-order one.

Let the phases Z1 and Z2 of a material have a second-order phase connection,
i.e. C := Z1 ∩Z2 ∩(D\R) 6= ∅. A second-order phase transition occurs in a process
t 7→

(

e(t), v(t)
)

if there are instants t1, tC , t2 such that

(e(t1), v(t1)) ∈ Z1, (e(tC), v(tC)) ∈ C, (e(t2), v(t2)) ∈ Z2.

We are mostly interested in the stability of equilibria. In Section 12 we con-
sidered equilibria in a phase, we could prove asymptotic stability of equilibria in
the regular domain. Therefore, a zeroth-order phase transition is of no impor-
tance from this point of view. Equilibria on a second-order phase connection are
a different matter. It can be shown that an equilibrium on a second-order phase
connection of Ehrenfest type is asymptotically stable, on a second-order phase
connection of Tisza type can be asymptotically stable, stable and unstable. Hav-
ing not treated precisely the classification of second-order phase connections, we
do not deal with such equilibria.

First-order phase transitions will be treated in Section 20.

12.11 Extremum properties

12.11.1 Conditions of stability

Note that asymptotic stability (of an equilibrium in the regular domain) is as-
sured essentially by two types of condition: the intrinsic stability conditions
(a property of materials expressed by the constitutive functions) and the dis-
sipation inequalities (a property of interactions expressed by the dynamical
quantitities).
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12.11.2 The role of entropy

It is best seen in the case of entropic bodies that the intrinsic stability conditions
imply the maximum of the Liapunov function whereas the dissipation inequalities
imply the minimum of the derivative of the Liapunov function along the dynamical
equation. The intrinsic stability conditions alone are not sufficient.

The Liapunov function – except the case of the elastic hull – is the total entropy
of the bodies and the environment.

Thus, the total entropy has a strict maximum in equilibrium. Its derivative
along the dynamical equation, the entropy production has a strict minimum in
equilibrium where it takes zero value: the entropy is strictly monotone increasing
in non-equilibrium processes.

Now we clearly see that the maximum of the total entropy and the positive
entropy production are independent (Paragraph 3 of the Preface).

It is worth mentioning that the entropy maximum in equilibrium and positive
entropy production in non-equilibrium processes does not hold for the case of
elastic hull where the Liapunov function is not the total entropy of the body and
the environment. We could think that if we described the hull in a more realistic
way as a separate body, then the total entropy of the body, the hull and the
environment would be the Liapunov function. This cannot be done, however, in
the framework of ordinary thermodynamics: the hull described as a separate body
cannot have homogeneous pressure. This indicates that the entropy maximum and
the entropy production are doubtful in continuum physics.

12.11.3 Warning

In usual treatments of thermodynamics, equilibrium in different systems is identi-
fied with the extremum of different functions. Those assertions are based on formal
calculations and obscure the important fact that always the total entropy has
a maximum in equilibrium.

For instance, one says that for isothermal processes the total free energy has a
minimum in equilibrium. This is true because the isothermal total free energy is
the negative of the total entropy, up to an additive and multiplicative constant:

N(e− Ts) +Na(ea − Tasa) = −Ta(Ns+Nasa) + (Ne+Naea).

Furthermore, one says that for isobaric processes, the total enthalpy has a min-
imum in equilibrium. This is true but vacant because the isobaric total enthalpy
is constant:

N(e+ Pav) +Na(ea + Pava) = (Ne+Naea) + Pa(Nv +Nava).

We could think on the basis of the usual formulations that instead of the total
free energy or the total enthalpy, the free energy of the body or the enthalpy of
the body have a minimum at equilibrium. This, however, makes no sense because
the environment can be chosen arbitrarily, so an arbitrary state of the body can
be equilibrium.
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12.12 Remarks on the intensive constraints

12.12.1 ‘Infinitely’ slow, ‘infinitely’ fast

Fixed volume and heat insulation (isochoric processes and adiabatic processes)
are constraints easily realizable in practice (at least approximately). On the con-
trary, it is almost impossible to fix temperature or pressure. In usual treatments
one takes it for granted that the processes of a body in thermal contact with a
‘heat bath’ (an environment with given constant temperature) are isothermal (the
temperature of the body equals the temperature of the heat bath). This is not
so because, e.g. a hot body cools in a colder environment. Let us try to make it
better: the processes of a body in thermal contact with a heat bath are isothermal
if the initial temperature of the body equals the temperature of the heat bath.
Unfortunately, this is not true either. It is an everyday experience that bodies
become warmer when being compressed even in a heat bath (the atmosphere).
More cautious authors say that the processes of a body in thermal contact with
a heat bath are isothermal if the volume change of the body is ‘infinitely slow’ or
the heat conduction between the body and the heat bath is ‘infinitely fast’. Let
us examine whether we can precisely explain such statements.

Let us take the system in Paragraph 12.3 described by the variables (v, T ), let
the body be ideal gas with constant specific heat c and

q(v, T, Ta, Pa) := −λ(T − Ta), f(v, T, Ta, Pa) := β(P(v, T ) − Pa),

where λ and β are positive constants.
Then the dynamical equation is

cṪ = −λ(T − Ta) − βP(v, T )(P(v, T ) − Pa),

v̇ = β(P(v, T ) − Pa).

Note that if the temperature is constant, T = Ta, then Ṫ = 0, consequently
P(v, T ) − Pa = 0, thus v̇ = 0, too: the process is a constant; in other words, a
process with constant temperature is necessarily an equilibrium, non-equilibrium
process cannot be isothermal (in accordance with our experience).

Let us suppose that the volume change is ‘infinitely slow’, i.e. β is ‘infinitely
small’. If β = 0, then the first law – because of the initial condition T (t0) = Ta –
gives T (t) = Ta for all instants t. But then the second member of the dynamical
equation is v̇ = 0: the volume, too, is constant. An ‘infinitely slow’ volume change
cannot produce a non-equilibrium isothermal process.

Let us suppose now that heat conduction is ‘infinitely fast’, i.e. λ is ‘infinitely
large’. Dividing the first law by λ we get

cṪ

λ
= −(T − Ta) − β

λ
P(v, T )(P(v, T ) − Pa) (∗)

and letting λ tend to infinity, we obtain formally T = Ta. The second member of
the dynamical equation is then modified only slightly: we have to replace T with
Ta, but it remains a good equation for the volume change. ‘Infinitely fast’ heat
conduction is a meaningful notion, it gives non-equilibrium isothermal processes.
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We have to be careful, however, because the limit λ → ∞ is not so simple as
it seems at first sight. Let t 7→

(

vλ(t), Tλ(t)
)

be the solution of the dynamical
equation with initial condition vλ(t0) = v0, Tλ(t0) = Ta. It may happen that

Ṫλ(t) tends to infinity for some t as λ tends to infinity, so Ṫλ(t)
λ does not tend to

zero. Fortunately this is not case; we can apply App. 6. The partial derivative of
the right-hand side of (∗) with respect to T is negative for sufficiently large λ-s;
consequently, if t 7→ v(t) is the solution of the initial value problem

v̇ = β(P(v, Ta) − Pa), v(t0) = v0,

then
lim

λ→∞
vλ(t) = v(t), lim

λ→∞
Tλ(t) = Ta

for all t > t0.
Thus we can conceive that the process will be isothermal if the heat conduction

is ‘infinitely fast’ between the body and the heat bath. More precisely: the faster
the heat conduction, the closer the process to an isothermal one. Another formu-
lation: because the quotient β

λ appears in the equation, we can say: the process
is nearly isothermal if heat is conducted much faster than volume changes. The
form of the equation clearly shows that the phrase in italics is not equivalent to if
volume changes much slower than heat is conducted. That is why ‘infinitely fast’
heat conduction is a meaningful notion but ‘infinitely slow’ volume change is not.

We can see similarly that ‘infinitely fast’ volume change is a meaningful notion
for isobaric processes.

12.12.2 Practically isothermal processes

We can approximately realize isothermal processes even if heat conduction is not
fast by adequately varying the temperature and the pressure of the environment:
if we compress a body in such a way that the pressure applied is always a little
larger than the pressure of the body, then the volume changes slowly and the body
has time to conduct heat to the environment.

Let us consider processes without constraint that run in a single phase; they
can be described by temperature and pressure. A process t 7→

(

T (t), P (t)
)

is
practically isothermal if there is a temperature value Ta (the temperature of
the environment) and an ǫ > 0 real number (‘small enough’) such that

|T (t) − Ta| < ǫK (t > t0), lim
t→∞

T (t) = Ta (∗)

where K is the temperature unit and t0 is the initial instant.
We shall show that a practically isothermal process can be produced by varying

the pressure of the environment adequately in such a way that the final pressure
be a prescribed P∞, i.e.

lim
t→∞

P (t)=P∞.

If the pressure of the environment is constant Ps ∈ [P (t0), P∞] and π > 0 is an
arbitrary real number, then – because the equilibrium (Ta, Ps) is asymptotically
stable – there are real numbers β(Ps) > 0 and ξ(Ps) > 0 such that if

|T (ts) − Ta| < β(Ps)K and |P (ts) − Ps| < ξ(Ps)Pa
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(where Pa is the pressure unit) for some ts ≥ t0, then

|T (t) − Ta| < ǫK, and |P (t) − Ps| < πPa (1)

for all t > ts, moreover

lim
t→∞

T (t) = Ta and lim
t→∞

P (t) = Ps. (2)

We assume that

β := inf{β(Ps) | Ps ∈ [P (t0), P∞]} > 0,

ξ := inf{ξ(Ps) | Ps ∈ [P (t0), P∞]} > 0.

Then we choose

P0 := min

{

P (t0) +
ξ

2
Pa, P∞

}

for the initial pressure of the environment. Let us solve the dynamical equation
on the interval [t0,∞[ with the initial values (Ta, P (t0)), putting (Ta, P0) for the
environment. The process satisfies conditions (1) and (2) for s = 0. Thus if
P0 = P∞, then equality (∗) holds. If P0 < P∞, then we choose an instant t1 > t0
such that |T (t1) − Ta| < βK and |P (t1) − P0| < ξ

4 Pa (such a t1 exists because of
(2)).

Let then

P1 := min

{

P0 +
ξ

2
Pa, P∞

}

.

Evidently, |P (t1)−P1| < ξPa. Let us solve the dynamical equation on the interval
[t1,∞[ with the initial values

(

T (t1), P (t1)
)

putting (Ta, P1) for the environment.
The process satisfies conditions (1) and (2) for s = 1. Thus if P1 = P∞, then
equality (∗) holds. If P1 < P∞, then we choose an instant t2 > t1 such that
|T (t2) − Ta| < βK and |P (t2) − P1| < ξ

4 Pa.

There is a positive integer n such that n ξ
2 Pa > P∞ − P (t0); consequently, we

find instants t0 < t1 < · · · < tn and pressure values P0 < P1 < · · · < Pn = P∞
such that if Pi is the pressure of the environmentin the time interval [ti, ti+1[
(i = 0, . . . , n; n+ 1 := ∞), the process of the body has the required properties.

We emphasize that the practically isothermal process is realized by constant
temperature and varying pressure of the environment.

Practically isobaric processes can be realized in a similar manner.

12.13 Control instead of constraint

12.13.1 The notion of control

Fixed volume, constant temperature etc. are described by constraints which cor-
respond to ‘infinitely rigid’ wall, ‘infinitely fast’ heat conduction etc. We can
produce such processes by controls instead of constraint. Control means a conve-
niently prescribed varying environment. We met a similar situation in the previous
paragraph but now we wish to achieve exactly isochoric, isothermal, etc. processes.
More closely, we look for a process t 7→

(

Ta(t), Pa(t)
)

of the environment assuring
that the process of the body be isochoric, isothermal, etc.
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12.13.2 Control for isochoric processes

We wish to assure that v(t) = vo for all t > t0; then we look for a function
t 7→

(

Ta(t), Pa(t)
)

such that

cv(vo, T )Ṫ = q(vo, T, Ta, Pa), f(vo, T, Ta, Pa) = 0

holds for some function t 7→ T (t) with given initial T (t0).

This is an interesting mathematical problem. Its solution – if exists – is not
unique, in general. Indeed, let us take

f(v, T, Ta, Pa) = β(P(v, T ) − Pa)

where β > 0 is constant. Then

Pa(t) = P(vo, T (t)), (∗)

and the first law becomes

cv(vo, T )Ṫ = q(vo, T, Ta,P(vo, T ))

which is an ordinary differential equation if Ta (the control temperature) is an
arbitrary continuous function, thus it has a solution t 7→ T (t) with the given
initial value. The solution put in (∗) gives the control pressure, too.

12.13.3 Control for isothermal processes

We wish to assure T (t) = To for all t > t0; then we look for a function t 7→
(Ta(t), Pa(t)) such that

q(v, To, Ta, Pa) = n(v, To, Ta, Pa)f(v, To, Ta, Pa), v̇ = f(v, To, Ta, Pa)

holds for some function t 7→ v(t) with initial value v(t0).

Let us take again

f(v, T, Ta, Pa) = β(P(v, T ) − Pa),

where β > 0 is a constant. Then

Pa(t) = P(v(t), To) − v̇(t)

β
, (∗)

and the first law becomes

q(v, To, T, Ta,P(v, To − v̇/β)) = n(v, To, Ta,P(v, To − v̇/β))v̇

which is an implicit ordinary differential equation if Ta (the control temperature)
is an arbitrary continuous function, thus it has a solution t 7→ v(t) with the given
initial value. The solution put in (∗) gives the control pressure, too.
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12.14 Heat engines

12.14.1 A model of a heat engine

Heat engines are machines that perform mechanical work utilizing heat flow or
apply mechanical work to produce a heat flow. Though in reality such machines
are complicated and use phase transitions, chemical reactions, electromagnetic
phenomena, etc., the simple processes treated up to now allow us to draw a rough
picture about their operation 1.

We model the engine as a body with constant particle number N which is
in contact with a convenient environment in such a way that the process t 7→
(

v(t), T (t)
)

of the body is periodic. Let us introduce the notations

Q(t):=Nq
(

v(t), T (t), Ta(t), Pa(t)
)

, W (t):=Nw
(

v(t), T (t), Ta(t), Pa(t)
)

.

Let us fix a time interval [t1, t2] in which a period, the cycle is realized and let

τ+ := {t ∈ [t1, t2] | Q(t) > 0}, τ− := {t ∈ [t1, t2] | Q(t) < 0},

Q+
c :=

∫

τ+

Q(t) dt, Q−
c := −

∫

τ−

Q(t) dt, Qc :=

∫ t2

t1

Q(t) dt,

Wc :=

∫ t2

t1

W (t) dt.

The function t 7→ Q(t) is continuous, thus τ± is an open subset; as a conse-
quence, it has zero measure (Lebesgue measure) if and only if it is void. Q±

c ≥ 0
and is zero if and only if τ± is void.

Q+
c and Q−

c are the heat absorbed and emitted, respectively, by the engine in
the cycle, Wc is the work performed on the engine, thus −Wc is the work performed
by the machine. Evidently, Qc = Q+

c −Q−
c .

The state of the machine at the beginning and at the end of the cycle is the
same; consequently, we infer from the first law that

0 = Qc +Wc.

12.14.2 Characterization of the heat flows

The entire entropy of the body in the process is t 7→ S(t) := Ns
(

e(t), v(t)
)

. Let
us suppose that working is ideal and the body is entropic. Then the equalities in
Paragraph 5.3 yield

Ṡ =
Q

T
;

the process is periodic, thus S(t1) = S(t2) and consequently

0 =

∫ t2

t1

Q(t)

T (t)
dt =

∫

τ+

Q(t)

T (t)
dt+

∫

τ−

Q(t)

T (t)
dt,

1This subsection is based on the book C.Truesdell–S.Bharatha: Classical Thermodynamics

as a Theory of Heat Engines, Springer, 1977
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in other words,
∫

τ+

Q(t)

T (t)
dt =

∫

τ−

−Q(t)

T (t)
dt.

Introducing the notations

T+↑ := sup{T (t) | t ∈ τ+}, T+↓ := inf{T (t) | t ∈ τ+},

T−↑ := sup{T (t) | t ∈ τ−}, T−↓ := inf{T (t) | t ∈ τ−},
we obtain

Q+
c

T+↑ ≤ Q−
c

T−↓ ,
Q+

c

T+↓ ≥ Q−
c

T−↑ . (∗)

We see that either both Q+
c and Q−

c are zero or none of them is zero; if the
work performed is not zero, then the engine both absorbs and emits heat: the
engine cannot perform work only by absorbing heat.

12.14.3 The thermal efficiency

The thermal efficiency of the engine is the quotient of the work performed by the
heat absorbed in a cycle:

ηc :=
−Wc

Q+
c

=
Q+

c −Q−
c

Q+
c

.

The previous estimates give us (if the working is ideal and the body is entropic)
that

ηc ≤ 1 − T−↓

T+↑ .

12.14.4 The Carnot cycle

If the temperature is constant on both τ+ and τ−, i.e.

T+↓ = T+↑ =: T+, T−↓ = T−↑ =: T−,

then equality holds in the estimates (∗):

Q+
c

T+
=
Q−

c

T− . (∗∗)

If the engine works in the cycle, i.e. −Wc > 0, then Q+
c > Q−

c which imply by (∗∗)
that T+ > T−: the temperature of the body is higher when heat is absorbed than
the temperature of the body when heat is emitted. Then the thermal efficiency is

ηc = 1 − T−

T+
.

We can suppose without restricting generality that τ+ is at the beginning of
the cycle. The temperature is a continuous function, thus there is an interval after
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both τ+ and τ− in which heat does not flow. This is the Carnot cycle consisting
of four steps:

1. The body expands at constant temperature T+ (absorbs heat and works);

2. The body is heat insulated, expands and cools to the temperature T− (works
adiabatically);

3. The body is compressed at constant temperature T− (emits heat and work
is performed on it);

4. The body is heat insulated, is compressed and warms to the temperature
T+ (work is performed on it adiabatically).

12.14.5 The efficiency

It is worth noting that the real efficiency is the quotient of the work done by the
absorbed energy. This is less than the thermal efficiency because the absorbed
energy is more than the absorbed heat which is well seen in the case of a Carnot
cycle: we waste energy

– to make a contact between the body and a heat bath,

– to make a heat insulation and later to remove it,

– to make a contact between the body and another heat bath,

– to make a heat insulation and later to remove it.

12.15 Thermal efficiency with maximal power

Let us take a body undergoing a Carnot cycle. Let us suppose that the body on
the isothermal parts T+ and T− is in contact with heat baths having constant
temperature T+

a > T+ and T−
a < T−, respectively, and the heatings are

Q+ = −λ+(T+ − T+
a ), Q− = −λ−(T−

a − T−).

Then

Q+
c = Q+τ+, Q−

c = Q−τ−

and relation (∗∗) in Paragraph 12.14.4 (∗∗) yields

τ+

τ− =
Q−T+

Q+T− .

Let γ denote the proportion of the time period and the time of the isothermal
parts. Then the average power of the engine in a cycle is

Q+
c −Q−

c

t2 − t1
=
Q+τ+ −Q−τ−

γ(τ+ + τ−)
=

Q+Q−(T+ − T−)

γ(Q−T+ +Q+T−)
.

We wish to choose the temperature of the engine on the isothermal parts in such
a way that the engine have maximal power 2. A necessary condition is that the

2This paragraph is based on the paper Curzon F. L. – Ahlborn B.: Efficiency of a Carnot
Engine at Maximum Power Output, American Journal of Physics 43(1975) 22-24



130 III Simple systems without particle change

partial derivatives of the average power with respect to the working temperatures
are zero:

−λ+(T+ − T−) +Q+ − Q+(T+ − T−)

Q−T+ +Q+T− (Q− − λ+T−) = 0,

λ−(T+ − T−) −Q− − Q−(T+ − T−)

Q−T+ +Q+T− (λ−T+ +Q+) = 0

from which we obtain

T− − T−
a =

√

λ+T−

λ−T+
(T+

a − T+).

Putting this into the first equation, we get for 1−T+
a /T

+ a second-order equation
having the solution (necessarily less than 1)

1 − T+
a

T+
=

1 −
√

T−/T+

1 +
√

λ+/λ− ;

this equality and the previous one gives

1 − T−
a

T− =

√

T+/T− − 1

1 +
√

λ−/λ+
.

Finally, we get easily

T−

T+
=

√

T−
a

T+
a
,

thus

ηc = 1 −
√

T−
a

T+
a

is the thermal efficiency with maximal power.
Furthermore, we deduce that

τ+

τ− =

√

λ−

λ+
,

and introducing the notation

ξ :=

√

λ−T+
a +

√

λ+T−
a√

λ+ +
√
λ−

,

we obtain the temperatures corresponding to the maximal power:

T+ = ξ
√

T+
a , T− = ξ

√

T−
a .

The theory of finite-time thermodynamics3 is developed on the basis of the
above considerations; finite-time thermodynamics deals with optimalization of

3Bery R. S. – Kazakov V. – Sienutycz S.– Szwast J. – Tsirlin A. H. : Thermodynamic Opti-

mization of Finite-Time Processes, John Wiley and Sons NY, 1999
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thermodynamical processes and its name refers to the conception that more real-
istic processes are considered than the earlier ‘infinitely slow’ so ‘infinitely long’
lasting quasi-static processes.

It is worth mentioning that the above method is applicable only for heatings
of special form and that isothermal processes can be controlled by the pressure of
the environment.

12.16 Remarks on the second law

Paragraph 12.11.2 clearly shows that the formulations of the second law such
as “the entropy is maximal in an equilibrium of a closed system" and “entropy
increases in non-equilibrium processes" are independent. We return to it in Para-
graph 13.15.1

Clausius’ formulation that “heat cannot pass by itself from a colder to a warmer
body" is expressed by dissipation inequalities.

The Kelvin–Planck formulation “it is impossible to devise an engine which,
working in a cycle, shall produce no effect other than the extraction of a heat
from reservoir and the performance of an equal amount of mechanical work" has
nothing to do with Clausius’ formulation because, as it is seen from our result in
Paragraph 12.14.2, it is based only on the entropic property and on ideal working,
it does not refer to dissipation inequalities.

It is worth examining more thoroughly this surprising fact. Let us suppose for
the sake of simplicity that the heat engine absorbs and emits heat isothermally
(Carnot cycle). We have seen that the temperature of the body is higher when
heat is absorbed than the temperature of the body when heat is emitted. Then
one usually concludes that heat has flown from a hotter place to a colder one. But
this is not right. Heat flows into the engine from something and heat flows from
the engine to something. The formulae contain only the temperatures of the
engine and there is no hint at all what temperature has the something from which
the engine absorbs heat (why cannot it be lower than that of the engine?) and
what temperature has the something to which the engine emits heat (why cannot
it be higher than that of the engine?)

The empirical fact that – in simple cases – the environment cannot have lower
temperature than the engine has when heat is absorbed and cannot have higher
temperature than the engine has when heat is emitted and the Carnot cycle as
a classical example resulted in the tacit assumption that the engine and the en-
vironment have equal temperature in the isothermal part of the cycle. And this
tacit assumption is responsible for the false assertion that the Kelvin–Planck for-
mulation of the second law implies the Clausius formulation.

Let us summarize what can be said about the forms a to d of the second
law cited in Paragraph 3 of the Preface.

c. Entropy maximum is a consequence of the conditions of inner stability.

d. Entropy increase is a consequence of the dissipation inequalities.

b. Clausius’ formulation is reflected by the dissipation inequalities.

a. The Kelvin–Planck formulation follows from the entropic property (and
ideal working).
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Therefore, a and b instead of being equivalent, are independent. Similarly,
c and d are independent; b and d are related (it would be difficult to prove that
they are equivalent). a is independent from all the others.

12.17 Exercises

1. Show that the canonical conductance matrix corresponding to Paragraph
12.3 has symmetric value in equilibrium, thus it is weakly Onsagerian.

2. Treat the constraint-free processes, the isochoric processes, the adiabatic
processes, the isothermal processes and the isobaric processes using the (e, v) vari-
ables.

3. The dynamical equation describing processes is, in general, too complicated
for having explicit analytic solutions. Now we list some simple cases in which the
solutions can be obtained in a relatively simple way.

(i) Let us take a body having a constant specific heat c; let us suppose,
moreover, that the heating between the body and the environment has the form
q(v, T, Ta, Pa) = −λ(T − Ta) where λ > 0 is constant. Then for the isochoric
processes of a body we obtain Newton’s classical equation for cooling (warming):

cṪ = −λ(T − Ta)

which has solutions

T (t) = Ta + exp

(

−λ

c
(t− t0)

)

(T (t0) − Ta).

(ii) Let us consider isothermal processes of an ideal gas if f(v, T, Ta, Pa) =
β(P(v, T ) − Pa) where β > 0 is constant. Then

v̇ = β

(

kTa

v
− Pa

)

,

b
(

v(t) − v(t0)
)

+ log
bv(t) − 1

bv(t0) − 1
= −ab(t− t0),

where a := βPa, b :=
Pa

kTa
.

(iii) Let us consider isobaric processes of an ideal gas with constant specific
heat c, supposing that q(v, T, Ta, Pa) = −λ(T − Ta), where λ > 0 is constant.
Then

(c+ k) Ṫ = −λ(T − Ta),

which is the same equation as in, with c + k (specific heat at constant pressure)
instead of c (specific heat at constant volume).

4. Solve Exercise 3 (i) if the temperature of the environment is a function of
time, Ta(t) = β(t− t0)r where β 6= 0 and r = 1, 2.

5. Treat the isochoric, isothermal and isobaric processes with non-zero heat
source and in a constant environment. How can the isothermal (isobaric) processes
be realized?
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6. Can a stationary state exist if neither the heat source nor the environment
is constant?

7. Treat the isochoric, adiabatic, isothermal and isobaric processes for a gas in
an elastic hull.

8. Describe the realization of practically isobaric processes in analogy with
Paragraph 12.12.2.

9. Give the control of isochoric and isobaric processes if q = −λ(T −Ta) where
λ > 0 is constant.

10. Treat the control of isobaric processes.
11. A body can be in contact with two environments (e.g. a window-glass with

the atmospheres inside and outside). The ordinary thermodynamics can provide
a good model only if the pressures of the environments are equal or the body
is rigid and fixed (otherwise the body would not be at rest with respect to the
environments).

If the body is heat insulated, the number of environments (of course having
the same pressure) is irrelevant. If the body is not heat insulated, we can treat
the constraint-free case, the isochoric processes and the isobaric processes.

Let the environments have the same pressure Pa and temperature Ta and Tb,
respectively. Let us suppose that the heating is

−λa(T − Ta) − λb(T − Tb),

where λa > 0 and λb > 0 are constant.
Let us use the variables (v, T ). Then (vo, To) is a stationary state if and only

if

P(vo, To) = Pa and To =
λaTa + λbTb

λa + λb
.

Using the linearization method, verify that – under some (known) conditions
– a stationary state in the regular domain is asymptotically stable in all the three
mentioned cases. Give the isochor processes in an explicit form.

13 Two bodies in a given environment

13.1 Introductory remarks

We shall examine processes of a system consisting of an environment and two
bodies whose particle number is constant and there is no particle source. The
treatise can be easily generalized for more bodies.

Contrary to the previous section, though the particle numbers are constant,
the entire energy and volume of the bodies will be the convenient variables. The
constant particle numbers will be omitted from the notations, thus we write, e.g.
P(V, T ) and T(E, V ) instead of P(V, T,N) and T(E, V,N). Furthermore, for
the sake of simplicity, we shall refer to constitutive domains (regular domains)
by the entire quantities; we write, e.g. (V, T ) ∈ D and (E, V ) ∈ D instead of
(V/N, T ) ∈ D and (E/N, V/N) ∈ D.
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13.2 General formulae

13.2.1 General framework of description

Based on Chapter II, a system will be described as follows.
1. There are two given bodies having materials (D1,T1,P1,µ1,R1) and

(D2,T2,P2,µ2,R2), respectively, and having constant non-zero particle num-
bers N1 and N2, respectively, and there is a given environment of material
(Da,Ta,Pa,µa,Ra).

2. There are given dynamical quantitities
– Q12, F12, π12 defined on D1 × D2,
– Q21, F21, π21 defined on D2 × D1,
– Q1a, F1a, π1a defined on D1 × Da,
– Q2a, F2a, π2a defined on D2 × Da,

continuous functions, continuously differentiable on the interior of their domain.
The dynamical quantitities, with the notations

W12 := −(P1 + π12)F12, etc.

Q12 := Q12(E1, V1, E2, V2), T1 := T1(E1, V1), etc.

satisfy
– mutuality:

Q12 +W12 = −(Q21 +W21), F12 = −F21,

– the equilibrium properties for i = 1, 2 and k = a, 1, 2:
0) πik = 0 if Pi = Pk,

1)(a) if Fik = 0, Qik 6= 0, then Qik = 0 if and only if Ti = Tk,
1)(b) if Qik = 0, Fik 6= 0, then Fik = 0 if and only if Pi = Pk,
1)(c) if Fik 6= 0, Qik 6= 0, then
∗ if Fik = 0, then Pi = Pk,
∗ if Qik = 0 and Pi = Pk, then Ti = Tk,

(implying that if Qik = 0 and Fik = 0, then Pi = Pk and Ti = Tk)
∗ ∗ if Ti = Tk and Pi = Pk, then Qik = 0 and Fik = 0,

– the dissipation inequalities:

−Q12

T1
(T1 − T2) − W12

P1
(P1 − P2) ≥ 0,

−Q21

T2
(T2 − T1) − W21

P2
(P2 − P1) ≥ 0,

−Q1a

T1
(T1 − Ta) − W1a

P1
(P1 − Pa) ≥ 0,

−Q2a

T2
(T2 − Ta) − W2a

P2
(P2 − Pa) ≥ 0,

where equality holds if and only if the corresponding dynamical quantitities have
zero value (e.g. Q12 = 0 and F12 = 0); if the workings are ideal, then
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(

Q12 − P1F12

)

(

1

T1
− 1

T2

)

+ F12

(

P1

T1
− P2

T2

)

≥ 0,

(

Q21 − P2F21

)

(

1

T2
− 1

T1

)

+ F21

(

P2

T2
− P1

T1

)

≥ 0,

(

Q1a − P1F1a

)

(

1

T1
− 1

Ta

)

+ F1a

(

P1

T1
− Pa

Ta

)

≥ 0,

(

Q2a − P2F2a

)

(

1

T2
− 1

Ta

)

+ F2a

(

P2

T2
− Pa

Ta

)

≥ 0

(note that the first and the second inequalities coincide because of mutuality).
3. There is a given process t 7→

(

Ea(t), Va(t)
)

∈ Da of the environment, a
continuous function defined on a time interval.

4. There are the given heat sources t 7→ Q1,s(t) and t 7→ Q2,s(t), continuous
functions defined on a time interval.

5. The processes t 7→
(

E1(t), V1(t), E2(t), V2(t)
)

of the bodies are governed by
the dynamical equation

Ė1 = Q1,s +Q1a +Q12 +W1a +W12,

V̇1 = F1a + F12,

Ė2 = Q2,s +Q2a +Q21 +W2a +W21,

V̇2 = F2a + F21,

where Q1a := Q1a(E1, V1, Ea, Va), etc.

13.2.2 Other variables

Sometimes temperature is used instead of internal energy as an independent vari-
able. Then we write Q12(V1, T1, V2, T2), etc. and a process of the bodies is
t 7→

(

V1(t), T1(t), V2(t), T2(t)
)

, so Ė1 and Ė2 in the dynamical equation are to
be replaced with E1(V1, T1)̇ and E2(V2, T2)̇, respectively.

We suppose that the given process of the environment runs in a single phase,
thus it can be given by temperature and pressure (as common in practice). There-
fore instead of the variables (Ea, Va), we shall use the variables (Ta, Pa), retain-
ing the symbols of the functions, e.g. we shall write Q1a(E1, V1, Ta, Pa) and
Q1a(V1, T1, Ta, Pa); furthermore, the given process of the environment will appear
in the form t 7→

(

Ta(t), Pa(t)
)

.

13.2.3 Equilibrium

In the sequel (except the exercises) we take zero heat sources and constant process
of the environment:

Q1,s = Q2,s = 0, Ta = const, Pa = const.

Then (E1o, V1o, E2o, V2o) ∈ D1 × D2 is an equilibrium if and only if
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Q12(E1o, V1o, E2o, V2o) = 0, F12(E1o, V1o, E2o, V2o) = 0,

Q21(E2o, V2o, E1o, V1o) = 0, F21(E2o, V2o, E1o, V1o) = 0,

Q1a(E1o, V1o, Ta, Pa) = 0, F1a(E1o, V1o, Ta, Pa) = 0,

Q2a(E2o, V2o, Ta, Pa) = 0, F2a(E2o, V2o, Ta, Pa) = 0.

Similarly, if temperature is used as a variable, (V1o, T1o, V2o, T2o) ∈ D1 ×D2 is
an equilibrium if and only if Q12(V1o, T1o, V2o, T2o) = 0, etc.

13.2.4 Entropic bodies

The function (given in the customary symbolic form)

L := S1 + S2 − E1 + E2 + Pa(V1 + V2)

Ta
(∗)

will play an important role; this is the total entropy of the bodies and the
environment together, up to an additive constant. Indeed,

Sa =
Ea + PaVa − µaNa

Ta

is the entropy of the environment. The bodies and the environment together form
a closed system, i.e the total internal energy and the total volume are constant,

E1 + E2 + Ea =: Es = const, V1 + V2 + Va =: Vs = const,

thus

Sa = −E1 + E2 + Pa(V1 + V2)

Ta
+
Es + PaVs − µaNa

Ta
.

Since the process of the environment is constant, the sum of the entropies of the
bodies and the entropy of the environment, S1 +S2 +Sa equals (∗) plus a constant.

The function (∗) will be actually given in the variables (E1, V1, E2, V2):

(E1, V1, E2, V2) 7→ L(E1, V1, E2, V2) :=

:= S1(E1, V1) + S2(E2, V2) − E1 + E2 + Pa(V1 + V2)

Ta
,

and in the variables (V1, T1, V2, T2):

(V1, T1, V2, T2) 7→ L(V1, T1, V2, T2) :=

:= S1(V1, T1) + S(V2, T2) − E(V1, T1) + E(V2, T2) + Pa(V1 + V2)

Ta
.
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These functions are continuously differentiable on the regular domains R1 ×R2

and R1 ×R2, respectively, and for entropic bodies

∂L

∂Ei
=

1

Ti
− 1

Ta
,

∂L

∂Vi
=

Pi

Ti
− Pa

Ta
,

∂L
∂Vi

=

(

1

Ti
− 1

Ta

)

∂Ei

∂Vi
+

Pi

Ti
− Pa

Ta
,

∂L
∂Ti

=

(

1

Ti
− 1

Ta

)

∂Ei

∂Ti
,

(i = 1, 2).

13.3 System without constraint

13.3.1 Properties of the dynamical quantitities

There is no restriction on the interaction of the bodies and the environment: no dy-
namical quantity is identically zero. Therefore, we have the equilibrium properties
(taking into account the mutuality F21 = −F12)

∗ if F12 = 0 (and so F21 = 0), then P1 = P2,
∗ if Q12 = 0 or Q21 = 0 and P1 = P2, then T1 = T2,

(implying that if Q12 = 0 or Q21 = 0 and F21 = 0, then P1 = P2 and T1 = T2)
∗ ∗ if T1 = T2 and P1 = P2, then Q12 = 0, Q21 = 0 and F12 = 0,

furthermore, for i = 1, 2
∗ if Fia = 0, then Pi = Pa,
∗ if Qia = 0 and Pi = Pa, then Ti = Ta,

(implying that if Qia = 0 and Fia = 0, then Pi = Pa and Ti = Ta)
∗ ∗ if Ti = Ta and Pi = Pa, then Qia = 0 and Fia = 0.
Note that as a consequence of the equilibrium properties, equality holds in the

dissipation inequalities given in 13.2.1 if and only if T1 = T2 = Ta and P1 = P2 =
Pa.

13.3.2 Uniqueness of equilibrium

According to the equilibrium properties of dynamical quantitities and Paragraph
13.2.3, (E1o, V1o, E2o, V2o) is an equilibrium if and only if

T1(E1o, V1o) = T2(E2o, V2o) = Ta, P1(E1o, V1o) = P2(E2o, V2o) = Pa.

It is evident that equilibrium can exist only if (Ta, Pa) is in the range of both
(T1,P1) and (T2,P2). The temperature–pressure function is injective in a phase,
thus we have:

Proposition For every phase Z1 of the first body and for every phase Z2 of the
second body, the equilibrium in Z1 × Z2 (if exists) is unique.

13.3.3 Stability of equilibrium

Proposition If the bodies are entropic and the workings are ideal, then every
equilibrium in R1 × R2 is asymptotically stable.
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Proof Let (E1o, V1o, E2o, V2o) ∈ R1 × R2 be an equilibrium. The first derivative
of the function L in Paragraph 13.2.4 is zero in equilibrium. Its second derivative

D
2L(E1, V1, E2, V2) =

(

D
2S1(E1, V1) 0

0 D
2S2(E2, V2)

)

is negative definite. Thus, L has a strict local maximum at (E1o, V1o, E2o, V2o).

The derivative of L along the dynamical equation,
•
L equals

(

1

T1
− 1

Ta

)

(

Q1a +Q12 +W1a +W12

)

+

(

P1

T1
− Pa

Ta

)

(F1a + F12)+

(

1

T2
− 1

Ta

)

(

Q2a +Q21 +W2a +W21

)

+

(

P2

T2
− Pa

Ta

)

(F2a + F21),

where the customary loose notations are applied. We have W1a+W12 = −P1(F1a+
F12) and a similar relation for the second body, thus using mutuality Q21−P2F21 =
−(Q12 − P1F12) and F21 = −F12, we get

(

1

T1
− 1

Ta

)

(Q1a − P1F1a) +

(

P1

T1
− Pa

Ta

)

F1a+

(

1

T2
− 1

Ta

)

(Q2a − P2F2a) +

(

P2

T2
− Pa

Ta

)

F2a+

(

1

T1
− 1

T2

)

(Q12 − P1F12) +

(

P1

T1
− P2

T2

)

F12.

This expression – of course, as a function of (E1, V1, E2, V2) – has zero value
only in equilibrium, everywhere else in a neighbourhood of equilibrium is positive
because of the local uniqueness of equilibrium and the dissipation inequalities;

thus
•
L has a strict local minimum at (E1o, V1o, E2o, V2o).

Therefore, L is a Liapunov function for asymptotic stability.

13.4 Fixed total volume

13.4.1 Properties of the dynamical quantitities

The bodies are only in thermal contact with the environment:

F1a = F2a = 0.

The equilibrium properties of the dynamical quantitities are
∗ if F12 = 0, then P1 = P2,
∗ if Q12 = 0 or Q21 = 0, and P1 = P2, then T1 = T2,

(implying that if Q12 = 0 or Q21 = 0 and F12 = 0, then P1 = P2 and T1 = T2),
∗ ∗ if T1 = T2 and P1 = P2, then Q12 = 0, Q21 = 0 and F12 = 0,

∗ Q1a = 0 if and only if T1 = Ta and Q2a = 0 if and only if T2 = Ta.
As a consequence, equality holds in the dissipation inequalities if and only if

P1 = P2 and T1 = T2 = Ta.
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13.4.2 Uniqueness of equilibrium

The dynamical equation given in 13.2.1 becomes

Ė1 = Q1a +Q12 +W12, Ė2 = Q2a +Q21 +W21,

V̇1 = F12, V̇2 = F21;

the mutuality F21 = −F12 yields that the total volume of the bodies is constant:

V̇1 + V̇2 = 0.

For all Vs ∈ (m3)+

U(Vs) := {(E1, V1, E2, V2) | V1 + V2 = Vs}

is an invariant set of the dynamical equation.
(E1o, V1o, E2o, Vs − V1o) is an equilibrium if and only if

T1(E1o, V1o) = T2(E2o, Vs − V1o) = Ta, P1(E1o, V1o) = P2(E2o, Vs − V1o).

Proposition For all phases Z1 and Z2 of the bodies, the equilibrium in U(Vs) ∩
(Z1 × Z2) (if exists) is unique.

Proof The equilibrium volume is determined by

P1(V1o, Ta) = P2(Vs − V1o, Ta).

The function
V1 7→ P1(V1, Ta)

(

(V1, Ta) ∈ Z1

)

is strictly monotone decreasing, the function

V1 7→ P2(Vs − V1, Ta)
(

(Vs − V1, Ta) ∈ Z2

)

is strictly monotone increasing, therefore they can have equal values at least at one
point, i.e. V1o is uniquely defined. Temperature is a strictly monotone increasing
function of internal energy, thus T1(E1o, V1o) = Ta and T2(E2o, Vs − V1o) = Ta

for a given V1o determine uniquely the internal energy values in equilibrium.

13.4.3 Stability of equilibrium

Proposition If the bodies are entropic and the workings are ideal, then for all Vs

the equilibrium
(E1o, V1o, E2o, Vs − V1o) ∈ R1 × R2

is asymptotically stable in U(Vs).

Proof Parameterizing U(Vs) by (E1, V1, E2), we get the reduced dynamical equa-
tion

Ė1 = Q1a +Q12 − P1F12, Ė2 = Q2a +Q21 − P2F21,

V̇1 = F12,
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where, of course, in the dynamical quantitities V2 is replaced with Vs − V1, i.e.

Q12 = Q12(E1, V1, E2, Vs − V1), etc.

The function

(E1, V1, E2) 7→ Λ(E1, V1, E2) := L(E1, V1, E2, Vs − V1) =

= S1(E1, V1) + S2(E2, Vs − V1) − E1 + E2

Ta
+ const

is continuously differentiable in a neighbourhood of equilibrium and

∂Λ(E1, V1, E2)

∂E1
=

1

T1(E1, V1)
− 1

Ta
,

∂Λ(E1, V1, E2)

∂E2
=

1

T2(E2, Vs − V1)
− 1

Ta
,

∂Λ(E1, V1, E2)

∂V1
=

P1(E1, V1)

T1(E1, V1)
− P2(E2, Vs − V1)

T2(E2, Vs − V1)
.

We see that the first derivative of Λ has zero value in equilibrium.
For the second derivative we easily get

D
2Λ(E1, V1, E2) =

(

D
2S1(E1, V1) 0

0 0

)

+

(

0 0
0 C∗

D
2S2(E2, Vs − V1)C

)

where

C :=

(

0 1
−1 0

)

and ∗ denotes the transpose of a matrix. The second derivative is the sum of two
negative semidefinite matrices; their kernels are spanned by the vectors (0, 0, 1)
and (1, 0, 0), respectively; thus the sum is negative definite. Therefore L has a
strict local maximum in equilibrium.

The derivative of Λ along the reduced dynamical equation,
•
Λ equals

(

1

T1
− 1

Ta

)

(

Q1a +Q12 −P1F12

)

+

(

P1

T1
−P2

T2

)

F12 +

(

1

T2
− 1

Ta

)

(

Q2a+Q21+P2F12

)

,

where the customary loose notations are applied. Using mutuality Q21 −P2F21 =
−(Q12 − P1F12), and F21 = −F21, we get

(

1

T1
− 1

Ta

)

Q1a +

(

1

T2
− 1

Ta

)

Qa0 +

(

1

T1
− 1

T2

)

(Q12+W12)+

(

P1

T1
−P2

T2

)

F12.

This expression – of course, as a function of (E1, V1, E2) – has zero value only
in equilibrium, everywhere else in a neighbourhood of equilibrium it is positive
because of the local uniqueness of equilibrium and the dissipation inequalities;

thus
•
L has a strict local minimum at (E1o, V1o, E2o).

Therefore, Λ is a Liapunov function for asymptotic stability.
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13.5 Fixed total volume and joint heat insulation

13.5.1 Properties of the dynamical quantitities

The bodies are completely insulated from the environment:

F1a = F2a = 0, Q1a = Q2a = 0.

The equilibrium properties of the dynamical quantitities are

∗ if F12 = 0, then P1 = P2,

∗ if Q12 = 0 or Q21 = 0, and P1 = P2, then T1 = T2,

(implying that if Q12 = 0 or Q21 = 0 and F12 = 0, then P1 = P2 and T1 = T2),

∗ ∗ if T1 = T2 and P1 = P2, then Q12 = 0, Q21 = 0 and F12 = 0.

As a consequence, equality holds in the dissipation inequalities if and only if
P1 = P2 and T1 = T2.

13.5.2 Uniqueness of equilibrium

Now the dynamical equation is

Ė1 = Q12 +W12, Ė2 = Q21 +W21,

V̇1 = F12, V̇2 = F21;

the mutuality Q21 +W21 = −(Q12 +W12) and F21 = −F12 yield

Ė1 + Ė2 = 0 and V̇1 + V̇2 = 0;

the total internal energy and the total volume of the bodies are constants.

For all Es ∈ (J)+ and Vs ∈ (m3)+

U(Es, Vs) := {(E1, V1, E2, V2) | E1 + E2 = Es, V1 + V2 = Vs}

is an invariant set of the dynamical equation.

(E1o, V1o, Es − E1o, Vs − V1o) is an equilibrium in U(Es, Vs) if and only if

T1(E1o, V1o) = T2(Es −E1o, Vs − V1o) P1(E1o, V1o) = P2(Es −E1o, Vs − V1o).

The local uniqueness of equilibrium in U(Es, Vs) is given implicitly by the
following result on asymptotic stability.

13.5.3 Stability of equilibrium

Proposition If the bodies are entropic and the workings are ideal, then for all
(Es, Vs) the equilibrium

(E1o, V1o, Es − E1o, Vs − V1o) ∈ R1 × R2

(if exists) is asymptotically stable in U(Es, Vs).
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Proof Parameterizing U(Es, Vs) by (E1, V1), we get the reduced dynamical equa-
tion

Ė1 = Q12 − P1F12,

V̇1 = F12,

where, of course, in the dynamical quantitities E2 and V2 are replaced with Es−E1

and Vs − V1, respectively, i.e.

Q12 = Q12(E1, V1, Es − E1, Vs − V1), etc.

The function

(E1, V1) 7→ Λ(E1, V1) := L(E1, V1, Es − E1, Vs − V1) =

= S1(E1, V1) + S2(Es − E1, Vs − V1) + const.

is continuously differentiable in a neighbourhood of equilibrium and its first deriva-
tive

DS1(E1, V1) − DS2(Es − E1, Vs − V2) =

(

1

T1(E1, V1)
− 1

T1(Es − E1, Vs − V1)
,

P1(E1, V1)

T1(E1, V1)
− P1(Es − E1, Vs − V1)

T1(Es − E1, Vs − V1)

)

has zero value in equilibrium.
Its second derivative

D
2S1(E1, V1) + D

2S2(Es − E1, Vs − V1),

is negative definite as a sum of two negative definite matrices. Therefore, L has a
strict local maximum in equilibrium; as a consequence, the equilibrium is locally
unique.

The derivative of Λ along the reduced dynamical equation,
•
Λ equals

(

1

T1
− 1

T2

)

(

Q12 − P1F12

)

+

(

P1

T1
− P2

T2

)

F12,

where the customary loose notations are applied.
This expression – of course, as a function of (E1, V1) – has zero value only

in equilibrium, everywhere else in a neighbourhood of equilibrium it is positive
because of the local uniqueness of equilibrium and the dissipation inequalities;

thus
•
L has a strict local minimum at (E1o, V1o).

Therefore, Λ is a Liapunov function for asymptotic stability.

13.6 Fixed total volume and individual heat insulations

13.6.1 Properties of the dynamical quantitities

The bodies are completely insulated from the environment and are heat insulated
from each other:

F1a = F2a = 0, Q1a = Q2a = Q12 = Q21 = 0.
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Now we cannot take ideal working. The equilibrium properties of the dynamical
quantitities are

– if P1 = P2, then π12 = 0,
∗ F12 = 0 if and only if P1 = P2.
Note that the dissipation inequalities are reduced to

−W12

P1
(P1 − P2) ≥ 0

where, as a consequence of the equilibrium properties, equality holds if and only

if P1 = P2. We have − W12

P1
= F12

(

1 + π12

P1

)

and π12 is zero if P1 = P2. Thus

F12(P1 − P2) ≥ 0

in a neighbourhood of {(E1, V1, E2, V2) | P1(E1, V1) = P2(E2, V2)} and equality
holds if and only if P1(E1, V1) = P2(E2, V2).

13.6.2 Uniqueness of equilibrium

Now the dynamical equation is

Ė1 = W12, Ė2 = W21,

V̇1 = F12, V̇2 = F21,

and mutuality yields that

Ė1 + Ė2 = 0 and V̇1 + V̇2 = 0.

Furthermore, we have
Ė1 = −(P1 + π12)V̇1 (∗)

(and a similar relation for the second body, too). Then

E1 + E2 = Es = const. V1 + V2 = Vs = const.,

moreover, internal energy can be given as a function of volume by the solution of
the differential equation

dE1

dV1
= −P1(E1, V1) − π12(E1, V1, Es − E1, Vs − V1). (∗∗)

Let C be the integral curve of this differential equation passing through the point
(Es, Vs). Then

U(Es, Vs, C) :=

:= {(E1, V1, E2, V2) | E1 + E2 = Es, V1 + V2 = Vs, (E1, V1) ∈ C}
is an invariant set of the dynamical equation.

(E1o, V1o, E2o, V2o) is an equilibrium in U(Es, Vs, C) if and only if

P1(E1o, V1o) = P2(E2o, V2o).

The local uniqueness of equilibrium in U(Es, Vs, C) is given implicitly by the
following result on asymptotic stability.
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13.6.3 Stability of equilibrium

Proposition If the bodies have the normal dilation property, then for all Es ∈ (J)+

and Vs ∈ (m3)+) the equilibrium

(E1o, V1o, E2o, V2o) ∈ U(Es, Vs, C) ∩ (R1 × R2)

(if exists) is asymptotically stable in U(Es, Vs, C).

Proof Parameterizing U(Es, Vs, C) by V1, we get the reduced dynamical equation

V̇1 = F12

(

E1(V1), V1, Es − E1(V1), Vs − V1

)

where E1 is the solution of the differential equation (∗∗) whose graph is C.
It is easy to see that the function

V1 7→ Λ(V1) :=

(

P1(E1(V1), V1) − P2(Es − E1(V1), Vs − V1)

)2

has a strict minimum in equilibrium and continuously differentiable in a neigh-
bourhood of equilibrium. Its first derivative equals

∂P1

∂V1
([1]) +

∂P2

∂V2
([2]) −

(

∂P1

∂E1
([1]) +

∂P2

∂E2
([2])

)

(

P1([1]) + π12([1], [2])
)

(∗)

multiplied by 2(P1([1]) − P2([2])), where [1] := (E1(V1), V1), [2] := (Es −
E1(V1), Vs − V1).

Relations in Paragraph 5.1, the conditions of intrinsic stability and the normal
dilation property imply

∂P

∂V
− ∂P

∂E
P =

(

∂P
∂V

−
∂P
∂T
∂E
∂T

(

∂e

∂v
+ P

)

)

• < 0.

π12 has zero value in equilibrium, thus expression (∗) is negative in equilib-
rium, so by continuity, it is negative in a neighbourhood of equilibrium. Thus
the derivative of Λ multiplied by the right-hand side of the dynamical equation is
negative in a neighbourhood of equilibrium and zero in equilibrium because of the
dissipation inequality: the derivative of Λ along the reduced dynamical equation
has a strict local maximum in equilibrium.

Therefore, Λ is a Liapunov function for asymptotic stability.

13.7 Fixed individual volumes

13.7.1 Properties of the dynamical quantitities

The bodies are only in thermal contact with each other and with the environment:

F1a = F2a = F12 = F21 = 0.

The springings are zero, so mutuality implies

Q12 = −Q21.
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The equilibrium properties of the dynamical quantitities are:
∗ Q12 = 0 (and so Q21 = 0) if and only if T1 = T2,
∗ Q1a = 0 if and only if T1 = Ta and Q2a = 0 if and only if T2 = Ta.
The dissipation inequalities become

Q12

(

1

T1
− 1

T2

)

≥ 0,

Q1a

(

1

T1
− 1

Ta

)

≥ 0, Q2a

(

1

T2
− 1

Ta

)

≥ 0,

where equality holds if and only if T1 = T2, T1 = Ta and T2 = Ta, respectively.

13.7.2 Uniqueness of equilibrium

Now the dynamical equation is

Ė1 = Q1a +Q12, Ė2 = Q2a +Q21,

V̇1 = 0, V̇2 = 0.

For all V1o, V2o ∈ (m3)+

U(V1o, V2o) := {(E1, V1, E2, V2) | V1 = V1o, V2 = V2o}

is an invariant set of the dynamical equation.
(E1o, V1o, E2o, V2o) is an equilibrium in U(V1o, V2o) if

T1(E1o, V1o) = T2(E2o, V2o) = Ta.

The functions Ei 7→ Ti(Ei, V1o) (i = 1, 2) are injective, so the following propo-
sition is evident:

Proposition The equilibrium in U(V1o, V2o) (if exists) is unique.

13.7.3 Stability of equilibrium

Proposition If the bodies are entropic, then for all V1o and V2o the equilibrium

(E1o, V1o, E2o, V2o) ∈ U(V1o, V2o) ∩ (R1 × R2)

is asymptotically stable in U(V1o, V2o).

Proof Parameterizing U(V1o, V2o) by (E1, E2), we get the reduced dynamical
equation

Ė1 = Q1a +Q12, Ė2 = Q2a +Q21,

where, of course, in the dynamical quantitities V1 and V2 are replaced with V1o

and V2o, respectively, i.e.

Q12 = Q12(E1, V1o, E2, V2o), etc.
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The function

(E1, E2) 7→ Λ(E1, E2) := L(E1, E2, V1o, V2o) =

= S1(E1, V1o) + S2(E2, V2o) − E1 + E2

Ta
+ const.

is continuously differentiable in a neighborhood of equilibrium and

∂Λ(E1, E2)

∂Ei
=

1

Ti(Ei, Vio)
− 1

Ta
(i = 1, 2).

The first derivative of Λ has zero value in equilibrium.
Its second derivative

D
2Λ(E1, E2) =





−
(

1
T2

1

∂T1

∂E1

)

(E1, V1o) 0

0 −
(

1
T2

2

∂T2

∂E2

)

(E2, V2o)



 ,

is evidently negative definite. Therefore, Λ has a strict local maximum in equilib-
rium.

The derivative of Λ along the reduced dynamical equation,
•
Λ equals

(

1

T1
− 1

Ta

)

(Q1a +Q12) +

(

1

T2
− 1

Ta

)

(Q2a +Q21).

Using the mutuality Q21 = −Q12, we get
(

1

T1
− 1

Ta

)

Q1a +

(

1

T2
− 1

Ta

)

Q2a +

(

1

T1
− 1

T2

)

Q12.

This expression – of course as a function of (E1, E2) – has zero value only
in equilibrium, everywhere else in a neighbourhood of equilibrium it is positive
because of the local uniqueness of equilibrium and the dissipation inequalities;

thus
•
L has a strict local minimum at (E1o, E2o).

Therefore, Λ is a Liapunov function for asymptotic stability.

13.8 Fixed individual volumes and joint heat insulation

13.8.1 Properties of the dynamical quantitities

The bodies are completely insulated from the environment and they are only in
thermal contact with each other:

F1a = F2a = F12 = F21 = 0, Q1a = Q2a = 0.

The springings are zero, so mutuality implies that

Q12 = −Q21.

The equilibrium properties of the dynamical quantitities are
∗ Q12 = 0 (and so Q21 = 0) if and only T1 = T2.
The dissipation inequality becomes

Q12

(

1

T1
− 1

T2

)

≥ 0,

where equality holds if and only if T1 = T2.



13 Two bodies in a given environment 147

13.8.2 Uniqueness of equilibrium

Now the dynamical equation is

Ė1 = Q12, Ė2 = Q21,

V̇1 = 0, V̇2 = 0;

mutuality yields that Ė1 + Ė2 =. Thus for all Es ∈ (J)+ and V1o, V2o ∈ (m3)+

U(Es, V1o, V2o) := {(E1, V1, E2, V2) | E1 + E2 = Es, V1 = V1o, V2 = V2o}

is an invariant set of the dynamical equation.
(E1o, V1o, Es − E1o, V2o) is an equilibrium in U(Es, V1o, V2o) if and only if

T1(E1o, V1o) = T2(Es − E1o, V2o) = Ta.

We can prove as previously:

Proposition The equilibrium in U(Es, V1o, V2o) (if exist) is unique.

13.8.3 Stability of equilibrium

Proposition For all Es, V1o and V2o the equilibrium

(E1o, V1o, Es − E1o, V2o) ∈ R1 × R2

is asymptotically stable in U(Es, V1o, V2o).

Proof Parameterizing U(Es, V1o, V2o) by E1, we get the reduced dynamical equa-
tion

Ė1 = Q12(E1, V1o, Es − E1, V2o).

The reader is asked to verify that

E1 7→:= −
(

T1(E1, V1o) − T2(Es − E1, V2o)
)2

is a Liapunov function for asymptotic stability.
It is worth mentioning that now the entropic property is not required; but if

the bodies are entropic, then

E1 7→ Λ(E1) := L(E1, V1o, Es −E1, V2o) = S1(E1, V1o) + S2(Es −E1, V2o) + const.

is a Liapunov function, too, for asymptotic stability.

13.9 Individual heat insulations

13.9.1 Properties of the dynamical equation

The bodies are only in mechanical contact with each other and with the envi-
ronment:

Q1a = Q2a = Q12 = Q21 = 0.
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Though all the heatings are zero, we can take ideal workings without contra-
diction.

The equilibrium properties of the dynamical equation are
∗ F12 = 0 (and so F21 = 0) if and only if P1 = P2,
∗ F1a = 0 if and only if P1 = Pa and F2a = 0 if and only if P2 = Pa.
The dissipation inequalities (with ideal workings) become

F12(P1 − P2) ≥ 0,

F1a(P1 − Pa) ≥ 0, F2a(P2 − Pa) ≥ 0,

where equality holds if and if P1 = P2, P1 = Pa and P2 = Pa, respectively.

13.9.2 Uniqueness of equilibrium

Now the dynamical equation is

Ė1 = −P1(F1a + F12), Ė2 = −P2(F2a + F21),

V̇1 = F1a + F12, V̇2 = F2a + F21

from which we infer

Ė1 + P1V̇1 = 0, Ė2 + P2V̇2 = 0.

Consequently, in such processes internal energy can be given as a function of
volume for both bodies (cf. 13.6). Namely, let Ci be an integral curve of the
differential equations

dEi

dVi
= −Pi(Ei, Vi) (i = 1, 2). (∗)

Then

U(C1, C2) := C1 × C2 = {(E1, V1, E2, V2) | (E1, V1) ∈ C1, (E2, V2) ∈ C2}

is an invariant set of the dynamical equation.
(E1o, V1o, E2o, V2o) is an equilibrium in U(C1, C2) if and only if

P1(E1o, V1o) = P2(E2o, V2o) = Pa.

The local uniqueness of equilibrium in U(C1, C2) is given implicitly by the
following result on asymptotic stability.

13.9.3 Stability of equilibrium

Proposition If the bodies are entropic (and the workings are ideal), then for all
C1 and C2 the equilibrium

(E1o, V1o, E2o, V2o) ∈ U(C1, C2) ∩ (R1 × R2)

(if exists) is asymptotically stable in U(C1, C2).
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Proof Parameterizing U(C1, C2) by (V1, V2), we get the reduced dynamical equa-
tion

V̇1 = F1a + F12, V̇2 = F2a + F21,

where, of course, in the dynamical quantitities E1 and E2 are replaced with E1(V1)
and E2(V2), respectively (Ei is the solution of (∗) whose graph is Ci), i.e.

F12 = F12(E1(V1), V1, E2(V2), V2), etc.

The reader is asked to prove that

(V1, V2) 7→ Λ(V1, V2) := L(E1(V1), V1, E2(V2), V2) =

= const. − E1(V1) + E2(V2) + Pa(V1 + V2)

Ta

is a Liapunov function for asymptotic stability.

13.10 Joint heat insulation

13.10.1 Properties of the dynamical quantitities

The bodies are not in thermal contact with the environment:

Q1a = Q2a = 0.

The equilibrium properties of the dynamical quantitities are

∗ if F12 = 0 (and so F21 =)), then P1 = P2,

∗ if Q12 = 0 or Q21 = 0 and P1 = P2, then T1 = T2,

(implying that if Q12 = 0 or Q21 = 0 and F12 = 0, then T1 = T2 and P1 = P2),

∗ ∗ if T1 = T2 and P1 = P2, then Q12 = 0, Q21 = 0 and F12 = 0,

∗ F1a = 0 if and only if P1 = Pa and F2a = 0 if and only if P2 = Pa.

13.10.2 Unsolved problem

(E1o, V1o, E2o, V2o) is an equilibrium if and only if

T1(E1o, V1o) = T2(E2o, V2o) P1(E1o, V1o) = P2(E2o, V2o) = Pa.

We have three equations for four unknowns: equilibrium is not unique even
locally. We should like to find invariant sets that the equilibrium is locally unique
in. Unfortunately, we cannot find such subsets even in the simple case of ideal
workings (which are allowed in spite of zero heatings).

The question of stability of equilibria is not yet solved.
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13.11 Constant temperature

13.11.1 Properties of the dynamical quantitities

The bodies have equal constant temperature. As in Paragraph 12.6, we can show
that equilibrium can exist only if the temperature of the bodies is equal to that of
the environment.

It will be convenient to use temperature as a variable instead of internal energy.
Springings and heatings are not independent; we have, as in Paragraph 12.6

that
Qik := −NikFik,

where

Nik(Vi, Ti, Vk, Tk) := Pi(Vi, Ti) +
∂Ei

∂Vi
(Vi, Ti) + πik(Vi, Ti, Vk, Tk).

The equilibrium properties of the dynamical quantitities are
∗ F12(V1, Ta, V2, Ta) = 0 if and only if P1(V1, Ta) = P2(V2, Ta),
∗ Fia(Vi, Ta, Ta, Pa) = 0 if and only if Pi(Vi, Ta) = Pa (i = 1, 2).
The dissipation inequalities become

F12(V1, Ta, V2, Ta)(P1(V1, Ta) − P2(V2, Ta)) ≥ 0,

F1a(V1, Ta, Ta, Pa)(P1(V1, Ta) − Pa) ≥ 0,

F2a(V2, Ta, Ta, Pa)(P2(V2, Ta) − Pa) ≥ 0,

where equality holds if and only if P1(V1, Ta) = P2(V2, Ta), P1(V1, Ta) = Pa and
P2(V2, Ta) = Pa, respectively.

13.11.2 Uniqueness of equilibrium

U(Ta) := {(V1, Ta, V2, Ta) | V1, V2 ∈ (m3)+}
is an invariant set of the dynamical equation.

(V1o, Ta, V2o, Ta) is an equilibrium if and only if

P1(V1o, Ta) = P2(V2o, Ta) = Pa.

Pressure is a strictly monotone decreasing function of volume in a phase, thus we
have:

Proposition For all phases Z1 and Z2 of the bodies, the equilibrium in U(Ta) ∩
(Z1 × Z2) (if exists) is unique.

13.11.3 Stability of equilibrium

Proposition If the bodies are entropic, then for all Ta the equilibrium

(V1o, Ta, V2o, Ta) ∈ R1 ×R2

is asymptotically stable in U(Ta).
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Proof Parameterizing U(Ta) by (V1, V2), we get the reduced dynamical equation

V̇1 = F1a(V1, Ta, Ta, Pa) + F12(V1, Ta, V2, Ta),

V̇2 = F2a(V2, Ta, Ta, Pa) + F21(V2, Ta, V1, Ta).

The reader is asked to verify that

(V1, V2) 7→ L(V1, Ta, V2, Ta) =

= S1(V1, Ta) + S2(V2, Ta) − E1(V1, Ta) + E2(V1, Ta) + Pa(V1 + V2)

Ta

is a Liapunov function for asymptotic stability.

13.12 Constant temperature and fixed total volume

13.12.1 Properties of the dynamical quantitities

Besides the properties listed in the previous paragraph, we have

F1a = F12 = 0.

13.12.2 Uniqueness of equilibrium

If temperature is used as a variable instead of internal energy, then for all Vs ∈
(m3)+

U(Ta, Vs) := {(V1, Ta, V2, Ta) | V1 + V2 = Vs}
is an invariant set of the dynamical equation.

(V1o, Ta, Vs − V1o, Ta) is an equilibrium if and only if

P1(V1o, Ta) = P2(Vs − V1o, Ta).

As in Paragraph 13.4, we have:

Proposition For all phases Z1 and Z2 of the bodies, the equilibrium in U(Ta, Vs)∩
(Z1 × Z2) (if exists) is unique.

13.12.3 Stability of equilibrium

Proposition For all Ta and Vs

(V1o, Ta, Vs − V1o, Ta) ∈ R1 ×R2

is asymptotically stable in U(Ta, Vs).

Proof Parameterizing U(Ta, Vs) by V1, we get the reduced dynamical equation

V̇1 = F12(V1, Ta, Vs − V1, Ta).

The reader is asked to verify that

V1 7→
(

P1(V1, Ta) − P2(Vs − V1, Ta)
)2
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is a Liapunov function for asymptotic stability.
It is worth mentioning that entropic property is not required; but if the bodies

are entropic, then

V1 7→ L(V1, Ta, Vs − V1, Ta) =

= S1(V1, Ta) + S2(Vs − V1, Ta) − E1(V1, Ta) + E2(Vs − V1, Ta)

Ta
+ const.

is a Liapunov function, too, for asymptotic stability.

13.13 Constant pressure

13.13.1 Properties of the dynamical quantitities

The bodies have equal constant pressure. As in Paragraph 12.7, we can show that
equilibrium can exist only if the pressure of the bodies is equal to that of the
environment. Because of the equality of pressures, the lost coefficients take zero
value in every process.

Springings and heatings are not independent; we have, as in Paragraph 12.7
that

F12(V1, T1, V2, T2) + F1a(V1, T1, Ta, Pa) =

= K1(V1, T1)
(

Q12(V1, T1, V2, T2) + Q1a(V1, T1, Ta, Pa)
)

,

where

K1(V1, T1) := − 1

cp,1(V1, T1)

∂P1(V1,T1)
∂T1

∂P1(V1,T1)
∂V1

,

and the same relation holds by interchanging the subscripts 1 and 2.
The equilibrium properties of heatings are (because now P1 = P2 = Pa)
∗ Q12 = 0 if and only if T1 = T2,
Q1a = 0 if and only if T1 = Ta, Q2a = 0 if and only if T2 = Ta.
Th dissipation inequalities are

−Q12(T1 − T2) ≥ 0, or Q12

(

1

T1
− 1

T2

)

≥ 0,

Q1a

(

1

T1
− 1

Ta

)

≥ 0, Q2a

(

1

T2
− 1

Ta

)

≥ 0.

13.13.2 Uniqueness of equilibrium

It is evident that

U(Pa) := {(V1, T1, V2, T2) | P1(V1, T1) = P2(V2, T2) = Pa}
is an invariant set of the dynamical equation.

(V1o, T1o, V2o, T2o) is an equilibrium if and only if T1o = T2o = Ta and
P1(V1o, Ta) = P2(V2o, Ta) = Pa.

Proposition For all phases Z1 and Z2 the equilibrium in U(Pa) ∩ (Z1 × Z2) (if
exists) is unique.
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13.13.3 Stability of equilibrium

Proposition If the bodies are entropic, then for all Pa the equilibrium

(V1o, Ta, V2o, Ta) ∈ U(Pa) ∩ (R1 ×R2)

is asymptotically stable in U(Pa).

Proof Let us express volumes as functions of temperature near (V1o, Ta) and
(V2o, Ta) from the implicit relations P1(V1, T1) = Pa and P2(V2, T2) = Pa, respec-
tively; let νi (i = 1, 2) denote these functions. Then U(Pa) can be parameterized
by (T1, T2) and the reduced dynamical equation becomes

cp,1(ν1(T1), T1)Ṫ1 = Q1a(ν1(T1), T1, Ta, Pa) + Q12(ν1(T1), T1, ν2(T2), T2),

cp,2(ν2(T2), T2)Ṫ2 = Q2a(ν2(T2), T2, Ta, Pa) + Q21(ν2(T2), T2, ν1(T1), T1).

The reader is asked to prove as in Paragraph 12.7

(T1, T2) 7→ L(ν1(T1), T1, ν2(T2), T2) =

= S1(ν1(T1), T1) + S2(ν2(T2), T2)−

− E1(ν1(T1), T1) + E2(ν2(T2), T2) + Pa(ν1(T1) + ν2(T2))

Ta

is a Liapunov function for asymptotic stability.

13.14 Constant pressure and joint heat insulation

13.14.1 Properties of the dynamical quantitities

The bodies are heat insulated from the environment, thus besides the properties
listed in the previous paragraph, we have

Q1a = Q2a = 0.

13.14.2 Uniqueness of equilibrium

Mutuality and equality of pressures give now Q12 +Q21 = 0 from which we infer

Ė1 + PaV̇1 + Ė2 + PaV̇2 = 0.

As a consequence, for all Hs ∈ (J)

U(Pa,Hs) := {(V1, T1, V2, T2) |P1(V1, T1) = P2(V2, T2) = Pa,

E1(V1, T1) + E2(V2, T2) + Pa(V1 + V2) = Hs}
is an invariant set of the dynamical equation (Hs is the total enthalpy of the
bodies).

(V1o, T1o, V2o, T2o) ∈ U(Pa,Hs) is an equilibrium if and only if

T1o = T2o =: To, P1(V1o, To) = P2(V2o, To) = Pa,

E1(V1o, To) + E2(V2o, To) + Pa(V1o + V2o) = Hs.

The local uniqueness of equilibrium in U(Pa,Hs) is given implicitly by the
following result on asymptotic stability.
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13.14.3 Stability of equilibrium

Proposition If the bodies are entropic, then for all Pa and Hs the equilibrium

(V1o, T1o, V2o, T2o) ∈ U(Pa,Hs) ∩ (R1 ×R2)

(if exists) is asymptotically stable in U(Pa,Hs).

Proof Let us take the functions ν1 and ν2 of the previous paragraph.
The function T2 7→ E2(ν2(T2), T2) + Paν2(T2) is continuously differentiable,

its derivative cp,2(ν2(T2), T2) is nowhere zero, thus the relation E1(ν1(T1), T1) +
E2(ν2(T2), T2) +Pa(ν1(T1) + ν2(T2)) = Hs allows us to express T2 as a function of
T1 at least locally; let τ2 be this function. Then U(Pa,Hs) can be parameterized
by T1 and the reduced dynamical equation becomes

cp,1(ν1(T1), T1)Ṫ1 = Q12

(

ν1(T1), T1, ν2(τ2(T1)), τ2(T1)
)

.

The reader is asked to prove that

T1 7→ L(ν1(T1), T1, ν2(τ2(T1)), τ2(T1)) =

= S1(ν1(T1), T1) + S2(ν2(τ2(T1)), τ2(T1)) + const.

is a Liapunov function for asymptotic stability.

13.15 Extremum properties

13.15.1 Conditions of stability

As in Paragraph 12.11.1, we emphasize that asymptotic stability was proven for
equilibria in the regular domain on the basis of two different types of condi-
tions: the conditions of intrinsic stability (properties of the materials reflected in
the constitutive functions) and the dissipation inequalities (properties of the inter-
actions reflected in the dynamical quantitities). The former assure the maximum
of the Liapunov function, the latter assure the minimum of the derivative of the
Liapunov function along the dynamical equation.

13.15.2 The role of entropy

In one-body systems, except the system without constraint, asymptotic stability
can be proved very generally without entropy. In two-body systems, except a
few ones, asymptotic stability can only be proved with the aid of entropy; the
exceptional systems are submitted to the most constraints.

It seems, the more the ‘degree of freedom’, the more the role of entropy. More-
over, we mention that when working cannot be ideal (fixed total volume and
individual heat insulations), then the entropy is useless.

In the treated systems (except the one mentioned above and the one in Para-
graph 13.10 which represents an unsolved problem) if the bodies are entropic and
the workings are ideal, then the total entropy of the bodies and the environment
is a Liapunov function for asymptotic stability.
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Therefore, the total entropy has a strict maximum in equilibrium. The deriva-
tive of the total entropy along the dynamical equation, the entropy production
is the sum of quantities appearing in the dissipation inequalities, thus it has a
strict minimum in equilibrium; in other words, total entropy increases strictly
monotonically in non-equilibrium processes.

It is again evident that the maximum of the total entropy and the positivity
of entropy production are independent of each other.

13.15.3 Warning

We emphasize that always the total entropy has a maximum in equilibrium.
As said in Paragraph 12.11.3, in usual treatments equilibrium is identified with
the extremum of diverse functions.

We have seen the fundamental fact:
– the total entropy of the bodies and the environment has a maximum in

equilibrium.
Moreover, we know that
– the total energy of the bodies and the environment is constant.

Then we can deduce that
– if the temperature of the bodies is constant, then the total free energy of

the bodies and the environment has a minimum in equilibrium,
– if the pressure of the bodies is constant, then the total enthalpy of the

bodies and the environment is constant.
Now, contrary to the one-body systems, it is meaningful to examine the ex-

tremum of the total quantities (entropy, internal energy, free energy, enthalpy) of
the two bodies.

Our result makes it clear that
– if the total volume Vs and the total internal energy Es of the

bodies are fixed, then the total entropy of the bodies has a maximum
in equilibrium because the expression (∗) in Paragraph 13.2.4 becomes

S1 + S2 − Es + PaVs

Ta
,

which, up to an additive constant, is the total entropy of the bodies;
– if the total volume Vs and the total entropy Ss of the bodies are

fixed, then the total internal energy of the bodies has a minimum in
equilibrium because the expression in Paragraph 13.2.4 (∗), multiplied by Ta,
becomes

TaSs − E1 − E2 − PaVs,

which, up to an additive constant, is the negative of the total internal energy of
the bodies;

– if the total volume Vs is fixed and the temperature of the bodies
is constant Ta, then the total free energy of the bodies has a minimum
in equilibrium because the expression in Paragraph 13.2.4 (∗), multiplied by Ta,
becomes

TaS1 + TaS2 − E1 − E2 − PaVs
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which, up to an additive constant, is the negative of the total free energy of the
bodies;

– if the total entropy Ss is fixed and the pressure of the bodies is
constant Pa, then the total enthalpy of the bodies has a minimum in
equilibrium because the expression in Paragraph 13.2.4 (∗), multiplied by Ta,
becomes

TaSs − E1 − E2 − Pa(V1 + V2)

which, up to an additive constant, is the negative of the total enthalpy of the
bodies.

The above four extrema appear in usual treatments of thermodynamics. The
second and fourth can only be of theoretical importance because it is practically
impossible to fix the value of the total entropy of the bodies. On the other hand,
there is a number of other interesting cases (we have seen them) which are not
mentioned at all.

It is not reasonable to pick out only four cases and to formulate their equilib-
rium as extrema of different functions. It is important to see that equilibrium
in all cases is characterized by the maximum of the total entropy of the
bodies and the environment.

13.16 On the second law again

13.16.1 On the formulations of Clausius and Planck

The Kelvin–Planck formulation
“No process is possible whose sole result is the complete conversion of heat into

work",

and the Clausius formulation
“No process is possible whose sole result is the transfer of heat from a colder

to a hotter body"

are frequently claimed to be equivalent; now we study a ‘proof’ of this equivalence.
4

Let us take two heat baths of temperature Ta and Tb, respectively, with Ta < Tb.
Let us take two bodies which are only in mechanical contact with each other and
in mechanical and thermal contact with the heat baths. Then

Ė1 = Q1a +Q1b +W1a +W1b +W12,

Ė2 = Q2a +Q2b +W2a +W2b +W21.

The expression ‘sole result’ means that we the final state (internal energy and
volume) of each body equals the initial state. The duration of the process does
not appear in the formulations, so we can choose an arbitrarily short interval, i.e.
we can take Ė1 = Ė2 = 0.

Let us suppose that the Kelvin–Planck formulation is not true. Then there is
a body (‘engine’), let it be the first one, so that Q1a = 0, W1a = W1b = 0 and

0 = Q1b +W12, and Q1b > 0.

4C. J. Adkins: Equilibrium Thermodynamics, Cambridge University Press, 1983, 3rd edition
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Figure 13.1

Let the second body be coupled to the first one in such a way thatW21 = −W12,
furthermore, let W2a = W2b = 0 and

0 = Q2a +Q2b −W12, and Q2a > 0

(Figure 13.1). The sum of the two equalities above yields

0 = Q2a +
(

Q1b +Q2b

)

and Q2a > 0.

If the two bodies together are considered as a single system, then the system
absorbs heat Q2a from the heat bath Ta and emits the same amount of heat to
the heat bath Tb: heat flows from a colder place to a hotter one, and the Clausius
formulation is not true.

Let us suppose that the Clausius formulation is not true. Then there is a body,
let it be the first one, so that W1a = W1b = W12 = 0 and

0 = Q1a +Q1b, and Q1b < 0.

Let the second body be independent of the first one, i.e. W12 = W21 = 0,
furthermore, let W2b = 0 and

0 = Q2a +Q2b +W2a, and Q2b = −Q1b > 0, Q2a < 0, W2a < 0

(Figure 13.1). The sum of the two equalities above yields

0 =
(

Q1a +Q2a

)

+W2a.

If the two bodies together are regarded as a single system, then the system
absorbs heat Q1a +Q2a which is converted completely to work: the Kelvin–Planck
formulation is not true.

We have seen in Paragraph 12.16 that the two formulations are really indepen-
dent, thus the ‘proof’ must be incorrect. It is not evident, however, where the error
is. But it is remarkable that the inequality Ta < Tb is not referred to anywhere.
Now, in order to detect error, one should take the reversed inequality Ta > Tb and
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run through the ‘proof’. Then he/she observes that the second part does not go:
if Q2a < 0 and Q2b > 0, then the engine works absorbing heat from a colder heat
bath and emitting heat to a hotter one, and this is impossible. Is this impossible?
Why? Where is it formulated in the theory that this is impossible? Nowhere.
Thus the ‘proof’ involves the following tacit assumption which is as strong as any
of the formulations to be proved:

“There is an engine which works absorbing heat from a hotter place and emit-
ting heat to a colder place but there is no engine which works absorbing heat from
a colder place and emitting heat to a hotter place".

13.17 Exercises

1. What can be said about the constraint-free system with the method of
linearization (cf 12.3)?

2. Why cannot the local uniqueness of equilibrium in U(Es, Vs) be proven
without assuming the entropic property (see Paragraph 13.5)? Examine the other
systems, too, where the local uniqueness of equilibrium is not stated explicitly.

3. Why is (E1, E2) 7→ (T1(E1, V1o)−Ta)2 +(T2(E2, V2o)−Ta)2 not a Liapunov
function for asymptotic stability in the case of fixed individual volumes?

4. Why is (V1, V2) 7→ (P1(E(V1), V1) − Pa)2 + (P2(E(V2), V2) − Pa)2 not a Lia-
punov function for asymptotic stability in the case of individual heat insulations?

5. Show that if the specific heats are constant, then a convenient modification
of the previous functions is a good Liapunov function.

6. Demonstrate that there is no isothermal equilibrium if the temperature of
the bodies does not equal that of the environment and the bodies are not heat
insulated from the environment.

7. Examine the system in which the bodies are heat insulated from the envi-
ronment and the temperature of the bodies is constant. How can this system be
realized?

8. Treat the systems in which
– the bodies are heat insulated from each other,
– the bodies are heat insulated from each other and the total volume is fixed,
– the bodies are heat insulated from each other and the individual volumes

are fixed,
– the volume of one of the bodies is fixed,
– one of the bodies is heat insulated,
– one of the bodies is heat insulated from the environment.

9. Let the bodies be heat insulated from the environment and let the volume
of each body be fixed. Suppose that the internal energy of each body depends
only on temperature, and the specific heat is constant, i.e. Ei(Vi, Ti, Ni) = NiciTi

(i = 1, 2). Take Q12 = −λ(T1 − T2) where λ > 0 is constant. Then the total
internal energy Es of the bodies is constant,

N1c1T1 +N2c2T2 = Es,

and the dynamical equation yields

N1c1Ṫ1 = −λ(T1 − T2).
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Then the equilibrium temperature is

To =
Es

N1c1 +N2c2

and we get the solution of the dynamical equation in the form

T1(t) = exp

(

−λN1c1 +N2c2

N1N2c1c2
(t− t0)

)

(

T1(t0) − To

)

.

10. Give explicitly the solution of the dynamical equation if the volume of
both bodies is fixed and the formulae of the previous exercise are valid, moreover
the heating between the bodies and the environmentis Qia = −λi(Ti − Ta) where
λi ≥ 0 is constant (i = 1, 2).

11. Take the bodies as in the previous exercise and suppose constant heat
sources Q1s and Q2s are in the bodies. If λλ1 + λλ2 + λ1λ2 6= 0 (i.e. at least
one of the bodies is in thermal contact with the environment), then there exists a
stationary state given by

T1o = Ta +
(λ+ λ2)Q1s + λQ2s

λλ1 + λλ2 + λ1λ2
,

T2o = Ta +
(λ+ λ1)Q2s + λQ1s

λλ1 + λλ2 + λ1λ2
.

Give explicitly the solution of the dynamical equation.





IV SYSTEM OF SIMPLE BODIES;

GENERAL TREATMENT

14 Description of systems

14.1 Exact definition of systems

Based on Chapter II, particular systems were treated in Chapter III which, hope-
fully, will make the mathematical definition of the systems of bodies comprehensi-
ble. First of all, we call attention to an important fact: bodies that can interchange
particles must have the same material, otherwise they do not continue to be simple
(i.e. consisting of equal molecules).

For the sake of perspicuity, we shall use the logical symbols ⇐⇒ and =⇒
(avoided elsewhere) in the following definition. As concerns the symbols ∗, ∗ ∗
and ∗ ∗ ∗, we refer to the remark in 12.2.1.

Definition A system consisting of
– given bodies,
– a given environment,
– given sources
is the following:
1. A positive integer n and simple materials (DiTi,Pi,µi,Ri) (i =

a, 1 . . . , n); the a-th material is called the environment, the body corresponding
to the a 6= i-th material is called the i-th body of the system.

2. For all i, k = a, 1, . . . , n, the dynamical quantities

Qik : (Di ∗ R
+
0 ) × (Dk ∗ R

+
0 ) → (J/s),

Fik : (Di ∗ R
+
0 ) × (Dk ∗ R

+
0 ) → (m3/s),

Gik : (Di ∗ R
+
0 ) × (Dk ∗ R

+
0 ) → (1/s),

πik : (Di ∗ R
+
0 ) × (Dk ∗ R

+
0 ) → (Pa),

ξik : (Di ∗ R
+
0 ) × (Dk ∗ R

+
0 ) → (J)

which are continuous, moreover continuously differentiable on the interior of their
domain. If the material of the i-th and the k-th body is different, then Gik = 0.

Let us introduce the quantities

Wik := −
(

PiFik + πikF2
ik

)

, Lik := µiGik + ξik)G2
ik,
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Aik := Qik + Wik + Lik

and the simplified notations

Qik := Qik(Ei, Vi, Ni, Ek, Vk, Nk), Fik := Fik(Ei, Vi, Ni, Ek, Vk, Nk),

Gik := Gik(Ei, Vi, Ni, Ek, Vk, Nk),

Aik := Aik(Ei, Vi, Ni, Ek, Vk, Nk), Wik := Wik(Ei, Vi, Ni, Ek, Vk, Nk),

Lik := Lik(Ei, Vi, Ni, Ek, Vk, Nk)

πik := πik(Ei, Vi, Ni, Ek, Vk, Nk), ξik := ξik(Ei, Vi, Ni, Ek, Vk, Nk),

Ti := Ti(Ei, Vi, Ni), Pi := Pi(Ei, Vi, Ni), µi := µi(Ei, Vi, Ni).

Then the dynamical quantities satisfy

– mutuality:

Aik = −Aki, Fik = −Fki, Gik = −Gki,

– the equilibrium properties:

(I) if NiNk = 0 then Qik = 0, Fik = 0, Gik = 0, πik = 0 and ξik = 0,

(II) for NiNk 6= 0

0) Pi = Pk =⇒ πik = 0,
µi = µk =⇒ ξik = 0.

1) if Gik = 0,

(a) and Fik = 0, Qik 6= 0, then
∗ Qik = 0 ⇐⇒ Ti = Tk,

(b) and Qik = 0, Fik 6= 0, then
∗ Fik = 0 ⇐⇒ Pi = Pk,

(c) if Fik 6= 0, Qik 6= 0, then

∗ Fik = 0 =⇒ Pi = Pk,
∗ Qik = 0 and Pi = Pk =⇒ Ti = Tk,

∗ ∗ Ti = Tk and Pi = Pk =⇒ Qik = 0 and Fik = 0;

2) if Gik 6= 0 and can have both positive and negative values

(a) and Fik = 0, Qik = 0, then

∗ Gik = 0 ⇐⇒ µi = µk;
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(b) and Fik = 0, Qik 6= 0, then

∗ Gik = 0 =⇒ µi = µk,
∗ µi = µk and Qik = 0 =⇒ Ti = Tk

(which imply that if Gik = 0 and Qik = 0, then µi = µk and Ti = Tk),

∗ ∗ µi = µk and Ti = Tk =⇒ Gik = 0 and Qik = 0;

(c) and Fik 6= 0, Qik = 0, then

∗ Gik = 0 =⇒ µi = µk,
∗ µi = µk and Fik = 0 =⇒ Pi = Pk

(which imply that if Gik = 0 and Fik = 0, then µi = µk and Pi = Pk),

∗ ∗ µi = µk and Pi = Pk =⇒ Gik = 0 and Fik = 0;

(d) and Fik 6= 0, Qik 6= 0, then

∗ Gik = 0 =⇒ µi = µk,
∗ µi = µk and Fik = 0 =⇒ Pi = Pk,
∗ µi = µk, Pi = Pk and Qik = 0 =⇒ Ti = Tk

(which imply that if Gik = 0, Fik = 0 and Qik = 0, then µi = µk, Pi = Pk and
Ti = Tk),

∗ ∗ ∗ µi = µk, Pi = Pk and Ti = Tk =⇒ Gik = 0, Fik = 0 and Qik = 0;

3) if Gik 6= 0 and Gik ≥ 0 (or Gik ≤ 0), then the previous relations (a) to (d)
are satisfied in such a way that µi ≥ µk (or µi ≤ µk) appears everywhere instead
of µi = µk.

– the dissipation inequalities:

− Qik

Ti
(Ti − Tk) + Fik(Pi − Pk) −Gik(µi − µk) ≥

(πik + πki)F
2
ik + (ξik + ξki)G

2
ik ≥ 0,

where equality holds if and only if Qik = 0, Fik = 0, and Gik = 0 (implying that
Wik = 0 and Lik = 0, too); this is equivalent to

Aik

(

1

Ti
− 1

Tk

)

+ Fik

(

Pi

Ti
− Pk

Tk

)

−Gik

(

µi

Ti
− µk

Tk

)

≥
(

πik

Ti
+
πki

Tk

)

F2
ik +

(

ξik

Ti
+
ξki

Tk

)

G2
ik ≥ 0. (IV1)

3. A process of the environment, a continuous function
t 7→

(

Ea(t), Va(t), Na

)

∈ Da ∗ R
+ defined on a time interval.

4. For all i = 1, . . . , n the sources, continuous functions t 7→ Qi,s(t) ∈ (J/s)
and t 7→ Gi,s(t) ∈ (1/s) defined on a time interval.

5. The dynamical equation

Ėi = Qi +Wi + Li V̇i = Fi, Ṅi = Gi
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(i = 1, . . . , n),

where

Qi := Qi,s +
n
∑

k=a,1

Qik, Fi :=
n
∑

k=a,1

Fik, Gi := Gi,s +
n
∑

k=a,1

Gik,

Wi :=
n
∑

k=a,1

Wik, Li := Li,s +
n
∑

k=a,1

Lik.

Remarks (i) We use the names according to the previous chapter: Qik is the
heating of the i-th body due to the k-th body, etc. The solutions of the dynamical
equation are the processes of the system.

(ii) Some of the equilibrium properties follow from the dissipation inequalities;
e.g. Ti = Tk, Pi = Pk and µi = µk imply equality in the dissipation inequality,
thus, according to the requirement, Qik = 0, Fik = 0 and Gik = 0 must hold.

(iii) As a consequence of mutuality, the dynamical quantities with two equal
subscripts are zero, except the lost coefficients; those are, however, are multiplied
by zero in the dynamical equation, thus they can be taken to be zero.

(iv) The dynamical quantities with subscripts ak (which would determine the
processes of the environment) do not appear in the dynamical equation (the process
of the environment is given independently of the bodies), they are listed only for the
sake of formal simplicity. Given the quantities with subscripts ka, the quantities
Qak(Ea, Va, Na, Ek, Vk, Nk) := −Qka(Ek, Vk, Nk, Ea, Va, Na), etc. satisfy formally
all the requirements.

(v) The environment is conceived to be ‘infinitely large’, its particle number has
the constant value Na in the given process, so it plays no role in the dynamical
equation. The particle number of the environment is a dummy variable in the
dynamical quantities which appears only for the sake of uniform formulation.

14.2 Consequences of the equilibrium properties
and the dissipation inequalities

As we mentioned, the equilibrium properties and the dissipation inequalities are
not independent. Moreover, they allow us to deduce further properties. We shall
consider ideal workings and transferrings. Some of the following relations remain
valid for the non-ideal case, too.

Let us apply the notations in item 2 of Definition 14.1. In the ideal case the
dissipation inequalities can be rewritten in the form

−Qik

Ti
(Ti − Tk) + Fik(Pi − Pk) −Gik(µi − µk) ≥ 0.

Proposition Let the workings and transferrings be ideal and let NiNk 6= 0.
1) If Gik = 0,

(a) and Fik = 0, Qik 6= 0, then Qik > 0 if and only if Ti − Tk < 0,
(b) and Qik = 0, Fik 6= 0, then Fik > 0 if and only if Pi − Pk > 0,
(c) and Fik 6= 0, Qik 6= 0, then
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∗ if Pi − Pk > 0 and Ti − Tk = 0, then (Ei, Vi, Ni, Ek, Vk, Nk) has a neigh-
bourhood in which for all (E′

i, V
′

i , N
′
i , E

′
k, V

′
k, N

′
k) the strict inequality

Fik(E′
i, V

′
i , N

′
i , E

′
k, V

′
k, N

′
k) > 0 holds,

∗ if Ti − Tk < 0 and Pi − Pk = 0, then (Ei, Vi, Ni, Ek, Vk, Nk) has a neigh-
bourhood in which for all (E′

i, V
′

i , N
′
i , E

′
k, V

′
k, N

′
k) the strict inequality

Qik(E′
i, V

′
i , N

′
i , E

′
k, V

′
k, N

′
k) > 0 holds.

2) If Gik 6= 0 and can have both positive and negative values,
(a) and Fik = 0, Qik = 0, then Gik > 0 if and only if µi − µk < 0,
(b) and Fik = 0, Qik 6= 0, then if µi − µk < 0 and Ti = Tk, then

(Ei, Vi, Ni, Ek, Vk, Nk) has a neighbourhood in which for all (E′
i, V

′
i , N

′
i , E

′
k, V

′
k, N

′
k)

the strict inequality Gik(E′
i, V

′
i , N

′
i , E

′
k, V

′
k, N

′
k) > 0 holds,

(c) and Fik 6= 0, Qik = 0, then if µi − µk < 0 and Pi − Pk = 0, then
(Ei, Vi, Ni, Ek, Vk, Nk) has a neighbourhood in which for all (E′

i, V
′

i , N
′
i , E

′
k, V

′
k, N

′
k)

the strict inequality Gik(E′
i, V

′
i , N

′
i , E

′
k, V

′
k, N

′
k) > 0 holds,

(d) and Fik 6= 0, Qik 6= 0, then if µi−µk < 0 and Ti−Tk = 0, Pi−Pk = 0, then
(Ei, Vi, Ni, Ek, Vk, Nk) has a neighborhood in which for all (E′

i, V
′

i , N
′
i , E

′
k, V

′
k, N

′
k)

the strict inequality Gik(E′
i, V

′
i , N

′
i , E

′
k, V

′
k, N

′
k) > 0 holds,

and the same assertions are true with reversed inequalities.

Proof 1)(a) and 1)(b) are evident from the equilibrium properties and the dis-
sipation inequalities. We shall show the first relation in 1)(c), the others can be
proved similarly.

Let Pi > Pk. Then the equilibrium property implies that Fik cannot be zero.
If Ti − Tk = 0, then – because Gik = 0 – the dissipation inequality implies
Fik > 0. The function Fik is continuous, thus its values are greater than zero in a
neighbourhood of the point in question.

14.3 Equilibrium

Definition A standstill (stationary process) of the system is a constant pro-
cess. Equilibrium is a standstill in which every dynamical quantity has zero
value.

It is evident that equilibrium can occur in a system only if all the sources are
zero. The state of the system

(

(Eio, Vio, Nio) | i = 1, . . . , n
)

as a constant function
is a standstil if and only if the right sides of the dynamical equation – the sums
of the corresponding dynamical quantities – are zero at that state.

Let us take a standstill of a system. If this standstill were not an equilibrium,
then heat or volume or particle would pass among the bodies in such a way that
the absorbed and emitted quantities are equal for all bodies. Let us consider e.g.
three bodies; then the same amount of heat would pass from the first body to
the second body, from the second to the third and from the third to the first.
Our experience shows that such a process does not exist; this is supported by the
following result.

Proposition Without sources every standstill is an equilibrium.
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Proof Let us use the notations introduced in item 2 of Definition 14.1. We have
to show that if

Ai :=

n
∑

k=a,1

Aik = 0, Fi :=

n
∑

k=a,1

Fik = 0, Gi :=

n
∑

k=a,1

Gik = 0, (∗)

for all i = 1, . . . , n, then

Aik = 0, Fik = 0, Gik = 0 (∗∗)

for all i = 1, . . . , n and k = a, 1, . . . , n (with the formal dynamical quantities with
subscripts ak we shall consider that i can take the value a, too).

The dissipation inequalities yield that

n
∑

i,k=a,1

[

Aik

(

1

Ti
− 1

Tk

)

+ Fik

(

Pi

Ti
− Pk

Tk

)

−Gik

(

µi

Ti
− µk

Tk

)

]

≥ 0,

where equality holds if and only if (∗∗) is satisfied. Let us execute the following
simple transformations:

n
∑

i,k=a,1

Aik

(

1

Ti
− 1

Tk

)

=
n
∑

i,k=a,1

Aik

((

1

Ti
− 1

Ta

)

−
(

1

Tk
− 1

Ta

))

=

=

n
∑

i,k=a,1

Aik

(

1

Ti
− 1

Ta

)

+

n
∑

i,k=a,1

Aki

(

1

Tk
− 1

Ta

)

=

= 2
n
∑

i,k=a,1

Aik

(

1

Ti
− 1

Ta

)

= 2
n
∑

i=a,1

Ai

(

1

Ti
− 1

Ta

)

.

The second equality is obtained by mutuality. A similar result can be deduced for
springings and convertings, too. Then we get

n
∑

i=1

[

Ai

(

1

Ti
− 1

Ta

)

+ Fi

(

Pi

Ti
− Pa

Ta

)

−Gi

(

µi

Ti
− µa

Ta

)]

≥ 0,

where equality holds if and only if (∗∗) is satisfied. Here the sum would start from
zero but the zeroth member is zero because of the multipliers 1/Ta − 1/Ta, etc.

It is evident, that (∗) implies the equality in the above relation which, in turn,
implies (∗∗).

14.4 Exercises

1. Demonstrate that if Gik = 0 and the workings are ideal, then the two terms
in the dissipation inequality are zero for (Ei, Vi, Ni) and (Ek, Vk, Nk) which are
‘sufficiently near to each other’ .

2. Deduce relations similar to those in 14.2 when Gik ≥ 0.
3. Verify that Proposition 14.2 and the previous two exercises remain true if

Gik = 0 etc. is replaced by Gik||(Ei,Vi,Ni) = 0,m etc. (see 10.6).
4. What can be said instead of 1)(c) in 14.2 for mechanically strong springings?
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15 Summarizing formulae

15.1 General notations

The description of systems can be put in an abstract framework which exhibits
well the essence of the mathematical structure and allows us to introduce further
notions and to deduce some general results.

For the sake of simplicity, we suppose that the sources are zero; besides the
results concerning the equilibria, everything can be repeated for non-zero sources,
too.

We examine a system consisting of n bodies and an environment with a given
process.

Let us put

xi :=

(

(Ei, Vi, Ni)

∣

∣

∣

∣

i = a, 1, . . . , n

)

.

Then the given process of the environment is t 7→ xa(t) (contrary to the treatment
of particular systems, here we do not leave this process (Ea, Va, Na) for (Ta, Pa)).
A state of the system is

x := (xi | i = 1, . . . , n),

an element of
n

X
i=1

(Di ∗ R
+
0 ),

which is a subset of the vector space

X :=

(

(J) × (m3) × R

)n

.

We allowed that the particle number of bodies takes the zero value, because it
can happen that a body becomes empty in a process.

If the particle number of a body is zero, then its energy and volume are zero as
well; such a state is a special boundary point of the states with non-zero particle
number and it has qualitatively different properties. In the sequel we shall consider
processes running in the set

XD :=
n

X
i=1

(Di ∗ R
+),

i.e. each body has non-zero particle number.
It will be suitable to replace temperature T with kT where k is the Boltzmann

constant; kT has energy dimension, i.e. kT ∈ (J). Then the values of canonical
intensive quantities of are

(

1

kTi
,
Pi

kTi
,− µi

kTi

)

(i = a, 1, . . . , n),

thus, the canoncial intensive quantities are functions

yi : Di ∗ R
+ →

(

1

J

)

×
(

1

m3

)

× R (i = a, 1, . . . , n).
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The dual of a one-dimensional vector space is its ‘reciprocal’, i.e. the dual of
(J) is (1/J) etc.

As a consequence, the Cartesian product of the canonical intensive quantities
of the bodies,

y :=
n

X
i=1

yi :=
n

X
i=1

(

1

kTi
,

Pi

kTi
,− µi

kTi

)

: XD → X∗

is a continuous function, continuously differentiable on

XR :=
N

X
i=1

(Ri ∗ R
+).

The Cartesian product of the thermodynamical forces between the bodies and
the environment plays an important role in the sequel.

Definition The function F : XD × (Da ∗ R
+) → X∗ defined by

F(x, xa) := (yi(xi) − ya(xa) | i = 1, . . . , n)

is called the nominal thermodynamical force.

15.2 The dynamical equation

The dynamical equations

Ėi =

n
∑

k=a,1

(Qik +Wik + Lik),

V̇i =
n
∑

k=a,1

Fik Ṅi =
n
∑

k=a,1

Gik

(i = 1, . . . , n)

with the notation

Rik := (Qik + Wik + Lik,Fik,Gik) :

(Di ∗ R
+) × (Dk ∗ R

+) →
(

(J/s) × (m3/s) × (1/s)
)

for (i, k = a, 1, . . . , n) can be written in the form

ẋi =
n
∑

k=a,1

Rik(xi, xk) (i = 1, . . . , n)

or with the more concise notation

R(x, xa) :=





n
∑

k=a,1

Rik(xi, xk)

∣

∣

∣

∣

i = 1, . . . , n







15 Summarizing formulae 169

(x ∈ XD, xa ∈ Da ∗ R
+)

in the form

(x : I → XD)? ẋ = R(x, xa).

If R(x, xa) depends on xa, then a standstill can exist only if xa is constant.
It was shown in 14.3 that in the case of ideal workings and transferrings x is an
equilibrium if and only if R(x, xa) = 0 (in other words, every standstill is an
equilibrium).

15.3 Constraints

15.3.1 Introductory remarks

To make clear the exact notion of constraints, we recall the systems treated in
12.5, 12.7, 13.5 and 13.4:

1. a body with constant particle number and thermally insulated from the
environment,

2. a body with constant particle numberand constant pressure in a given
environment,

3. two bodies with constant particle number completely insulated from the
environment,

4. two bodies with constant particle number and fixed total volume.
The constraints are expressed in these cases as follows:

Ė + P(E, V )V̇ = 0, Ṅ = 0,

∂P(E, V )

∂E
Ė +

∂P(E, V )

∂V
V̇ = 0, Ṅ = 0,

Ė1 + Ė2 = 0, V̇1 + V̇2 = 0, Ṅ1 = 0, Ṅ2 = 0,

V̇1 + V̇2 = 0, Ṅ1 = 0, Ṅ2 = 0.

The constraints can be described in a similar way for the other systems treated
in Sections 12 and 13, too. If the bodies can interchange particles (diffusions
and phase transitions), then the constraints can be more general. Namely, the
constraints here are of equality type but there can be constraints of inequality
type, too: the semipermeable walls mean that the convertings have non-negative
or non-positive values. Now we exclude such constraints; a particular one will be
treated in 18.7.

Note that the zero on the right-hand side of the equalities above is in diverse
one-dimensional vector spaces; multiplying by convenient constants and so achiev-
ing that always the zero real number appears, we can unify the formulae. We
find that a constraint means that the process velocities are not independent, more
closely: some linear combinations of the process velocities are zero. The equalities
hold for all processes, so they must be satisfied if the velocities are replaced by the
corresponding dynamical quantities.

Consequently, the first property of a constraint is formulated as follows.
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We are given a subset Γ of the continuous functions XD → X∗ such that
{γ(x) | γ ∈ Γ} is linearly independent for all x ∈ XD and

γ(x)R(x, xa) = 0 (γ ∈ Γ, x ∈ XD, xa ∈ Da ∗ R
+), (∗)

or, with the notation

K(x) :=
⋂

γ∈Γ

Kerγ(x),

R(x, xa) ∈ K(x) (x ∈ XD, xa ∈ Da ∗ R
+).

(We allow ourselves a little loose notation, for the sake of simplicity, because in
fact R(x, xa) has values in K(x)/s where s is the time unit (second).)

K(x) is called the constraint subspace corresponding to x. Evidently, every
constraint subspace has 2n− |Γ| dimensions, where |Γ| is the cardinality of Γ.

It is not difficult to see that (∗) is equivalent to (γ ◦ x)ẋ = 0 for all processes
x : I → XD of the system (with arbitrary given process xa of the environment)
and for all elements γ of Γ.

15.3.2 The effective thermodynamical force

Γ is not enough for the description of a constraint because for a given x (and for
arbitrary xa) we can pick up a number of subspaces K(x) containing R(x, xa).

Further properties of constraints are formulated by thermodynamical forces
and equilibria, as it will be shown by the chosen examples.

1. In the adiabatic processes of a body with constant particle number, the (one-
dimensional) constraint subspaces are spanned by elements of the form (−P, 1, 0).
Applying the nominal thermodynamical force

(

1

kT
− 1

kTa
,
P

kT
− Pa

kTa
,− µ

kT
+

µa

kTa

)

(as an element of the dual of (J) × (m3) × R) to those elements, we get the real
thermodynamical force

(

1

kT
− 1

kTa

)

(−P ) +

(

P

kT
− Pa

kTa

)

=
1

kTa
(P − Pa)

(recall 11.8: in the case of heat insulation the quantity P − Pa – or a quantity,
proportional to that one – is the real driving force whose zero value characterizes
the equilibrium).

2. If a body with constant particle number is constrained to isobaric processes
with pressure Po in a given environment, then the springing is proportional to
heating, F = αQ, thus the dynamical equation becomes

Ė = (1 − Poα)Q, V̇ = αQ, Ṅ = 0.

This means that in a state (E, V,N) for which P(E, V,N) = Po holds, the (one-
dimensional) constraint subspace is spanned by (1 − Poα(E, V,N), α(E, V,N), 0).
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Applying the nominal thermodynamical force (described in the previous example)
to this element, we get the real thermodynamical force

(

1

kT
− 1

kTa

)

(1 − Poα) +

(

Po

kT
− Pa

kTa

)

α =
1

kT
− 1

kTa
+

α

kTa
(Po − Pa),

whose zero value characterizes the equilibrium: it has zero value if the pressure Pa

of the environment is constant and equals Po and does not have zero value (there
is no equilibrium) if Po 6= Pa (see Exercise 3 in 15.10).

3. If two bodies with constant particle number are completely insulated from
the environment, then the (two-dimensional) constraint subspaces are spanned by
the vectors (1, 0, 0,−1, 0, 0) and (0, 1, 0, 0,−1, 0). Applying the nominal thermo-
dynamical force
(

1

kT1
− 1

kTa
,
P1

kT1
− Pa

kTa
,− µ1

kT1
+

µa

kTa
,

1

kT2
− 1

kTa
,
P2

kT2
− Pa

kTa
,− µ2

kT2
+

µa

kTa

)

to those vectors, we get the members of the real thermodynamical forces:
(

1

kT1
− 1

kT2

)

and

(

P1

kT1
− P2

kT2

)

.

4. If two bodies with constant particle number have a fixed total vol-
ume, the (three-dimensional) constraint subspaces are spanned by the vectors
(1, 0, 0, 0, 0, 0), (0, 0, 0, 1, 0, 0) and (0, 1, 0, 0,−1, 0). Applying to them the previous
nominal thermodynamical force, we get the members of the real thermodynamical
forces:

(

1

kT1
− 1

kTa

)

,

(

1

kT2
− 1

kTa

)

,

(

P1

kT1
− P2

kT2

)

.

Note that we would expect also
(

1
kT1

− 1
kT2

)

as a member of the real thermody-

namical force but this can be obtained from the above independent members.
All these indicate that, in general, the restriction of the nominal thermody-

namical force to the constraint subspaces,

F(x, xa)|K(x) ∈ K(x)∗

gives the real thermodynamical force corresponding to the constraint.

Definition Let Γ be given according to 15.3.1. The function

(x, xa) 7→ FΓ(x, xa) := F(x, xa)|K(x) ∈ K(x)∗ (x ∈ XD, xa ∈ Da ∗ R
+)

is called the effective thermodynamical force corresponding to Γ.

We mention that the target set of this function is, in general, different for
different x-s; that is why it is rightly defined as a section of the vector bundle
⋃

x∈XD

{x} ×K(x).

We require as a further main property of constraints that the standstills (equi-
libria or stationary states) be characterized by the zero value of the effective ther-
modynamical force: R(x, xa) = 0 if and only if FΓ(x, xa) = 0.
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15.3.3 Exact definition

Definition Let us use the summarizing notations of 15.1 and 15.2 regarding the
system consisting of n bodies. We say that the system is subjected to the constraint
Γ if Γ is a subset of continuous functions XD → X∗ so that

(i) {γ(x) | γ ∈ Γ} is linearly independent for all x ∈ XD,
(ii) R(x, xa) ∈ K(x) for all x ∈ XD and xa ∈ Da ∗ R

+, where K(x) :=
⋂

γ∈Γ

Kerγ(x) is the constraint subspace corresponding to x,

(iii) R(x, xa) = 0 if and only if F(x, xa)|K(x) = 0 (x ∈ XD, xa ∈ Da ∗ R
+).

The system is free of constraints if Γ = ∅, in other words, K(x) = X for all
x ∈ XD. Then the effective thermodynamical force equals the nominal thermody-
namical force.

The constraint is called differentiable, continuously differentiable, twice differ-
entiable, etc. if all γ ∈ Γ is the restriction of a differentiable, etc. function.

15.3.4 Classification of constraints

The constraint Γ is called holonomic if for every γ ∈ Γ there is a continuously
differentiable function ϕγ : X  R defined on a subset containing XD and γ =
Dϕγ |XD

; otherwise the constraint is anholonomic.
It is a well-known necessary condition for a continuously differentiable con-

straint to be holonomic that Dγ(x) – the derivative of γ at x, a bilinear mapping
X ×X → R – be symmetric for all x.

The void constraint is holonomic.

15.3.5 Constraint submanifolds

Let the constraint be holonomic and let ϕγ : X  R be as previously. Then
for arbitrary process x : I → XD and for all γ ∈ Γ we have Dϕγ(x)ẋ = 0, i.e.
ϕγ ◦ x = const. Thus if cγ ∈ Ranϕγ and c := (cγ | γ ∈ Γ), then

U(c) :=
⋂

γ∈Γ

−1
ϕγ({cγ})

is an invariant set of the dynamical equation. Because {Dϕγ(x) | γ ∈ Γ} is linearly
independent for all x ∈ U(c), U(c) is a submanifold ofX having 2n−|Γ| dimensions.

It is evident that U(c)-s are different for different c-s, and their union contains
XD.

It is known that K(x) =
⋂

γ∈Γ

Ker(Dϕγ(x)) = Tx(Uc), where the last symbol

stands for the tangent space of Uc at x.
In general, not only for holonomic constraints, a submanifold U ⊂ X is called

a constraint submanifold if

Tx(U) = K(x) (x ∈ U ∩XD). (∗)

If U is a constraint submanifold, then

R(x, xa) ∈ Tx(U) = K(x) (x ∈ U ∩XD).
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A constraint is called a fibration if for every point of XD there is a constraint
submanifold containing the point.

All the holonomic constraints are fibrations but also an anholonomic constraint
can be a fibration.

The constraints of the introductory examples 1, 3 and 4 are holonomic, the
constraint of example 2, though being anholonomic, is a fibration.

15.4 The pseudolinear case

15.4.1 The nominal conductance matrix

Let us suppose that the dynamical quantities are pseudolinear and let Cik denote
the conductance matrix between the i-th and k-th bodies (i, k = a, 1, . . . , n) (see
Section 11.4); then

Rik(xi, xk) = Cik(xi, xk)
(

yi(xi) − yk(xk)
)

.

It can be obtained easily that

n
∑

k=a,1

Cik(xi, xk)
(

yi(xi) − yk(xk)
)

=
n
∑

k=1

Bik(x, xa)
(

yk(xk) − ya(xa)
)

,

where

Bik(x, xa) :=







−Cik(xi, xk) if i 6= k,
n
∑

j=a,1

Cij(xi, xj) if i = k.

Hence, with the notation

B(x, xa) :=
(

Bik(x, xa) | i, k = 1, . . . n
)

(x ∈ XD, xa ∈ Da ∗ R
+) (∗)

and with the nominal thermodynamical force we have

R(x, xa) = B(x, xa)F(x, xa),

in other words, the dynamical equation has the form

(x : I → XD)? ẋ = B(x, xa)F(x, xa).

Note that only the nominal thermodynamical force appears explicitly on the
right-hand side of the dynamical equation, i.e. the thermodynamical forces be-
tween the bodies and the environment, instead of the thermodynamical forces
between the bodies themselves. Therefore, this form seems unsuitable (if the bod-
ies are completely insulated from the environment, then Cia = 0 for all i, so
neither of yi(xi) − ya(xa) enters the dynamical equation) but later we shall see
the advantage of this form.

Definition The function B : XD × Da ∗ R
+ → Lin(X∗,X) given by formula (∗)

is called the nominal conductance matrix.
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15.4.2 Remark

It is worth noting that according to mutuality

Cik(xi, xk)
(

yi(xi) − yk(xk)
)

= − Cki(xk, xi)
(

yk(xk) − yi(xi)
)

=

= Cki(xk, xi)
(

yi(xi) − yk(xk)
)

,

which does not imply
Cik(xi, xk) = Cki(xk, xi). (∗)

The conductance matrix, however, has a physical meaning only when multiplied
by the thermodynamical force (and is not uniquely defined), therefore we do not
restrict generality by assuming that (∗) is always satisfied.

This convention has the immediate consequence that if all the conductance
matrices between the bodies have symmetric values somewhere – Cik(xi, xk) is
symmetric for some xi and xk for all i, k – then the corresponding value of the
nominal conductance matrix – B(x, xa) – is symmetric as well.

15.4.3 The effective conductance matrix

Let us observe two facts.
First: γ(x)B(x, xa)F(x, xa) = 0 can occur if both γ(x)B(x, xa) 6= 0 and

F(x, xa) 6= 0; in other words, RanB(x, xa) is not necessarily a subset of K(x).
Second: the nominal thermodynamical force cannot be replaced, in general, by

the effective thermodynamical force in the representation 15.4.1 (∗) of R.

Definition The nominal conductance matrix fits the constraint if for all x ∈
XD, xa ∈ Da ∗ R

+ there is a BΓ(x, xa) ∈ Lin(K(x)∗,K(x)) such that

B(x, xa)F(x, xa) = BΓ(x, xa)FΓ(x, xa).

Then the function (x, xa) 7→ BΓ(x, xa) is called the effective conductance ma-
trix corresponding to Γ.

Here we have to make the same remark as in 15.3.2 about the precise definition
of the effective conductance matrix.

If there is no constraint, the nominal conductance matrix and the effective one
coincide.

15.4.4 Relation between the nominal conductance matrix and
the effective one

We shall always suppose in the pseudolinear case that the effective conductance
matrix exists (the nominal conductance matrix fits the constraint).

Using the identity embedding

i(x) : K(x) → X

(which is a linear injection) and its transpose

i(x)∗ : X∗ → K(x)∗
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(which is a linear surjection), we can write the relation

i(x)BΓ(x, xa)i(x)∗ = B(x, xa) (x ∈ XD, xa ∈ Da ∗ R
+)

between the two conductivity matrices.
The effective conductance matrix is the more important one from a physical

point of view but the nominal conductance matrix is a simpler mathematical ob-
ject, it is easier to examine its properties, which reflects the essential properties
of the effective conductance matrix. Noting the evident fact that K(x)o is the
subspace spanned by {γ(x) | γ ∈ Γ}, we refer to App. 1 for the following results.

First of all, we know that
– the nominal conductance matrix fits the constraint if and only if

RanB(x, xa) ⊂ K(x) and K(x)o ⊂ KerB(x, xa) for all x, or equivalently,
γ(x)B(x, xa) = 0 and B(x, xa)γ(x) = 0 for all γ ∈ Γ and for all x,

– if RanB(x, xa) ⊂ K(x) and B(x, xa) is symmetric for all x, then the nominal
conductance matrix fits the constraint.

Moreover, we have that
– KerBΓ(x, xa) = {0} if and only if KerB(x, xa) = K(x)o.
– BΓ(x, xa) is symmetric if and only if B(x, xa) is symmetric,
– BΓ(x, xa) is positive semidefinite if and only if B(x, xa) is positive semidef-

inite.

15.5 The dissipation inequalities

From now on we suppose that workings and transferrings are ideal.
Using the notations above, we can write the dissipation inequalities (see 14.1)

in the form

(yi(xi) − yk(xi))Rik(xi, xk) ≥ 0 (i, k = 0, 1, . . . , n),

where equality holds if and only if Rik(xi, xk) = 0 for all i and k, from which we
infer that

F(x, xa)R(x, xa) ≥ 0 (x ∈ XD, xa ∈ Da ∗ R
+), (∗)

where equality holds if and only if R(x, xa) = 0.
R(x, xa) is in K(x), so the inequality above implies

FΓ(x, xa)R(x, xa) ≥ 0 (x ∈ XD, xa ∈ Da ∗ R
+),

and according to item (iii) in Definition 15.3.3, here equality holds if and only if
FΓ(x, xa) = 0.

In the pseudolinear case we have

F(x, xa)B(x, xa)F(x, xa) ≥ 0 (x ∈ XD, xa ∈ Da ∗ R
+)

and if the nominal conductance matrix fits the constraint,

FΓ(x, xa)BΓ(x, xa)FΓ(x, xa) ≥ 0 (x ∈ XD, xa ∈ Da ∗ R
+), (∗∗)

where equality holds if and only if FΓ(x, xa) = 0.
Note that formula (∗∗) does not imply that BΓ(x, xa) is positive semidefinite;

this would be right only if the inequality satisfied for all elements v(x) of K(x)∗

instead of the single FΓ(x, xa).
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15.6 Asymptotic stability of equilibrium

Now we suppose that the environment is constant and the bodies are entropic.
The function

L : XD → (J/K), (E1, V1, N1, . . . , En, Vn, Nn) 7→

7→
n
∑

i=1

(

Si(Ei, Vi, Ni) − Ei + PaVi − µaNi

Ta

)

is, up to and additive constant, the total entropy of the bodies and the environment
(see 12.2.4 and 13.2.4) which, by introducing the notation

ya := ya(xa) =

(

1

Ta
,
Pa

Ta
,−µa

Ta

)

,

we can write in the form

L(x) =

N
∑

i=1

(

Si(xi) − (ya|xi)
)

.

This function is twice continuously differentiable on XR and its derivative is the
nominal thermodynamical force, i.e.

DL(x) = F(x, xa)

for all x ∈ XR. Moreover, D
2L(x) is negative semidefinite whose kernel is spanned

by the vectors

(x1, 0, 0, . . . , 0), (0, x2, 0, . . . , 0), . . . (0, 0, 0, . . . , xn)

(see 8.4).

Let U be a constraint submanifold in XR. We recall that a state xo in U is an
equilibrium if and only if FΓ(xo, xa) = 0, i.e. on the basis of 15.3.3 (∗) if and only
if DL(xo)|Txo (U) = 0.

Proposition Let us list our restrictions:
– there are no sources,
– workings and transferrings are ideal,
– the state of the environment is constant,
– the bodies are entropic,

and let us use the previous notations. Let U be a constraint submanifold in XR

and xo ∈ U an equilibrium. If
(i) Ker

(

D
2L(xo)

)

∩ Txo
(U) = {0},

(ii) there is a twice continuously differentiable parameterization p of U in a
neighbourhood of xo such that DL(xo)D2p(p−1(xo)) is negative semidefinite,

then xo is asymptotically stable in U .
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Proof The function Λ := L ◦ p is twice continuously differentiable and

DΛ(ξ) = DL(p(ξ))Dp(ξ), (∗)

D
2Λ(ξ) = D

2L(p(ξ)) ◦
(

Dp(ξ) × Dp(ξ)
)

+ DL(p(ξ))D2p(ξ) (∗∗)

for all ξ ∈ Domp.
Let ξo := p−1(xo). The range of Dp(ξo) equals Txo

(U), so on the base of (∗) we
have DΛ(p−1(xo)) = 0.

Condition (i) implies that D
2L(xo) ◦

(

Dp(ξo) × Dp(ξo)
)

is negative definite, thus
D

2Λ(ξo) is negative definite because of (∗∗) and condition (ii).
As a consequence, Λ has a strict local maximum at ξo which is equivalent to

that L has a strict local conditional maximum at xo with respect to U .
As concerns the derivative of L along the dynamical equation, we have

•
L(x) = DL(x)R(x, xa) = F(x, xa)R(x, xa).

As a consequence of the dissipation inequalities,
•
L takes zero values in equilibria

and negative values elsewhere; thus, it has a strict local conditional minimum in
xo with respect to U .

As a result (see Appendix 7), xo is asymptotically stable in U .
Remarks (i) It seems at first sight that our result is not well applicable because

we have no general method to assure the existence of a parameterization with the
desired properties. But we know its existence in two important special cases:

– if U is a subset of an affine space, then the parameterization can be an affine
function whose second derivative is zero;

– if the nominal thermodynamical force takes zero value at xo, i.e. DL(xo) = 0,
consequently any parameterization is suitable.

(ii) Recall that the tangent space Txo
(U) equals the constraint subspace K(xo).

15.7 Application to special systems

Let us survey the systems treated in 12 and 13 from the point of view of this
chapter.

We ask the reader to describe precisely the constraint subspaces for every
system and to show that the equilibrium is characterized by the zero value of the
effective thermodynamical force (the restriction of the nominal thermodynamical
force onto the constraint subspace).

We can ascertain immediately that the purely extensive constraints (in which
only some energy and/or volume values are fixed) and of course the empty con-
straint are holonomic and the constraint submanifolds are affine surfaces, thus
Proposition 15.6 can be applied. Such are the systems in 12.3, 12.4, 13.3, 13.4,
13.5, 13.7 and 13.8.

The purely intensive constraints (in which only temperature or pressure is
fixed) are holonomic and the nominal thermodynamical force is zero in equilibrium,
thus Proposition 15.6 can be applied. Such are the systems in 12.6, 12.7, 13.11
and 13.13.
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Extensive and intensive constraints are mixed in 13.12; the constraint is holo-
nomic and a good trick allows us to apply Proposition 15.6. Namely, the pressure
of the environment does not appear in the dynamical equation. The pressure of
both bodies takes the same value Po in equilibrium. Formally we can consider that
the pressure of the environment is just this value, Pa := Po. Then the nominal
thermodynamical force is zero in equilibrium.

The constraints concerning heat insulation are mostly anholonomic. An excep-
tion is when heat insulation is accompanied by fixed volume, because in this case
heat insulation is given by energy conservation, thus we get a simple extensive
constraint (13.5 and 13.8). Another exception is when heat insulation is accompa-
nied by constant pressure (13.14); the constraint is holonomic and we can apply
Proposition 15.6 by a trick similar to the previous one: the temperature of the
environment does not appear in the dynamical law, so we can formally consider
that it equals the common equilibrium temperature of the bodies, Ta := To. Then
the nominal thermodynamical force is zero in equilibrium.

The constraints concerning heat insulation in 12.5, 13.6 and 13.9 are anholo-
nomic but there are constraint submanifolds. For the system in 12.5 we can apply
Proposition 15.6 by the trick Ta := To. The working in 13.6 cannot be ideal, so that
system does not satisfy the conditions of Proposition 15.6 (another method were,
however, successful in proving asymptotic stability). The second derivative of the
actual parameterization given in 13.9, multiplied by the nominal thermodynamical
force, is negative semidefinite, thus Proposition 15.6 can be applied.

The heat insulation in 13.10 is the most awkward constraint because it is not
evident what are the constraint subspaces. If we suppose that the heatings are
direct, i.e. Q12 = −Q21 (which does not lead to a contradiction here), then the
constraint subspaces are given by Ė1 + P1V̇1 + Ė2 + P2V̇2 = 0 and it is obvious
that equilibrium is determined by the zero value of the effective thermodynamical
force; consequently, the constraint is well described. The constraint, however, is
anholonomic, and we could not find constraint submanifolds. We could not find a
convenient method to prove asymptotic stability.

15.8 Strict asymptotic stability of equilibria

Equilibria in diffusions and phase transitions, in general, are not locally unique
in the constraint subspaces which is well understandable from a physical point
of view. Let us take a cylinder with a movable piston in the atmosphere and
suppose air can diffuse into and from the cylinder. An equilibrium can exist
when the cylinder is full of air or when it is half filled, etc. Similarly, at given
temperature and pressure, five grammes of water and fifteen grammes of ice, as
well as ten grammess of water and ten grammes of ice can be in equilibrium. In
these cases an equilibrium cannot be asymptotically stable; trend to equilibrium
is then expressed by the strict asymptotic stability of the set of equilibria: if an
equilibrium is disturbed, another equilibrium is realized (near to the original one).

Proposition Let us list our restrictions:
– there are no sources,
– workings and transferrings are ideal,
– the state of the environment is constant,
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– the bodies are entropic,
and let us use the previous notations. Let U be a constraint submanifold in XR

and let Eq be the set of equilibria in U . If
(i) the dynamical quantities are pseudolinear and the nominal conductance ma-

trix fits the constraint,
(ii) BΓ(xo, xa) is symmetric and positive definite for all xo ∈ Eq,
(iii) Eq is a submanifold,
(iv) Ker

(

D
2L(xo)

)

∩ Txo
(U) = Txo

(Eq) for all xo ∈ Eq,
(v) there is a twice continuously differentiable parameterization p of U in a

neighbourhood of all xo ∈ Eq such that DL(xo)D2p(p−1(xo)) is negative semi-
definite,

then Eq is strictly asymptotically stable in U .

Proof The dynamical equation has the form

(x : I → U)? ẋ = BΓ(x, xa)(DL)Γ(x)

and

Eq =

{

x ∈ U

∣

∣

∣

∣

(DL)Γ(x) = 0

}

.

Let us fix an arbitrary element xo of Eq and let p be a twice continuously
differentiable parameterization of U in a neighborhood of xo. The function Λ :=
L ◦ p satisfies relations (∗) and (∗∗) in 15.6.

The dynamical equation, reduced according to the parameterization, reads

ξ̇ = Dp(ξ)−1BΓ(p(ξ), xa)(DL)Γ(p(ξ));

using Dp(ξ)∗
DL(p(ξ)) = DL(p(ξ))Dp(ξ) = DΛ(ξ), we can rewrite it in the form

ξ̇ = Ψ(ξ)DΛ(ξ),

where
Ψ(ξ) := Dp(ξ)−1BΓ(p(ξ), xa)(Dp(ξ)∗)−1.

The reduced dynamical equation has the set of equilibria

φ := {ξ ∈ Domp | DΛ(ξ) = 0}.

Let ξo := p−1(xo). We show that our conditions imply

Tξo
(φ) = KerD2Λ(ξo).

Indeed, the relation ⊂ follows from the above form of φ (and the well known
properties of submanifolds). The relation ⊃ can be verified as follows: if v is in
the kernel of D

2Λ(ξo), then condition (v) yields that v is in the kernel of both
terms on the right-hand side of (∗∗), thus Dp(ξo)v – an element of Tp(ξo)(U) – is
in the kernel of D

2L(xo); as a consequence of condition (iv), Dp(ξo)v ∈ Txo
(Eq) or,

equivalently, v ∈ Tξo
(φ).

The derivative at ξo of the right-hand side of the reduced dynamical equation
is

Ψ(ξo)D2Λ(ξo).



180 IV System of simple bodies; general treatment

According to condition (ii), Ψ(ξo) is symmetric and positive definite and con-
dition (v) implies that (the symmetric) D

2Λ(ξo) is negative semidefinite. Conse-
quently, (see Appendix 1)

– the kernel of Ψ(ξo)D2Λ(ξo) equals the kernel of D
2Λ(ξo) which is the tangent

space of φ at ξo,
– the zero eigenvalue of Ψ(ξo)D2Λ(ξo) has the same algebraic and geometric

multiplicity,
– all the other eigenvalues are negative.
Therefore, the set of equilibria of the reduced dynamical equation is strictly

asymptotically stable (see Appendix 7) and so the set of equilibria in U of the
dynamical equation is strictly asymptotically stable in U .

Remarks (i) We can repeat the remarks in 15.6.
(ii) It is worth noting that the tangent space Txo

(U) equals the constraint
subspace K(x). Furthermore, condition (ii) of the proposition is equivalent to

(ii)’ B(xo, xa) is symmetric, positive semidefinite and KerB(xo, xa) = K(xo)o,
i.e. the kernel of B(xo, xa) is spanned by {γ(x) | γ ∈ Γ}.

15.9 Entropy maximum and entropy production

If the conditions of Proposition 15.6 hold, then the total entropy of the bodies and
the environment has a strict local maximum in equilibrium.

If the conditions of Proposition 15.8 hold, then the total entropy of the bodies
and the environment has a strict local maximum on the set of equilibria (it has the
same value in every equilibrium and has a smaller value outside the equilibria).

The time rate of the total entropy in the process t 7→ x(t) is

(L ◦ x)̇ = DL(x)ẋ = DL(x)R(x, xa) =
•
L(x);

that is why the function
•
L is called the entropy production.

It follows from the dissipation inequalitythat the entropy production is non-
negative: the total entropy cannot decrease in any process.

The entropy maximum in equilibrium and the non-negative entropy
production are independent properties which together assure trend to
equilibrium. The entropy maximum is a consequence of the intrinsic
stability conditions (properties of materials), the non-negative entropy
production is a consequence of the dissipation inequalities of the dy-
namical quantitities (properties of interactions between bodies).

15.10 Exercises

1. Suppose that the constraint subspaces are the same, i.e. there is a K ⊂ X
such that K(x) = K for all x. Show that the constraint submanifolds are affine
subspaces over K.

2. We can modify the definition of constraint as follows: we are given a finite
dimensional vector space V and a Φ : XD → Lin(X,V ) continuous map such
that Φ(x) is a surjection for all x. How to define then a holonomic constraint?
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Demonstrate that the conditions γ(x)B(x, xa) = 0 and B(x, xa)γ(x) = 0 (γ ∈ Γ)
in 15.4.4 are expressed by Φ(x)B(x, xa) = 0 and B(x, xa)Φ(x)∗ = 0.

3. Explain why the effective thermodynamical force

1

T
− 1

Ta
+
α(Po − Pa)

Ta

cannot take zero value in an isobaric process with Po 6= Pa. (Hint: consider the
dissipation inequality).

4. Can we apply Proposition 15.6 to the systems listed in Exercise 6 of 13.17?
5. Treat the processes of two bodies with constant particle number in which

(besides other constraints, such as fixed volumes) the pressure of the bodies coin-
cide at every instant.

6. Constraints with heat insulation for more than two bodies are very difficult.
Try to treat a system consisting of four bodies with constant particle number in
which the bodies together are heat insulated from the environment and the first
and second body together are heat insulated from the third and fourth.

7. Generalize the formulae of the present chapter for non-zero sources.

16 Remarks on some usual notions

16.1 The Onsager theory

16.1.1 The effective thermodynamical force and conductance matrix
in the case of affine constraints

The domain K(x)∗ (and the range K(x)) of the effective conductance matrix
BΓ(x, xa) (if exists, i.e. the nominal conductance matrix fits the constraint) de-
pends on x; therefore, the effective conductance matrix cannot be independent of
x except when every K(x) is the same.

A constraint is called affine if there is a linear subspace K ⊂ X such that
K(x) = K for all x. Then every constraint subspace is an affine subspace over K
(in other words, a translation of K).

Thus the effective conductance matrix can be constant only if the
constraint is affine.

The affine constraints are interesting from another point of view, too.
Let us take an affine constraint and let the process xa of the environment

be constant. If xo is an equilibrium, then with the notations ya := ya(xa) and
yn

a := (ya, . . . , ya) we have

0 = FΓ(xo, xa) =
(

y(xo) − yn
a

)

|K .
Consequently,

FΓ(x, xa) =
(

y(x) − y(xo)
)

|K ,
for all possible x, i.e. if the constraint is affine, the effective thermody-
namical force is represented by the difference of the intensive quantities
from their equilibrium values. This is not true for non-affine constraints, be-
cause then

(

y(xo) − yn
a

)

|K(x) 6= 0 may be for x 6= xo.
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Recall that the restriction of the dynamical equation onto a constraint sub-
manifold U has the form

(x : I → U)? ẋ = BΓ(x, xa)FΓ(x, xa),

and the dissipation inequality reads

FΓ(x, xa)BΓ(x, xa)FΓ(x, xa) ≥ 0 (x ∈ U).

16.1.2 Survey of the usual Onsager formalism

It was mentioned in paragraph 6 of Preface that real, time varying processes ‘near
to equilibrium’ appear in classical thermodynamics, too, treated by the Onsager
theory.

Onsager’s formalism is based on the relations between ‘forces and currents’. The
forces Fk (k = 1, . . . , n) driving the processes are the differences of the intensive
quantities, characterizing the possible interactions, from their equilibrium values.
A current Jk is ‘conjugated’ to each force Fk in such a way that the entropy
production has the form

σ :=

n
∑

k=1

FkJk ≥ 0.

Then a linear relation is supposed among the forces and currents: there is
matrix (Bik | i, k = 1, . . . , n) such that

Ji =

n
∑

i=1

BikFk (i = 1, . . . , n)

16.1.3 Precise meaning of the Onsager formalism

The Onsager forces are “the differences of the intensive quantities, characterizing
the possible interactions, from their equilibrium values". In the case of affine
constraints, this is just the effective thermodynamical force. Let us consider now
an affine constraint.

Let us take an affine coordinatization of a constraint submanifold U (which
gives a linear coordinatization of K and K∗), let Fk and Bik (i, k = 1, . . . , n)
denote the components of the effective thermodynamical force and the effective
conductance matrix, respectively, corresponding to the coordinatization and put

Ji :=

n
∑

k=1

BikFk (i = 1 . . . , n).

Then the dynamical equation becomes

ξ̇i = Ji(ξ) (i = 1, . . . , n)

and the dissipation inequality

n
∑

k=1

Fk(ξ)Jk(ξ) ≥ 0.
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Recall that for entropic bodies the quantity on the left-hand side above is
the entropy production. We obtained the Onsager formalism in a clear setting,
without the doubtful requirement ‘near to equilibrium’. In the usual formalism one
assumes further that the matrix B is constant (i.e. Bik(ξ) is the same for all ξ)
and symmetric (i.e. Bik = Bki), which corresponds to a constant and symmetric
BΓ.

Now we get a precise answer what and how is approximated by the Onsager
theory.

Let us suppose that the constraint is affine and the effective conductance matrix
exists and let us consider an equilibrium xo. Then, for x-s in a neighborhood of xo,
the effective conductance matrix BΓ(x, xa) can be approximated by its equilibrium
value BΓ(xo, xa), so

(x : I → U)? ẋ = BΓ(xo, xa)FΓ(x, xa).

is an approximation of the dynamical equation on a constraint submanifold U
whose affine coordinatization gives the usual Onsager equations.

If the constraint is not affine, however, then the effective thermodynamical force
is not the difference of the intensive quantities from their equilibrium values, and
BΓ(x, xa) cannot be replaced by BΓ(xo, xa) because their domains and ranges are
different. In this case the usual Onsager formalism does not work. For instance,
the isothermal or isobaric processes cannot be placed into the usual framework of
Onsager formalism.

Therefore we can say that a generalized and clear setting of the Onsager theory
is the treatise of systems for which the dynamical quantitities are pseudolinear
functions of the thermodynamical forces and the effective conductance matrixexists
(the nominal conductance matrix fits the constraint).

16.2 The Prigogine principle

16.2.1 Special stationary states

The following problem is of great practical importance: how to operate a heat
source in a body in order to keep its temperature constant?

Let us take a body with constant volume Vo in a constant environment with
temperature and pressure (Ta, Pa), and let us operate a heat source in the body,
depending on the instantaneous state of the body in such a way that the temper-
ature of the body remain constant To and different from Ta. Particle transport
(diffusion) may occur between the body and the environment (having the same
material).

Let Q be the heating of the body, G the converting, and Qs the heat source
(which is now a function of the state of the body). Since Vo is fixed, the tem-
perature and the particle numberdefines the state of the body, and the dynamical
equations are

∂E
∂T

Ṫ = Qs + Q + µG
and

Ṅ = G.
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If To and No are the temperatureand the particle number in a stationary state,
then

G(Vo, To, No) = 0, Qs(Vo, To, No) + Q(Vo, To, No) = 0.

For instance, if the dynamical quantities are pseudolinear,

Q(V, T,N) = −λQ(T − Ta) − ϑQ(u(V, T,N) − µa),

G(V, T,N) = −λG(T − Ta) − ϑG(µ(V, T,N) − µa)

where λQ, ϑQ, λQG and ϑG are positive constants, then for given To the stationary
particle numberNo is determined by

µ(Vo, To, No) − µa = −λG

ϑG
(To − Ta).

Since (with the usual ambiguous notation) µ(V, T,N) = µ
(

V
N , T

)

and so
∂µ
∂N = − v

N
∂µ
∂v , for entropic materials (see the Gibbs–Duhem relations) the chem-

ical potential is locally strictly increasing function of the particle number. As a
consequence, the stationary particle numberis locally uniquely determined.

Then the stationary heat source becomes

Qs(Vo, To, No) =

(

λQ − λG

ϑG
ϑQ

)

(To − Ta)
)

.

16.2.2 Minimal entropy production

As a generalization of the previous example, let us take a system with affine
constraint and let the effective conductance matrix be constant. Let us suppose
that the constraint subspace has the form K = K1 × K2; correspondingly, a
constraint submanifold (an affine subspace) has the form U = U1 ×U2. Moreover,
K∗ = K∗

1 × K∗
2 , therefore, FΓ = (F1, F2). Let a source J : U → K1 be given in

such a way that the value of F1 remains the same constant F1o:

ẋ1 = B11F1o +B12F2(x1, x2) + J(x1, x2),

ẋ2 = B21F1o +B22F2(x1, x2).

This is right if the linear map D1F1(x1, x2) : K1 → K∗
1 is injective for all

(x1, x2) ∈ U . Indeed, then the relation D1F1(x1, x2)ẋ1 +D2F1(x1, x2)ẋ2 = 0 (which
expresses that F1 is constant) allows us to determine the source:

− J(x1, x2) =

(

B11F1o +B12F2(x1, x2)+

+ D1F1(x1, x2)−1
D2F1(x1, x2)

(

B21F1o +B22F2(x1, x2)
)

)

.

Moreover, the condition that D1F1(x1, x2) be injective, yields that x1 can
be given, at least locally, as a function of x2; let ζ1 be this function, i.e.
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F1(ζ1(x2), x2) = F1o. This reduces the dynamical equation to its second mem-
ber.

If x2o is a stationary state, then

B21F1o +B22F2(ζ1(x2o), x2o) =0,

B11F1o +B12F2(ζ1(x2o), x2o) = − J(ζ1(x2o), x2o).

The entropy production for an entropic body is the quantity

x2 7→ F1oB11F1o + F1oB12F2(ζ1(x2), x2) + F2(ζ1(x2), x2)B21F10+

+ F2(ζ1(x2), x2)B22F2(ζ1(x2), x2) =: σ(x2)

appearing in the dissipation inequality.
It is an easy task to show that if B12 = B21 (the conductance matrix is sym-

metric), then

Dσ(x2) = 2F ′
2(ζ(x2), x2)

(

B21F1o +B22F2(ζ1(x2), x2)
)

,

D
2σ(x2) = 2F ′′

2 (ζ(x2), x2)
(

B21F1o +B22F2(ζ1(x2), x2)
)

+

+ 2F ′
2(ζ1(x2), x2)B22F

′
2(ζ1(x2), x2),

where F ′
2 and F ′′

2 are first and second derivative, respectively, of the function
x2 7→ F2(ζ1(x2), x2).

Thus

Dσ(x2o) = 0, D
2σ(x2o) = 2F ′

2(ζ1(x2o), x2o)B22F
′
2(ζ1(x2o), x2o)

in the stationary state x2o. According to the dissipation inequality, B and so B22

are positive definite; consequently, if F ′
2(ζ1(x2o), x2o) : K2 → K∗

2 is injective, then
D

2σ(x2o) is positive definite. This means that the entropy production σ has a
minimum in the stationary state which is called the Prigogine principle.

We emphasize that the Prigogine principle is valid only in rather restricted
circumstances: the constraint subspaces are the same (the constraint submanifolds
are affine subspaces), the effective conductance matrix is constant, some conditions
are imposed on certain derivatives of the thermodynamical forces.

16.3 Some thermodynamical aspects of interactions

16.3.1 The energy equation

So far we have taken into account thermal interaction, mechanical interaction
(volume change) and material interaction (particle number change) but all other
interactions have thermodynamical aspects: the internal energy changes in the
course of any interaction (e.g. a body conducting the electric current, a body
under a light beam gets warm).

The thermodynamical aspects of interactions between two bodies seem well
described by the following rule:

1. Every interaction is characterized by an extensive quantity and an intensive
one (e.g. the extensive quantities of electricity are the electric charge and the
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dipole, and the corresponding intensive quantities are the electric potential and
field, respectively), and the intensive quantities can be given as functions of the
extensive ones;

2. Every interaction gives a term (a dynamical quantity) in the first law (de-
scribing the change of internal energy).

Now let us suppose that m additional interactions can occur between two
bodies. Let Xi and Yi denote formally the corresponding extensive and intensive
quantities (i = 1, . . . ,m). Then Yi is a function of the extensive quantities, i.e.

Yi = Yi(V, T,N,X1, . . . ,Xm).

We introduce

s(i) := sign

(

∂Yi

∂Xi

)

.

The dynamical quantity corresponding to the i-th interaction is called ideal if
can be formally written as

s(i)YiẊi.

16.3.2 Energy dissipation

A member of the thermodynamical force corresponding to an interaction is the
difference of the corresponding intensive quantities of the bodies:

−s(i)(Yi − (Y∗)i,

where the notation introduced in Section 10.1 is used.
Every interaction gives a term in the dissipation inequality which is

−s(i)(Yi − (Y∗)i)Ẋi

in the case of ideal interaction.

16.3.3 Interactions and entropy

The entropic property (and the first law, see 9.4) for a body is usually formulated
by ‘differentials’:

dE = TdS − PdV + µdN +

m
∑

i=1

s(i)YidXi.

Expressing the real meaning of the differentials, we get the following rule for
the entropic property:

T
∂S
∂Xi

=
∂E
∂Xi

− s(i)Yi (i = 1, . . . ,m).

If (E, V,N,X1, . . . ,Xm) are taken to be the independent variables, then – with
obvious notations –

∂S

∂Xi
= −s(i)Yi

T
.

We shall see that such relations regarding entropy are doubtful in connection
with electromagnetism.
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16.4 Entropy and intrinsic stability

Though the entropic property is doubtful in general, it works well for composite
materials; therefore, it is worth examining the second derivative of the entropy
whose definiteness is strongly related to asymptotic stability. The second deriva-
tive of the total entropy as a function of the canonical variables is negative semidef-
inite and the second derivative of the specific entropy is negative definite. This
latter one can be conceived as a multiple of the derivative of the total entropy with
constant particle number.

We shall see that specific quantities cannot be defined in connection with elec-
tromagnetism. Therefore, we examine now the total entropy with fixed particle
number. Our results remain valid for specific quantities if they exist.

Let us proceed as follows.

Let I0 := (m3), X0 := V and let Ii be a measure line whose elements are
denoted by Xi (i = 1, . . . ,m); let us introduce X := (X0, . . . ,Xm).

Let

(K)+ ×
m

X
i=0

Ii  (J), (T,X) 7→ E(T,X),

(K)+ ×
m

X
i=0

Ii  (J/K), (T,X) 7→ S(T,X)

be the internal energy and the entropy, respectively, as functions of temperature
and the given extensive quantities (with fixed particle number).

Then the canonical variables are (E,X), (E,X) 7→ T(E,X) is the temperature
function and S(E,X) = S(T(E,X),X) is the entropy.

Let

Ki : (K)+ ×
m

X
i=0

Ii  (J)/Ik (i = 1, . . . ,m)

be quantities for which

T
∂S
∂Xi

=
∂E
∂Xi

− Ki

is satisfied (this corresponds to the previous s(i)Yi); then in the canonical variables

∂S

∂E
=

1

T
,

∂S

∂Xi
= −Ki

T
, (i = 0, . . . ,m), (∗)

where Ki(E,X) := Ki(T(E,X),X) and, of course, Ki(T,X) = Ki(E(T,X),X).
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According to the well known formulae regarding the partial derivatives,

∂Ki

∂Xk
• =

∂Ki

∂Xk
+

(

∂Ki

∂E

)

∂E
∂Xk

•

=
∂Ki

∂Xk
+

(

−∂T

∂E

∂S

∂Xi
− T

∂2S

∂E∂Xi

)

∂E
∂Xi

•

=
∂Ki

∂Xk
+

(

∂T

∂E

Ki

T
+

1

T

∂T

∂Xi

)

∂E
∂Xk

•

=
∂Ki

∂Xk
− Kk

T

∂T

∂Xk
− 1

T ∂T
∂E

∂T

∂Xk

∂T

∂Xi

= − T∂2S

∂Xk∂Xi
− 1

T ∂T
∂E

∂T

∂Xk

∂T

∂Xi
.

A rearranging gives

∂2S

∂Xk∂Xi
= − 1

T2

(

1
∂T
∂E

∂T

∂Xk

∂T

∂Xi
+ T

∂Ki

∂Xk
•
)

,

from which it follows that if
(

∂Ki

∂Xk
| i, k = 0, . . . ,m

)

(∗∗)

is positive definite, then

(

∂2S

∂Xk∂Xi

∣

∣

∣

∣

i, k = 0, . . . ,m

)

is negative definite.

Proposition If the equalities (∗) are fulfilled for the total entropy S as a function
of the canonical variables and the matrix (∗∗) is positive definite, then

D
2S = − 1

T2







∂T
∂E

∂T
∂Xi

∂T
∂Xk

1
∂T

∂E

∂T
∂Xk

∂T
∂Xi

+ T ∂Ki

∂Xk
•







i,k=0,...,m

is negative definite.

Proof Our condition implies that the right bottom block in the parentheses is
positive definite; we have to show only that the determinant of the matrix is

positive. Multiplying the first row by
1

∂T
∂E

∂T
∂Xk

and then subtracting it from the

k-th row (k = 0, . . . ,m), we get the matrix





∂T
∂E

∂T
∂Xi

0 T ∂Ki

∂Xk
•





i,k=0,...,m
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whose determinant is evidently positive.
We repeat: our statement refers to the total entropy with constant particle

number (the particle number is not a variable), which is reflected in the positive
definiteness of the matrix (∗∗). If the particle number is considered a variable,
too, then the second derivative of the total entropy is negative semidefinite.

16.5 Exercises

1. Use the notations of 16.2.1 and let N1 be the particle number for which
P(Vo/N1, Ta) = Pa holds. What is the relation between N1 and No?

2. Give an explicit form of F ′
2(ζ1(x2), x2) by the partial derivatives of F1 and

F2 (see 16.2.2).
3. Examine in diverse simple systems: is the condition imposed on the deriva-

tive of the thermodynamical forces in the deduction of the Prigogine principle
satisfied?





V SIMPLE SYSTEMS WITH

PARTICLE INTERCHANGE

17 On diffusions and phase transitions

In this chapter we deal with systems in which the bodies can interchange particles;
all the bodies and the environment are supposed to consist of the same material.
The interchange of particle between two bodies is diffusion if the phases of the
bodies coincide and is phase transition if the phases are different.

Sections 12 and 13 indicate that the more complex the system, the stronger
conditions assure trend to equilibrium (asymptotic stability). Entropic property
of bodies is sufficient, in general, as we have seen in Section 15.

At present we can deduce convenient results for diffusions and phase transi-
tions only for entropic bodies and pseudolinear dynamical quantitities according
to Propositions 15.6 and 15.8.

The constraint imposed on diffusions and phase transitions can be more general
than the earlier ones which are of ‘equality type’. Here constraints of ‘inequality
type’ can appear in a natural way: semipermeable walls are described by non-
positive or non-negative convertings. Such a problem will be treated in Section
18.7.

18 Diffusion between a body and an environment

18.1 General formulae

18.1.1 The framework of description

We examine a system consisting of a body and a given environment of the same
material. The processes of the body are supposed to run in the phase coinciding
with that of the environment, and diffusion can occur between the body and the
environment.

Workings and transferrings are supposed to be ideal.
According to Definition 14.1, this system is described as follows.
1. There are a given body and an environment of the same material

(D,T,P,µ,R).
2. There are the given heating Q, the springing F, the converting G 6= 0

defined on (D ∗ R
+
0 ) × (D ∗ R

+
0 ); these dynamical quantitities are continuous and

continuously differentiable on the interior of their domain.
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The following notations will be used later on:

T := T(E, V,N), Ta := T(Ea, Va, Na),

P := P(E, V,N), Pa := P(Ea, Va, Na),

µ := µ(E, V,N), µa := µ(Ea, Va, Na),

and

Q := Q(E, V,N,Ea, Va, Na),

F := F(E, V,N,Ea, Va, Na),

G := G(E, V,N,Ea, Va, Na).

Then the dynamical quantitities satisfy
– the equilibrium property
(I) if N = 0 then they have zero value,
(II) for N 6= 0:

if G can have both positive and negative values
(a) if F = 0 and Q = 0, then
∗ G = 0 if and only if µ = µa,
(b) if F = 0 and Q 6= 0, then
∗ G = 0 implies µ = µa,
∗ µ = µa and Q = 0 imply T = Ta,
∗ ∗ T = Ta and µ = µa imply G = 0 and Q = 0,
(c) if F 6= 0 and Q = 0, then
∗ G = 0 implies µ = µa,
∗ µ = µa and F = 0 imply P = Pa,
∗ ∗ P = Pa and µ = µa imply F = 0 and G = 0,
(d) if F 6= 0 and Q 6= 0, then
∗ G = 0 implies µ = µa,
∗ µ = µa and F = 0 imply P = Pa,
∗ µ = µa, P = Pa and Q = 0 imply T = Ta,
∗ ∗ ∗ T = Ta, P = Pa and µ = µa imply Q = 0, F = 0 and G = 0,
– the dissipation inequality

−Q

T
(T − Ta) + F (P − Pa) −G(µ− µa) ≥ 0,

or, equivalently,

(

Q− PF + µG)
)

(

1

T
− 1

Ta

)

+ F

(

P

T
− Pa

Ta

)

−G

(

µ

T
− µa

Ta

)

≥ 0.

3. There is a given phase Z of the material and a process t 7→ (Ea(t), Va(t), Na)
∈ Z ∗ R

+ of the environment which is a continuous function defined on a time
interval.

4. There are the given heat source t 7→ Qs(t) and the particle source t 7→ Gs(t)
which are continuous functions defined on a time interval.
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5. The process t 7→
(

E(t), V (t), N(t)
)

∈ Z ∗ R
+
0 of the body is determined by

the dynamical equation

Ė = Qs + µGs +Q− PF + µG,

V̇ = F,

Ṅ = Gs +G,

where Q := Q(E, V,N,Ea, Va, Na), etc.

18.1.2 Other variables

(i) The formulae will often be simplified by the use of the specific quantities

e :=
E

N
and v :=

V

N
.

(ii) It is convenient to characterize the environment by its temperature and
pressure, therefore we apply the convention in 12.2.2.

(iii) Sometimes temperature is used as a variable instead of internal energy.
Then the notations Q(V, T,N, Ta, Pa) etc. are applied and the dynamical equation
has the form

NcvṪ = Qs + µGs +Q−
(

P +
∂e

∂v

)

F + µG,

V̇ = F,

Ṅ = Gs +G,

where Q := Q(V, T,N, Ta, Pa), etc.

18.1.3 Pseudolinear dynamical quantitities

We mostly consider pseudolinear dynamical quantitities when the right hand
side of the dynamical equation is written as the product of the conductance matrix
and the thermodynamical force in the known form:





λA βA ϑA

λF βF ϑF

λG βG ϑG











1
T − 1

Ta

P
T − Pa

Ta

− µ
T + µa

Ta







where the matrix entries are functions of (E, V,N, Ta, Pa) and, of course, T =
T(E, V,N) etc.

Only a single body is in the system, therefore the above quantities are the
nominal conductance matrix and the nominal thermodynamical force.

18.1.4 Equilibrium

In the sequel
– the process of the environment is supposed to be constant,

Ta = const. Pa = const.;
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then, of course, µa is also constant;
– we take zero sources:

Qs = 0, Gs = 0;

then every standstill is an equilibrium;
– we consider processes in which the particle number is not zero (the state

with zero particle number is an equilibrium, because all the dynamical quantitities
take zero value there).

Because the processes of the body run in the same phase in which the state of
the environment is, if both the temperature and the pressure of the body and the
environment coincide, their chemical potentials, too, have the same value.

The symbols eo and vo will denote the (uniquely determined) values of specific
internal energy and specific volume, respectively, for which

T(eo, vo) = Ta, P(eo, vo) = Pa

hold.

18.1.5 Entropic body

The total entropy of the body and the environment equals – up to an additive
constant –

(E, V,N) 7→ L(E, V,N) := S(E, V,N) − E + PaV − µaN

Ta
.

If the body is entropic, the nominal thermodynamical force is the derivative of L:

(

1

T
− 1

Ta
,
P

T
− Pa

Ta
,− µ

T
+
µa

Ta

)

,

where T := T(E, V,N) etc.
Furthermore, D

2L(E, V,N) = D
2S(E, V,N) is negative semidefinite, its kernel

is spanned by (E, V,N).

18.2 Processes without constraint

18.2.1 The set of equilibria

Let the body and the environment be in thermal, mechanical and material inter-
action. Then an equilibrium is determined by the fact that the temperature and
the pressure of the body equal those of the environment. There is no condition
imposed on the particle number of the body, therefore with the notation of 18.1.4:

Proposition The set of equilibria with non-zero particle number is

Eq := {N(eo, vo, 1) | N ∈ R
+}.

The equilibrium is not unique even locally; the set of equilibria is a half line:
a submanifold whose tangent space at every point is spanned by (eo, vo, 1).
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18.2.2 Stability of equilibria

Proposition If the body is entropic and the nominal conductance matrix in 18.1.3
takes symmetric and positive definite values in equilibria, then the set of equilibria
is strictly asymptotically stable.

Proof The tangent space of Eq at every point (Neo, Nvo, N) equals the kernel of
D

2L(Neo, Nvo, N). The constraint is void, therefore all the conditions of Proposi-
tion 15.8 are fulfilled.

Let us imagine that the body consists of air in a completely (infinitely) de-
formable tyre which is in the atmosphere. Then an arbitrary amount of air inside
can be in equilibrium in which the air inside has the same temperature and pres-
sure as the atmosphere. If the air inside is hot and compressed, then molecules
diffuse from the body into the atmosphere, the body cools and expands until it
reaches an equilibrium. If we disturb such an equilibrium – e.g. we press the tyre a
little – then a process starts and a new equilibrium is reached in which the amount
of air inside will differ from the previous equilibrium amount.

18.3 Fixed volume

18.3.1 Uniqueness of equilibrium

Let us fix the volume of the body: the body and the environment are only in
thermal and material interaction. Springing is zero, F = 0; this defines a holonomic
constraint:

V̇ = 0.

Referring to the notations of Section 15.3.3, we have now Γ = {(0, 1, 0)}. The two-
dimensional constraint subspaces are spanned by the vectors (1, 0, 0) and (0, 0, 1)
(the constraint subspace is the same at every point, the constraint is affine).

The effective thermodynamical force is
(

1

T
− 1

Ta
,− µ

T
+
µa

Ta

)

.

For all Vo ∈ (m3),

U(Vo) := {(E, Vo, N) ∈ Z | E ∈ (J), N ∈ R
+}

is a constraint submanifold of the dynamical equation.
In an equilibrium, the temperature and the chemical potential of the body

equal those of the environment; there is no condition imposed on the pressures.
The function µ(Ta, ·) is locally injective by the Gibbs–Duhem relation, therefore
the only equilibrium pressure in a neighbourhood of Pa is just Pa.

Proposition If (eo, vo) is defined by 18.1.4, then with the notation

No :=
Vo

vo

the equilibrium
No(eo, vo, 1) (∗)

is locally unique in U(Vo).
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18.3.2 Stability of the equilibrium

Proposition If the body is entropic, then for arbitrary Vo the equilibrium (∗) is
asymptotically stable in U(Vo) (even if the dynamical quantitities are not pseudo-
linear).

Proof The subspace spanned by the vectors (1, 0, 0) and (0, 0, 1) meets the kernel
of D

2L(No(eo, vo, 1)) in the zero, so Proposition 15.6 can be applied.

18.4 Constant temperature

18.4.1 The constraint

Let us examine the diffusion processes in which the temperature of the body is
constant, equals that of the environment. It is not obvious how to assure the
constant temperature; we refer to 12.12.

The present constraint is holonomic:

∂T

∂E
Ė +

∂T

∂V
V̇ +

∂T

∂N
Ṅ = 0.

Using 8.3 (∗), we can rewrite this equality in the form

∂T

∂e
Ė +

∂T

∂v
V̇ −

(

e
∂T

∂e
+ v

∂T

∂v

)

Ṅ = 0.

Referring to the notations of Section 15.3.3, we have now

Γ =

{(

∂T

∂e
,
∂T

∂v
,−e∂T

∂e
− v

∂T

∂v

)}

.

The two-dimensional constraint subspaces are spanned by the vectors
(

− ∂T
∂v ,

∂T
∂e , 0

)

and
(

e∂T
∂e + v ∂T

∂v , 0,
∂T
∂e

)

.

18.4.2 The effective thermodynamical force and conductance matrix

Because of T = Ta, we easily get that the effective thermodynamical force is

1

Ta
(P − Pa,−µ+ µa).

The nominal conductance matrix in 18.1.3 fits the constraint if and only if (see
15.4.4)

(

∂T
∂e

∂T
∂v −e∂T

∂e − v ∂T
∂v

)





λA βA ϑA

λF βF ϑF

λF βF ϑG



 = 0,





λA βA ϑA

λF βF ϑF

λG βG ϑG











∂T
∂e
∂T
∂v

−e∂T
∂e − v ∂T

∂v






= 0.
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18.4.3 The set of equilibria

For all Ta ∈ (K)+

U(Ta) := {(E, V,N) ∈ Z | T(E, V,N) = Ta}

is a constraint submanifold of the dynamical equation.
In an equilibrium, the pressure of the body and that of the environment are

equal (the temperatures are equal as a matter of course) and there is no condition
imposed on the particle number.

Proposition If (eo, vo) is defined by 18.1.4 then the set of equilibria with non-zero
particle number in U(Ta) is

Eq(Ta) := {N(eo, vo, 1) | N ∈ R
+}.

The set of equilibria is half line: a submanifold whose tangent space at every
point is spanned by (eo, vo, 1).

18.4.4 Stability of equilibria

Proposition If the body is entropic, the nominal conductance matrix in 18.1.3 fits
the constraint and its value at (Neo, Nvo, N) is symmetric, positive semidefinite
and has the kernel spanned by

(

∂T

∂e
,
∂T

∂v
,−e∂T

∂e
− v

∂T

∂v

)

(Neo, Nvo, N),

then Eq(Ta) is strictly asymptotically stable in U(Ta).

Proof Condition (ii) of Proposition 15.8 is satisfied in form (ii)’ (given in the
remark after the proof).

The tangent space of Eq(Ta) at every point (Neo, Nvo, N) equals the kernel
of D

2L(Neo, Nvo, N). The nominal thermodynamical force takes zero value in
equilibria. Consequently, all the conditions of Proposition 15.8 are satisfied.

18.5 Constant pressure

18.5.1 The constraint

Let us examine the diffusion processes in which the pressure of the body is constant
and equals that of the environment. Again we refer to 12.12.

The present constraint is holonomic:

∂P

∂E
Ė +

∂P

∂V
V̇ +

∂P

∂N
Ṅ = 0.

As in the previous section, we can rewrite it in the form

∂P

∂e
Ė +

∂P

∂v
V̇ −

(

e
∂P

∂e
+ v

∂T

∂v

)

Ṅ = 0.
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Referring to the notations of Section 15.3.3, we have now

Γ =

{(

∂P

∂e
,
∂P

∂v
,−e∂P

∂e
− v

∂P

∂v

)}

.

The two-dimensional constraint subspaces are spanned by the vectors
(

− ∂P
∂v ,

∂P
∂e , 0

)

and
(

0, e∂P
∂e + v ∂P

∂v ,
∂P
∂v

)

.

18.5.2 The effective thermodynamical force and conductance matrix

Because of P = Pa we easily find that
(

1

T
− 1

Ta
,− µ

T
+
µa

Ta

)

can be considered as the effective thermodynamical force (multiples of these com-
ponents appear when the nominal thermodynamical force is applied to the vectors
spanning the constraint subspaces).

We can repeat what we said in the previous section about the nominal con-
ductance matrix; the reader is asked to formulate precise necessary and sufficient
conditions.

18.5.3 The set of equilibria

For all Pa ∈ (Pa),

U(Pa) := {(E, V,N) ∈ Z | P(E, V,N) = Pa}
is a constraint submanifold of the dynamical equation.

In an equilibrium, the temperature of the body and that of the environment
are equal (the pressures are equal as a matter of course) and there is no condition
imposed on the particle number.

Proposition If (eo, vo) is defined by 18.1.4, then the set of equilibria with non-zero
particle number in U(Pa) is

Eq(Pa) := {N(eo, vo, 1) | N ∈ R
+}.

The set of equilibria is half line: a submanifold whose tangent space at every
point is spanned by (eo, vo, 1).

18.5.4 Stability of equilibria

The following proposition can be proved as the proposition for constant tempera-
ture.

Proposition If the body is entropic, the nominal conductance matrix in 18.1.3 fits
the constraint and its value at (Neo, Nvo, N) is symmetric, positive semidefinite
and has the kernel spanned by

(

∂P

∂e
,
∂P

∂v
,−e∂P

∂e
− v

∂P

∂v

)

(Neo, Nvo, N),

then Eq(Pa) is strictly asymptotically stable in U(Pa).
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18.6 Heat insulation

18.6.1 The effective thermodynamical force

Let us examine processes in which the body is heat insulated. Then the first law
reads

Ė = −PV̇ + µṄ.

Accordingly, the constraint is given as

Γ = {(1, P,−µ)}.

The two-dimensional constraint subspaces are spanned by (−P, 1, 0) and (µ, 0, 1).
The constraint is anholonomic.

The effective thermodynamical force is

1

Ta

(

P − Pa,−(µ− µa)
)

.

18.6.2 Unsolved problem

As a consequence of the Frobenius theorem (well known in the theory of manifolds),
there are no constraint submanifolds. We cannot apply Propositions 15.6 and 15.8.
The problem of trend to equilibrium in the case of a heat insulated diffusing body
is not yet solved.

18.7 Semipermeable wall, fixed volume

18.7.1 The set of equilibria

Let a rigid wall separate the body from the environment which lets particles only
from the environment into the body; then F = 0 and G ≥ 0. The present con-
straint with inequality cannot be treated in the previous framework.

Using the variables (v, T,N), we can write the dynamical equation – with ideal
working and transferring – in the form

cṪ = q − (P +
∂e

∂v
)v̇,

v̇ = −vg, Ṅ = Ng.

According to 14.1, in equilibrium the temperature of the body coincides with
the temperature of the environment, and a condition on specific volume is given
by

u(v, Ta) ≥ u(va, Ta),

where va is the specific volume of the environment.
Recall that we suppose the processes running in a given phase Z. For all

Vo ∈ (m3),

U(Vo) := {(v, T,N) | (v, T ) ∈ Z, vN = Vo, N ∈ R
+}

is an invariant submanifold of the dynamical equation.
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Only a single phase is considered, so the function v 7→ u(v, Ta) is strictly
monotone decreasing, thus

Eq(Vo) := {(v, Ta, N) ∈ U(Vo) | v ≤ va}

is the set of equilibria in U(Vo).

18.7.2 Stability of equilibria

It is reasonable to take the dynamical quantitities in the following pseudolinear
form

q(v, T, Ta, Pa) = −λQ(v, T, Ta, Pa)(T − Ta) + ϑQ(v, T, Ta, Pa)(µa − u(v, T ))+,

g(v, T, Ta, Pa) = ϑG(v, T, Ta, Pa)(µa − u(v, T ))+

where ( )+ denotes the positive part of a function.

Proposition If the dynamical quantitities have the above form, then Eq(Vo) is
strictly asymptotically stable in U(Vo).

Proof Let us parameterize U(Vo) by specific volume and temperature. Then the
reduced dynamical equation becomes

Ṫ = −α(v, T )(T − Ta) + β(v, T )(µa − u(v, T ))+,

v̇ = −γ(v, T )(µa − u(v, T ))+,

where α, β and γ are some functions, α and β having non-negative values. The
set of equilibria of the reduced equation is

Eq := {(v, Ta, ) ∈ Z | v ≤ va}.

The chemical potential is continuous, thus

A := {(v, T ) ∈ Z | u(v, T ) > µa}

is an open subset containing Eq \ {(va, Ta)}.
Let (vo, T (0)) ∈ A, vo < va and let t 7→ T (t) be the solution of the differential

equation
(T − Ta)̇ = −α(vo, T )(T − Ta)

with initial condition T (0). It is trivial that |T − Ta| is monotone decreasing and
lim

t→∞
T (t) = Ta.

As a consequence, u(vo, T (t)) > µa for all t ≥ 0, therefore t 7→ (vo, T (t))
is a solution of the reduced dynamical equation. All those imply that processes
starting in A do not leave A and tend to Eq \ {(va, Ta)}, which means that the
latter set is a strictly asymptotically stable set of equilibria.

Let us take now a process starting in a neighbourhood of (va, Ta). If the process
enters A\{(va, Ta)}, then it proceeds as described previously. If it remains outside,
then it satisfies a differential equation in which (u−µa)+ = u−µa and, according to
our knowledge, (va, Ta) is an asymptotically stable equilibrium of such an equation.

So we can conclude that Eq, the set of equilibria of the reduced dynamical
equation is strictly asymptotically stable.
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18.8 Exercises

1. Treat the system without constraint in the variables (V, T,N).
2. Give the actual conditions for isothermal and isobaric processes, respec-

tively, provided that the effective equilibrium value of the conductance matrix is
symmetric and positive definite (in other words, the value of the nominal conduc-
tance matrix is symmetric and its kernel is spanned by the value of DT and DP,
respectively).

3. Suppose a non-zero material source in the body. What can be said about
the stationary states? Examine the particular case of fixed volume.

4. Treat the body with semipermeable wall whose volume is not fixed.
5. Heating is determined uniquely by springing and converting for isothermal

processes. Prove that in the ideal case (cf. 12.6)

Q =

(

P +
∂e

∂v

)

F +

(

e− µ+ v
∂e

∂v

)

G. (∗)

6. Springing is uniquely determined by heating and converting for isobaric
processes. Prove that in the ideal case

F =
1

cp

(

∂P
∂T

− ∂P
∂v

Q+

(

cvv +
∂P
∂T

− ∂P
∂v

(

µ+ v
∂e

∂v

)

G

))

.

19 Diffusion between two bodies and an environ-
ment

19.1 General formulae

19.1.1 The framework of description

Considering a system consisting of two bodies of equal material and an environ-
ment characterized by its constant temperature and pressure, we shall examine
processes that run in the same phases of the bodies, and both the bodies and the
environment can interchange particles (diffusion can occur).

Zero sources are taken, workings and transferrings are ideal.
Constant process of the environment is supposed with temperature Ta and

pressure Pa; then the chemical potential µa of the environment is constant, too.
This system is described according to Definition 14.1:
1. Two bodies and an environment of the same material (D,T,P,µ,R) are

given.
2. There are the heatings Qik, the springings Fik and the convertings Gik

defined on (D ∗ R
+
0 ) × (D ∗ R

+
0 ) (i = 1, 2; k = a, 1, 2); all the dynamical quantiti-

ties are continuous and continuously differentiable on the interior of their domain
and satisfy mutuality, equilibrium properties and dissipation inequalities with the
notations Wik := −PiFik and Lik := −µiGik.

3. There is a given phase Z of the material and the constant process (Ta, Pa) ∈
(T,P)[Z] of the environment.

4. The sources are zero.
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5. The processes, considered to run in (Z∗R+)×(Z∗R+) (zero particle numbers
are excluded), are described by the dynamical equation

Ė1 = Q1a +Q12 − P1(F1a + F12) + µ1(G1a +G12),

V̇1 = F1a + F12,

Ṅ1 = G1a +G12,

Ė2 = Q2a +Q21 − P2(F2a + F21) + µ2(G2a +G21),

V̇2 = F2a + F21,

Ṅ2 = G2a +G21.

19.1.2 The nominal conductance matrix

In the sequel we take pseudolinear dynamical quantitities. The pair conductivity
matrices have the form

Cik :=













λA
ik βA

ik ϑA
ik

λF
ik βF

ik ϑF
ik

λG
ik βG

ik ϑG
ik













,

where i = 1, 2 and k = 0, 1, 2 and now superscripts refer to the dynamical quanti-
tities. According to the remark in 15.4.2 we suppose that

C12(E1, V1, N1, E2, V2, N2) = C21(E2, V2, N2, E1, V1, N1).

Following 15.4.1, we introduce the conductance matrix

B :=

(

B11 B12

B21 B22

)

:=

(

C1a + C12 −C12

−C21 C2a + C21

)

. (∗)

Thus, putting

x1 := (E1, V1, N1), x2 := (E2, V2, N2),

y :=

(

1

T
,

P

T
,− µ

T

)

,

ya :=

(

1

Ta
,
Pa

Ta
,−µa

Ta

)

,

we obtain the dynamical equation in the form

(

ẋ1

ẋ2

)

=

(

B11(x1, x2, ya) B12(x1, x2)
B21(x1, x2) B22(x1, x2, ya)

)(

y(x1) − ya

y(x2) − ya

)

.
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19.1.3 Entropic bodies

The total entropy of the bodies and the environment together – which plays a
fundamental role in determining equilibria and their stability – equals (up to an
additive constant)

(E1, V1, N1, E2, V2, N2) 7→ L(E1, V1, N1, E2, V2, N2) :=

S(E1, V1, N1) + S(E2, V2, N2) − E1 + E2 + Pa(V1 + V2) − µa(N1 +N2)

Ta
.

The nominal thermodynamical force is the derivative of L:
(

1

T1
− 1

Ta
,
P1

T1
− Pa

Ta
,−µ1

T1
+
µa

Ta
,

1

T2
− 1

Ta
,
P2

T2
− Pa

Ta
,−µ2

T2
+
µa

Ta

)

,

where T1 := T(E1, V1, N1), T2 := T(E2, V2, N2), etc.
Furthermore, D

2L(E1, V1, N1, E2, V2, N2) = D
2S(E1, V1, N1) + D

2S(E2, V2, N2)
is negative semidefinite, having the kernel spanned by the vectors
(E1, V1, N1, 0, 0, 0) and (0, 0, 0, E2, V2, N2).

19.1.4 Equilibrium

Because the processes of the bodies run in the same phase in which the state of
the environment is, if both the temperature and the pressure of one of the body
and the environment coincide, their chemical potentials, too, have the same value;
the same is true for the two bodies.

The equilibrium properties of the dynamical quantitities give mostly

T(e1o, v1o) = T(e2o, v2o), P(e1o, v1o) = P(e2o, v2o)

for the specific quantities of the bodies. The function (T,P) is injective in a phase,
therefore

e1o = e2o =: eo, v1o = v2o =: vo.

eo and vo are determined by different conditions in different systems.

19.2 System without constraint

19.2.1 The set of equilibria

Let the bodies and the environment be in thermal, mechanical and material in-
teraction: there is no additional condition imposed on the dynamical quantities.
According to 19.1.4, the equilibrium values of the specific quantities are determined
uniquely by

T(eo, vo) = Ta, P(eo, vo) = Pa. (∗)

There is no condition imposed on the particle numbers, thus we have

Proposition The set of equilibria with non-zero particle numbers is

{(N1eo, N1vo, N1, N2eo, N2vo, N2) | N1, N2 ∈ R
+}.

The set of equilibria is a plane quadrant: a submanifold whose tangent space
at every point is spanned by the vectors (eo, vo, 1, 0, 0, 0) and (0, 0, 0, eo, vo, 1).



204 V Simple systems with particle interchange

19.2.2 Stability of equilibria

Proposition If the bodies are entropic and the nominal conductance matrix(∗) in
19.1.2 takes symmetric and positive definite values in equilibria, then the set of
equilibria is strictly asymptotically stable.

Proof The set of equilibria is a submanifold, its tangent space at every point
equals the kernel of the corresponding value of D

2L. The constraint is void, there-
fore, all the conditions of Proposition 15.8 are fulfilled.

19.3 Fixed total volume

19.3.1 The effective thermodynamical force and conductance matrix

Let the two bodies be enclosed with a heat conducting, permeable, rigid wall, i.e.
the mechanical interaction between the bodies and the environment is forbidden:
F1a = F2a = 0. Then

V̇1 + V̇2 = 0;

the constraint Γ = {(0, 1, 0, 0, 1, 0)} is holonomic (in fact is affine). The con-
straint subspaces are spanned by the vectors (1, 0, 0, 0, 0, 0), (0, 1, 0, 0,−1, 0),
(0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1).

The effective thermodynamical force is
(

1

T1
− 1

Ta
,

1

T2
− 1

Ta
,
P1

T1
− P2

T2
,−µ1

T1
+
µa

Ta
,−µ2

T2
+
µa

Ta

)

.

The nominal conductance matrix(∗) in 19.1.2 fits the constraint if and only
if multiplied by the vector (0, 1, 0, 0, 1, 0) both from left and from right results in
zero. In view of C12 = C21, this is equivalent to that the middle row and the
middle column of the matrices C1a and C2a are zero. This is an evident condition
from a physical point of view: F1a = F2a = 0 imply that the middle row is zero,
and the zero middle column means that the dynamical quantitities between the
bodies and the environment do not depend on the pressures.

19.3.2 The set of equilibria

For all Vs ∈ (m3)+

U(Vs) := {(E1, V1, N1, E2, V2, N2) | V1 + V2 = Vs}

is a constraint submanifold of the dynamical equation, a part of an affine subspace.
The specific values of equilibrium quantities are determined by (∗) in 19.2.1.
Then in equilibrium we have

N1o +N2o = Vs/vo =: No.

Proposition The set of equilibria with non-zero particle numbers in U(Vs) is

Eq(Vs) := (N1eo, N1vo, N1, (No −N1)eo, (No −N1)vo, No −N1) | 0 < N1 < No}.

The set of equilibria is a straight line segment: a submanifold whose tangent
space at every point is spanned by (eo, vo, 1,−eo,−vo,−1).
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19.3.3 Stability of equilibria

Proposition If the bodies are entropic, the nominal conductance matrix(∗) in
19.1.2 fits the constraint and its equilibrium values are symmetric, positive semidef-
inite having the kernel spanned by (0, 1, 0, 0, 1, 0), then Eq(Vs) is strictly asymp-
totically stable in U(Vs).

Proof In an arbitrary equilibrium, the kernel of D
2L is spanned by the vectors

(eo, vo, 1, 0, 0, 0) and (0, 0, 0, eo, vo, 1). An element which is both in this kernel
and in the corresponding constraint subspace has the form α(eo, vo, 1, 0, 0, 0) +
β(0, 0, 0, eo, vo, 1) in such a way that βvo = −αvo, i.e. β = −α, in other words, it
is a multiple of (eo, vo, 1,−eo,−vo,−1). Thus the intersection of the equilibrium
kernel of D

2L and the corresponding constraint subspace equals the corresponding
tangent space of Eq(Vs).

All the conditions of Proposition 15.8 are satisfied.

19.4 Fixed total particle number

19.4.1 The effective thermodynamical force and conductance matrix

Let the two bodies be enclosed with an impermeable wall, i.e. the material in-
teraction between the bodies and the environment is forbidden: G1a = G2a = 0.
Then

Ṅ1 + Ṅ2 = 0;

the constraint Γ = {(0, 0, 1, 0, 0, 1)} is holonomic (in fact is affine). The constraint
subspaces are spanned by the vectors (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0),
(0, 0, 1, 0, 0,−1), (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 1, 0).

The effective thermodynamical force is

(

1

T1
− 1

Ta
,

1

T2
− 1

Ta
,
P1

T1
− Pa

Ta
,
P2

T2
− Pa

Ta
,−µ1

T1
+
µ2

T2

)

.

The nominal conductance matrix (∗) in 19.1.2 fits the constraint if and only
if multiplied by the vector (0, 0, 1, 0, 0, 1) both from left and from right results in
zero. In view of C12 = C21, this is equivalent to that the last row and the last
column of the matrices C1a and C2a are zero. This is an evident condition from
a physical point of view: G1a = G2a = 0 imply that the last row is zero, and the
last column is zero because the dynamical quantitities between the bodies and the
environment do not depend on the chemical potentials.

19.4.2 The set of equilibria

For all Ns ∈ R
+

U(Ns) := {(E1, V1, N1, E2, V2, N2) | N1 +N2 = Ns}

is a constraint submanifold of the dynamical equation, a part of an affine subspace.
The specific value of the equilibrium quantities are determined by (∗) in 19.2.1.
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Proposition The set of equilibria with non-zero particle number in U(Ns) is

Eq(Ns) := {(N1eo, N1vo, N1, (Ns −N1)eo, (Ns −N1)vo, Ns −N1) | 0 < N1 < Ns}.

The set of equilibria is a straight line segment: a submanifold whose tangent
space at every point is spanned by (eo, vo, 1,−eo,−vo,−1).

19.4.3 Stability of equilibria

Proposition If the bodies are entropic, the nominal conductance matrix (∗) in
19.1.2 fits the constraint and its equilibrium values are symmetric, positive semidef-
inite having the kernel spanned by (0, 0, 1, 0, 0, 1), then Eq(Ns) is strictly asymp-
totically stable in U(Ns).

Proof In an arbitrary equilibrium, the kernel of D
2L is spanned by the vectors

(eo, vo, 1, 0, 0, 0) and (0, 0, 0, eo, vo, 1). An element which is both in this kernel
and in the corresponding constraint subspace has the form α(eo, vo, 1, 0, 0, 0) +
β(0, 0, 0, eo, vo, 1) in such a way that β = −α, in other words, it is a multiple of
(eo, vo, 1,−eo,−vo,−1). Thus the intersection of the equilibrium kernel of D

2L and
the corresponding constraint subspace equals the corresponding tangent space of
Eq(Ns).

All the conditions of Proposition 15.8 are satisfied.

19.5 Fixed total volume and particle number

19.5.1 The effective thermodynamical force and conductance matrix

Let the two bodies be enclosed with a rigid and impermeable wall, i.e. both the
mechanical and the material interaction are forbidden between the bodies and the
environment: F1a = F2a = 0, G1a = G2a = 0. Then

V̇1 + V̇2 = 0, Ṅ1 + Ṅ2 = 0;

the constraint Γ = {(0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1)} is holonomic (in fact it is
affine). The constraint subspaces are spanned by the vectors (1, 0, 0, 0, 0, 0),
(0, 1, 0, 0,−1, 0), (0, 0, 1, 0, 0,−1) and (0, 0, 0, 1, 0, 0).

The effective thermodynamical force is

(

1

T1
− 1

Ta
,

1

T2
− 1

Ta
,
P1

T1
− P2

T2
,−µ1

T1
+
µ2

T2

)

.

The nominal conductance matrix (∗) in 19.1.2 fits the constraint if and only
if multiplied by the vectors (0, 1, 0, 0, 1, 0) and (0, 0, 1, 0, 0, 1) both from left and
from right results in zero. In view of C12 = C21, this is equivalent to that the only
the element in the first row and first column of the matrices C1a and C2a is not
zero.
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19.5.2 The set of equilibria

For all Vs ∈ (m3)+ and Ns ∈ R
+

U(Vs, Ns) := {(E1, V1, N1, E2, V2, N2) | V1 + V2 = Vs, N1 +N2 = Ns}

is a constraint submanifold of the dynamical equation, a part of an affine subspace.
Now we have

vo =
Vs

Ns

for the equilibrium value of specific volume (see 19.1.4) which, together with

T(eo, vo) = Ta

determine uniquely the equilibrium value of specific internal energy.

Proposition The set of equilibria with non-zero particle number in U(Vs, Ns) is

Eq(Vs, Ns) :=

:= {(N1eo, N1vo, N1, (Ns−N1)eo, (Ns−N1)vo, Ns−N1) | 0 < N1 < Ns}.

The set of equilibria is a straight line segment: a submanifold whose tangent
space at every point is spanned by (eo, vo, 1,−eo,−vo,−1).

19.5.3 Stability of equilibria

The pressure of the environment does not appear in the description; we can take
formally that it equals the equilibrium pressure Po := P(eo, vo).

Furthermore, we can repeat the reasoning in the previous proofs, to arrive at
the result that for entropic bodies all the conditions of 15.8 are satisfied:

Proposition If the bodies are entropic, the nominal conductance matrix (∗) in
19.1.2 fits the constraint and its equilibrium values are symmetric, positive semidef-
inite having the kernel spanned by (0, 1, 0, 0, 1, 0) and (0, 0, 1, 0, 0, 1), then
Eq(Vs, Ns) is strictly asymptotically stable in U(Vs, Ns).

19.6 Fixed total volume, particle number
and internal energy

19.6.1 The effective thermodynamical force and conductance matrix

Let the two bodies be enclosed with a wall which forbids every interaction between
the bodies and the environment: F1a = F2a = 0, G1a = G2a = 0 and Q1a =
Q2a = 0. Then

Ė1 + Ė2 = 0, V̇1 + V̇2 = 0, Ṅ1 + Ṅ2 = 0;

the constraint Γ = {(1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1)} is holonomic
(in fact it is affine). The constraint subspaces are spanned by the vectors
(1, 0, 0,−1, 0, 0), (0, 1, 0, 0,−1, 0), (0, 0, 1, 0, 0,−1).
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The effective thermodynamical force is

(

1

T1
− 1

T2
,
P1

T1
− P2

T2
,−µ1

T1
+
µ2

T2

)

.

The nominal conductance matrix (∗) in 19.1.2 fits the constraint if and only
if multiplied by the vectors (0, 1, 0, 0, 1, 0) (0, 0, 1, 0, 0, 1) and (1, 0, 0, 1, 0, 0) both
from left and from right results in zero. In view of C12 = C21, this is equivalent
to that C1a = C2a = 0, which is a natural requirement.

19.6.2 The set of equilibria

For all Es ∈ (J)+, Vs ∈ (m3)+ and Ns ∈ R
+

U(Es, Vs, Ns) := {(E1, V1, N1, E2, V2, N2) |
E1 + E2 = Es, V1 + V2 = Vs, N1 +N2 = Ns}

is a constraint submanifold of the dynamical equation, a part of an affine subspace.

Evidently, the specific values of the equilibrium quantities (see 19.1.4) are de-
termined by

eo =
Es

Ns
, vo =

Vs

Ns
.

Proposition The set of equilibria with non-zero particle number in U(Es, Vs, Ns)
is

Eq(Es, Vs, Ns) :=

:= {(N1eo, N1vo, N1, (Ns−N1)eo, (Ns−N1)vo, Ns−N1) | 0<N1<Ns}.

The set of equilibria is a straight line segment: a submanifold whose tangent
space at every point is spanned by (eo, vo, 1,−eo,−vo,−1).

19.6.3 Stability of equilibrium

Now both the temperature and the pressure of the environment do not appear in
the description; we can take formally that they equal the corresponding equilibri-
um values To := T(eo, vo) and Po := P(eo, vo).

Furthermore, we can repeat the reasoning in the previous proofs, to arrive at
the result that for entropic bodies all the conditions of 15.8 are satisfied:

Proposition If the bodies are entropic, the nominal conductance matrix (∗) in
19.1.2 fits the constraint and its equilibrium values are symmetric, positive semidef-
inite having the kernel spanned by (0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1) and 1, 0, 0, 1, 0, 0),
then Eq(Es, Vs, Ns) is strictly asymptotically stable in U(Es, Vs, Ns).
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19.7 Fixed individual volumes, total particle number
and joint heat insulation

19.7.1 The effective thermodynamical force and conductance matrix

Let each body be enclosed with a rigid wall which forbids every interaction be-
tween the bodies and the environment. (Consider a container whose wall is rigid,
heat insulated and impermeable, divide it in two parts by an unmovable, heat-
conducting and permeable wall and fill the two parts with the same gas.) Then
Q1a = Q2a = 0, F1a = F2a = F12 = 0, G1a = G2a = 0, and

Ė1 + Ė2 = 0, V̇1 = 0, V̇2 = 0, Ṅ1 + Ṅ2 = 0.

The reader is asked to describe the (affine) constraint, the constraint subspaces,
the effective thermodynamical force and the conditions assuring that the nominal
conductance matrix (∗) in 19.1.2 fits the constraint.

19.7.2 Uniqueness of equilibrium

For all Es ∈ (J)+, V1o, V2o ∈ (m3)+ and Ns ∈ R
+

U(Es, V1o, V2o, Ns) := {(E1, V1, N1, E2, V2, N2) |
E1 + E2 = Es, V1 = V1o, V2 = V2o, N1 +N2 = Ns}

is a constraint submanifold of the dynamical equation, a part of an affine subspace.

Then, as in the previous paragraph, the equilibrium values are determined by

eo =
Es

Ns
, vo =

V1o + V2o

Ns

and, furthermore, both equilibrium particle numbers are unique:

N1o =
V1o

vo
, N2o =

V2o

vo
.

Thus

(N1oeo, N1ovo, N1o, N2oeo, N2ovo, N2o). (∗)

is the only equilibrium in the above constraint submanifold.

19.7.3 Stability of the equilibrium

The reader is asked to verify that Proposition 15.6 can be applied:

Proposition If the bodies are entropic, then the equilibrium (∗) is asymptotically
stable in U(Es, V1o, V2o, Ns) (even if the dynamical quantitities are not pseudolin-
ear).
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19.7.4 Gay-Lussac’s experiment

Gay-Lussac made an experiment with the system above. He took a container
having rigid, heat-insulated impermeable walls, divided it in two parts by an un-
movable wall with a small tap in it. Having turned the tap off, he pumped out
the air of one part and then turned the tap on. The air diffused from the full part
into the empty one. Gay-Lussac found that the temperature of the air before and
after diffusion was the same and concluded that the internal energy of the air does
not depend on volume.

We easily see his result reasoning in a reversed way: how the temperature de-
pends on volume. Let V1 and V2 be the volume of the full part and the empty
part, respectively. The total internal energy of the two bodies (parts) does not
change during the diffusion because the two bodies are completely insulated from
the environment. Consequently, T(E, V1, N) and T(E, V1 +V2, N) are the temper-
ature of the gas at the beginning and the end of the process, respectively. If these
two values are equal, then temperature does not depend on volume. Nowadays
it is known that Gay-Lussac’s result is only a good approximation for sufficiently
large specific volume, but this is true for all gases; that is why we accept that the
internal energy of an ideal gas does not depend on volume.

Gay-Lussac’s experiment is usually conceived as a typical process which is ‘not
reversible’. Namely, in the usual formalism of classical thermodynamics, the first
law is written in the form

dE = δQ+ δW

where δQ is an ‘infinitesimal heat’, δW is an ‘infinitesimal work’. At the same
time, the entropic property implies

dE = TdS − PdV (∗)

(tacitly assuming that the particle number is constant). A reversible process is
characterized by δQ = TdS and δW = −PdV .

The internal energy of the gas in Gay-Lussac’s experiment is constant, the gas
does not absorb heat and does not work (the two parts together are enclosed with
a rigid and heat-insulated wall), thus δQ = 0 and δW = 0, implying dE = 0 , too;
on the other hand, dV 6= 0 because the gas expands, so TdS 6= 0, too: the process
is not reversible. This is an erroneous reasoning, however, because formula (∗) is
valid only for a homogeneous body (when both temperature and pressure take the
same value T and P , respectively, at every point of the body) and if the two parts
are considered as a single body, then the body is not homogeneous.

Correctly, we have to consider the experiment concerning two homogeneous
bodies. Then the usual relations would be valid in the form

dE1 = T1dS1 − P1dV1 + µ1dN1, dE2 = T2dS2 − P2dV2 + µ2dN2

and
dE1 = δQ1 + δW1 + δL1, dE2 = δQ2 + δW2 + δL2.

Moreover,

dE1 + dE2 = 0, dV1 = 0, dV2 = 0, dN1 + dN2 = 0,
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implying δW1 = 0, δW2 = 0 and

0 = (δQ1 + δQ2) + (δL1 + δL2).

Since µ1 6= µ2, the joint heat insulation cannot be expressed by δQ1 + δQ2 = 0
if ideal transferrings are taken.

19.8 Constant temperature, fixed total volume
and particle number

19.8.1 The effective thermodynamical force and conductance matrix

Let the two bodies be enclosed with a rigid and impermeable wall which conducts
heat very quickly, so that the temperature of the bodies always equals that of the
environment. Then

V̇1 + V̇2 = 0, Ṅ1 + Ṅ2 = 0,

∂T

∂E
Ė1 +

∂T

∂V
V̇1 +

∂T

∂N
Ṅ1 = 0,

∂T

∂E
Ė2 +

∂T

∂V
V̇2 +

∂T

∂N
Ṅ2 = 0

where, of course, the partial derivatives in the upper and lower rows are to be
taken at (E1, V1, N1) and at (E2, V2, N2), respectively.

The above equalities determine a holonomic constraint. Putting

αi :=
∂T

∂e
(ei, vi) βi :=

∂T

∂e
(ei, vi)

for i = 1, 2 and using 8.3 (∗) we find that the constraint subspaces are spanned by
the vectors

(−β1α2, α1α2, 0, α1β2,−α1α2, 0)

and
(α1α2e1 + β1α2v1, 0, α1α2,−α1α2e2 − α1β2v2, 0,−α1α2).

The reader is asked to find effective thermodynamical force and the conditions
assuring that the nominal conductance matrix (∗) in 19.1.2 fits the constraint.

19.8.2 The set of equilibria

For all Vs ∈ (m3)+, Ns ∈ R
+ and Ta ∈ (K)+

U(Vs, Ns, Ta) := {(E1, V1, N1, E2, V2, N2) |
V1 + V2 = Vs, N1 +N2 = Ns, T(E1, V1, N1) = T(E2, V2, N2) = Ta}

is a constraint submanifold of the dynamical equation.
The specific value of the equilibrium quantities are determined by the equalities

vo =
Vs

Ns
, T(eo, vo) = Ta.

As in 19.5.2, we have:
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Proposition the set of equilibria with non-zero particle number in U(Vs, Ns, Ta)
is

Eq(Vs, Ns, Ta) :=

:= {(N1eo, N1vo, N1, (Ns −N1)eo, (Ns −N1)vo, Ns −N1) | 0 < N1 < Ns},

The set of equilibria is a straight line segment.

19.8.3 Stability of equilibria

The constraint submanifold is not a subset of an affine subset. Because the pressure
of the environment does not enter the dynamical equation, we can suppose that
it equals the equilibrium pressure of the body: Pa = P(eo, vo). Then the nominal
thermodynamical force becomes zero in equilibria which admits an easy application
of Proposition 15.8.

Proposition If the bodies are entropic, the nominal conductance matrix (∗) in
19.1.2 fits the constraint, its equilibrium values are symmetric and positive semidef-
inite having the kernel spanned by

(0, 1, 0, 0, 1, 0), (0, 0, 1, 0, 0, 1),

(

∂T

∂E
,
∂T

∂V
,
∂T

∂N
, 0, 0, 0

)

(equilibrium),

(

0, 0, 0
∂T

∂E
,
∂T

∂V
,
∂T

∂N

)

(equilibrium),

then Eq(Vs, Ns, Ta) is strictly asymptotically stable in U(Vs, Ns, Ta).

19.9 Constant pressure, fixed total particle number

19.9.1 The effective thermodynamical force and conductance matrix

Let the two bodies be enclosed with a rigid and impermeable wall which is ‘in-
finitely’ elastic, so that the pressure of the bodies always equals that of the envi-
ronment. Then

Ṅ1 + Ṅ2 = 0,

∂P

∂E
Ė1 +

∂P

∂V
V̇1 +

∂P

∂N
Ṅ1 = 0,

∂P

∂E
Ė2 +

∂P

∂V
V̇2 +

∂P

∂N
Ṅ2 = 0,

where, of course, the partial derivatives in the upper and lower rows are to be
taken at (E1, V1, N1) and at (E2, V2, N2), respectively.

The above equalities determine a holonomic constraint. Putting

αi :=
∂P

∂e
(ei, vi) βi :=

∂P

∂e
(ei, vi)
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for i = 1, 2 and using 8.3 (∗) we find that the constraint subspaces are spanned by
the vectors

(−β1, α1, 0, 0, 0, 0), (0, 0, 0,−β2, α2, 0)

and
(α1α2e1 + β1α2v1, 0, α1α2,−α1α2e2 − α1β2v2, 0,−α1α2).

The reader is asked to find the effective thermodynamical force and the condi-
tions assuring that the nominal conductance matrix (∗) in 19.1.2 fits the constraint.

19.9.2 The set of equilibria

For all Ns ∈ R
+ and Pa ∈ (Pa)

U(Ns, Pa) := {(E1, V1, N1, E2, V2, N2) |
N1 +N2 = Ns, P(E1, V1, N1) = P(E2, V2, N2) = Pa}

is a constraint submanifold of the dynamical equation.
The specific value of the equilibrium quantities are determined by the equalities

(∗) in 19.2.1.

Proposition The set of equilibria with non-zero particle number in U(Ns, Pa) is

Eq(Ns, Pa) :=

:= {(N1eo, N1vo, N1, (Ns −N1)eo, (Ns −N1)vo, Ns −N1) | 0 < N1 < Ns}

The set of equilibria is a straight line segment.

19.9.3 Stability of equilibria

Proposition If the bodies are entropic, the nominal conductance matrix (∗) in
19.1.2 fits the constraint, its equilibrium values are symmetric and positive semidef-
inite, having the kernel spanned by

(0, 0, 1, 0, 0, 1),

(

∂P

∂E
,
∂P

∂V
,
∂P

∂N
, 0, 0, 0

)

(equilibrium),

(

0, 0, 0
∂P

∂E
,
∂P

∂V
,
∂P

∂N

)

(equilibrium),

then Eq(Ns, Pa) is strictly asymptotically stable in U(Ns, Pa).

19.10 Fixed total particle number and
joint heat insulation

Let the bodies be enclosed with a heat-insulated and impermeable wall. Then
Gia = 0, Qia = 0 (i = 1, 2). Besides

Ṅ1 + Ṅ2 = 0,
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we cannot easily find other equalities describing the constraint in a convenient
form. If we suppose Q12 = −Q21 and ideal workings and transferring (a hard
condition which now does not lead to a contradiction), then we have

Ė1 + P1V̇1 − µ1Ṅ1 + Ė2 + P2V̇2 − µ2Ṅ2 = 0.

The constraint is anholonomic and there are no constraint submanifolds. We
cannot apply Propositions 15.6 and 15.8. The problem of trend to equilibrium in
this case is not solved yet.

19.11 Fixed total particle number,
joint heat insulation and mechanical separation

19.11.1 The effective thermodynamical force and conductance matrix

Let the two bodies be enclosed with a heat-insulated and impermeable wall and
suppose that the bodies cannot work on each other (imagine a cylinder with two
pistons which is divided in the middle by an unmovable and heat-insulated wall;
the cylinder and the pistons are heat-insulated and impermeable). Then Gia = 0,
Qia = 0 and Fik = 0. Thus

Ṅ1 + Ṅ2 = 0,

and as a consequence of (∗) in 14.1 – because now V̇1 = F1a and V̇2 = F2a – we
have

Ė1 + P1V̇1 + E2 + P2V̇2 = 0.

The constraint subspaces are spanned by the vectors (0, 0, 1, 0, 0,−1),
(1, 0, 0,−1, 0, 0), (P1,−1, 0, 0, 0, 0) and (0, 0, 0, P2,−1, 0).

The constraint is holonomic.
The reader is asked to find the effective thermodynamical force and the condi-

tions assuring that the nominal conductance matrix (∗) in 19.1.2 fits the constraint.

19.11.2 The set of equilibria

For all Ns ∈ R
+ and Hs ∈ (J)

U(Ns,Hs) := {(E1, V1, N1, E2, V2, N2) | N1 +N2 = Ns,

E1 + P1V1 + E2 + P2V2 = Hs}

is a constraint submanifold of the dynamical equation.
The specific value of the equilibrium quantities are determined by (∗) in 19.2.1.

Proposition The set of equilibria with non-zero particle number in U(Ns,Hs) is

Eq(Ns,Hs, Pa) :=

:= {(N1eo, N1vo, N1, (Ns −N1)eo, (Ns −N1)vo, Ns −N1) | 0 < N1 < Ns}.

The set of equilibria is straight line segment.



19 Diffusion between two bodies and an environment 215

19.11.3 Stability of equilibria

Proposition If the bodies are entropic, the nominal conductance matrix (∗) in
19.1.2 fits the constraint, its equilibrium values are symmetric and positive semidef-
inite having the kernel spanned by the vectors

(0, 0, 1, 0, 0, 1), (1, P1, 0, 1, P2, 0),

then Eq(Ns,Hs) is strictly asymptotically stable in U(Ns,Hs).

19.12 Cooling of gases

19.12.1 Two bodies in two environments

Let us take a cylinder with two pistons which is divided in the middle by an
unmovable and heat insulated wall; the cylinder and the pistons are heat-insulated
and impermeable. Let the same gas fill both parts of the cylinder and let us suppose
that different constant pressures act on the pistons, and the processes are isobaric
for both parts separately; that is, the pressure of the first gas is constant Pa and
the pressure of the second gas is constant Pb. Let Pa > Pb.

Now there are two environments; this system can be treated by a slight modi-
fication of the previous scheme.

Now Fik = 0, Qik = 0, and Qia = 0, Gia = 0 (i = 1, 2), where the subscript 0
refers to any of the environments. Then we deduce, as in 19.11.1, that

Ė1 + PaV̇1 + Ė2 + PbV̇2 = 0. (∗)

19.12.2 The direction of the diffusion

According to Proposition 14.2, if N1N2 6= 0 and P(E1, V1, N1) = Pa,
P(E2, V2, N2) = Pb, then G12(E1, V1, N1, E2, V2, N2) < 0 if and only if

µ(T1, Pa) − µ(T2, Pb) > 0. (∗∗)

The function µ(T, ·) is locally strictly monotone increasing (Gibbs–Duhem re-
lations), inequality (∗∗) holds if “both the pressures and the temperatures are
sufficiently near to each other" because Pa > Pb. This means that the gas diffuses
from the part with larger pressure (denoted by the subscript 1) into the part with
smaller pressure (denoted by the subscript 2) (which agrees with our everyday
experience).

The precise meaning of the phrase in quotation marks: if {(T, P ) | Pa ≥ P ≥
Pb} is not void and is contained in the domain of µ for some T , then T has a
neighbourhood such that (∗∗) holds for all T1 and T2 in that neighbourhood.

There is no equilibrium with non-zero particle number.
The equilibrium in which the second body has zero particle number is instable:

if the particle number in the second body is arbitrarily small, diffusion takes place
increasing the particle number of the second body.

The equilibrium in which the first body has zero particle number is asymp-
totically stable: if the particle number in the first body is not zero then diffusion
takes place decreasing the particle number number of the first body.
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19.12.3 The total enthalpy is constant

Equality (∗) says that the sum of the enthalpies of the bodies is constant in the
processes. Using temperature and pressure as variables (supposing that the pro-
cesses run in a single phase), we have for the specific enthalpy h and for every
instant t in the domain of the process:

N1(t)h(T1(t), Pa) + (Ns −N1(t))h(T2(t), Pb) =

= N1(ti)h(T1(ti), Pa) + (Ns −N1(ti))h(T2(ti), Pb),

where ti is the starting instant and Ns is the total particle number. The process
ends (arrives at a stable equilibrium) when the particle number of the first body
becomes zero: tf is the final instant when N1(tf ) = 0 (tf can be infinity; then the
further formulae are valid as limits at infinity). Then

Nsh(T2(tf ), Pb) = N1(ti)h(T1(ti), Pa) + (Ns −N1(ti)h(T2(ti), Pb).

If N1(ti) = Ns, then

h(T2(tf ), Pb) = h(T1(ti), Pa).

We arrived at this equality in a circuitous way; it seems, we could take N1(ti) =
Ns to have the desired result immediately. However, a process in which the particle
number of the first body is Ns is an equilibrium, thus no change occurs; but this
equilibrium is unstable: if the particle number of the second body is not zero – it
can be arbitrarily small – then diffusion takes place. The above formulae are valid
for all N2(ti) = Ns −N1(ti) > 0 and we can consider the limit as N2(ti) tends to
zero.

19.12.4 The Joule–Thomson coefficient

Simplifying the notations, we write the previous formula in the form

h(Tf , Pb) = h(Ti, Pa).

This means that (Tf , Pb) and (Ti, Pa) are on an isenthalpic curve in the T−P
plane. According to Exercise 2 in 7.10 (omitting the subscript referring to the
phase) we have for an entropic material

∂h

∂T
= cp(T, P ),

∂h

∂P
= v(T, P ) − T

∂v(T, P )

∂T
.

Consequently, temperature can be expressed as a function of pressure (the isen-
thalpic curve is the graph of a function P 7→ τ(P ); the function is the solution of
the differential equation

dT

dP
= j(T, P )

with the initial condition (Ti, Pa) where

j(T, P ) := −
∂h(T,P )

∂P
∂h(T,P )

∂T

=
1

cp(T, P )

(

T
∂v(T, P )

∂T
− v(T, P )

)
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is the Joule–Thomson coefficient of the material.
Then we get

Tf = Ti +

∫ Pb

Pa

j(τ(P ), P ) dP.

Because of Pa > Pb, if the Joule–Thomson coefficient on the segment of the
isenthalpic curve between Pb and Pa is

– negative, then Tf > Ti,
– positive, then Tf < Ti.

The inversion curve of the material is the set of points in the T−P plane
where the Joule–Thomson coefficient is zero:

{(T, P ) | j(T, P ) = 0}.

19.12.5 Joule–Thomson coefficient of an ideal gas and a van der Waals
material

For an ideal gas v(T, P ) = kT
P , so

T
∂v

∂T
− v = 0,

thus the Joule–Thomson coefficient of an ideal gas is zero: the temperature of an
ideal gas does not change when being pressed through a porous wall.

For a van der Waals material, differentiating the equality
(

P +
a

v(T, P )2

)

(v(T, P ) − b) = kT (∗)

with respect to T , we get

− 2a

v3

∂v

∂T
(v − b) +

(

P +
a

v2

) ∂v

∂T
= k,

which implies

T
∂v

∂T
− v =

kT

P − a
v2 + 2ab

v3

;

the Joule–Thomson coefficient is not identically zero.
The inversion curve of the van der Waals material can easily be found on

the v−P plane, i.e. the image of the inversion curve by the function (T, P ) 7→
(

v(T, P ), P ). Replacing kT with the left-hand side of (∗) in the above equality,
we obtain the inversion curve:

{

(v, P )

∣

∣

∣

∣

P =
2a

bv
− 3a

v2

}

.

The initial pressure P and volume v must satisfy the inequality P < 2a
bv − 3a

v2

for cooling the gas.
It is well seen that the inversion curve lies below the isotherm corresponding

to the inversion temperature

Tinv :=
2a

bk
=

27

4
Tc
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and goes nearer to it when v increases. Therefore an additional necessary – but
not sufficient – condition is that the initial temperature of the gas be lower than
the inversion temperature.

19.12.6 Remarks

(i) Instead of the integral in 19.12.4, one writes

∆T = j(T, P )∆P

in usual treatments (where ∆T := Tf − Ti, ∆P := Pb − Pa), which is a good
approximation of the exact formula for small pressure difference.

(ii) We emphasize that two homogeneous bodies participate in the process in
question and not the isenthalpic process of a single homogeneous body occurs
(which is not clarified in usual treatments).

19.13 Exercises

1. Treat the following two-body systems with diffusion:
– the temperature of the bodies is constant (isothermal processes),
– the pressure of the bodies is constant (isobaric processes),
– both bodies are heat insulated individually, one of the bodies has fixed

volume,
– both bodies are heat insulated individually, one of the bodies has fixed

volume and diffusion does not take place between the bodies and the environment.
2. Treat diffusion systems in which – besides other constraints such as fixed

total particle number, fixed total volume, etc. – the pressure of the two bodies
always coincide.

3. Show that if the total particle number, the total energy and the volume of
both bodies are fixed, furthermore, the bodies are heat insulated from each other,
then we cannot suppose ideal transferring. What can be said about the equilibria
of such a system?

4. Find the stationary states if there is a constant particle source in one of the
bodies and

– there is no constraint,
– there is no particle interchange between the environment and the body with

source,
– there is a particle source in the other body, too, and both bodies are heat

insulated individually.
(The particle source can be positive or negative.)

20 First-order phase transitions

20.1 General formulae

20.1.1 The framework of description

In first-order phase transitions the particle number is a dynamical variable which
changes in time. Therefore, such processes are similar to diffusion.
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Considering a system consisting of two bodies of equal material and an envi-
ronment characterized by its constant temperature and pressure, we shall examine
processes that run in different phases of the bodies having a first-order connection,
the bodies can interchange particles (phase transition can occur) but particles can-
not be interchanged between the bodies and the environment. Zero sources and
ideal working, ideal transferring are taken.

The description is obtained by a little modification of that in 19.1.1:
1. There are two given bodies of the same material (D,T,P,µ,R).
2. There are the given dynamical quantitities Qik, Fik and Gik, (i = 1, 2; k =

0, 1, 2), defined on (D ∗ R
+
0 ) × (D ∗ R

+
0 ) (i = 1, 2; k = 0, 1, 2), so that

G12 6= 0, G1a = 0, G2a = 0;

the dynamical quantitities are continuous and continuously differentiable on the
interior of their domain and satisfy mutuality, equilibrium properties and dissipa-
tion inequalities with the notations Wik := −PiFik and Lik := −µiGik.

3. There are two given phases Z1 and Z2 of the material and the constant
process (Ta, Pa) ∈ (T,P)[Z1 ∪ Z2] of the environment.

4. The sources are zero.
5. The processes, considered to run in (Z1 ∗ R

+
0 ) × (Z2 ∗ R

+
0 ) are described by

the dynamical equation

Ė1 = Q1a +Q12 − P1(F1a + F12) + µ1G12,

V̇1 = F1a + F12,

Ṅ1 = G12,

Ė2 = Q2a +Q21 − P2(F2a + F21) + µ2G21,

V̇2 = F2a + F21,

Ṅ2 = G21.

Because the bodies and the environment do not interchange particles, the total
particle number of the bodies is constant:

Ṅ1 + Ṅ2 = 0. (∗)

Phase transition occurs in a process if there is an instant t such that Ṅ1(t) 6= 0.
In the sequel
– the dynamical quantitities are supposed to be pseudolinear, so the nominal

conductance matrix has the form given in 19.1.2,
– the bodies are supposed to be entropic, so 19.1.3 will be valid.

20.1.2 Equilibrium

We are interested in equilibria and their stability. Because the processes are sup-
posed to run in given phases which are subsets of the regular domain, we can apply
the results of Section 15.
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In reality if phase transition occurs between two bodies, then the bodies are
in direct contact, thus heat insulation between the bodies cannot be realized,
moreover, the bodies change volume at each other’s cost. Therefore, we do not
impose additional conditions on the dynamical quantitities between the bodies
(but we can do it regarding the dynamical quantitities between a body an the
environment). Thus it follows from the equilibrium properties given in 14.1 that
– if neither body is ‘void’ – Q12, F12 and G12 (and the corresponding quantities
with subscripts 21) take zero value if and only if T1 = T2, P1 = P2 and µ1 = µ2,
i.e. we have

T(e1o, v1o) = T(e2o, v2o),

P(e1o, v1o) = P(e2o, v2o),

µ(e1o, v1o) = µ(e2o, v2o)

for the equilibrium values of the specific quantities.

In an equilibrium (outside the zeroth-order phase connection) the bodies have
the same temperatureand pressure values, and the common temperature-pressure
is on the phase curve Γ.

We have supposed that the two bodies are in two different phases, thus – if
we consider processes avoiding the zeroth-order phase connection – (e1o, v1o) and
(e2o, v2o) are in first order connection, so (e1o, v1o) 6= (e2o, v2o). In other words,
the both the temperature and the pressure of the bodies coincide and the common
temperature-pressure is on the phase curve (see 7.6).

20.2 Phase transition in a given environment

20.2.1 The effective thermodynamical force and conductance matrix

We examine a system for which no other assumption is made besides the previous
ones. This corresponds to the everyday phenomenon when water freezes (ice melts)
in a given atmosphere.

The constraint {(0, 0, 1, 0, 0, 1)} (resulting in (∗) in 20.1) is holonomic (in
fact, affine). The constraint subspaces are spanned by the vectors (1, 0, 0, 0, 0, 0),
(0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0,−1), (0, 0, 0, 1, 0, 0) and (0, 0, 0, 0, 1, 0).

The effective thermodynamical force is

(

1

T1
− 1

Ta
,

1

T2
− 1

Ta
,
P1

T1
− Pa

Ta
,
P2

T2
− Pa

Ta
,−µ1

T1
+
µ2

T2

)

and an equilibrium with non-zero particle number is characterized indeed by its
zero value.

The nominal conductance matrix (∗) in 19.1.2 fits the constraint if and only if
multiplied by (0, 0, 1, 0, 0, 1) both from left and from right results in zero. Because
C12 = C21, this is equivalent to that the last rows and last columns of the matrices
C1a and C2a are zero, which is an evident requirement from a physical point of
view.
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20.2.2 The set of equilibria

For all Ns ∈ R
+

U(Ns) := {(E1, V1, N1, E2, V2, N2) | N1 +N2 = Ns}

is a constraint submanifold of the dynamical equation.

There is no restriction on the mechanical and thermal interaction between the
bodies and the environment, thus besides the equalities in 20.1.2, it is necessary
and sufficient for an equilibrium that the common temperature and the pressure
of the bodies be equal to the temperature and pressure of the environment, re-
spectively; this means that the temperature–pressure of the environment must be
on the phase curve. Then the specific equilibrium values (e1o, v1o) and (e2o, v2o)
are uniquely determined by

T(e1o, v1o) = Ta, P(e1o, v1o) = Pa,

T(e2o, v2o) = Ta, P(e2o, v2o) = Pa.

Proposition The set of equilibria with non-zero particle number in U(Ns) is

Eq(Ns) :=

{(N1e1o, N1v1o, N1, (Ns −N1)e2o, (Ns −N1)v2o, Ns −N1) | 0 < N1 < Ns}.

The set of equilibria is a straight line segment: a submanifold whose tangent
space at every point is spanned by (e1o, v1o, 1,−e2o,−v2o,−1).

20.2.3 Stability of equilibria

Proposition If the bodies are entropic, the nominal conductance matrix (∗) in
19.1.2 fits the constraint, its equilibrium value is symmetric, positive semidefinite
having the kernel spanned by (0, 0, 1, 0, 0, 1), then Eq(Ns) is strictly asymptotically
stable in U(Ns).

Proof In an arbitrary equilibrium, the kernel of D
2L is spanned by the vectors

(e1o, v1o, 1, 0, 0, 0) and (0, 0, 0, e2o, v2o, 1). An element which is both in this kernel
and in the corresponding constraint subspace has the form α(e1o, v1o, 1, 0, 0, 0)
+β(0, 0, 0, e2o, v2o, 1) in such a way that β = −α, in other words, it is a multiple
of (e1o, v1o, 1,−e2o,−v2o,−1). Thus the intersection of the equilibrium kernel of
D

2L and the corresponding constraint subspace equals the corresponding tangent
space of Eq(Ns).

All the conditions of Proposition 15.8 are satisfied.

Remark The treatment of this system is similar to that of 19.4; the only
difference is that here the corresponding specific quantities of the bodies do not
have the same value.
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20.3 Phase transition insulated from the environment

20.3.1 The effective thermodynamical force and conductance matrix

We examine a system in which the bodies are completely insulated from the en-
vironment. This corresponds to the everyday phenomenon when water boils in a
closed pot.

In this case, besides the previous assumptions, we have F1a = F2a = 0 and
Q1a = Q2a = 0, too, thus

Ė1 + Ė2 = 0, V̇1 + V̇2 = 0, Ṅ1 + Ṅ2 = 0,

which means a holonomic (in fact, affine) constraint. The constraint subspaces are
spanned by the vectors (1, 0, 0,−1, 0, 0), (0, 1, 0, 0,−1, 0) and (0, 0, 1, 0, 0,−1).

The effective thermodynamical force is

(

1

T1
− 1

T2
,
P1

T1
− P2

T2
,−µ1

T1
+
µ2

T2

)

.

The nominal conductance matrix (∗) in 19.1.2 fits the constraint if and only if
multiplied by the vectors (1, 0, 0, 1, 0, 0), (0, 1, 0, 0, 1, 0) and (0, 0, 1, 0, 0, 1) it results
in zero. Because C12 = C21, this is equivalent to C1a = C2a = 0, which is a natural
requirement.

20.3.2 Uniqueness of equilibrium

For all Es ∈ (J)+, Vs ∈ (m3)+ and Ns ∈ R
+

U(Es, Vs, Ns) := {(E1, V1, N1, E2, V2, N2) |
E1 + E2 = Es, V1 + V2 = Vs, N1 +N2 = Ns}

is a constraint submanifold of the dynamical equation.
The specific equilibrium values (e1o, v1o) ∈ C1 and (e2o, v2o) ∈ C2 and the

equilibrium particle numbers N1o and N2o, besides the three equalities in 20.1.2
must satisfy the following three ones, too:

N1oe1o +N2oe2o = Es, N1ov1o +N2ov2o = Vs, N1o +N2o = Ns.

The six equilibrium quantities are not (locally) uniquely determined by the six
equalities above. Nevertheless, the equilibrium is locally unique in U(Es, Vs, Ns)
as it turns out from the following result on asymptotic stability.

20.3.3 Stability of equilibrium

Proposition If the bodies are entropic, then the equilibrium

(N1oe1o, N1ov1o, N1o, N2oe2o, N2ov2o, N2o)

determined above is asymptotically stable in U(Es, Vs, Ns) (even if the dynamical
quantitities are not pseudolinear).
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Proof The equilibrium kernel of D
2L is spanned by the vectors (e1o, v1o, 1, 0, 0, 0)

and (0, 0, 0, e2o, v2o, 1). An element both in this kernel and in the corresponding
constraint subspace has the form α(e1o, v1o, 1, 0, 0, 0) +β(0, 0, 0, e2o, v2o, 1) in such
a way that βe2o = −αe1o, βv2o = −αv1o, β = −α which implies α = β = 0
because e1o 6= e2o and v1o 6= v2o. Thus the intersection of the equilibrium kernel
of D

2L and the corresponding constraint subspace equals zero.
All the conditions of Proposition 15.6 are satisfied.
Remark It is interesting that the treatment of this system started as that of

19.4 but ended differently: here the equilibrium in the constraint submanifold is
locally unique.

20.4 Supercooling, superheating

It is well known that highly pure water can be cooled carefully below the freezing-
point without being frozen or can be heated over the boiling-point without being
boiled. If something disturbs the supercooled or superheated water – e.g. a lslight
shock – then freezing or boiling starts ‘dramatically’.

These phenomena can be treated in our framework by taking into account
equilibria with zero particle number.

20.4.1 Equilibria with zero particle number

Let us consider first-order phase transitions in a given environment described in
20.2. Then

(0, 0, 0, Nse2o, Nsv2o, Ns) (∗)

is an equilibrium where the equilibrium specific values e2o and v2o are uniquely
determined by

T(e2o, v2o) = Ta, P(e2o, v2o) = Pa,

where (Ta, Pa) can be an arbitrary element of (T,P)[Z2] (it need not be on the
phase curve Γ). Of course, similar assertions are true for (Nse1o, Nsv1o, Ns, 0, 0, 0).

Thus if one of the bodies has zero particle number and the temperature value
and the pressure value of the other body equal those of the environment, then the
system is in equilibrium even if the temperature–pressure of the environment is
not on the phase curve.

20.4.2 Processes with zero particle number

We can say more. Let a process start in such a way that one of the bodies has
zero particle number (and then, of course, it has zero energy and zero volume).
Then the process – the solution of the dynamical equation with the given initial
condition – proceeds in such a way that the energy, volume and particle number
always have zero value.

It seems, the problem is reduced to the one in which a body with constant
particle number is in a given environment (see 12.3). We know, e.g. that in this
case the equilibrium of an entropic body is asymptotically stable which implies
that the process tends to the equilibrium (∗). This involves supercooling and
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superheating: a body in a given phase which is not in contact with another body
in another phase can be cooled or heated arbitrarily without phase transition.

Let us see clearly what the matter is. A process starting with zero particle
number of the first body, tends to the equilibrium (∗), and during the process the
first body remains empty. This does not mean, however, that the equilibrium is
asymptotically stable. Namely, it can be happen that a process starting with an
‘arbitrarily small’ particle number of the first body ‘runs away’ from the equilibri-
um (∗). And just this happens in supercooling and superheating. The mentioned
disturbance – e.g. a shock – produces a ‘nucleus’ (a small amount of material in
the other phase) which suffices to break equilibrium.

20.4.3 The question of stability

At present I cannot formulate exact statements about the stability of the equilib-
rium (∗) because this equilibrium is on the boundary of the dynamical equation
and I do not know mathematical results in this respect. Nevertheless, we can make
some remarks which suggest the result in accordance with our expectation.

Let Φ := (T,P)[Z1 \ Z2] ∩ (T,P)[Z2 \ Z1] and

∆1 := {(T, P ) ∈ Φ | µ1(T, P ) < µ2(T, P )},

∆2 := {(T, P ) ∈ Φ | µ1(T, P ) > µ2(T, P )}.
According to 14.1, for N1N2 6= 0
– if (T, P ) ∈ ∆1, then G12 > 0,
– if (T, P ) ∈ ∆2, then G12 < 0.

Let us suppose that (Ta, Pa) ∈ ∆1. If the equilibrium (∗) is disturbed by an
‘arbitrarily small’ non-zero particle number of the first body, then G12 becomes
positive, implying that the particle number of the first body increases: the process
leaves the equilibrium. This corresponds to the supercooled or superheated state.

Let us suppose that (Ta, Pa) ∈ ∆2. If the equilibrium (∗) is disturbed by
a sufficiently ‘small’ but non-zero particle number of the first body, then G12

becomes negative, implying that the particle number of the first body decreases
until the first body becomes empty: the process returns to the equilibrium. This
corresponds to the ‘normal everyday’ state.

20.4.4 ‘Metastability’

In the literature one frequently states that phase transitions are "intimately re-
lated to the violation of stability criteria";"if the stability criteria are not satisfied,
the system breaks up into two or more portions.This separation is called phase
transition" 1. It seems, this is not correct.

As concerns second-order phase transitions, we have that
– there is no instability in second-order phase transitions of the Ehrenfest

type,
– instability may or may not occur in second-order phase transitions of the

Tisza type.

1H. B. Callen: Thermodynamics, John Wiley and Sons NY, 1985, pp. 136, 146
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Moreover, it is clear that first-order phase transitions are not related to the vio-
lation of intrinsic stability: the curves of the first-order phase connection (‘binodal
lines’) are in the regular domain of the substance.

The van der Waals materials reflect well the characteristics of the liquid phase
and the gaseous phase of real materials. Let us recall Paragraph 6.3 and Figure
7.3.

The spinodal lines S1 and S2 delineate the boundary of the constitutive domain;
the part between them does not belong to the constitutive domain. In usual
treatments (where constitutive domain is not defined at all) one says that this
part is the set of instable states because there the condition of intrinsic stability
∂P/∂v < 0 is not satisfied.

The part between the spinodal line S1 and binodal line C1 contains the super-
heated liquid states where µliquid > µgas; the part between the spinodal line S2

and the binodal line C2 contains the supercooled gaseous (vapour) states where
µliquid < µgas.

One usually calls these states metastable (without defining the notion of
metastability); this name is destined to express that these states are instable in
some sense though the intrinsic stability conditions are satisfied. This confusion
of ‘stable-metastable-unstable’ is based on the improper use of the notion ‘state,.
Namely, the state of a body is a triplet (e, v,N): the couple (e, v) is not a state.

We emphasize that
– the conditions of intrinsic stability are satisfied at all (e, v) in a phase.
Nevertheless, an equilibrium (e, v,N) is
– asymptotically stable if (e, v) is over the binodal line (in the previous nota-

tions:
(

T(e, v),P(e, v)
)

∈ ∆1),
– unstable if (e, v) is under the binodal line (in the previous notations:

(

T(e, v),P(e, v)
)

∈ ∆2).

20.5 Exercise

If the entire quantities are used, then the equilibrium values (E1o, V1o, N1o) and
(E2o, V2o, N2o) for the bodies insulated from the environment are determined by
the equalities

T(E1o, V1o, N1o) = T(E2o, V2o, N2o),

P(E1o, V1o, N1o) = P(E2o, V2o, N2o),

µ(E1o, V1o, N1o) = µ(E2o, V2o, N2o),

E1o + E2o = Es, V1o + V2o = Vs, N1o +N2o = Ns

or, equivalently,

T(E1o, V1o, N1o) = T(Es − E1o, Vs − V1o, Ns −N1o),

P(E1o, V1o, N1o) = P(Es − E1o, Vs − V1o, Ns −N1o),

µ(E1o, V1o, N1o) = µ(Es − E1o, Vs − V1o, Ns −N1o).

Demonstrate (with the aid of the implicit function theorem) that the above
equalities determine (E1o, V1o, N1o) locally uniquely.





VI COMPOSITE MATERIALS

(MIXTURES, SOLUTIONS)

21 Constitutive functions

21.1 Concentrations

Now we consider materials consisting of diverse neutral molecules which can be
conceived as mixtures of simple materials; everyday examples are the mixtures of
gases (air) and liquids (brandy), solutions, alloys, etc. Such a composite material
is determined by its components. A special characteristic of a composite material
is the particle proportion of the components which is expressed by the concentra-
tions. If the mixture is composed of the materials denoted by α = 1, 2, ...,m and
in a body containing N particles the particle number of the α-th component is Nα,
then cα = Nα

N is the concentration of the α-th component. The concentrations are

not independent: their sum equals 1 because
m
∑

α=1
Nα = N .

Thus, we can say that the set of possible concentrations is

Cm := {c = (c1, . . . , cm) ∈ R
m | 0 < cα < 1, α = 1, . . . ,m,

m
∑

α=1

cα = 1}.

In the sequel we always use the notations and relations of App. 8; moreover,
if X is a set and f is a function defined in X × Cm, then ∂f

∂c denotes the partial
derivative with respect to the variable in Cm (i.e. the derivative of the function
f(x, ·) with fixed x-s). It is emphasized that this partial derivative is not the
collection of the partial derivatives with respect to the components of c because
those make no sense.

21.2 Definition of composite materials

The fundamental thermodynamical quantities of a composite material are the
specific internal energy e, the specific volume v, the temperature T , the pressure P ,
the concentrations c = (c1, . . . , cm) and the chemical potentials of the components
µ1, . . . , µm. These quantities are related to each other characterizing the material.

Definition Let m ≥ 2 be a positive integer.
A mixture of the simple materials (Dα, eα,Pα, uα, Rα) (α = 1, .. ..,m) is

(D, e,P, u1, . . . , um, R), where
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(i) D ⊂ (m3)+ × (K)+ ×Cm is a non-void subset, the constitutive domain,
(ii) e : D → (J)+, P : D → (Pa), uα : D → (J) (α = 1, . . . ,m),

the constitutive functions, are continuous; the function T 7→ e(v, T, c) is strictly
monotone increasing for all possible v and c, the function v 7→ P(v, T, c) is locally
strictly monotone decreasing for all possible T and c,

(iii) R is a non-void open dense subset of D, the regular domain, on which
the constitutive functions are continuously differentiable and satisfy the conditions
of intrinsic stability:

∂e

∂T
> 0,

∂P
∂v

< 0,

∂[[[u1, . . . , um]]]

∂c
is positive definite,

(iv) the following conditions of purity limit are satisfied:

{(v, T, (1)α) | (v, T ) ∈ Dα} ⊂ D (α = 1, . . . ,m)

and
lim

c→(1)α
(e,P, uα)(v, T, c) = (eα,Pα, uα)(v, T ).

for all α and (v, T ) ∈ Dα.

The third condition of intrinsic stability requires that the derivative of the
function

[[[u1, . . . , um]]](v, T, ·) : Cm  (J)D∗
m

be positive definite for all fixed v and T .
Item (iv) in the definition formulates the reasonable requirement that if the

concentrations of all components but one tend to zero, then a pure simple material
is obtained (if salt becomes less and less in a water-salt solution, then finally we
get pure water).

The simple materials entering the definition of mixtures are called the com-
ponents of the mixture.

Note: the simple materials in question are referred to by superscripts α when
considered as components of the mixture and by subscripts α when considered as
independent materials.

Sometimes we use the specific volume of the components,

vα =
v

cα

which has the following meaning: if a body of composite material has volume V ,
particle number N , then v = V

N , and if Nα is the particle number of the α-th

component, then vα = V
Nα = V

N
N

Nα .

21.3 Convention about notations

Let us recall that we can easily handle the differentiation of functions of the con-
centrations by choosing (m−1) independent concentrations – let them be the first
(m− 1) ones – for parameterizing Cm.
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For the sake of simplicity, the parameterized functions will be denoted by the
same symbol as the original one; thus, according to the definition,

ẽ(v, T, c̃) := e

(

v, T, c1, . . . , cm−1, 1 −
m−1
∑

α=1

cα

)

but in the sequel we write e(v, T, c) instead of ẽ(v, T, c̃) and we keep in mind that
then cm is considered as a function of c1, . . . , cm−1 and

∂cm

∂cβ
= −1 (β = 1, . . . ,m− 1).

21.4 Change coefficients

Consider processes of a mixture in which the concentrations do not change. Then
the same change coefficients can be defined and treated as in Section 3 for simple
materials: specific heats, compressibility factor, etc.

21.5 Canonical variables

As in the case of simple materials, temperature is a strictly monotone increas-
ing function of specific internal energy; therefore, specific internal energy can be
used instead of temperature as an independent variable. We use the customary
notations:

D := {(e(v, T, c), c) | (v, T, c) ∈ D}, R := {(e(v, T, c), v, c) | (v, T, c) ∈ R},

furthermore, the functions T, P and µα defined on D are the temperature, the
pressure and the chemical potentials, respectively, as functions of specific internal
energy, specific volume and concentrations,

e(v,T(e, v, c), c) = e, P(v,T(e, v, c), c) = P(e, v, c),

uα(v,T(e, v, c), c) = µα(e, v, c),

or
T(e(v, T, c), v, c) = T, P(v, T, c) = P(e(v, T, c), v, c),

µα(e(v, T, c), v, c) = uα(v, T, c).

As a consequence, a composite material will be referred to by
(D,T,P,µ1, . . . ,µm,R), too.

We have to take care only that item (iv) of Definition 21.2, written in a similar
form for the canonical variables does not hold necessarily.

Definition The mixture is called canonically good if

lim
c→(1)α

T(e, v, c) = Tα(e, v) (∗)

for all (e, v) ∈ Rα.

The mixture is canonically good, e.g. if its specific heat remains bounded when
its composition tends to a pure material (see Exercise 4 in 21.8).
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21.6 Entropic property

Definition The specific entropy of the mixture in Definition 21.2 is

s :=

e + Pv −
m
∑

α=1
cα

uα

T
: D → (J/K)

The mixture is entropic if

T
∂s

∂v
=
∂e

∂v
+ P, T

∂s

∂T
=

∂e

∂T
, T

∂s

∂c
=
∂e

∂c
− [[[u1, . . . , um]]].

The entropic property in the canonical variables reads as follows:

∂s

∂e
=

1

T
,

∂s

∂v
=

P

T
,

∂s

∂c
= −[[[µ1, . . . ,µm]]]

T
,

where, of course, s(e, v, c) := s
(

v,T(e, v, c, ), c
)

.
If Cm is parameterized by the first m − 1 components of its elements, then

according to App. 8 and our convention in 21.3, the entropic property regarding
concentrations becomes

T
∂s

∂cβ
=

∂e

∂cβ
− (uβ − um) (β = 1, . . . ,m− 1),

or
∂s

∂cβ
= −µβ − µm

T
(β = 1, . . . ,m− 1).

The conditions of intrinsic stability and Proposition 16.4 imply the following
important result:

Proposition If the mixture is entropic, then the second derivative of the specific
entropy as a function of the canonical variables is negative definite on the regular
domain.

The conditions of intrinsic stability also imply that on the regular domain
– at least locally – pressure is a strictly monotone decreasing function, thus on
the regular domain – at least locally – temperature, pressure and concentrations
can be used as independent variables. We use symbols similar to those for sim-
ple materials: v , s and µα denote specific volume, specific entropy and chemi-
cal potentials, respectively, as functions of temperature, pressure and concentra-
tions on a subset corresponding to an open subset of the regular domain, e.g.
s
(

T,P(v, T, c), c
)

= s(v, T, c). Now temperature and pressure (and concentra-
tions) do not characterize a whole phase (see Section 25), contrary to the case of
simple materials.

These variables are the most suitable to express the Gibbs–Duhem relations
for entropic mixtures:

m
∑

α=1

cα ∂µ
α

∂T
= −s,

m
∑

α=1

cα ∂µ
α

∂P
= v .



21 Constitutive functions 231

21.7 A useful formalism

Symbolic notations similar to those in Paragraph 6.7 are useful for mixtures, too.
Introducing the Gibbs function in the symbolic form

g :=
m
∑

α=1

cαµα = e− Ts+ Pv

(called sometimes specific free enthalpy) we have

s :=
e+ Pv − g

T
,

f := e− Ts = g − Pv,

h := e+ Pv = Ts+ g

the specific entropy, the specific free energy and the specific enthalpy which can
be actually considered as functions of (e, v, c), (v, T, c) or (T, P, c).

Then the entropic property has the symbolic form

Tds = de+ Pdv −
m
∑

α=1

µα
dcα (∗)

from which we easily find relations among the partial derivatives of diverse func-
tions, as said in Paragraph 6.7. We have to be cautious only because there are no
partial derivatives according to the concentrations because they are not indepen-
dent which is expressed symbolically by

m
∑

α=1

dcα = 0. (∗∗)

Equalities (∗) and (∗∗) together give the relations among the partial derivatives
with respect to concentrations chosen as independent.

The symbolic form of the Gibbs–Duhem relations – on the basis of the ‘rules’
d(Pv) = Pdv + vdP , etc. – becomes

m
∑

α=1

cα
dµα = −sdT + vdP

or, equivalently,

dg = vdP − sdT +
m
∑

α=1

µα
dcα.

21.8 Exercises

1. Let mα be the mass of a molecule of the α-th material. Then

m(c) :=
m
∑

α=1

cαmα.
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is the ‘average mass’ of a molecule of a mixture with concentrations c.
2. In practice one often uses mass concentrations instead of particle concen-

trations. Using the notations of the previous exercise, prove that the mass con-
centration is

cα mα

m(c)
.

3. Can the mixture of entropic materials be non-entropic? Can the mixture of
non-entropic materials be entropic?

4. Let us take a mixture in canonical form. Let us suppose that for every
(e, v) ∈ Rα, e has a neighbourhood K and (1)α ∈ Cm has a neighbourhood G
such that

sup
e∈K,c∈G

∣

∣

∣

∣

∂T

∂e
(e, v, c)

∣

∣

∣

∣

< ∞,

then relation (∗) in 21.5 is satisfied (see App. 9).

22 Ideal mixtures

22.1 Definition of an ideal mixture

Let us mix materials having the same temperature and let us suppose that the
molecules of different materials do not interact. Then the internal energy of the
mixture becomes the sum of the internal energies of the components; applying
a symbolic notation, Ne = N1e1 + · · · + Nmem, from which we get e = c1e1 +
· · · + cmem. Furthermore, the pressure of the mixture will be the sum of the
pressures of the components separately. As a first attempt, let us suppose that
the chemical potentials of the components in the mixture do not differ significantly
from the chemical potentials of the corresponding pure materials: the difference
is an additive term proportional to temperature, the proportionality factor can
depend on the concentrations.

We try to describe such an ideal mixture as follows.
Let us take the simple materials (Dα, ea,Pa, ua, Rα) and let us recall that the

specific volume of the α-th component in the mixture is v
cα .

Let us suppose that the set

D0 :=

{

(v, T, c) ∈ (m3) × (K) × Cm

∣

∣

∣

∣

( v

cα
, T
)

∈ Dα, α = 1, . . . ,m

}

is not void and let us define on D0 the functions

e(v, T, c) :=

m
∑

α=1

cαeα

( v

cα
, T
)

, (1)

P(v, T, c) :=

m
∑

α=1

Pα

( v

cα
, T
)

, (2)

uα(v, T, c) := uα

( v

cα
, T
)

+ Tϕα(cα), (3)
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where ϕα : [0, 1] → (J/K) is a continuously differentiable function for which
ϕα(1) = 0 holds (α = 1, . . . ,m).

The above functions are continuously differentiable on the set

R0 :=

{

(v, T, c) ∈ (m3) × (K) × Cm

∣

∣

∣

∣

( v

cα
, T
)

∈ Rα, α = 1, . . . ,m

}

.

We mention that the functions

fα : (m3)+ × (K)+ × Cm → (m3)+ × (K)+, (v, T, c) →
( v

cα
, T
)

are infinitely differentiable and

D0 =

m
⋂

α=1

−1

fα(Dα), R0 =

m
⋂

α=1

−1

fα(Rα).

R0 is open because of the continuity of fα-s.
It is not sure that D0 and R0 are good for a domain and a regular domain,

respectively, of a mixture because the functions (1)–(3) need not satisfy the purity
limit conditions on D0 and the stability conditions on R0.

Definition Let Dp be the subset of D0 on which the functions (1)–(3) satisfy
the purity limit conditions and let Rs be the subset of R0 on which the functions
(1)–(3) satisfy the intrinsic stability conditions. Supposing that the interior R of
Dp ∩ Rs is not void, put D := R. Then taking D as the constitutive domain, R
as the regular domain, and the restrictions of the functions (1)–(3) onto D, we
define the ideal mixture of the simple materials (Dα, ea,Pa, ua, Rα).

Equalities (1)–(3) give the specific entropy of the ideal mixture:

s(v, T, c) =

m
∑

α=1

cα
(

sa

( v

cα
, T
)

− ϕα(cα)
)

. (4)

In the next two paragraphs we examine what properties of the components
assure that the purity limit condition and the conditions of intrinsic stability hold
on (a sufficiently large subset of) D0 and R0, respectively.

22.2 The purity conditions

22.2.1 Mathematical formulation

First, we examine the accumulation points of D0. Let us introduce

HT,α := {v ∈ (m3) | (v, T ) ∈ Dα}

for all T ∈ (K)+ and α = 1, . . . ,m.

Proposition 1 Let α = 1, . . . ,m. Then (v, T, (1)α) ∈ D0 if and only if (v, T ) ∈
Dα and HT,β is unbounded from above for all β 6= α.
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Proof Let us take α = m. (v, T, (1)m) ∈ D0 if and only if for all ǫ > 0 there are
positive numbers c1, . . . , cm−1 < ǫ and cm > 1−ǫ in such a way that

(

v
cα , T

)

∈ Dα

for all α, which is equivalent to that (v, T ) ∈ Dm and HT,β is unbounded from
above for all β 6= m.

Proposition 2 If for all α = 1, . . . ,m and (v, T ) ∈ Dα and for all β 6= α we have
that

(i) HT,β is unbounded from above,
(ii) the function ν 7→ eβ(ν, T ) is bounded at the infinity,
(iii) lim

ν→∞
Pα(ν, T ) = 0,

then the functions (1)–(3) satisfy the purity limit conditions on D0.

Proof According to the previous proposition, assumption (i) implies that
(v, T, (1)α) ∈ D0; assumptions (ii) and (iii) and ϕα(1) = 0 imply that the func-
tions (1)–(3) satisfy the limit relations in item (iv) of Definition 21.2.

22.2.2 Physical content

Let us take two liquids (say water and alcohol). At a given temperature, their
specific volume can change in a relatively small (thus bounded) interval (they
extend very little as pressure decreases). Therefore, their mixture cannot be ideal.

We can make this evident. Let us imagine an amount of the homogeneous
mixture of the liquids in the atmosphere (at temperature T and pressure P ). The
pressures P1 and P2 of the liquids in the mixture are less than P . We can obtain
the specific volumes v1 = v/c1 and v2 = v/c2 of the liquids in such a way that
we consider the particles of the other liquid as missing from the recipient. So
we would get pure liquids with rather large specific volume which do not exist in
reality. More closely: at least one of v1 and v2 is greater than the specific volume
of the corresponding liquid at temperature T and pressure P1 and P2, respectively.

22.3 The intrinsic stability conditions

Proposition The functions (1)–(3) satisfy the conditions of intrinsic stability on
the subset of R0 consisting of the elements (v, T, c) for which

− v

(cα)2

∂uα

∂v

( v

cα
, T
)

+ T (ϕα)
′
(cα) > 0

holds for all α = 1, . . . ,m.

Proof It is quite simple that the first and second stability conditions in Definition
21.2 are valid on R0 because e and P are continuously differentiable there and
(with a somewhat loose notation)

∂e

∂T
=

m
∑

α=1

cα ∂eα

∂T
> 0,

∂P
∂v

=
m
∑

α=1

1

cα

∂Pα

∂v
< 0.
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To investigate the third stability condition, let us parameterize Cm by the
first m − 1 components of the elements. Then we have to show according to our
convention in 21.3 and App. 8 that the matrix

∂
(

uα(v, T, c) − um(v, T, c)
)

∂cβ
(α, β = 1, . . . ,m− 1)

is positive definite. The form (3) of the chemical potentials in 22.1 gives for the
above expression

δαβ

(

− v

(cα)2

∂uα

∂v
(v/cα, T ) + T (ϕα)′(cα)

)

− v

(cm)2

∂um

∂v
(v/cm, T ) + T (ϕm)′(cm)

where δ is the Kronecker symbol. Introducing the notation

aα := − v

(cα)2

∂uα

∂v
(v/cα, T ) + T (ϕα)′(cα) (α = 1, . . . ,m),

we get that the matrix











a1 + am am . . . am

am a2 + am . . . am

...
...

. . .
...

am am . . . am−1 + am











must be positive definite which is satisfied if aα > 0 for all α = 1, . . . ,m.

22.4 Ideal mixture of entropic materials

Proposition Let the materials in Paragraph 22.1 be entropic. Their ideal mixture
is entropic if and only if there is an η ∈ (J/K) such that

ϕα = −η log (α = 1, . . . ,m). (∗)

Proof The specific entropy (4) in 22.1 satisfies the relations

T
∂s

∂v
=T

m
∑

α=1

∂sα

∂v
=

m
∑

α=1

(

∂eα

∂v
+ Pα

)

=
∂e

∂v
+ P,

T
∂s

∂T
=T

m
∑

α=1

cα ∂sα

∂T
=

m
∑

α=1

cα ∂eα

∂T
=

∂e

∂T
;

furthermore, according to Paragraph 21.3,

∂s

∂cβ
= sβ − v

cβ

∂sβ

∂vβ
− ϕβ − cβ(ϕβ)′ − sm +

v

cm

∂sm

∂vm
+ ϕm + cm(ϕm)′,

and
∂e

∂cβ
= eβ − v

cβ

∂eβ

∂vβ
− em +

v

cm

∂em

∂vm
.
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Then we infer from the entropic property of the components that

T
∂s

∂cβ
=

∂e

∂cβ
− (uβ − um) − cβ(ϕβ)′ + cm(ϕm)′.

We see that the mixture is entropic if and only if cβ(ϕβ)′(cβ) = cm(ϕm)′(cm)
for all β = 1, . . . ,m − 1, which implies the existence of a constant η such that
cα(ϕα)′(cα) = −η (the negative sign is chosen for later convenience) for all α =
1, . . . ,m which is equivalent to equality (∗) .

Warning η is not an overall constant, it can depend on the materials compos-
ing the mixture.

22.5 Ideal mixture of ideal gases

Let us take m ideal gases with constant specific heats λ1k, . . . , λmk. Then condi-
tions of Proposition 2 in 22.2 are satisfied on D := (m3)+×(K)+×Cm. Then the
formulae of 2.1 yield that if (ϕα)′(cα) ≥ − k

cα then the stability conditions hold on
R := D. Then

P(v, T, c) =

m
∑

α=1

cαkT

v
=
kT

v
,

e(v, T, c) =

m
∑

α=1

cαλαkT = λ(c)kT,

where

λ(c) :=
m
∑

α=1

cαλα,

If, moreover, the mixture is entropic, then

uα(v, T, c) =kT

(

λα + 1 − log

(

(

T

T0

)λα v

cαv0

))

− ηT log cα =

=kT

(

λα + 1 − log

(

(

T

T0

)λα v

v0

))

+ (k − η)T log cα =

=uα(v, T ) + (k − η)T log cα,

and

s(v, T, c) =
m
∑

α=1

cα

(

k log

(

(

T

T0

)λα v

cαv0

)

+ η log cα

)

=

=

m
∑

α=1

cα (sα(v, T ) − (k − η) log cα) .

In processes in which the concentrations c are constant (e.g. no diffusion oc-
curs) such an ideal gas mixture behaves as a simple ideal gas with specific heat
λ(c)k.
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We have
Pα

( v

cα
, T
)

= cαP(v, T )

for the partial pressure of the components in the mixture: the partial pressures are
proportional to concentrations and the pressure, which is called Dalton’s law.

22.6 Ideal mixture of identical materials

22.6.1 Relations for the constitutive functions

Let us consider an ideal mixture of identical materials (oxygen is mixed with
oxygen, water is mixed with water, etc.). It is natural to expect that the mixture
be equal to the original material: the constitutive functions must be independent
of the concentrations and must equal the original constitutive functions. Thus, if
(D, e,P, u, R) is the original material, then for all (v, T ) ∈ D and c ∈ Cm we must
have

(

v
cα , T

)

∈ D (α = 1, . . . ,m) and

e(v, T ) =

m
∑

α=1

cαe
( v

cα
, T
)

, (1)

P(v, T ) =

m
∑

α=1

P
( v

cα
, T
)

, (2)

u(v, T ) =

m
∑

α=1

cα
(

u
( v

cα
, T
)

+ Tϕα(cα)
)

, (3)

which imply

s(v, T ) =

m
∑

α=1

cα
(

s
( v

cα
, T
)

− ϕα(cα)
)

. (4)

These relations impose very strong conditions on the constitutive domain and
functions. For instance,

{v ∈ (m3) | (v, T ) ∈ D}
is either void or an interval unbounded from above because if it contains v, then
it also contains v

γ for all γ ∈]0, 1[ .

Proposition The ideal mixture of identical materials can exist only if the specific
internal energy of the simple material in question does not depend on specific
volume.

Proof For the sake of brevity, fixing an arbitrary T , let us introduce the notation

f : {v ∈ (m3) | (v, T ) ∈ R} → (J)+, v 7→ e(v, T ).

Equality (1) gives for n = 2

f(v) = cf
(v

c

)

+ (1 − c)f

(

v

1 − c

)

, (5)
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or

f(v) − f

(

v

1 − c

)

= cf
(v

c

)

− cf

(

v

1 − c

)

. (6)

for all v ∈ Domf and c ∈]0, 1[.
f is continuously differentiable; differentiating equality (5) with respect to v

and c, we get

f ′(v) = f ′
(v

c

)

+ f ′
(

v

1 − c

)

, (7)

and

0 = f
(v

c

)

− v

c
f ′
(v

c

)

− f

(

v

1 − c

)

+
v

1 − c
f ′
(

v

1 − c

)

, (8)

respectively. Combining equalities (6), (7) and (8), we conclude that

f(v) − vf ′(v) = f

(

v

1 − c

)

− v

1 − c
f ′
(

v

1 − c

)

.

As a consequence, the function v 7→ f(v) − vf ′(v) is constant, which implies
that there are constants a and b such that f(v) = av + b. But equality (5) can
hold only if a = 0.

Thus we have: for all T the function v 7→ e(v, T ) is constant on the set for
which (v, T ) ∈ R. Then this is true for (v, T ) ∈ D because e is continuous and R
is dense in D.

22.6.2 Explanation

We have got that if the internal energy depends on volume then the material
cannot be the ideal mixture of itself; e.g. the van der Waals material.

This fact is clear. In an ideal mixture the molecules of the different components
do not interact. In a ‘self-mixture’ a part of molecules must be considered ‘alien’
to the others; but this is impossible if the molecules do interact which is reflected
in the fact that internal energy depends on volume.

In order to avoid misunderstanding, we emphasize that two different van der
Waals materials can be mixed ideally.

22.7 The Gibbs paradox

Equalities (1) and (2) in paragraph 22.6.1 are satisfied for an ideal gas; equalities
(3) and (4) are valid only if

η = k.

In usual treatments of thermodynamics one takes it for granted that the chem-
ical potential in the ideal mixture of the components equals the chemical potential
of the corresponding pure materials, i.e. ϕα = 0 for all α in Definition 22.5 which
is equivalent to η = 0 if the mixture is entropic. More precisely, one always con-
siders entropy, and takes it for granted that the entropy of an ideal mixture is the
sum of the individual entropies:

s(v, T, c) =
m
∑

α=1

cαsα

( v

cα
, T
)

. (∗)
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Then for an ideal gas as a self-mixture one gets

s(v, T ) 6=
m
∑

α=1

cαs
( v

cα
, T
)

= s(v, T ) − k

m
∑

α=1

cα log cα.

This is the Gibbs paradox that can be formulated as follows: if identical ideal
gases are mixed in identical states, then nothing happens, the state of the ‘mixture’
(which is not a mixture in reality) will be the original state of the components,
thus entropy cannot change in mixing; nevertheless, the entropy of the mixture –
on the basis of the ‘evidently valid’ equality (∗), i.e. η = 0 – will be larger because

−k
m
∑

α=1
cα log cα > 0.

Like all paradoxes, this one, too, is based on a false ‘evidence’; the paradox
points out that the ‘evidence’ is not true.

The Gibbs paradox is solved if we take η = k in an ideal self-mixture of an
ideal gas. This need not hold, however, in every ideal mixture.

The theory, besides the case of the ideal self-mixture of an ideal gas, does not
specify η (in general ϕα). Only experience may answer the question which η gives
a good description of the mixture.

According to experience, η = 0 (in general ϕα = 0, α = 1, . . . ,m) is the
good choice for ideal mixtures of different materials.

We can say that η corresponding to ideal mixtures of ideal gases does not
depend continuously on the mixed gases (see Exercise 3).

22.8 Exercises

1. Examine the conditions of Propositions 1 and 2 in 22.2 for (different) van
der Waals materials.

2. Give the ideal mixture of van der Waals materials with constant specific
heats λ1, . . . , λm.

3. Does a van der Waals material satisfy equality (2) in 22.6.1?

4. What conditions are imposed on the pressure constitutive function if a
material can be considered as a self-mixture?

5. Two ideal gases are different if and only if they have different specific heats.
Let us take two ideal gases with constant specific heats λ1k and λ2k and let
η(λ1, λ2) be the constant corresponding to their mixture according to Proposition
22.4. Then experience indicates that η(λ1, λ2) = 0 if λ1 6= λ2 and η(λ1, λ2) = k if
λ1 = λ2. As a consequence, the function (λ1, λ2) 7→ η(λ1, λ2) is not continuous.

6. Give the specific heat at constant volume and the isothermal compressibility
factor of an ideal mixture.

7. Is the ideal mixture of

– two different ideal gases,

– two different van der Waals materials,

– an ideal gas and a van der Waals material?

canonically good (see 21.5)?
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23 Non-ideal mixtures

23.1 Partial pressures, Henry law

The theory of non-ideal mixtures (solutions, alloys), very important from a practi-
cal point of view, has a vast literature; now we shall deal with some basic relations,
considering mixtures of different materials.

The most important characteristics of mixtures are the chemical potentials of
the components that are usually given as functions of (T, P, c) which is always
possible locally in the regular domain: if (T, P, c) 7→ v(T, P, c) is the specific
volume as function of temperature, pressure and concentrations, then

µα(T, P, c) := uα(v(T, P, c), T, c).

Sometimes (T, P 1, . . . , Pm) are used as independent variables where Pα is the
partial pressure of the α-th material in the mixture, which makes sense in the
following way: we know the partial pressures as functions (v, T, c) 7→ (Pα(v, T, c) |
α = 1, . . . ,m) or (T, P, c) 7→

(

Pα(T, P, c) | α = 1, . . . ,
)

, supposed locally injective
for every given T , thus we can use their inverses. The function (T, P 1, . . . , Pm) 7→
µα(T, P 1, . . . , Pm) is defined by

µα
(

T,P1(v, T, c), . . . ,Pm(v, T, c)
)

= uα(v, T, c).

A possible expression for partial pressures is

Pα(v, T, c) = Pα

( v

cα
, T
)

(α = 1, . . . ,m),

known for ideal mixtures.
In general, the Henry law is accepted: for every α there is a function Kα such

that

lim
c→(1)α

Kα(T, P, c) = P

and

Pα(T, P, c) = cαKα(T, P, c).

In the ideal mixture of ideal gases Kα(T, P, c) = P .

23.2 Fugacities, Lewis–Randall rule

In an ideal mixture of ideal gases

v(T, P, c) =
kT

P
,

and

Pα(T, P, c) = cαP,

thus
v(T, P, c)

cα
=

kT

cαP
=
kT

Pα
.
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Therefore, Paragraph 22.5 yields (with η = 0) for the chemical potential of the
α-th component

µα(T, P, c) = uα(v(T, P, c), T, c) = µα(T, P ) + kT log cα,

where µα is the chemical potential of the α-th pure gas as a function of temperature
and pressure. Using the partial pressures, we have

µα(T, P 1, . . . , Pm) = να(T ) + kT log
Pα

P0
,

where να is a well-determined simple function and P0 is a fixed pressure value.
In analogy, a mixture is usually called ideal if the chemical potentials have the

form
µα(T, P, c) = µα(T, P ) + kT log cα (1)

or

µα(T, P 1, . . . , Pm) = να(T ) + kT log
Pα

P0
. (2)

This terminology differs from ours and is ambiguous because the above two re-
lations are not equivalent. That is why we shall apply the names semi-ideal of
type (1) and (2).

In general it is supposed that the chemical potentials of the components have
the form

µα(T, P, c) = µα(T, P ) + kT log cαJα(T, P, c), (∗)

where Jα is a continuously differentiable function for which

lim
c→(1)α

Jα(T, P, c) = 1,

lim
c→(1)α

∂Jα(T, P, c)

∂c
= 0.

According to another usual assumption,

µα(T, P 1, . . . , Pm) = να(T ) + kT log
PαLα(T, P 1, . . . , Pm)

P0
, (∗∗)

where να is a given function and Lα is a continuously differentiable function for
which

lim
P →0

Lα(T, P 1, . . . , Pm) = 1,

lim
P →0

∂Lα(T, P 1, . . . , Pm)

∂Pα
= 0,

where P → 0 means that all Pα tend to zero.
The function

(T, P 1 . . . , Pm) 7→ PαLα(T, P 1, . . . , Pm) =: fα(T, P 1, . . . , Pm)

is called the fugacity of the α-th component.
If we express fugacities as functions of (T, P, c), then the Henry law yields –

with evident notations – the Lewis–Randall rule:

fα(T, P, c) = cαKα(T, P, c)Lα(T, P, c).
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24 Some phenomena connected with mixing

24.1 Experimental facts

It is well known that the mixture of certain materials – e.g. water and alcohol – has
smaller volume (at a given temperature and pressure) than the sum of the volumes
of the mixed materials. It is also well known that mixing of certain materials – e.g.
water and sulphuric acid – raises the temperaturesignificantly; in other words, if
we want to assure constant temperature, then we have to ‘extract heat’. Another
everyday fact is that the freezing point of some solutions – e.g. salt in water –
becomes lower than that of the corresponding pure liquid. Osmosis, the basic fact
in the life of plants, is connected with mixtures, too.

24.2 Change of quantities in mixing

We examine how the internal energy, the volume, etc. change when a mixture is
produced from m materials with concentrations c1, . . . , cm at given temperature
T and pressure P . In practice we take given amounts, according to the concen-
trations, of the materials and mix them. If Nα particles are taken from the α-th

material and vα is the corresponding specific volume, then
m
∑

α=1
Nαvα is the entire

volume of the materials to be mixed, which is compared with the entire volume V
after mixing. Dividing these quantities by the entire number of particles, we get

that
m
∑

α=1
cαvα (the average specific volume before mixing) is to be compared with

the specific volume v after mixing.

Thus the change of volume, internal energy and entropy is measured by

v(T, P, c) −
m
∑

n=1

cαvα(T, P ),

e(T, P, c) −
m
∑

n=1

cαeα(T, P ),

s(T, P, c) −
m
∑

n=1

cαsα(T, P ),

respectively. We point out that vα(T, P ) is not equal to v(T,P,c)
cα , often met pre-

viously. vα(T, P ) is the specific volume of the α-th pure material (before mixing)

and v(T,P,c)
cα is the specific volume of that material in the mixture (after mixing).
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24.3 Mixing heat

As usual, corresponding to 3.12), the mixing heat is defined to be

T

(

s(T, P, c) −
m
∑

n=1

cαsα(T, P )

)

= e(T, P, c) −
m
∑

n=1

cαeα(T, P )+

+ P

(

v(T, P, c) −
m
∑

n=1

cαvα(T, P )

)

−
∑

n1

mcα(µα(T, P, c) − µα(T, P ).

Note that here the mixing heat refers to a particle; in practice the mixing heat
refers to a unit mass, which equals this mixing heat divided by m(c).

24.4 Freezing-point decrease

Now we indicate in advance that a first-order phase connection is determined
by the equal values of temperature, pressure and the chemical potentials of the
components in the two phases (see 25.2).

Let us consider a two-component liquid mixture and let us suppose that during
freezing only one of the components enters the solid phase (a pure material arises);
for the sake of clarity and brief formulation, let us speak about freezing of water-
salt solution, where the solid phase is pure ice. Accordingly, the solid phase and
the corresponding liquid phase are denoted by the subscript i and w, respectively.
If the concentration of the water in the solution is c ∈]0, 1[, relation (∗) in 23.2 gives
that the first-order phase connection of the ice and the solution is characterized
by

µi(T, P ) = µw(T, P, c) = µw(T, P ) + kT log cJ(T, P, c).

This allows us to express temperature as a function of pressure and concentration;
let T be this function. On the basis of the implicit function theorem,

∂T

∂c
= −

kT
cJ

(

J + c∂J
∂c

)

∂µw

∂T − ∂µi

∂T + k log cJ + kT
J

∂J
∂T

• . (∗)

We deduce from the Gibbs–Duhem relation

∂µw

∂T
− ∂µi

∂T
= −sw(T, P ) + si(T, P ) =

qiw(T, P )

T
,

where qiw(T, P ) is the freezing heat of water (see 3.12).
If the solution is sufficiently diluted, i.e. c is near to 1, then the expression (∗)

can be approximated by its limit as c → 1 which equals

− kT (P, 1)2

qiwT (P, 1), P )
< 0,

according to 23.2.
This shows that freezing point – at a given pressure – decreases as concentration

increases.
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24.5 Osmosis

Now we inidicate in advance that two mixtures with equal temperature values are
in equilibrium if the chemical potentials of the interchangeable components take
equal values (see 29.1).

Let us suppose that a two-component solution is enclosed with a wall permeable
only for one of the components and that the material is on the other side of the
wall. For the sake of clarity and brief formulation, let us speak about water–
salt solution where only water can pass through the wall. Let both bodies have
the same temperature T . Following our previous notations, if c ∈]0, 1[ is the
concentration of water in the solution, we have in equilibrium

µw(T, Pw) = µw(T, Ps, c),

where Pw is the pressure of pure water and Ps is the pressure of the solution.
Using relation (∗) in 23.2, we infer

µw(T, Pw) = µw(T, Ps) + kT log cJ(T, Ps, c).

According to the Gibbs–Duhem relation, the partial derivative of chemical
potential with respect to pressure – at a given temperature – is specific volume,
therefore,

µw(T, Ps) = µw(T, Pw) +

Ps
∫

Pw

v(T, P ) dP.

As a consequence,

Ps
∫

Pw

v(T, P ) dP = −kT log cJ(T, Ps, c).

If the integrand is approximated by a middle value vm, the integral becomes
vm(Ps − Pw). If the solution is sufficiently diluted, i.e. c is near to 1, then
J(T, Ps, c) is near to 1, too; in this way we obtain van t’Hoff’s formula for the
pressure difference:

Ps − Pw ≈ −kT log c

vm
≈ kT (1 − c)

vm
.

24.6 Saturation

A piece of salt in water dissolves till the water–salt solution reaches saturation. In
saturation the pure salt and the water–salt solution are in equilibrium. Thus, if c
denotes the concentration of salt in the solution, the saturation concentration cs

at given temperature T and pressure P is determined by

µt(T, P, cs, 1 − cs) = µt(T, P ),

where the indices t refer to salt.
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If the mixture is semi-ideal of type (1), then

µt(T, P ) + kT log cs = µt(T, P )

yields cs = 1 which is impossible: no saturation occurs for semi-ideal mixtures
of type (1). Thus the experimental fact of saturation shows that the mixtures
are not semi-ideal. In fact, semi-ideal mixtures are good approximations only for
concentrations near to 0 or 1, according to the sense.

Saturation can exist if the mixture is not semi-ideal. Then, according to Para-
graph 23.2,

csJ
t(T, P, cs) = 1

determines the saturation concentration. The conditions imposed on J t imply that
if c is large enough, then

J t(T, P, c) + c
∂J t(T, P, c)

∂c
> 0,

thus, the implicit function theorem allows us to give the saturation concentration
as a function cs of temperature and pressure. Moreover,

∂cs

∂T
= − c∂Jt

∂T

J t + c∂Jt

∂c

• .

The denominator is positive; then the experimental fact that the saturation
concentration increases as temperature increases (at a given pressure) points out

that
∂J t

∂T
< 0.

24.7 Exercises

1. Demonstrate that internal energy and volume do not change in preparing
ideal mixture of ideal gases; the mixing heat is zero.

2. Verify that the entropy increases in preparing ideal mixture of different ideal
gases and the entropy does not change if the mixed gases are identical (of course,
η = 0 in the first case and η = k in the second case).

3. Give an estimation for the difference of the freezing points of the water-salt
solution and the pure water, i.e. for T (P, c) − T (P, 1) when c is near to 1 (in
other words, 1 − c is near to 0).

4. Deduce a formula for the boiling point increase on the analogy of Paragraph
24.4: boiling a water–salt solution, only water enters the vapour.

25 Phases, phase connections

25.1 Phases

Phases and phase connections of composite materials are defined formally in the
same manner as those of simple materials. Now T denotes the function D →
(K), (v, T, c) 7→ T .
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Definition A phase of the composite material (D, e,P, u1, . . . , um, R) is a con-
nected open subset Z of R on which (T ,P, [[[u1, . . . , um]]]) is injective, and Z is
maximal with this properties, i.e. if N is a connected open subset of R on which
(T ,P, [[[u1, . . . , um]]]) is injective and Z ⊂ N , then Z = N .

Proposition Every element of R is contained in a phase.

Thus temperature, pressure and a convenient equivalence class of chemical po-
tentials can be taken as independent variables in a phase. The latter is a rather
involved and hardly manageable quantity, so these independent variables – con-
trary to the case of simple materials where only temperature and pressure appear
– are useless in practice.

25.2 Phase connections

The zeroth-order and second-order phase connections of two phases Z and Z ′ of a
composite material are defined in the same way as those of a simple material (see
Definitions 7.2 and 7.3) and the same can be said about them, therefore, we do
not go into details.

Definition 1 Let Z and Z ′ be two phases of a composite material. We say that
(v, T, c) ∈ Z \ Z ′ and (v′, T, c′) ∈ Z ′ \ Z are in a first-order connection with
each other if P(v, T, c) = P(v′, T, c′) and uα(v, T, c) = uα(v′, T, c′) for all α =
1, . . . ,m.

Definition 2 Let C be the subset of states in Z \ Z ′ which are in first-order
connection with some states in Z ′ \Z and let C ′ be the similar set in Z ′ \Z. The
first-order connection of the phases Z and Z ′ is the pair (C,C ′). The phases
are in first-order connection if the sets C and C ′ are not void.

Recall that [[[u1, . . . , um]]] is the composition of a surjection and (u1, . . . , um).
As a consequence – because (T ,P, [[[u1, . . . , um]]]) is injective on Z – every state in
C is in first-order phase connection with exactly one state in C ′ and vice versa.
In other words, ‘being in first-order connection’ is a bijection between C and C ′.

Proposition Let (C,C ′) be the first-order phase connection of Z and Z ′. Then
C and C ′ are m-dimensional submanifolds in Z and in Z ′, respectively.

Proof Let f and f ′ denote the restriction of the functions (T ,P, [[[u1, . . . , um]]]) onto
Z \ Z ′ and Z ′ \ Z, respectively. Applying the implicit function theorem for the
function (v, T, c, v′, T ′, c′) 7→ f(v, T, c)−f ′(v′, T ′, c′), we get by the intrinsic stabil-
ity conditions that there is a continuously differentiable function ϑ : Z  Z ′ in a
neighbourhood of every point of C in such a way that f(v, T, c)−f ′(ϑ(v, T, c)) = 0.
It is evident that the restriction of ϑ onto C is just the previously mentioned bi-
jection C → C ′ in the neighbourhood in question. It is clear from the definition
of [[[u1, . . . , um]]] that C = {(v, T, c) ∈ Z | uα(v, T, c) − uα(ϑ(v, T, c)) = 0} for an
arbitrarily chosen α = 1, . . . ,m. Again the conditions of intrinsic stability imply
that for all (v, T, c) there is an α such that the derivative of uα at (v, T, c) is not
zero.

All those imply that C is an m-dimensional submanifold, and the same is true
for C ′.
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25.3 Phase surfaces

25.3.1 The notion of phase surface

It follows then that (T ,P, [[[u1, . . . , um]]])[C] = (T ,P, [[[u1, . . . , um]]])[C ′] is an m-
dimensional submanifold in (K)×(Pa)×(J)D∗

m; this corresponds to the phase line
of a simple material in (K) × (Pa) that are described by the Clausius–Clapeyron
equation. This submanifold is of little importance because [[[u1, . . . , um]]] is a rather
involved and hardly manageable quantity. On the contrary, the phase surfaces

Γ := (T ,P, c)[C] ⊂ (K) × (Pa) × Cm,

Γ′ := (T ,P, c)[C ′] ⊂ (K) × (Pa) × Cm,

which are m-dimensional submanifolds, too, have a clear meaning and great prac-
tical importance; here and in the sequel

c : D → Cm, (v, T, c) 7→ c. (∗)

The bijection between C and C ′ establishes a bijection Γ → Γ′ whose restriction
to Γ ∩ Γ′ is the identity. Thus if

(

T, P, c(1)
)

,
(

T, P, c(2)
)

∈ Γ and (T, P, c′(1)),
(T, P, c′(2)) are the corresponding points in Γ′, then c(1) 6= c(2) implies c′(1) 6=
c′(2). Therefore, at a given temperature and pressure the concentrations belonging
to states in a first-order phase connection are uniquely determined. We shall
see that the first-order phase connections express the equilibrium of bodies in
different phases. Thus, we can say that at given temperature and pressure the
concentrations of bodies in equilibrium in different phases are uniquely determined.

cc

TT

Γ
Γ

Γ′

Γ′

00 1 1

Figure 25.1

25.3.2 Illustration of phase surfaces

Figure 25.1 illustrates phase surfaces (Γ and Γ′) of a two-component material. The
horizontal axis shows the concentration c of one of the components (the concen-
tration of the other component is 1 − c), the vertical axis shows temperature. The



248 VI Composite materials (mixtures, solutions)

lines on the figure represent intersections of the phase surface and the planes with
constant pressure. The two figures correspond to two different pressures.

For the sake of easier formulation, let Z and Z ′ be the liquid phase and the
gaseous phase and let the two components be alcohol and water. Let us draw
a vertical line at a given concentration c and let us proceed on the line upwards
from the bottom; this corresponds to the process that the alcohol-water solution in
which water has concentration c is heated at constant pressure. When the vertical
line reaches the surface Γ, then boiling starts, the gaseous phase appears whose
temperature equals the temperature of the liquid but has a different (smaller)
concentration of water. As temperature is raised, the boiling continues, the water
concentration in the vapour is always less than in the liquid (always less water
enters the vapour than alcohol), consequently, the water concentration in the liquid
becomes higher. If the process is slow enough, then liquid and vapor are nearly
in equilibrium. The process ‘splits’ in two branches, proceeds on the surfaces Γ
and Γ′ ‘upwards’ (‘to the right’) in such a way that the points corresponding to
each other are on a horizontal line (have the same temperature). When boiling is
finished (the liquid phase disappears), the two branches of the process unite into
a vertical line in the gaseous phase.

25.4 Phase connections of different mixtures

Up to now the first-order phase connections of different phases of the same mixture
have been considered. It is an everyday experience that phase transition occurs
between different mixtures; e.g. freezing-point decrease is connected with such a
phenomenon. To treat phase connections between phases of different mixtures, we
need the notion of mixture families that will be given in the next section whose
notations and results are applied here.

Let us take the mixture family
(

D, e,P, (uα | α = 1, . . . ,m), R
)

of the simple
materials (Dα, eα,Pα, uα, Rα) (m = 1, . . . ,m). The notions and results of the
previous paragraph concern phases and phase connections of a composition F of
the mixture family. The zeroth-order and second-order connections of the phases
Z and Z ′ of the compositions F and F ′, respectively, are defined formally in the
known way when the compositions coincide. The first-order phase connections,
too, are defined similarly:

Definition 1 Let Z and Z ′ be phases of the composition F and F ′, respectively.
We say that (v, T, c) ∈ Z \Z ′ and (v′, T, c′) ∈ Z ′ \Z are in a first-order connec-
tion with each other if P(v, T, c) = P(v′, T, c′) and uα(v, T, c) = uα(v′, T, c′)
for all α ∈ F ∩ F ′.

Definition 2 Let C be the subset of states in Z \ Z ′ which are in first-order
connection with some states in Z ′ \Z and let C ′ be the similar set in Z ′ \Z. The
first-order connection of the phases Z and Z ′ is the pair (C,C ′). The phases
are in first-order connection if the sets C and C ′ are not void.
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Figure 25.2

Now a state in C can be in a first-order connection with more states in C ′ and
vice versa.

We introduce the sets

Γ := (T ,P, c)[C] ⊂ (K)+ × (Pa) × CF ,

Γ′ := (T ,P, c)[C ′] ⊂ (K)+ × (Pa) × CF ′ .

Let us investigate the case F ⊂ F ′ in more detail. Then F ∩ F ′ = F ; because
(

T ,P, (uα | α ∈ F)
)

is injective on Z, every state in C ′ is in first-order connection
with exactly one state in C; this is not true, however, interchanging the role of
C and C ′. In other words, now ‘being in first-order connection’ is a surjection
from C ′ onto C which establishes a surjection Γ′ → Γ, too. This means that in
a phase equilibrium at given temperature and pressure the concentrations of the
mixture having less components is uniquely determined while the concentrations
of the mixture having more components are not unique, in general.

Figure 25.2 shows the boiling of a liquid mixture when only the material ‘2’
enters the gaseous phase until the concentration of the material ‘1’ in the liquid is
less than 1/2.

25.5 Exercises

1. Define the critical points of a composite material according to Definition 7.8
and show that a critical point is in the second-order phase connection.

2. Discuss the phase surfaces in Figure 25.3.
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Figure 25.3

26 Mixture families

26.1 Definition of a mixture family

For the sake of simpler formulation, we introduce the notation A := {1, . . . ,m}
for the time being, where m ≥ 2 is a given positive integer.

Note that it is mathematical convenience only that components in Definition
21.2 are labelled by numbers from 1 to m; we could give them arbitrary names (as
in the case of actual mixtures, e.g. the mixture of salt and water), i.e. we could
take an arbitrary finite set instead of A.

We have to renounce this convenience if we wish to describe that some com-
ponents of a mixture disappear completely during a process and a mixture of less
components remains, because the components of the remaining mixture cannot be
labelled consistently from 1 to .... If, for instance, the first and the m-th compo-
nent disappear, then the remaining mixture has m− 2 components which are not
labelled by numbers from 1 to m− 2 but by numbers from 2 to m− 1. It is suit-
able to consider this mixture having concentrations of the form (0, c2, . . . , cm−1, 0)

where 0 < cα < 1 for α = 2, . . . ,m− 1 and
m−1
∑

α=2
cα = 1.

In general, if F is a subset of A that contains at least two elements, we introduce
the notation

CF := {c ∈ Cm | 0 < cα < 1 if α ∈ F ,
∑

α∈F
cα = 1};

if F has only one element, let CF := {1}.

Note that if F and F ′ are different non-void subsets of A, then CF ∩ CF ′ = ∅.
Furthermore, it is trivial that Cm =

⋃

∅6=F⊂A
CF .
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If we wish to consider mixtures of m simple materials in which some of the
materials are not present, then we have to take a whole family of mixtures: we
have to give the mixture of the materials corresponding to every non-void subset
F of A (the mixture corresponding to a singleton is really a pure material). The
constitutive domain of the mixture corresponding to F is a subset of (m3)+ ×
(K)+ × CF . The above remarks indicate us that the constitutive domains of
the mixtures of different composition are disjoint and their union is a subset of
(m3)+ × (K)+ × Cm.

‘Putting together’ the constitutive domains and constitutive functions of the
mixtures of different compositions, we arrive at the following definition.

Definition Let m ≥ 2 be a positive integer, A := {1, . . . ,m}.
A mixture family of the simple materials (Dα, eα,Pα, uα, Rα) (α ∈ A) is

an object
(D, e,P, (uα | α ∈ A), R)

where
– both D and R are non-void subsets of (m3)+ × (K)+ × Cm,
– e : D → (J)+, P : D → (Pa),
– uα : D  (J) having the domain {(v, T, c) ∈ D | cα 6= 0},

are continuous functions and if ∅ 6= F ⊂ A, then (DF , eF ,PF , (uα
F | α ∈ F), RF )

is a mixture according to Definition 21.2, called the mixture of composition F ,
where

DF := D ∩
(

(m3)+×(K)+×CF
)

, RF := R ∩
(

(m3)+×(K)+×CF
)

,

eF := e|DF
PF := P|DF

uα
F := uα|DF

.

Remarks (i) We point out that the same symbol denotes the mixture family
here and a single mixture in Definition 21.2; the single mixture there is the ‘largest’
member of the present family. Hopefully, this ambiguity does not lead to confusion.

(ii) Note that the chemical potential of the α-th material is not defined every-
where in D, in other words, not for all members of the family; it is defined only
for the compositions that contains the α-th material as a component.

(iii) The continuity of the constitutive functions imply that a larger composition
is reduced in limit to a smaller one; more closely, if ∅ 6= H ⊂ F and the components
corresponding F \ H disappear from the mixture of composition F , then we get
the mixture with composition H: for all α ∈ H and cH ∈ CH (see Appendix 8):

lim
cF →cH

(eF ,PF , (u
α
F | α ∈ H))(v, T, cF ) = (eH,PH, (u

α
H | α ∈ H))(v, T, cH).

This is a generalization of item (iv) in Definition 21.2.

26.2 Canonical variables

Of course, a mixture family, too, can be defined in canonical variables as an object
(D,T,P, (µα | α ∈ A),R), where

– both D and R are non-void subsets of (J)+ × (m3)+ × Cm,
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– T : D → (K)+, P : D → (Pa),
– µα : D  (J) having the domain {(e, v, c) ∈ D | cα 6= 0}

and if ∅ 6= F ⊂ A, then (DF ,TF ,PF , (µα
F | α ∈ F),RF ) is a mixture similar to

Paragraph 21.5, where

DF := D ∩
(

(J)+ × (m3)+×CF
)

, RF := R ∩
(

(J)+ × (m3)+×CF
)

,

TF := T|DF
PF := P|DF

µα
F := µα|DF

.

The temperature in canonical variables corresponding to different compositions
need not have a limit relation similar to that described in item (iii) of the previous
remark (see 21.5); if

lim
cF →cH

TF (e, v, cF ) = TH(e, v, cH),

for all F and H, H ⊂ F , then the mixture family is called canonically good.

26.3 Entropic mixture families

The mixture family treated previously is called entropic, if every composition in
the family is entropic.

The chemical potential uα is defined only for the concentrations that the α-th
component is present in, i.e. cα 6= 0. Let us put cα

uα := 0 if cα = 0; then the
Gibbs function

g :=

m
∑

α=1

cα
uα

and consequently, the specific entropy

s :=
e + Pv − g

T

is defined on the whole D. If the mixture family is entropic, then the partial
derivative of specific entropy satisfies the formal relations given in Paragraph 21.6.

26.4 Exercises

1. Give the ideal mixture family of three different ideal gases.
2. Is the mixture family of the previous exercise canonically good?

27 Bodies

27.1 Definition of a body

The bodies of composite materials are more complicated than those of simple
materials. Namely, only one extreme possibility exists there: the body becomes
empty, i.e. its particle number reduces to zero. Now we have to take into account



27 Bodies 253

the cases when some of the components of a body disappear; thus the notion of a
body requires a mixture family as given in Paragraph 26.1.

A mixture body, besides its material, is characterized by its particle number.
Therefore, the following definition is straightforward.

Definition A body composed of the simple materials (Dα, eα,Pα, uα, Rα) (α ∈
A) is

(

D × R
+
0 , e,P, (uα | α ∈ A), R

)

,

where
(

D, e,P, (uα | α ∈ A), R
)

is a mixture family of the materials in question.

The elements of D×R
+ and the set D× {0} are called the states of the body.

The body is entropic if the corresponding mixture family is entropic.

27.2 The entire quantities

A state of a composite body is (v, T, c,N) ∈ (J)+ × (m3)+ × Cm × R
+
0 : specific

volume, temperature, concentrations and particle number(denoted by N). As in
the case of simple bodies, it is convenient to introduce the entire quantities:

Nα := Ncα, the particle number of the α-th component (the α-th partial
particle number),

V := Nv, the entire volume of the body,
and to use them for describing states. The relation between the specific quantities
and the entire ones is realized by the infinitely differentiable mapping

(m3)+ × (K)+ × Cm × R
+
0 → (J)+ × (m3)+

0 × (R+
0 )m,

(v, T, c,N) 7→ (Nv, T,Nc1, . . . , Ncm) =: (V, T,N1, . . . , Nm).

This functions maps the set D × {0} (the state with zero particle number) into a
subset of {0} × (K)+ × {(0, 0 . . . , 0)} and establishes a bijection between (m3)+ ×
(K)+ ×Cm ×R

+ and (m3)+ × (K)+ × (R+)m; its inverse is infinitely differentiable,
too:

(V, T,N1, . . . , Nm) 7→ (V/N, T,N1/N . . . , Nm/N,N),

where, of course, N =
m
∑

α=1
Nα is the entire particle number.

We stress that the partial particle numbers Nα (α = 1, . . . ,m) are inde-
pendent variables, contrary to the concentrations.

Using the entire variables – supposing that N 6= 0 – we apply the ambiguous
notation similar to that for simple materials:

P(V, T,N1, . . . , Nm) = P(V/N, T,N1/N, . . . , Nm/N)

and a similar one for uα, too. Furthermore,
E(V, T,N1, . . . , Nm) := Ne(V/N, T,N1/N, . . . , Nm/N) is the entire energy,
S(V, T,N1, . . . , Nm) := Ns(V/N, T,N1/N, . . . , Nm/N) is the entire entropy,

and the entire enthalpy H, the entire free energy F and the entire Gibbs function G
are defined similarly (we apologize: the symbols F and H appeared in connection
with mixture families, too, with a different meaning).
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Then – taking the first (m− 1) concentrations as independent –

∂P
∂V

=
1

N

∂P
∂v

,

∂P
∂Nβ

=
1

N

(

−v ∂P
∂v

+
∂P
∂cβ

−
m−1
∑

γ=1

cγ ∂P
∂cγ

)

(β = 1, . . . ,m− 1),

∂P
∂Nm

=
1

N

(

−v ∂P
∂v

−
m−1
∑

γ=1

cγ ∂P
∂cγ

)

.

Moreover,
∂E
∂V

=
∂e

∂v
,

∂E
∂T

= N
∂e

∂T
,

∂E
∂Nβ

= e − v
∂e

∂v
+

∂e

∂cβ
−

m−1
∑

γ=1

cγ ∂e

∂cγ
(β = 1, . . . ,m− 1),

∂E
∂Nm

= e − v
∂e

∂v
−

m−1
∑

γ=1

cγ ∂e

∂cγ
,

and similar relations hold also for S, F , H and G.
As a consequence, the partial derivatives of the entire quantities with respect

to volume and temperature satisfy the same relations as those of the specific
quantities, i.e. for entropic bodies

T
∂S
∂V

=
∂E
∂V

+ P, T
∂S
∂T

=
∂E
∂T

,

∂F
∂V

= −P, ∂F
∂T

= −S,

furthermore, for all α = 1, . . . ,m

T
∂S
∂Nα

=
∂E
∂Nα

− uα,
∂F
∂Nα

= uα.

27.3 The entire canonical variables

Of course, a body can be given in canonical variables, too, as
(

D × R+
0 ,T,P, (µ

α |
α ∈ A),R

)

.
The relation between the specific quantities and the entire ones is realized by

the infinitely differentiable mapping

(J)+ × (m3)+ × Cm × R
+
0 → (J)+ × (m3)+

0 × (R+
0 )m,

(e, v, c,N) 7→ (Ne,Nv,Nc1, . . . , Ncm) =: (E, V,N1, . . . , Nm).
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This function maps the set D × {0} (the state with zero particle number) into the
single element (0, 0, 0 . . . , 0) and establishes a bijection between (J)+ × (m3)+ ×
Cm × R

+ and (J)+ × (m3)+ × (R+)m having the infinitely differentiable inverse

(E, V,N1, . . . , Nm) 7→ (E/V, V/N,N1/N . . . , Nm/N,N).

Using the entire canonical variables – supposing that N 6= 0 – we apply the
ambiguous notation similar to that for simple materials:

T(E, V,N1, . . . , Nm) = T(E/N, V/N,N1/N, . . . , Nm/N)

and similar ones for P and µα, too. These functions are defined on

R
+D := {(Ne,Nv,Nc) | (e, v, c) ∈ D, N ∈ R

+}
and are continuously differentiable on

R
+R := {(Ne,Nv,Nc) | (e, v, c) ∈ R, N ∈ R

+}.
Then – taking the first (m− 1) concentrations as independent –

∂T

∂E
=

1

N

∂T

∂e
,

∂T

∂V
=

1

N

∂T

∂v
,

∂T

∂Nβ
=

1

N

(

−e∂T

∂e
− v

∂T

∂v
+
∂T

∂cβ
−

m−1
∑

γ=1

cγ ∂T

∂cγ

)

(β = 1, . . . ,m− 1), (∗)

∂T

∂Nm
=

1

N

(

−e∂T

∂e
− v

∂T

∂v
−

m−1
∑

γ=1

cγ ∂T

∂cγ

)

and similar formulae hold for P and µα, too.
Let us observe that

m
∑

β=1

cβ ∂T

∂Nβ
=

1

N

(

−e∂T

∂e
− v

∂T

∂v

)

.

Furthermore, we easily deduce for the entire entropy

S(E, V,N1, . . . , Nm) := Ns(E/N, V/N,N1/N, . . . , Nm/N)

that
∂S

∂E
=
∂s

∂e
,

∂S

∂V
=
∂s

∂v
and

∂S

∂Nβ
= s − e

∂s

∂e
− v

∂s

∂v
+

∂s

∂cβ
−

m−1
∑

γ=1

cγ ∂s

∂cγ
(β = 1, . . . ,m− 1), (∗)

∂S

∂Nm
= s − e

∂s

∂e
− v

∂s

∂v
−

m−1
∑

γ=1

cγ ∂s

∂cγ

and similar equalities for the entire free energy F(E, V,N1, . . . , Nm) :=
N f(E/N, V/N,N1/N, . . . , Nm/N), the entire enthalpy H and the entire Gibbs
function G.
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27.4 Entropic property in the entire canonical variables

Formulae in Paragraphs 21.6 and 27.3 give for entropic bodies

∂S

∂E
=

1

T
,

∂S

∂V
=

P

T
,

∂S

∂Nα
= −µα

T
(α = 1, . . . ,m),

in other words,

DS =

(

1

T
,

P

T
,−µ1

T
, . . . ,−µm

T

)

.

The second derivative of the entire entropy is similar to that in Paragraph 8.4:
the last column (and last row) is to be replaced with m similar columns (and
rows): instead of µ and ∂

∂N we have to write µα and ∂
∂Nβ for α, β = 1, . . . ,m.

Then Proposition 21.6 implies the following important result:

Proposition For all (E, V,N1, . . . , Nm) in R
+R, D

2S(E, V,N1 . . . , Nm) is nega-
tive semidefinite having the kernel spanned by (E, V,N1 . . . , Nm).

27.5 A useful formalism

Using the familiar symbolic notations, we can write the entropic property in the
form

TdS = dE + PdV −
m
∑

α=1

µα
dNα

which allows us to easily deduce the relations among partial derivatives in different
variables.

The symbolic form of the Gibbs–Duhem relations – based on the ‘rules’
d(PV ) = PdV + V dP etc. – becomes

m
∑

α=1

Nα
dµα = −SdT + V dP,

or, with the entire Gibbs function

G :=

m
∑

α=1

Nαµα = E − TS + PV

(called sometimes free enthalpy, too)

dG = V dP − SdT +

m
∑

α=1

µα
dNα.

27.6 Exercises

1. Deduce relations for the partial derivatives of the entire free energy of an
entropic composite body in the canonical variables.

2. Take a body mixed ideally of two different ideal gases. Give its pressure,
entire internal energy and entire entropy as a function of (V, T,N1, N2); give its
pressure, temperature and entire entropy as a function of (E, V,N1, N2).
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28 Thermodynamical forces

28.1 Problems of definition

Let us take two bodies composed of the same materials in the form of Definition
27.1. We would think that the thermodynamical force between them consists
of the temperature difference, the pressure difference and the chemical potential
difference of the components. The temperature difference is a trivially defined
quantity. The pressure difference is all right as a function defined on D × D; if
the states of a body are denoted by the usual letters and the states of the other
body are denoted by a subscript ∗ to the letters, then P(v, T, c) − P(v∗, T∗, c∗) is
the pressure component of the thermodynamical force.

The chemical potentials, however, are not defined on the whole D; in the case
of different compositions of the bodies, the difference of the chemical potentials of
the components that are not common is not defined. This would roughly mean
that only the common components could pass from one body to the other though
it is an everyday phenomenon that salt diffuses from a water–salt solution into
pure water.

Let us see the problem more closely. The domain of the difference of the α-th
chemical potentials is not the whole D ×D: uα(v, T, c) − uα(v∗, T∗, c∗) is defined
only if cα 6= 0 and cα

∗ 6= 0. Moreover, according to the usual assumptions treated
in Paragraph 23.2, the limit of that expression is −∞ as cα → 0 which makes
doubtful the definition of the thermodynamical force.

28.2 Solution of the problems

Let us recall Paragraph 11: we see that the thermodynamical force never appears
alone, it is always multiplied by the conductance matrix. Therefore, we can hope
that the product of the coefficient functions and the difference of chemical poten-
tials possesses a convenient limit as a concentration tends to zero. More closely, if
the member

−ϑα(v, T, c,N, v∗, T∗, c∗, N∗)
(

uα(v, T, c) − uα(v∗, T∗, c∗)
)

appears in the converting of the α-th component where, of course, cα 6= 0 and
cα

∗ 6= 0, then there exist

lim
cα→0

ϑα(v, T, c,N, v∗, T∗, c∗, N∗)
(

uα(v, T, c) − uα(v∗, T∗, c∗)
)

,

lim
cα

∗
→0

ϑα(v, T, c,N, v∗, T∗, c∗, N∗)
(

uα(v, T, c) − uα(v∗, T∗, c∗)
)

.

For the sake of simplicity, in the sequel we write
(

−(T − T∗), P − P∗,−(µα − µα
∗ | α = 1, . . . ,m)

)

,

for the thermodynamical force which multiplied by the matrix




λQ βQ (ϑα
Q | α = 1, . . . ,m)

λF βF (ϑα
F | α = 1 . . . ,m)

λG βG (ϑα
G | α = 1, . . . ,m)
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gives the heating Q, the springing F and the convertings Gα (α = 1, . . . ,m) of the
components between the bodies, and we keep in mind that neither the thermody-
namical force (the difference of certain chemical potentials) nor the conductance
matrix (its certain entries) are meaningful for different compositions of the bodies,
only their product has a meaning.

The same is true for the canonical thermodynamical force

(

1

T
− 1

T∗
,
P

T
− P∗
T∗
,−
(

µα

T
− µα

∗
T∗

∣

∣

∣

∣

α = 1, . . . ,m

))

which is more often used.

29 System of bodies

29.1 Definition of a system

Now we are in a position to formulate the mathematical model of interacting
systems of composite bodies. If the particle transport is forbidden between the
bodies, then we have a system treated in Chapter III. If the bodies can interchange
particles, we can consider that each body is the mixture of the same materials (at
most the actual composition of the bodies differ).

We simplify the formulation by taking only ideal workings and ideal transfer-
rings; someone familiar with the description of such systems, can easily give the
generalization for non-ideal cases.

Definition A system of bodies composed of given materials with given sources
under the action of a given environment consists of the following

0. A positive integer m ≥ 2 and simple materials (Dα,Tα,Pα,µα,Rα) (α =
1 . . . ,m).

1. A positive integer n and a collection of bodies marked by the symbols
{a, 1, . . . , n}; the a-th body is called the environment.

Each body is represented in the form
(

D × R
+
0 ,T,P, (µ

α | α = 1, . . . ,m),R
)

according to Definition 27.1 and the notation c : D → Cm, (e, v, c) 7→ c will be
used.

2. For all i, k = a, 1, . . . , n the dynamical quantitities

Qik : (R+
0 D) × (R+

0 D) → (J/s),

Fik : (R+
0 D) × (R+

0 D) → (m3/s),

Gα
ik : (R+

0 D) × (R+
0 D) → (1/s), (α = 1, . . . ,m),

which are continuous, moreover continuously differentiable on the interior of their
domain.
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With the notation

Qik := Qik(Ei, Vi, N
1
i , . . . , N

m
i , Ek, Vk, N

1
k , . . . , N

m
k ), etc.,

Aik := Qik − PiFik +
m
∑

α=1

µα
i Gik

and other similar simplified notations, the dynamical quantitities satisfy
– mutuality:

Aik = −Aki, Fik = −Fki, Gα
ik = −Gα

ki (α = 1, . . . ,m),

– the equilibrium property

(

Ni :=
m
∑

α=1
Nα

i

)

(I) if NiNk = 0 then Qik = 0, Fik = 0, Gα
ik = 0 (α = 1, . . . ,m),

(II) for NiNk 6= 0

1) if Gα
ik = 0 for all α = 1, . . . ,m

(a) and Fik = 0, Qik 6= 0, then
∗ Qik = 0 ⇐⇒ Ti = Tk,

(b) and Qik = 0, Fik 6= 0, then
∗ Fik = 0 ⇐⇒ Pi = Pk,

(c) if Fik 6= 0, Qik 6= 0, then

∗ Fik = 0 =⇒ Pi = Pk,
∗ Qik = 0 and Pi = Pk =⇒ Ti = Tk,

∗ ∗ Ti = Tk and Pi = Pk =⇒ Qik = 0 and Fik = 0;

2) if there is an α such that Gα
ik 6= 0 and can have both positive and negative

values

(a) and Fik = 0, Qik = 0, then

∗ Gα
ik = 0 ⇐⇒ µα

i = µα
k ;

(b) and Fik = 0, Qik 6= 0, then
∗ Gα

ik = 0 =⇒ µα
i = µα

k ;
∗ µα

i = µα
k and Qik = 0 =⇒ Ti = Tk

(which imply that if Gα
ik = 0 and Qik = 0, then µα

i = µα
k and Ti = Tk),

∗ ∗ µα
i = µα

k and Ti = Tk =⇒ Gα
ik = 0 and Qik = 0;

(c) and Fik 6= 0, Qik = 0, then

∗ Gα
ik = 0 =⇒ µα

i = µα
k ;

∗ µα
i = µα

k and Fik = 0 =⇒ Pi = Pk

(which imply that if Gα
ik = 0 and Fik = 0, then µα

i = muα
k ;

∗ µα
i = µα

k and Pi = Pk =⇒ Gα
ik = 0 and Fik = 0;

(d) and Fik 6= 0, Qik 6= 0, then

∗ Gα
ik = 0 =⇒ µα

i = µα
k ;

∗ µα
i = µα

k and Fik = 0 =⇒ Pi = Pk,
∗ µα

i = muα
k , Pi = Pk, and Qik = 0 =⇒ Ti = Tk
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(which imply that if Gα
ik = 0, Fik = 0 and Qik = 0, then µα

i = µα
k , Pi = Pk

and Ti = Tk),

∗ ∗ ∗ µα
i = µα

k , Pi = Pk and Ti = Tk =⇒ Gα
ik = 0, Fik = 0 and Qik = 0;

3) if there is an α such that Gα
ik ≥ 0 (or Ga

ik ≤ 0), then the previous rela-
tions (a) to (d) are satisfied in such a way that µα

i ≥ µα
k (or µα

i ≥ µα
k ) appears

everywhere instead of µα
i = µα

k .
– the dissipation inequalities:

−Qik

Ti
(Ti − Tk) + Fik(Pi − Pk) −

m
∑

α=1

Gα
ik(µα

i − µα
k ) ≥ 0,

where equality holds if and only if Qik = 0, Fik = 0 and Gα
ik = 0 (α = 1, . . . ,m)

or, equivalently,

Aik

(

1

Ti
− 1

Tk

)

+ Fik

(

Pi

Ti
− Pk

Tk

)

−
m
∑

α=1

Gα
ik

(

µα
i

Ti
− µα

k

Tk

)

≥ 0.

3. A process of the environment, a continuous function
t 7→ (Ea(t), Va(t), N1

a (t), . . . , Nm
a (t)) ∈ R

+Da defined on a time interval.

4. For all i = 1, . . . , n and α = 1, . . . ,m the sources, continuous functions
t 7→ Qi,s(t) ∈ (J/s) and t 7→ Gα

i,s(t) ∈ (1/s) defined on a time interval.

5. The dynamical equation for (i = 1, . . . , n):

Ėi = Qi −PiFi +

m
∑

α=1

µα
i G

α
i V̇i = Fi, Ṅα

i = Gα
i (α = 1, . . . ,m),

where

Qi = Qi,s +

n
∑

k=a,1

Qik, Fi =

n
∑

k=a,1

Fik, Gα
i = Gα

i,s +

n
∑

k=a,1

Gα
ik.

Systems of composite bodies are described formally in the same way as systems
of simple bodies; the only difference is that now convertings of each component is
to be taken into account. Remarks in 14.1 remain valid.

29.2 Summarizing formulae

The description of systems can be put in an abstract framework similar to that
treated in Section 15.

For the sake of simplicity, we suppose that the sources are zero; besides the
results concerning the equilibria, everything can be repeated for non-zero sources,
too.

According to paragraph 27.2, the states of the bodies are elements of the subset

n

X
i=1

(R+
0 Di)
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of the vector space

X :=

(

(J) × (m3) × R
m

)n

;

a state will be denoted by

x :=

(

xi := (Ei, Vi, N
1
i , . . . , N

m
i )

∣

∣

∣

∣

i = 1, . . . , n

)

.

Again kT is taken instead of T ; then the Cartesian product of the intensive
quantities of the bodies is the function

y :=
n

X
i=1

yi :=
n

X
i=1

(

1

kT
,

P

kT
,− µ1

kT
, . . . ,−µm

kT

)

: X  X∗.

As in Section 15, the dynamical equation can be written in the form

(x : I → XRS
)? ẋ = R(x, xa).

We can define the nominal thermodynamical force F and the nominal conduc-
tance matrix B as in Section 15 (with a little care because of Paragraph 28.1) and
then

R(x, xa) = B(x, xa)F(x, xa).

Constraints, holonomic and anholonomic ones, the effective thermodynamical
force and conductance matrix are defined as in Section 15, and we can repeat
what we know about the relation between the nominal conductance matrix and
the effective one.

The entropy of the environment – in usual loose notations – is

Sa =

Ea + PaVa −
m
∑

α=1
µa

aN
α
a

Ta
.

The bodies and the environment together form a ‘closed system’, i.e. their total
energy, total volume and total particle numbers are constant,

n
∑

k=a,1

Ek = const,

n
∑

k=a,1

Vk = const,

n
∑

k=a,1

Nα
k = const (α = 1, . . . ,m).

Thus, if the process of the environment is constant, the total entropy of the bodies
and the environment equals, up to an additive constant,

L(E1, V1, N
1
1 . . . , N

m
1 , . . . , . . . , En, Vn, N

1
n, . . . , N

m
n ) :=

n
∑

i=1









Si(Ei, Vi, N
1
i , . . . , N

m
i ) −

Ei + PaVi −
m
∑

α=1
µα

aN
α
i

Ta









.
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This function is twice differentiable on X
n
i=1(R+

0 Ri), DL is the nominal force for
entropic bodies, moreover, D

2L(x) is negative semidefinite for all x having the
kernel spanned by the vectors

(x1, 0, 0, . . . , 0), (0, x2, 0, . . . , 0), . . . (0, 0, 0, . . . , xN )

(cf. 15.6).
Therefore, Propositions 15.6 and 15.8 and remarks to them remain valid. Fi-

nally, we can repeat Paragraph 15.9 about extremum properties.

30 A body in a given environment

30.1 The framework of description

The processes of a body composed of the materials (Dα,Tα,Pα,µα,Rα) (α =
1, . . . ,m) will be examined in an environment composed of the same materials. The
given constant process of the environment will be characterized by the temperature
Ta, the pressure Pa and the concentrations ca ∈ Cm. We shall use the notations
introduced earlier, and µα will be the chemical potential of the α-th component
as a function of temperature, pressure and concentrations in a neighbourhood of
(Ta, Pa, ca) and

µα
a := µα(Ta, Pa, ca) (α = 1, . . . ,m).

The processes of the body are supposed to run in the phase that the environ-
ment is in. If there is no restriction on the convertings, such a system is treated
as the ones in Section 18; as a sample, we present the constraint-free system. We
faced a new problem, however, if the converting of some components is forbidden.
This will be illustrated by two examples.

30.2 System without constraint

Let us exclude states in which some particle numbers are zero and let us suppose
that the composition of the body and the environment coincide. We can suppose
that all components are present in the processes, i.e. ca ∈ Cm.

The dynamical equation has the form

Ė = Q− PF +
m
∑

α=1

µαGα, V̇ = F,

Ṅα = Gα (α = 1, . . . ,m).

The equilibrium values of the specific quantities and the concentration are
uniquely determined by

T(eo, vo, co) = Ta, P(eo, vo, co) = Pa,

µα(eo, vo, co) = µα
a (α = 1, . . . ,m).

Because the phase of the body coincedes with that of the environment, we have
co = ca.

There is no condition on the particle number of the body.
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Proposition 1 The set of equilibria with non-zero particle number is

{N(eo, vo, ca) | N ∈ R
+}.

We can prove as Proposition 18.2.2:

Proposition 2 If the body is entropic and the equilibrium values of the (nominal)
conductance matrix are symmetric and positive definite, then the set of equilibrium
is strictly asymptotically stable.

30.3 Selective converting, fixed volume

We consider a two-component body in a one-component environment; the body is
enclosed with a rigid wall which passes through only the component corresponding
to the environment. Let the set of components be A = {w, t} (‘(w)ater’ and
‘sal(t)’) and let the environment be pure water (salt cannot permeate the wall),
i.e. F = {w, t}, Fa = {w}; the latter means that ca = (1, 0).

The dynamical equation has the form

Ė = Q+ µwGw, V̇ = 0, Ṅw = Gw, Ṅ t = 0.

Let Vo and N t
o denote the constant volume and salt particle number of the

body, respectively. Then

U(Vo, N
t
o) := {(E, Vo, N

w, N t
o) | E ∈ (J)+, Nw ∈ R

+}

is an invariant submanifold of the dynamical equation.
If there is an equilibrium with non-zero water particle number, then the equilib-

rium values Eo and Nw
o of internal energy and water particle number, respectively,

of the body are determined by

T(Eo, Vo, N
w
o , N

t
o) = Ta, µw(Eo, Vo, N

w
o , N

t
o) = µw(Ta, Pa).

Proposition If the body is entropic, then the equilibrium (Eo, Vo, N
w
o , N

t
o) (if ex-

ists) is asymptotically stable in U(Vo, N
t
o).

Proof The conditions of Proposition 15.6 are satisfied, but we can prove directly
that

(E,Nw) 7→ S(E, Vo, N
w, N t

o) − E − µw
aN

w

Ta

is a Liapunov function for the asymptotic stability of the equilibrium (Eo, N
w
o ) of

the reduced dynamical equation

Ė = Q+ µwGw, Ṅw = Gw.

Remark Returning to the specific quantities, we find that in equilibrium

µw(Ta, Pa, c
w, 1 − cw) = µw(Ta, Pa),

thus the water reaches the saturation concentration in the body (cf. 24.6). Thus
equilibrium can exist only if the solution is not semi-ideal. The same is true for
the system in the next paragraph.
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30.4 Selective converting

We consider a system similar to the previous one but the wall is not rigid.

The dynamical equation has the form

Ė = Q− PF + µwGw, V̇ = F, Ṅw = Gw Ṅ t = 0.

Let N t
o denote the constant salt particle number in the body. Then

U(N t
o) := {(E, V,Nw, N t

o) | E ∈ (J)+, V ∈ (m3)+, Nw ∈ R
+}

is an invariant submanifold of the dynamical equation.

If there is an equilibrium with non-zero value of water particle number, then
the equilibrium values Eo, Vo and Nw

o of internal energy, volume and water particle
number, respectively, of the body are determined by

T(Eo, Vo, N
w
o , N

t
o) = Ta, P(Eo, Vo, N

w
o , N

t
o) = Pa,

µw(Eo, Vo, N
w
o , N

t
o) = µw(Ta, Pa).

As in the previous paragraph, we can prove that if the body is entropic, then
the equilibrium (if exists) is asymptotically stable.

30.5 Exercises

1. Treat the isothermal and the isobaric processes of a body in an environ-
ment if there is no constraint, and the body and the environment have the same
composition (follow the line of Paragraphs 18.4 and 18.5).

2. How does the treatment of the isothermal and the isobaric processes change
if the body is pure ‘water’ and the environment is ‘water-salt’ solution (i.e. the
salt particles cannot enter into the body).

3. Compare the result in Paragraph 30.3 with Paragraph 24.5 about osmosis.

31 Two bodies in a given environment

31.1 The framework of description

Te processes of two bodies composed of the materials (Dα,Tα,Pα,µα,Rα) (α =
1, . . . ,m) will be examined in an environment; the bodies and the environment
cannot interchange particles (the bodies together are enclosed with an impermeable
wall). We shall use the previous notations.

If there is no restriction on the convertings, such systems are treated as the ones
in Section 18; as a sample, we present the system in which the bodies can interact
freely (without constraint) but they are completely isolated from the environment.
As in the previous section, we face a new problem, however, if the converting of
some components is forbidden, which is illustrated by two examples.
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31.2 Fixed total energy and total volume

31.2.1 The dynamical equation

The bodies are completely isolated from the environment.
The dynamical equation has the form

Ė1 = Q1 − P1F1 +

m
∑

α=1

µαGα
1 , V̇1 = F1,

Ṅα
1 = Gα

1 (α = 1, . . . ,m),

Ė2 = Q2 − P2F2 +

m
∑

α=1

µαGα
2 , V̇2 = F2,

Ṅα
2 = Gα

2 (α = 1, . . . ,m).

The constraint (isolation from the environment) is described by

Ė1 + Ė2 = 0, V̇1 + V̇2 = 0, Ṅα
1 + Ṅα

2 = 0 (α = 1, . . . ,m).

Consequently, for all Es ∈ (J)+, Vs ∈ (m3)+ and Nα
s ∈ R

+ (α = 1, . . . ,m),

U(Es, Vs, N
1
s , . . . , N

m
s ) := {(E1, V1, N

1
1 , . . . , N

m
1 ), (E2, V2, N

1
2 , . . . , N

m
2 ) |

E1 + E2 = Es, V1 + V2 = Vs, N
α
1 +Nα

2 = Nα
s (α = 1, . . . ,m)}

is an invariant submanifold of the dynamical equation.
The equilibrium values of specific quantities and concentrations satisfy

T(e1o, v1o, c1o) = T(e2o, v2o, c2o), P(e1o, v1o, c1o) = P(e2o, v2o, c2o),

µα(e1o, v1o, c1o) = µα(e2o, v2o, c2o) (α = 1, . . . ,m).

31.2.2 Identical phases

If the equilibrium states of the bodies are in the same phase, then – because the
joint of the functions in the previous equalities is injective –

e1o = e2o =: eo =
Es

Ns
, v1o = v2o =: vo =

Vs

Ns
,

c1o = c2o =: co =
(N1

s , . . . , N
m
s )

Ns

where

Ns :=
m
∑

α=1

Nα
s .
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There is no restriction on the entire particle numbers of the bodies, i.e. on

N1 :=
m
∑

α=1
Nα

1 and N2 :=
m
∑

α=1
Nα

2 , thus the set of equilibria with non-zero particle

number in U(Es, Vs, N
1
s , . . . , N

m
s ) is

{(N1eo, N1vo, N1co, (Ns −N1)eo, (Ns −N1)vo, (Ns −N1)co) | 0 < N1 < Ns}.
A proposition similar to that in 19.6 can be proved for the strict asymptotic

stability of the set of equilibria.

31.2.3 Different phases

If the equilibrium states of the two bodies are in different phases, then the equalities
at the end of 31.2.1 are supplemented by

N1oe1o +N2oe2o = Es, N1ov1o +N2ov2o = Vs,

Nα
1o +Nα

2o = Nα
s (α = 1, . . . ,m),

where

N1o :=

m
∑

α=1

Nα
1o, N2o :=

m
∑

α=1

Nα
2o.

As in Paragraph 20.2, we can prove that if the bodies are entropic, then the
equilibrium is asymptotically stable (so locally unique) in U(Es, Vs, N

1
s , . . . , N

m
s ).

31.3 Selective converting, fixed total energy
and fixed individual volumes

The two bodies are completely isolated from the environment and there is a rigid
wall between the bodies which does not allow certain components to pass through.
Let us suppose that one of the bodies has two components and the other body has
a pure material: F1 = {w, t}, F2 = {w} (the first body is a ‘water–salt’ solution,
the second body is pure ‘water’, salt particles cannot get into the second body).

The dynamical equation has the form

Ė1 = Q1 + µw
1 G

w
1 , V̇1 = 0, Ṅw

1 = Gw
1 , Ṅ t

1 = 0,

Ė2 = Q2 + µw
2 G

w
2 , V̇2 = 0, Ṅw

2 = Gw
2 , Ṅ t

2 = 0.

The chemical potential of water in the second body equals that of the pure
material: µw

2 = µw. The given volumes V1o and V2o of the bodies, the salt particle
numbers N t

1o and 0 in the bodies, the total energy Es of the bodies and the
total particle number of water Nw

s in the bodies define an invariant submanifold
U(V1o, V2o, N

t
1o, 0, Es, N

w
s ) of the dynamical equation which can be parameterized

by the variables E1 and Nw
1 . Then the reduced dynamical equation becomes

Ė1 = Q1 + µw
1 G

w
1 , Ṅw

1 = Gw
1 .

The equilibrium value E1o and Nw
1o of internal energy and water particle num-

ber, respectively, are determined by

T1(E1o, V1o, N
w
1o, N

t
1o) = T2(Es − E1o, V2o, N

w
s −Nw

1o, 0),

µw
1 (E1o, V1o, N

w
1o, N

t
1o) = µw(Es − E1o, V2o, N

w
s −Nw

1o, 0).
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Proposition The equilibrium (if exists) (E1o, V1o, N
w
1o, N

t
1o, Es − E1o, V2o, N

w
s −

Nw
1o, 0) is asymptotically stable in U(V1o, V2o, N

t
1o, 0, Es, N

w
s ).

Proof The conditions of Proposition 15.8 are satisfied, but we can prove directly
that

(E1, N
w
1 ) 7→ S1(E1, V1o, N

w
1 , N

t
1o) + S2(Es − E1, V2o, N

w
s −Nw

1 , 0)

is a Liapunov function for asymptotic stability.

31.4 Selective converting

The two bodies are separated by a wall which does not allow certain components
to pass through (and there is no particle interchange between the bodies and the
environment).

The ‘wall’ can be imaginary: previously we considered water–salt solution and
pure water. In the case of water–salt solution and pure salt (a piece of salt dissolves
in water) the selective converting is realized without a wall: salt enters the solution
but water does not enter the piece of salt. Now we shall treat such processes; the
first body is the pure salt and the second body is the water–salt solution.

The dynamical equation has the form

Ė1 = Q1 − P1F1 + µt
1G

t
1, V̇1 = F1, Ṅ t

1 = Gt
1, Ṅw

1 = 0,

Ė2 = Q2 − P2F2 + µt
2G

t
2, V̇2 = F2, Ṅ t

2 = Gt
2, Ṅw

2 = 0.

The chemical potential of salt in the first body equals the chemical potential
of the pure material: µt

1 = µz. The water particle numbers 0 and Nw
2o in the

bodies, the total particle number of salt N t
s in the bodies define an invariant

submanifold U(0, Nw
2o, N

t
s ) of the dynamical equation which can be parameterized

by the variables (E1, V1, N
t
1, E2, V2). The the reduced dynamical equation becomes

Ė1 = Q1 − P1F1 + µtG
t
1, V̇1 = F1, Ṅ t

1 = Gt
1,

Ė2 = Q2 − P2F2 − µt
2G

t
1, V̇2 = F2.

The equilibrium values are determined by

T1(E1o, V1o, N
t
1o, 0) = Ta, P1(E1o, V1o, N

t
1o, 0) = Pa,

T2(E2o, V2o, N
t
s −N t

1o, N
w
2o) = Ta, P2(E2o, V2o, N

t
s −N t

1o, N
w
2o) = Pa,

µt(E1o, V1o, N
t
1o, 0) = µt

2(E2o, V2o, N
t
s −N t

1o, N
w
2o).

Asymptotic stability can be assured as in the previous paragraph; the reader
is asked to prove a corresponding proposition.

Remark As in Paragraph 30.3, we find that in equilibrium salt reaches the
saturation concentration in the solution (second body).
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31.5 Supersaturated solutions

Let us consider the previous system: salt dissolves in water at given temperature T
and pressure P . Let us chose the salt concentration in the solution as independent
variable, denoting it simply by c, and let cs be the saturation concentration.

If c < ct, then salt dissolves from the piece; if c > ct then salt precipitates from
the solution. It is known that at given pressure the saturation concentration is a
strictly monotone increasing function of temperature. Let us take a saturated equi-
librium between a piece of salt and a water–salt solution; if temperature increases
(at constant pressure), then salt particles leave the piece and enter the solution; if
temperature decreases, then salt particles leave the solution and enter the piece.

This is true, evidently, if there is a piece of salt in contact with the solution,
i.e. if the body of pure material has non-zero particle number. It is known that a
water–salt solution which is not in contact with a piece of salt (the body of pure
material has zero particle number) can be cooled carefully below the saturation
temperature whitout precipitation. If something disturbs such a supersaturated
solution – e.g a slight shock – then precipitation starts ‘dramatically’.

These phenomena can be treated in our framework by taking into account
equilibria with zero particle number. As to the instability of supersaturated so-
lutions, we can repeat what we said in Paragraph 20.4 about superheating and
supercooling.

31.6 Exercises

1. Treat the processes of two bodies in a given environment corresponding to
the constraint in Section 18, supposing that the compositions of the bodies and
the environment are equal (no constraint is imposed on convertings).

2. Treat the selective converting between two bodies completely isolated from
the environment if the volumes of the bodies are not fixed.

3. Suppose that ‘water’ in Paragraph 31.3 is an ideal gas with constant specific
heat λk, the ‘water–salt’ solution is an ideal mixture, and give explicitly the equi-
librium.

4. Compare the result in Paragraph 31.3 with Paragraph 24.5 about osmosis.
5. What can be said about saturation in the system treated in Paragraph 31.3?
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32 Characteristics of chemical reactions

32.1 Introductory remarks

So far we tacitly excluded chemical reactions from the processes of composite
materials by considering the partial particle numbers as independent. The particle
number of bodies changes in diffusion and in phase transition in such a way that
particles flow from a body to another because of interaction between the bodies. In
chemical reactions (if diffusion and phase transition do not take place) the partial
particle numbers of a body change because of interactions inside the body.

Therefore, examining chemical reactions, we consider a single body as defined in
27.1 which can be coupled with the environment only mechanically and thermally
(interchange of particles is forbidden). The environment is characterized by its
temperature and pressure. Moreover, for the time beeing, we suppose that only
one chemical reaction can occur and all the materials take place in that reaction.

32.2 Stoichiometric coefficients

The chemical reactions have the well-known properties that determined propor-
tions of materials participating in them. For instance, two molecules of hydrogen,
one molecule of oxygen and two molecules of water participate in a reaction:

2H2 + O2 ⇋ 2H2O.

The minimal particle numbers necessary for a reaction are called stoichio-
metric coefficents of the reaction. These corresponding to input and output
materials are negative and positive, respectively. In the previous example, the
stoichiometric coefficents of hydrogen, oxygen and water are −2, −1 and 2. Of
course, it is our choice, which side is chosen as input and output, respectively (the
symbol ⇋ shows that the reaction can proceed in both directions depending on
the circumstances).

Therefore, if the materials 1, . . . ,m participate in a reaction, then we can assign
the stoichiometric coefficents ν1, . . . , νm to the materials in such a way that the
change of particle numbers N1 . . . , Nm is always a multiple of ν1, . . . , νm. Thus,
the particle numbers of the materials in the body (if particles do not enter and
leave the body) are of the form

(N(0)1 + Jν1, . . . , N(0)m + Jνm)
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where J is a non-negative integer and N(0)1, etc. are the initial particle numbers.

32.3 Chemical affinity

If the body and the environment do not interchange particles, the particle change
in the chemical reaction is described by the equation

Ṅα = J̇να (α = 1, . . . ,m). (∗)

The change of internal energy due to the change of particle numbers is

m
∑

α=1

µαṄα =

(

m
∑

α=1

ναµα

)

J̇ .

The quantity in parentheses on the right-hand side plays a fundamental role in
the description of chemical reactions. Its negative is the chemical affinity, defined
precisely as follows.

Definition The chemical affinity of the composite material
(

D, e,P, u1 . . . ,

um, R
)

corresponding to the stoichiometric coefficents (ν1, . . . , νm) ∈ Z
m is

A := −
m
∑

α=1

να
uα.

Of course, chemical affinity can be given in canonical variables, too, or locally
as a function of temperature, pressure and concentrations.

32.4 The degree of reaction

If the body and the environment do not interchange particles, we have, instead of
the particle numbers (N1, . . . , Nm), the single independent variable J called the
degree of reaction. Accordingly, the states of the body are characterized by
(V, T, J) or (E, V, J) or, in a phase, by (T, P, J).

The constitutive functions, as functions of the above variables, will be denoted
by the customary letters; hopefully, this ambiguity does not cause confusion. Thus,
e.g.

S(E, V, J) := S(E, V,N(0)1 + Jν1, . . . , N(0)m + Jνm),

S(V, T, J) := S(V, T,N(0)1 + Jν1, . . . , N(0)m + Jνm),

S(T, P, J) := S(T, P,N(0)1 + Jν1, . . . , N(0)m + Jνm).

Then the partial derivatives with respect to V , E, T and P retain their original
relations, and the partial derivative with respect to J obeys the following symbolic
equality:

∂

∂J
=

m
∑

α=1

να ∂

∂Nα
.

We note that everything depends on the initial particle numbers N(0)1, N(0)2

etc., too, but we omit this from the notations.
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We say that (V, T, J) is in the regular domain if (V/N, T,N(0)1 + Jν1,
. . . , N(0)m + Jνm) is in it, where

N :=

m
∑

α=1

(N(0)α + Jνα).

It has a similar meaning that (E, V, J) is in the canonical regular domain.

32.5 Entropic body

Our formulae imply for entropic bodies

∂S

∂E
=

1

T
,

∂S

∂V
=

P

T
,

∂S

∂J
=

A

T
,

and
∂F
∂J

= −A, ∂G

∂J
= −A.

Furthermore,

D
2S = − 1

T2













∂T
∂E

∂T
∂V

∂T
∂J

P ∂T
∂E − T ∂P

∂E P ∂T
∂V − T ∂P

∂V P ∂T
∂J − T ∂P

∂J

A ∂T
∂E − T ∂A

∂E A ∂T
∂V − T ∂A

∂V A ∂T
∂J − T ∂A

∂J













.

This result can be obtained in another way, too: the second derivative described
in Paragraph 27.4 (where entropy is considered as a function of the partial particle
numbers) is to be multiplied from the right by the matrix















1 0 0
0 1 0
0 0 ν1

...
...

...
0 0 νm















and from the left by the transpose of this matrix.
Thus (a, b, c) is in the kernel of D

2S(E, V, J) if and only if (a, b, ν1c,
. . . , νmc) is parallel to (E, V,N(0)1 + Jν1, N(0)m + Jνm). This would imply that
N(0)α/να is the same number for all α which is impossible because the particle
numbers are non-negative and some of the stoichiometric coefficents are positive,
some of them are negative. As a consequence, we have:

Proposition If the body is entropic, then D
2S(E, V, J) is negative definite for

(E, V, J) in the regular domain.

32.6 Exercises

1. Give relations for the partial derivatives of (V, T, J) 7→ S(V, T, J) in the case
of an entropic body.

2. Give the constitutive functions in the variables (V, T, J) for a body of ideal
mixture.
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33 Dynamics of chemical reactions

33.1 The dynamical equation

Equality (∗) in 32.3 means that the converting Gα is proportional to να and the
proportionality coefficient is the same for all α, in other words, there is a quantity
K called the reaction rate in such a way that Gα = Kνa (α = 1, . . . ,m). Thus

m
∑

α=1
µαGα = −AK, and the dynamical equation becomes

Ė = Q− PF −AK, V̇ = F, J̇ = K,

where, of course, the dynamical quantitities must be given as functions of (E, V, J)
and the state (Ta, Pa) of the environment. We have considered only ideal working
which does not lead to contradiction even if the body is heat insulated. The
generalization to non-ideal working is straightforward.

33.2 Thermodynamical forces

We accept that the ‘driving force’ of chemical reaction is the chemical affinity.
Thus the thermodynamical force acting on the body is

(−(T − Ta), P − Pa, A)

and the canonical thermodynamical force is

(

1

T
− 1

Ta
,
P

T
− Pa

Ta
,
A

T

)

.

We define pseudolinear dynamical quantitities as earlier:





Q
F
K



 =





λQ βQ ϑQ

λF βF ϑF

λK βK ϑK









−(T − Ta)
P − Pa

A



 =





λc
Q βc

Q ϑc
Q

λc
F βc

F ϑc
F

λc
K βc

K ϑc
K









1
T − 1

Ta
P
T − Pa

Ta
A
T



 .

33.3 The role of affinity

We accepted that affinity is the driving force of the chemical reactions; this means
that the sign of reaction rate equals ‘essentially’ the sign of affinity. In the pseu-
dolinear case this is reflected in ϑK ≥ 0. Later we make this more precise (see
35.2).

Let us see more closely the relation between affinity and the direction of the
reaction. For the sake of brevity, we consider only three materials. Roughly, the
sign of the affinity

|ν1|µ1 + |ν2|µ2 − |ν3|µ3

determines the direction of the reaction, and its zero value characterizes equilib-
rium. In practice, however, most equilibria regarding chemical reactions is not
realized by a peaceful coexistence of the three materials but in such a way that
one or two materials become exhausted. This corresponds to a boundary point of
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the domain of the dynamical equation: one or more particle numbers are zero. The
affinity is not defined for such states; the problem is similar to that in Paragraph
28.1. Fortunately, now the situation is more favourable. For instance, let the
concentration of the first material tend to zero; then µ1 tends to −∞ and the
other two chemical potential remain finite. Consequently, affinity takes zero value
at a sufficiently small concentrationof the first material. Thus equilibrium is always
realized (at least in the mathematical model) by sufficiently small non-zero particle
numbers, we never need to take into account states with zero particle number.

Note that the thermodynamical force contains

– in diffusion: the difference of chemical potentials corresponding to states in
the same phase of the same material,

– in phase transition: the difference of chemical potentials corresponding to
states in different phases of the same material,

– in chemical reaction: the linear combination of chemical potentials corre-
sponding to states of different materials.

Recall that specific internal energy and chemical potential as functions of (v, T )
are determined only up to an additive constant (see 1.1 and 2.1). This additive
constant is just the energy of chemical bond of a molecule. Let us say now that
the chemical potential consists of a diffusion part and a bond part. The bond
part drops out in the difference of values of the same chemical potential (diffusion
and phase transition) but plays a fundamental role in the linear combination of
different chemical potentials.

Let e1, e2 and e3 denote the energy of chemical bonds of molecules of the
materials. If

|ν1|e1 + |ν2|e2 − |ν3|e3 > 0,

then in the reaction 1+2 → 3 (e.g. hydrogen + oxygen → water) a part of chemical
energy is released (is transformed into another form of energy). In order to realize
the chemical reaction, the molecules must be pulled out from their medium which
requires energy (as in diffusion); this energy is given by the diffusion parts of the
chemical potentials. Then it is quite obvious that affinity is just the specific energy
that is released in the reaction.

The above inequality regarding the chemical bonds does not imply that affin-
ity, too, is greater than zero. A good example: at sufficiently low temperature
and pressure hydrogen and oxygen exist together without reacting; increasing the
temperature, however, affinity becomes positive, the reaction starts and we know
how much energy is released.

The reactions in which chemical energy gets free are called exothermic; burn-
ing is a typical exothermic reaction.

On the other hand, it may happen that

|ν1|e1 + |ν2|e2 − |ν3e3| < 0

but the affinity is positive; then the reaction starts but during the reaction other
forms of energy are transformed into the energy of chemical bonds. Such reactions
are called endothermic. Baking is a typical endothermic reaction.
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33.4 Catalysators

There are materials whose reaction starts only at high temperature and pressure.
Then a catalysator can help to realize the chemical reaction: this is a material
which influences the reaction without participating in it. We can see how this works
as follows. Let us take the mixture of the three materials considered previously
and a mixture which contains the three materials and another one, the catalysator.
In this mixture the stoichiometric coefficient of the catalysator is zero but the
presence of the catalysator influences significantly the chemical potentials of the
original materials in the mixture. Thus,

|ν1|µ1 + |ν2|µ2 − |ν3|µ3,

is the affinity without catalysator and

|ν1|µ1
kat + |ν2|µ2

kat − |ν3|µ3
kat

is the affinity with catalysator. It may be that at given temperature, pressure and
concentrations the first affinity is zero (the reaction does not take place) but the
second affinity is positive (the reaction is produced).

33.5 The law of mass action

According to Paragraph 23.2, the chemical affinity in a semi-ideal mixture of type
(1) has the form

A(T, P, c) = −
m
∑

α=1

να (µα(T, P ) + kT log cα) =

= −
m
∑

α=1

ναµα(T, P ) − kT log

m
∏

α=1

(cα)
να

.

In a chemical equilibrium the affinity takes zero value (see 35.2), thus in equi-
librium we have

m
∏

α=1

(cα)
να

= exp









−

m
∑

α=1
ναµα(T, P )

kT









=: κ(T, P ).

This relation is called the law of mass action: the product of the stoichio-
metric power of the equilibrium concentrations depends only on temperature and
pressure. κ(T, P ) is usually called the equilibrium constant (a ‘constant’ which
depends on temperature and pressure).

On the basis of Exercise 4 in 7.10, we have

µα(T, P ) = kT

(

(λα + 1) − log

(

(

T

T0

)λα+1
P0

P

))

+ eα
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for ideal gases with constant specific heats, thus for their semi-ideal mixture we
obtain

κ(T, P ) = exp

(

−
m
∑

α=1

(

να(λα + 1) +
eα

kT

)

)

m
∏

α=1

(

(

T

T0

)λ+1
P0

P

)να

.

33.6 Exercises

1. Take a semi-ideal mixture of three materials with stoichiometric coefficents
ν1 < 0, ν2 < 0 and ν3 > 0. Then

µα(T, P,N1, N2, N3) = µα(T, P ) + kT log
Nα

N1 +N2 +N3
(α = 1, 2, 3),

thus

A(T, P,N1, N2, N3) = −
3
∑

α=1

ναµα(T, P ) − kT

3
∑

α=1

να log
Nα

N1 +N2 +N3
.

Let a ‘zeroth’ material (catalysator) be mixed, too, with particle number N0

and stoichiometric coefficient 0. Compare the new affinity with the one above.
2. Give κ(T, P ) for semi-ideal mixture of ideal gases whose specific heat is not

constant (cf. 2.1).
3. Deduce the law of mass action for mixtures which are not semi-ideal.

34 Reaction heats

34.1 Energy change of an isolated body

If a body is completely isolated from the environment, then Ė = −AK: the time
rate of internal energy change is proportional to the reaction rate (the particle
change per unit time) and affinity is the proportionality coefficient. This corre-
sponds to what has been said in Paragraph 33.3.

34.2 Energy change of a body
at constant volume and temperature

If the volume is fixed, then
Ė = Q−AK. (∗)

Let Vo be the constant volume. Let us suppose that the reaction takes place at
the constant temperature Ta of the environment. Then the variables (V, T, J) are
suitable:

Ė =
∂E(Vo, Ta, J)

∂J
J̇.

If the body is entropic, then using the relations

E = F − T
∂F
∂T

and
∂F
∂J

= −A
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for the free energy F , we get

Ė = −AK +

(

Ta
∂A
∂T

)

K,

where, of course, all the quantities are to be taken at (Vo, Ta, J). Comparing this
equality with (∗), we see that heating is proportional to the reaction rate; the
proportionality coefficient is

Ta
∂A
∂T

(Vo, Ta, J)

called the reaction heat at constant volume and constant temperature.

34.3 Energy change of a body
at constant temperature and pressure

If the reaction takes place at the constant pressure Pa of the environment and the
working is ideal, then Ė+PaV̇ = Ḣ, where H stands for the enthalpy of the body,
thus

Ḣ = Q−AK. (∗)

Let us suppose that the reaction takes place at the constant temperature Ta of the
environment. Then the variables (T, P, J) are suitable:

Ḣ =
∂H (Ta, Pa, J)

∂J
J̇.

If the body is entropic, then using the relations

H = G − T
∂G

∂T
és

∂G

∂J
= −A

for the Gibbs functions G, we get

Ḣ = −AK +

(

Ta
∂A

∂T

)

K,

where, of course, every quantity is to be taken at (Ta, Pa, J). Comparing this
equality with (∗), we see that heating is proportional to the reaction rate; the
proportionality coefficient is

Ta
∂A
∂T

(Ta, Pa, J)

called the reaction heat at constant temperature and constant pressure.

35 Description of chemical reactions

35.1 Introductory remarks

Up to now we have spoken loosely about chemical reactions in a body. That
heuristics supports the exact definition to be done in this section.
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We emphasize that if particles enter or leave the body, then we have to take the
particle numbers as variables. The degree of reaction as a single variable is justified
only if there is no particle interchange between the body and the environment. But
even in this case every quantity depends on the initial particle numbers in the body
and different reactions are realized with different initial particle numbers: e.g. the
reaction hydrogen + oxygen → water starting with one litre of hydrogen and one
litre of oxigen proceeds differently than starting with one litre of hydrogen and
hundred litre of oxygen.

Avoiding a too clumsy formulation, we remain in the framework when the
body and the environment do not interchange particles and we do not denote the
dependence on the initial particle numbers.

35.2 Definition of a chemical reaction

Definition A chemical system consisting of
– a body mixed of given materials,
– a given environment,
– a given heat source

is the following:
1. The body with composite material

(

D × R
+
0 ,T,P,µ

1, . . . ,µm,R
)

and the
stoichiometric coefficents (ν1, . . . , νm) ∈ Z

m, where m ≥ 3 is a positive integer,
2. The dynamical quantitities

(Q,F,K) : (D ∗ R
+
0 ) × (K)+ × (Pa) → (J/s) × (m3/s) × (1/s),

the heating, the springing and the reaction rate, which are continuous and
continuously differentiable on the interior of their domain,

K 6= 0,

furthermore, with the customary simplified notations

Q := Q(E, V, J, Ta, Pa), etc.,

A := A(E, V, J), etc.

the dynamical quantitities satisfy
– the equilibrium property for

(a) if F = 0, Q = 0, then
∗ K = 0 ⇐⇒ A = 0;

(b) if F = 0, Q 6= 0, then
∗ K = 0 =⇒ A = 0,
∗ A = 0 and Q = 0 =⇒ T = Ta,
(which imply that if K = 0 and Q = 0, then A = 0 and T = Ta),
∗ ∗ A = 0 and T = Ta =⇒ K = 0 and Q = 0;

(c) if F 6= 0, Q = 0, then
∗ K = 0 =⇒ A = 0;
∗ A = 0 and F = 0 =⇒ P = Pa

(which imply that if K = 0 and F = 0, then A = 0);
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∗ ∗ A = 0 and P = Pa =⇒ K = 0 and F = 0;
(d) if F 6= 0, Q 6= 0, then

∗ K = 0 =⇒ A = 0;
∗ A = 0 and F = 0 =⇒ P = Pa,
∗ A = 0, P = Pa, and Q = 0 =⇒ T = Ta

(which imply that if K = 0, F = 0 and Q = 0, then A = 0, P = Pa and
T = Ta),

∗ ∗ ∗ A = 0, P = Pa and T = Ta =⇒ K = 0, F = 0 and Q = 0;
– the dissipation inequality:

−Q

T
(T − Ta) + F (P − Pa) +AK ≥ 0,

where equality holds if and only if Q = 0, F = 0 and K = 0 or, equivalently,

(Q− PF −AK)

(

1

T
− 1

Ta

)

+ F

(

P

T
− Pa

Ta

)

+K
A

T
≥ 0.

3. The process of the environment, a continuous function
t 7→

(

Ta(t), Pa(t)
)

defined on a time interval.
4. The heat source, a continuous function t 7→ Qs(t) defined on a time

interval.
5. The dynamical equation

Ė = Qs +Q− PF −AK

V̇ = F,

J̇ = K,

where
Q := Q(E, V, J, Ta, Pa), etc.

It is a simple fact that if the heat source is zero, then every standstill is an
equilibrium.

35.3 Consequences of the equilibrium property
and the dissipation inequality

We deduce as in Paragraph 14.2:

Proposition (a) if F = 0 and Q = 0, then K > 0 if and only if A > 0,
(b) if F = 0 and Q 6= 0, then if A > 0 and T = Ta, then (E, V, J) has a neigh-

bourhood in which for all (E′, V ′, J ′) the strict inequality K(E′, V ′, J ′, Ta, Pa) > 0
holds,

(c) if F 6= 0 and Q = 0, then if A > 0 and P = Pa, then (E, V, J) has a
neighbourhood in which for all (E′, V ′, J ′) the strict inequality K(E′, V ′, J ′, Ta, Pa)
> 0 holds,

(d) if F 6= 0 and Q 6= 0, then if A > 0 and T = Ta, P = Pa, then (E, V, J) has a
neighbourhood in which for all (E′, V ′, J ′) the strict inequality K(E′, V ′, J ′, Ta, Pa)
> 0 holds,
and the same assertions are true with reversed inequalities.
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35.4 Summarizing formulae

35.4.1 The framework of description

The description of chemical reactions can be put in an abstract framework similar
to that in Section 15.

For the sake of simplicity, we suppose that the heat source is zero; besides
the results concerning the equilibria, everything can be repeated for non-zero heat
source, too. Moreover, the temperature Ta and the pressure Pa of the environment
are taken to be constant.

The states of the body are in the vector space

X := (J) × (m3) × R;

a state will be denoted by
x := (E, V, J)

(do not confuse the symbol J = Joule in the definition of X with the above J).
Again kT is taken instead of T ; then the collection of the intensive quantities

is the function

y :=

(

1

kT
,

P

kT
,

A

kT

)

: X  X∗,

whose domain is denoted by XD.
The intensive quantities of the environment are denoted by

ya :=

(

1

kTa
,
Pa

kTa
, 0

)

∈ X∗.

Then referring to the process of the environment by the intensive quantities,
we can write the dynamical equation in the form

(x : I → XD)? ẋ = R(x, ya).

In the pseudolinear case, the nominal thermodynamical force

F(x, ya) := y(x) − ya

and the nominal conductance matrix matrix B(x, ya) ∈ Lin(X∗,X/s) give

R(x, ya) = B(x, ya)F(x, ya).

35.4.2 Constraints

Constraints, holonomic and anholonomic ones, the effective thermodynamical force
and conductance matrix are defined as in Section 15, and we can repeat what we
know about the relation between the nominal conductance matrix and the effective
one.

Thus if the nominal conductance matrix fits the constraint, then – using the
notations of Paragraphs 15.3 and 15.4.3 – we get the dynamical equation in the
form

(x : I → XD)? ẋ = BΓ(x, ya)FΓ(x, ya).
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We infer from the dissipation inequality that

F(x, ya)B(x, ya)F(x, ya) ≥ 0 (x ∈ XD, ya ∈ X∗),

or
FΓ(x, ya)BΓ(x, ya)FΓ(x, ya) ≥ 0 (x ∈ XD, ya ∈ X∗),

where equality holds if and only if FΓ(x, ya) = 0.

35.4.3 Stability of equilibria

The total entropy of the body and environment equals, up to an additive constant,
the function

L : XD → (J/K), (E, V, J) 7→ S(E, V, J) − E + PaV

Ta

which is twice differentiable on the regular domain and F(x, ya) = DL(x) if the
body is entropic; furthermore, D

2L = D
2S is negative definite on the regular do-

main.
A simple reformulation of Proposition 15.6 yields:

Proposition Let U be a constraint submanifold in the regular domain, xo is an
equilibrium in U . Let the body be entropic. If U has a parameterization p around
xo for which DL(xo)D2p(p−1(xo)) is negative semidefinite, then xo is asymptotically
stable in U .

36 Special chemical reactions

36.1 Reactions without constraint

The body is coupled with the environment both mechanically and thermally, the
environment temperature Ta and pressure Pa being constant. As a consequence of
the equilibrium properties of the dynamical quantitities, (Eo, Vo, Jo) in the regular
domain is an equilibrium of an entropic body if and only if DL(Eo, Vo, Jo) = 0. As
a consequence, we can apply Proposition 35.4.3.

36.2 Fixed volume

The volume of the body does not change, F = 0. The constraint is affine, the
constraint subspaces are spanned by the vectors (1, 0, 0) and (0, 0, 1). Thus the
effective thermodynamical force is

(

1

T
− 1

Ta
,
A

T

)

.

If Vo is the fixed volume of the body, then as a consequence of the equilibrium
properties of the dynamical quantitities, (Eo, Vo, Jo) is an equilibrium if and only
if the corresponding value of the effective thermodynamical force is zero:

T(Eo, Vo, Jo) = Ta, A(Eo, Vo, Jo) = 0.
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For all Vo ∈ (m3)+

U(Vo) := {(E, Vo, J) | E ∈ (J)+, J ∈ R
+}

is a constraint submanifold, a subset of an affine subspace, thus Proposition 35.4.3
can be applied for the equilibrium in U(Vo).

36.3 Constant temperature

The temperature of the body is kept constant (equal to the temperature Ta of the
environment). The constraint subspace corresponding to (E, V, J) is spanned by
the vectors

(

−∂T

∂V
,
∂T

∂E
, 0

)

,

(

−∂T

∂J
, 0,

∂T

∂E

)

.

Thus the effective thermodynamical force is
(

P

Ta
− Pa

Ta
,
A

Ta

)

.

As a consequence of the equilibrium properties of the dynamical quantitities,
(Eo, Vo, Jo) is really an equilibrium if and only if the corresponding value of the
effective thermodynamical force is zero:

P(Eo, Vo, Jo) = Pa, A(Eo, Vo, Jo) = 0

and, of course,
T(Eo, Vo, Jo) = Ta.

For all Ta ∈ (K)+

U(Ta) := {(E, V, J) | T(E, V, J) = Ta}

is a constraint submanifold. The nominal thermodynamical force, too, is zero in
equilibrium, thus Proposition 35.4.3 can be applied for the equilibrium in U(Ta).

36.4 Constant pressure

The pressure of the body is kept constant (equal to the pressure of the envi-
ronment). The constraint subspace corresponding to (E, V, J) is spanned by the
vectors

(

−∂P

∂V
,
∂P

∂E
, 0

)

,

(

−∂P

∂J
, 0,

∂P

∂E

)

.

Thus the effective thermodynamical force is
(

1

T
− 1

Ta
,
A

T

)

.

As a consequence of the equilibrium properties of the dynamical quantitities,
(Eo, Vo, Jo) is really an equilibrium if and only if the corresponding value of the
effective thermodynamical force is zero:

T(Eo, Vo, Jo) = Ta, A(Eo, Vo, Jo) = 0
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and, of course,
P(Eo, Vo, Jo) = Pa.

For all Pa ∈ (Pa)

U(Pa) := {(E, V, J) | P(E, V, J) = Pa}

is a constraint submanifold. The nominal thermodynamical force, too, is zero in
equilibrium, thus Proposition 35.4.3 can be applied for the equilibrium in U(Pa).

36.5 Heat insulation

The body is heat insulated from the environment. The constraint subspace
corresponding to (E, V, J) is spanned by the vectors (−P(E, V, J), 1, 0) and
(−A(E, V, J), 0, 1). Thus, the effective thermodynamical force is given by

(

−P

T
+
P

Ta

)

+

(

P

T
− Pa

Ta

)

=
P

Ta
− Pa

Ta
,

(

−A

T
+
A

Ta

)

+
A

T
=

A

Ta
.

As a consequence of the equilibrium properties of the dynamical quantitities,
(Eo, Vo, Jo) is really an equilibrium if and only if the corresponding value of the
effective thermodynamical force is zero:

P(Eo, Vo, Jo) = Pa, A(Eo, Vo, Jo) = 0.

The temperature of the environment does not play any role, thus we can take
formally Ta := T(Eo, Vo, Jo). Then the nominal thermodynamical force, too, is
zero in equilibrium. Then we can apply Proposition 35.4.3: if the body is entropic,
then for all constraint submanifold U in the regular domain, every equilibrium in
U is asymptotically stable in U .

The question, however, remains open: how to give a constraint submanifold
(can it be given at all)?

36.6 Exercises

1. Treat chemical reactions when
– the volume and the temperature are constant,
– the temperature and the pressure are constant,
– the pressure is constant and the body is heat insulated.
2. Suppose that a particle source is in the body (e.g. the reaction is combustion,

the fuel and oxygen flow in and the combustion product flows out continuously). If
the source provides the materials proportionally to the stoichiometric coefficents,
i.e. Ksν

α is the particle number of the α-th material put in the body in unit time
where Ks is a given function of time, then we can continue to use the variable J .

Let the reaction take place at constant temperature Ta and constant pressure
Pa. Give the heat extracted from the body in unit time in a stationary state.



VIII EXTENDED ORDINARY

THERMODYNAMICS

37 Thermo-mechanical interaction

37.1 Problems of the description

Let us take a cylinder with a piston containing a gas. It is a trivial experimental
fact that the piston will oscillate after a push. Let us try to describe such an
oscillation.

Let N be the particle number of the gas, m the mass of the piston, A the area
of the piston. Let the exterior temperature Ta and pressure Pa be constant. If P
is the pressure of the gas, then A(P − Pa) is the force acting on the piston. Let x
denote the distance of the piston from the bottom of the cylinder. Then we have
the Newtonian equation mẍ = A(P − Pa). The gas has volume V = Ax, specific
volume v = V/N , thus the equation

v̈ =
A2

Nm
(P(e, v) − Pa) (∗)

supplements the equations

ė = q(e, v, Ta, Pa) + w(e, v, Ta, Pa), v̇ = f(e, v, Ta, Pa)

describing the process of the gas.
Unfortunately, the mechanical equation of the piston and the thermodynamical

equations of the gas are not compatible. This is evident in the simple case when
f(e, v, Ta, Pa) = β(P(e, v) − Pa) where β > 0 is constant, so besides the equation
(∗), we would have

v̇ = β(P(e, v) − Pa),

consequently,

v̈ =
A2

Nmβ
v̇,

and so the volume of the body grows exponentially in time.
This nonsense comes from the fact that the internal motion of the bodies is

neglected in ordinary thermodynamics. Let us recall the Introduction: we built up
ordinary thermodynamics from the continuum theory by considering the quantities
homogeneous in space and by taking the velocity field constant; because of the
latter assumption, the equations of ordinary thermodynamics exclude momentum
transfer.
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37.2 A new dynamical equation

There are phenomena in which the thermodynamical body can be considered ho-
mogeneous but the momentum transfer is not negligible. To describe them, we
must approach the problem in a new way 1. Let us recall the balance equations of
continuum physics:

Due = − v(∇ · k + P : ∇u),

Duu = − v∇ · P ,
Duv =v∇ · u .

If we consider the quantities homogeneous,

ė = q + w

undoubtedly corresponds to the first equation. Now, contrary to Paragraph 6
of Introduction, let us argue as follows. The third equation concerns the time
derivative of specific volume: an expression containing the velocity field stands on
the right-hand side, and the time derivative of the velocity field enters the second
equation. Combining these two equations audaciously for the homogenous case,
we get an equation of form

v̈ = f, (∗)

where f is a given function.
These equations and the Newtonian equation of the piston are compatible if

f = A2

Nm (P − Pa).
This f , however, is not good because it is not meaningful in the limiting case

when the piston has zero mass, i.e. when the thermodynamical body is not coupled
with a mechanical body, though we should like to have well-working equations in
this case, too.

The essence of equation (∗) is that we wish to take into account the internal
momentum of the thermodynamical body but this is left out from the arguments in
37.1 Let us try to express somehow that the pressure difference moves the particles
of the gas, too, not only the piston.

Let Fa, Fd denote the forces acting on the piston due to the environment and
the gas, respectively and let Fg be the force acting on the gas due to the bottom of
the cylinder. If the pressure were homogeneous, then Fd and Fg would be equal.
We know that pressure is not homogeneous in reality.

Let us imagine the gas condensed in its mass centre denoted by xg; let mg be
the entire mass of the gas. Then we can set up purely mechanical equations:

mẍ = Fd − Fa, mgẍg = Fg − Fd.

Supposing the gas to be homogeneous, we have xg = x
2 . Thus summing the

two equations, we obtain
(

m+
mg

2

)

ẍ = Fg − Fa.

1This chapter is based on the paper P. Ván: Other Dynamic Laws in Thermodynamics,
Physics Essays, 8(1995)457-4675
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Now we can consider the pressure homogeneous; then Fd = Fg = AP , Fa =
APa, so

v̈ =
A2

N(m+mg/2)

(

P(e, v) − Pa

)

(∗∗)

which is appropriate: if the mass of the gas is small relative to the mass of the
piston (the mass of the gas tends to zero), we regain the equation in 37.1 and we
get a meaningful equation in the limit, too, when the mass of the piston tends to
zero.

37.3 Exercises

1. If the cylinder is heat insulated, then the process of the gas is adiabatic, thus
the temperature of the gas can be given by a function v 7→ T (v) which satisfies
the differential equation (see 4.2)

dT

dv
= − lv(v, T )

cv(v, T )
,

thus,

v̈ =
A2

N(m+mg/2)
(P(v, T (v)) − Pa) .

If the gas is of normal dilation (see 3.9), then the derivative of the right-hand
side satisfies

−b(v) :=

(

∂P
∂v

− ∂P
∂T

lv

cv

)

(v, T (v)) < 0.

It is well known from stability theory that the equilibrium vo that P(vo, T (vo)) =
Pa holds for is stable and the processes near to it are periodic. For the quantity
z := v − vo we have the approximate equation

z̈ = − A2

m+mg/2
b(vo)z,

whose solutions are harmonic oscillations.
2. If the gas in the cylinder is ideal with specific heat λk, then T (v) = a/vλ

where a > 0 is constant and

b(v) =
ka(λ+ 1)

vλ+2
o λ

.

Using this relation, estimate the specific heat on the base of the frequency of the
oscillation.

3. Let the wall of the cylinder conduct heat very fast, i.e. consider the process
of the gas isothermal. Describe the oscillation of the piston and estimate the
specific heat on the basis of the frequency.

4. Put the gas in a ball whose wall can extend and contract freely. Describe
the equation of motion for the volume change. Hint: let m be the mass of the wall
and let mg and N be the mass and particle number of the gas. If r is the radius of
the ball and A is a small surface area, then Amg/4r

2π is the mass of gas portion



286 VIII Extended ordinary thermodynamics

in the corresponding spherical cone, having the mass centre at distance r/3 from
the centre of the ball. The mass of the wall in the surface area is Am/4r2π. We
derive

m+ 2m
3

4r2π
r̈ = P − Pa

from the Newton equations as in 37.2. Express r by v and substitute P(v, T ) for
P .

38 Extended thermodynamical processes

38.1 Introductory remarks

Equation (∗) in 37.2 can be written in a first-order form:

v̇ = u, u̇ = f.

The volume rate u is of great importance beyond the formal transcription
of the second-order equation: it will be a new independent variable in extended
ordinary thermodynamics where a process is (v, T, u) or (e, v, u) as a function
of time and the dynamical quantitities, the heating q, the working w and the
forcing f are to be given as functions of (v, T, u) or (e, v, u).

In other words, a state of a material in extended ordinary thermodynamics is
(v, T, u) or (e, v, u). This implies that the volume rate u appears as a variable in
the constitutive functions, too.

It is a question, however, whether we can choose either (v, T, u) or (e, v, u) for
independent variable. Now we suppose that internal energy is not influenced by
the volume rate which allows us a simpler (but sufficiently general) treatment.
We emphasize that doing so we do not exclude that the energy of the material is
influenced by the volume rate; indeed, now we can define kinetic energy due to the
volume rate, so the energy becomes the sum of internal energy and kinetic energy
(see Exercise 2 in 38.4).

The stress tensor in continuum theory is the sum of an elastic part and a
viscous part. The elastic part corresponds to the customary pressure in thermo-
dynamics and the viscous part is expressed by the gradient of the velocity field.
The divergence of the velocity field (the trace of the gradient) is related to the
time derivative of the specific volume. Therefore, we accept in extended ordinary
thermodynamics that the pressure has the form

P(v, T, u) = Pr(v, T ) + Ps(v, T, u),

where Pr is the known customary pressure, the elastic part and Ps is the viscous
part that satisfies Ps(v, T, 0) = 0.

We shall see that the extended thermodynamical description works well only
for bodies with constant particle number, thus it will be unimportant whether
chemical potential is influenced by volume rate or not.
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38.2 The extended thermodynamical material

Definition (D, e,Pr, u, R,Ps) is an extended simple material if (D, e,Pr, u, R)
is a simple material and

Ps : D × (m3/s) → (Pa)

is a continuous function, continuously differentiable on R× (m3/s) and Ps(v, T, 0)
= 0 is satisfied for all (v, T ) ∈ D. P := Pr + Ps is the pressure of the extended
material.

The extended thermodynamical material is
– entropic if the corresponding simple material is entropic,
– viscous if Ps(v, T, u) = 0 if and only if u = 0.

The conditions imply the existence of a continuous function η : R× (m3/s) →
(Pa s/m3) such that

Ps(v, T, u) = −η(v, T, u)u
(

(v, T, u) ∈ R× (m3/s)
)

. (∗)

The extended material is viscous if and only if u 6= 0 imply η(v, T, u) 6= 0.
Of course, the extended material can be given in canonical form, because tem-

perature can be expressed as a function of specific internal energy and specific
volume in the known way: T(e(v, T ), v) = T . Then we apply the symbols Pr, Ps,
P = Pr + Ps for the functions in the variables (e, v, u):

Pr(e, v) = Pr(v,T(e, v)), Ps(e, v, u) = Ps(v,T(e, v), u).

The extended thermodynamical body is defined formally in the known way:
(D × R

+
0 , e,Pr, u, R,Ps) or (D × R

+
0 ,T,Pr,µ,R,Ps).

38.3 Description of processes

We consider bodies whose particle number is constant. Then a process of a body
is a function t 7→

(

e(t), v(t), u(t)
)

defined on a time interval and obeying the
dynamical equation

ė = q + w, v̇ = u, u̇ = f.

The quantities on the right-hand side are
– the specific heating q, the specific working w,
– the specific forcing f ,

which depend on (e, v, u) and the quantities of the environment.
Now we use the specific quantities (contrary to the previous sections) for having

a clear parallelism with Paragraph 37.1; moreover, we shall see that phenomena
whose description would require the entire quantities cannot be treated in extended
ordinary thermodynamics (see 40).

Working is ideal if
w = −P v̇ = −(Pr + Ps)u.

Replacing Ps with π, we get a form similar to the non-ideal working (cf. Para-
graph 9.3) but the difference is essential: there, π is a dynamical quantity char-
acterizing interaction and so depending on both the state of the body and the
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state of another body (or environment) and it takes zero value at equal values of
the pressures; here, Ps is a constitutive function characterizing the body and so
depending only on the (extended) state of the body and it takes zero value at the
zero value of the volume rate.

38.4 Exercises

1. Show that the same problem arises as in Paragraph 10.4 even in the presence
of the viscous pressure.

2. Generalize the notion of extended simple material by giving a ‘kinetic en-
ergy’ ek : (m3/s) → (J)+

0 in such a way that the extended internal energy equals
ê(v, T, u) := e(v, T ) + ek(u). What are the natural conditions to be imposed on
ek? How the function (ê, v, u) → T(ê, v, u) can be given?

39 A body in a given environment

39.1 The dynamical quantitities

Let us consider the processes of an extended thermodynamical body in which
– the particle number of the body is constant,
– the body is coupled with an environment both mechanically and thermally,
– the working is ideal.
Characterizing the environment by its temperature and pressure, we give the

dynamical quantitities as continuous functions

(v, T, u, Ta, Pa) 7→ q(v, T, u, Ta, Pa), (v, T, u, Ta, Pa) 7→ f(e, v, u, Ta, Pa)

or

(e, v, u, Ta, Pa) 7→ q(e, v, u, Ta, Pa), (e, v, u, Ta, Pa) 7→ f(e, v, u, Ta, Pa),

which are continuously differentiable in the interior of their domain.

39.2 The equilibrium properties

The equilibrium properties of the dynamical quantitities are formulated according
to the following ideas: 1) momentum transfer is determined by pressure difference,
2) we can consider direct heating. Thus we accept that

∗ if f 6= 0, then f(v, T, 0, Ta, Pa) = 0 if and only if P(v, T, 0) = Pa or, equiva-
lently, Pr(v, T ) = Pa,

∗ if q 6= 0, then q(v, T, 0, Ta, Pa) = 0 if and only if T = Ta.

39.3 The dissipation inequalities

The dissipation inequalities for the dynamical quantitities are formulated on the
basis of the Clausius–Duhem inequality (see Paragraph 7 of the Introduction).
Now we find convenient to require separate inequalities.
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The inequality concerning heating will be the same as previously:

−q(v, T, u, Ta, Pa)(T − Ta) ≥ 0 or q(e, v, u, Ta, Pa)

(

1

T(e, v)
− 1

Ta

)

≥ 0,

where equality holds if and only if q(v, T, u, Ta, Pa) = 0 or q(e, v, u, Ta, Pa) = 0.
The part concerning working in the Clausius–Duhem inequality contains the

viscous pressure, thus its counterpart in the present case will be more straightfor-
ward as previously:

−Ps(v, T, u)u ≥ 0,

where equality holds if and only if Ps(v, T, u) = 0.
Furthermore, we accept an inequality expressing a strong relation between

forcing and pressure difference:

f(v, T, u, Ta, Pa)(P(v, T, u) − Pa) ≥ 0

where equality holds if and only if f(v, T, u, Ta, Pa) = 0.
The equilibrium properties and the conditions of equalities in the dissipation

inequalities are not independent and do not contradict each other.
The second inequality implies that η ≥ 0 in the form (∗) of Paragraph 38.2.

39.4 The dynamical equation

The system in Section 37 can be well treated in the framework of extended ordinary
thermodynamics, even we can generalize it by writing the extended pressure in the
equation (∗∗) of Paragraph 37.2.

In the sequel we suppose that, besides the conditions imposed earlier,
– the temperature Ta and pressure Pa of the environment is constant,
– the forcing has the form

f(v, T, u, Ta, Pa) = δ(P(v, T, u) − Pa), (∗)

where δ is constant, greater than zero because of the dissipation inequality,
– processes run in the regular domain of the body.
Then the dynamical equation reads:

ė = q(e, v, u, Ta, Pa) − P(e, v, u)u,

v̇ = u,

u̇ = δ(P(e, v, u) − Pa)

or

v̇ = u,

Ṫ =
1

cs(v, T )

(

q(v, T, u, Ta, Pa) −
(

∂e(v, T )

∂v
+ P(v, T, u)

)

u

)

,

u̇ = δ(P(v, T, u) − Pa).
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39.5 Processes without constraint

39.5.1 Uniqueness of equilibrium

(eo, vo, 0) is an equilibrium if and only if

T(eo, vo) = Ta, Pr(eo, vo) = Pa

or (vo, To, 0) is an equilibrium if and only if

To = Ta, Pr(vo, To) = Pa.

These equalities determine equilibrium in a phase uniquely.

39.5.2 Stability of equilibrium

Proposition Let
q(v, T, u, Ta, Pa) = −λ(T − Ta)

where λ > 0 is constant. If the body is of normal dilation, then the equilibrium is
asymptotically stable.

Proof The derivative of the right-hand side of the dynamical equation at (vo, To, 0)
equals





0 0 1
0 − λ

co
− no

co

−δbo δao −δηo



 ,

where co := cv(vo, To) (the equilibrium value of the specific heat), ηo := η(vo, To, 0),

n :=
∂e

∂v
+ Pr, a :=

∂P
∂T

, b := −∂P
∂v

,

and the subscript o denotes their equilibrium values. Note that here Pr appears
instead of P because u = 0 in equilibrium. This matrix has the characteristic
polinomial

x 7→ x3 +

(

λ

co
+ δηo

)

x2 + δ

(

ao
no

co
+ ηo

λ

co
+ bo

)

x+ δbo
λ

co
.

The conditions of intrinsic stability imply co > 0 and bo > 0, the normal
dilation implies aono ≥ 0 and ηo ≥ 0 because of the dissipation inequality; thus
we infer from the Ruth–Hurwitz criterion that the eigenvalues of the matrix have
negative real part, consequently, the equilibrium is asymptotically stable.

39.5.3 Stability of equilibrium of an entropic body

Proposition If the body is entropic, then the equilibrium is stable and if, more-
over, the body is viscous, then the equilibrium is asymptotically stable.
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Proof Let us use now the specific internal energy as a variable. Let s be the
specific entropy of the simple material in question. The derivative of the function

(e, v, u) 7→ L(e, v, u) := s(e, v) − e+ Pav

Ta
− u2

2δTa
,

that is
∂L

∂e
=

1

T
− 1

Ta
,

∂L

∂v
=

Pr

T
− Pa

Ta
,

∂L

∂u
= − u

δTa
,

is zero in equilibrium and

D
2L =

(

D
2s 0
0 − 1

δTa

)

is negative definite (where, of course, D
2s is a 2 × 2 matrix). Therefore, L has a

strict maximum in equilibrium.
The derivative of L along the dynamical equation, the function – with a loose

notation –
•
L =

(

1

T
− 1

Ta

)

(q − Pu) +

(

Pr

T
− Pa

Ta

)

u− P − Pa

Ta
u = q

(

1

T
− 1

Ta

)

− Psu

T
,

has a minimum in equilibrium which is strict if the body is viscous.

39.6 Isothermal processes

39.6.1 Uniqueness of equilibrium

For isothermal processes – the temperature of the body is the constant Ta – the
first law serves to determine the heating:

q(v, Ta, u, Ta, Pa) =

(

∂e(v, Ta)

∂v
+ P(v, Ta, u)

)

u.

Then
U(Ta) := {(v, Ta, u) | v ∈ (m3)+, u ∈ (m3/s)}

is an invariant submanifold of the dynamical equation that can be parameterized
by (v, u) in a natural way. Then we get the reduced dynamical equation

v̇ = u, u̇ = δ(P(v, Ta, u) − Pa).

(vo, 0) is an equilibrium of this equation if and only if Pr(vo, Ta) = Pa which
determines vo uniquely in a phase.

39.6.2 Stability of equilibrium

Proposition If ηo := η(vo, Ta, 0) > 0, then every equilibrium in U(Ta) is asymp-
totically stable in U(Ta).

Proof The derivative of the reduced dynamical equation in equilibrium is

(

0 1
−δbo −δηo

)

,

whose eigenvalues have negative real part (bo is given in Proposition 39.5.2).
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39.6.3 Stability of equilibrium of an entropic body

Proposition If the body is entropic, then an equilibrium in U(Ta) is stable in
U(Ta) and if, moreover, the body is viscous, then the equilibrium is asymptotically
stable.

Proof Taking the function introduced in the previous paragraph and putting

(v, u) 7→ Λ(v, u) := TaL(e(v, Ta), v, u),

we get a Liapunov function for the equilibrium of the reduced dynamical equation.
Its first derivative

(

Pr(v, Ta) − Pa,−
u

δ

)

is zero in equilibrium, its second derivative
(

∂Pr

∂v 0
0 − 1

δ

)

is evidently negative definite, thus Λ has a strict maximum in equilibrium.
The derivative of Λ along the reduced dynamical equation, the function

(v, u) 7→ −Ps(v, Ta, u)u has a minimum in equilibrium because of the dissipation
inequality and the minimum is strict if the body is viscous.

39.6.4 Remark

If Ps = 0 (the body is highly non viscous), then the reduced dynamical equation
is

v̇ = u, u̇ = δ(Pr(v, Ta) − Pa).

The right-hand side of the second equation is negative; it is well known in stability
theory that the equilibrium is stable and processes near equilibrium are periodic.

Such an equation enters Exercise 3 of 37.3 (where, of course, P denoted the
elastic pressure).

39.7 Adiabatic processes

39.7.1 Equilibrium of a body without viscous pressure

Now Ps = 0. Then the first law – with q = 0 – gives the usual differential
equation for the adiabats, i.e. processes run on the usual adiabats. An adiabat
C is obtained as the graph of a solution v 7→ T (v) of the differential equation in
Paragraph 4.2. The set C × (m3/s) is an invariant submanifold of the dynamical
equation which can be parameterized by the function (v, u) 7→ (v, T (v), u). The
the reduced dynamical equation becomes

v̇ = u, u̇ = δ
(

Pr(v, T (v)) − Pa

)

.

(vo, 0) is an equilibrium of the reduced dynamical equation if and only if
Pr(vo, T (vo)) = Pa; the equilibrium in an adiabat and in a phase is unique.

Essentially this equation was examined in Exercise 1 of 37.3 (where, of course,
P denoted the elastic pressure). We can then state:
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Proposition If the viscous pressure of the body is zero and the body has the normal
dilation property and C is an adiabat of the body, then every equilibrium in C ×
(m3/s) is stable in C × (m3/s).

39.7.2 Equilibrium of a viscous body

If Ps 6= 0, then the first law is not linear in u = v̇, and we cannot give invariant
submanifolds, so we cannot reduce the dynamical equation. The equilibria of the
original dynamical equation constitute the set

Eq := {(vo, To, 0) | Pr(vo, To) = Pa}

which is a one-dimensional submanifold. The tangent space of Eq at (vo, To, 0)
is spanned by the vector (ao, bo, 0), where the notations of Proposition 39.5.2 are
used.

Proposition Let us suppose that ηo := η(vo, To, 0) > 0 for all (vo, To, 0) ∈ Eq.
Then Eq is strictly asymptotically stable.

Proof We get the derivative of the right-hand side of the dynamical equation in
an equilibrium (vo, To, 0) by substituting 0 for λ in the matrix in 39.5.2. The
eigenvector of the zero eigenvalue of this matrix is (ao, bo, 0) – a tangent vector of
Eq at the given point – and the non-zero eigenvalues are negative. Thus we have
got the desired result by App. 7.

39.8 Isobaric processes

39.8.1 Uniqueness of equilibrium

Now
U(Pa) := {(e, v, u) | P(e, v, u) = Pa}

is an invariant set of the dynamical equation.
Let us take the simple case when η does not depend on the volume rate and

η > 0. Then in U(Pa)

u =
Pr(e, v) − Pa

η(e, v)

thus, U(Pa) can be parameterized by (e, v) and the reduced dynamical equation
becomes

ė = q

(

e, v,
Pr(e, v) − Pa

η(e, v)
, Ta, Pa

)

− Pa
Pr(e, v) − Pa

η(e, v)
,

v̇ =
Pr(e, v) − Pa

η(e, v)
.

(eo, vo) is an equilibrium of the reduced dynamical equation if and only if

T(eo, vo) = Ta, Pr(eo, vo) = Pa;

the equilibrium is uniquely determined in a phase.
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Proposition If η does not depend on the volume rate, η > 0 and the body is
entropic, then every equilibrium in U(Pa) is asymptotically stable in U(Pa).

Proof It is a routine to check that the function

(e, v) 7→ L(e, v) := s(e, v) − e+ Pav

Ta

has a strict maximum in equilibrium.
The derivative of L along the reduced dynamical equation – with the customary

loose notations – is
•
L =

(

1

T
− 1

Ta

)(

q − Pa
Pr − Pa

η

)

+

(

P

T
− Pa

Ta

)(

Pr − Pa

η

)

=

=

(

1

T
− 1

Ta

)

q +
(Pr − Pa)2

Tη
.

The first term is the expression in the first dissipation inequality, consequently,
•
L has a strict minimum in equilibrium.

39.9 Limiting case of the extended dynamical equation

The question arises, how we can formulate a relation – if it exists – between
extended ordinary thermodynamics and ordinary thermodynamics.

Let us consider the simple case when η > 0 is constant. Then the dynamical
equation (in a loose notation) is

ė = q − (Pr − ηu)u, v̇ = u, u̇ = δ(Pr − ηu− Pa). (∗)

In the special case of Paragraph 37.2 we have

δ =
A2

N(m+mg/2)
.

Momentum transfer in ordinary thermodynamics is neglected which corresponds
to zero masses. This is expressed in the general case by δ tending to infinity, or in
a more suitable form, by letting 1/δ tend to zero in the equation

1

δ
u̇ = Pr − ηu− Pa.

Then we get formally that u = Pr−Pa

η yielding

ė = q − Paf, v̇ = f :=
Pr − Pa

η
. (∗∗)

The partial derivative with respect to u of the right-hand side of the third
equation in (∗) is negative, therefore, equation (∗∗) is a good approximation of (∗)
for small 1

δ (see App. 6).
Because equation (∗∗) is an approximation of the dynamical equation in ordi-

nary thermodynamics if Pr nearly equals Pa (because now Pa stands in the first
law instead of P ), we can say that – at least in the present special case – the
extended description of a body in a given environment is approximated by the
non-extended description if the masses tend to zero and the pressure of the body
is near to that of the environment.
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39.10 Exercises

1. Show that for isochoric processes (volume is constant) the extended descrip-
tion gives back the non-extended description.

2. Verify that Proposition 39.5.2 remains valid if λ and δ are not constant but
take positive value in equilibrium.

Furthermore, the proposition remains valid if forcing has the form δ(P −Pa) +
φ(u), where φ is differentiable and φ(0) = 0, φ′(0) = 0.

3. Treat Exercise 4 in 37.3 in extended ordinary thermodynamics. What can
be said about the stability of equilibrium?

4. Describe the isobaric processes in the variables (v, T, u) and prove a stability
statement by the linearization method.

5. Treat all the systems in Section 39 accepting a generalized definition of
extended material according to Exercise 2 in 38.4.

40 Bounds of extended thermodynamics

Extended ordinary thermodynamics provides good results for a body with con-
stant particle number in a given environment (though forcing has a rather special
form). Unfortunately, it does not work well for the description of interaction of
more bodies because the volume rate is an independent variable assigned to the
body, thus it cannot be split into the sum of quantities assigned to interacting
pairs. For a system consisting of bodies with constant particle number, ordinary
thermodynamics writes

V̇i = Fi =
m
∑

k=1

Fik,

and extended ordinary thermodynamics would write

V̇i = Ṅivi +Niui =: Ui,

and ui is a constitutive variable of the i-th body. Consequently, the dissipation
inequality – which involves the volume rate – cannot be formulated for interacting
pairs. We could try to formulate the dissipation inequality for each body (in
the non-extended theory this means that the inequalities concerning a body are
summed up). Then Paragraph 39.3 suggests requiring for three bodies

−Q12

T2
(T1 − T2) − Q13

T3
(T1 − T3) ≥ 0

or

Q12

(

1

T1
− 1

T2

)

+Q13

(

1

T1
− 1

T3

)

≥ 0.

The two inequalities are not equivalent; we have to decide which of them should
be accepted.

We have to select, of course, the one assuring stability at least in simple cases.
In the simplest case, however, when two entropic bodies interact completely iso-
lated from the environment and the two inequalities are indeed equivalent, we
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cannot find a modification of the entropy (similar to that in Paragraph 39.5.2)
that would be a Liapunov function for stability (it was the temperature of the
environment that appeared in the modifying term).

Moreover, at present, we have no convenient dissipation inequality for vary-
ing particle number, thus diffusions and phase transitions cannot be treated in
extended ordinary thermodynamics.



IX ELECTROMAGNETIC

PHENOMENA IN

THERMODYNAMICS

41 Introductory remarks

It is an everyday phenomenon that a body conducting electric current becomes
warmer. Another well-known phenomenon that metals becomes warmer when
being magnetized. The resistance of bodies, an important quantity in electric
circuits, depends on temperature. The magnetic permeability, too, depends on
temperature.

In this chapter we examine how the thermodynamic states of bodies are influ-
enced by electromagnetism and how electromagnetic phenomena depend on the
thermodynamic state of bodies.

We emphasize that here we only have a restricted possibility: we deal with
homogeneous bodies, thus the electromagnetic quantities, too must be considered
homogeneous, which is rarely a good approximation, e.g. the electric field even
in equilibrium is hardly ever homogeneous. Nevertheless, the homogeneous model
gives good qualitative results in a surprisingly great number of cases.

We point out that electric field, magnetic field, electric dipole, magnetic mo-
mentum, etc. are relative notions i.e. depend on observers. The absolute quan-
tities are the electromagnetic field, the electromagnetic momentum, etc. Electric
charge, too, is absolute. Because a thermodynamical body presupposes an ob-
server in which it rests, we shall speak about electric field etc. which will mean
the electric field, etc. with respect to the body.

Finally, we have to mention the electromagnetic units. Up to now we have
used the SI units and we do not want to deviate from them too much but the
electromagnetic formulae are somewhat clumsy because of the everywhere present
vacuum permittivity ǫ0 and vacuum permeability µ0. That is why we use, in-
stead of some electric quantities, their multiple by

√
ǫ0 or 1/

√
ǫ0 and instead of

some magnetic quantities their multiple by
√
µ0 or 1/

√
µ0. Of course, a precise

mathematical meaning can be assigned to
√
ǫ0 and

√
µ0 which we do not detail

here. The magnetic units in SI are mistaken because formerly one confused the
physical role of the magnetic quantities H and B. On the basis of electric analogy,
one took H for the magnetic field in such a way that m × H is the torque acting
on a magnetic momentum m. This error survives in SI though both theory and
practice have proved that B is the magnetic field. The units in SI are chosen in
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such a way that the unit of magnetic momentum m multiplied by the unit of H
be J (joule). Now we modify here the SI in such a way that the product of the
units of m and B be joule. Moreover, we achieve that ǫ0 and µ0 be missing from
all formulae.

The symbols we use for electromagnetic quantities and their SI units are the
following:

C electric charge: As,
U electric potential: V,
E electric field: V/m,
D electric frame: As/m2,
p electric dipole: As m,
P electric polarization: As/m2,
ǫ0 vacuum permittivity: As/Vm,
B magnetic field: Vs/m2,
H magnetic frame: A/m,
m magnetic momentum: A m2,
M magnetization: A/m,
µ0 vacuum permeability: Vs/Am.

Using the notations Â := A/
√
ǫ0, V̂ :=

√
ǫ0V, Ă :=

√
µ0A, V̆ := V/

√
µ0, the

units we use are the following:

C electric charge: Âs := As/
√
ǫ0,

U electric potential: V̂ :=
√
ǫ0V,

E electric field: V̂/m :=
√
ǫ0V/m,

D electric frame: Âs/m2 := As/(m2√
ǫ0),

p electric dipole: Âsm := Asm/
√
ǫ0,

P electric polarization: Âs/m2 := As/(m2√
ǫ0),

B magnetic field: V̆s/m2 := Vs/(m2√
µ0),

H magnetic frame: Ă/m :=
√
µ0A/m,

m magnetic momentum: Ăm2 :=
√
µ0Am2,

M magnetization: Ă/m :=
√
µ0A/m.

Thus, if in our formulae the symbols in the left column below are replaced with
the symbols in the right column, then we obtain the corresponding formulae in SI:

C C/
√
ǫ0,

U
√
ǫ0U,

E
√
ǫ0E,

D D/
√
ǫ0,

p p/
√
ǫ0,

P P/
√
ǫ0,

B B/
√
µ0,

H
√
µ0H,

m
√
µ0m,

M
√
µ0M.
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Because

(ǫ0) =

(

As

Vm

)

, (µ0) =

(

Vs

Am

)

,

it is easy to see that

(As/
√
ǫ0) = (

√
Jm), (

√
ǫ0V) = (

√

J/m),

(
√
ǫ0V/m) = (As/m2√

ǫ0) = (Vs/m2√
µ0) = (

√
µ0A/m) = (

√

J/m3),

thus, E, D, P, B, H and M have the same unit.

42 Electrically chargeable bodies

42.1 The potential of a charged body

Charges produce electric field. If we deal with phenomena in which the macro-
scopic flow of charges in the body is not too fast, then the magnetic field can
be neglected and the electric field can be considered static, thus having a poten-
tial. Charge is the extensive quantity characterizing electricity and potential is
the corresponding intensive quantity.

A body can be charged in two different microscopic ways:
1) charges are bound to molecules (insulators),
2) charges move freely among the molecules (conductors).
Let us recall some elementary facts of electrostatics.
Let us put a charge C on a ball with radius R. If the ball is a conductor, then

in equilibrium the charge is distributed on the surface of the ball and the potential
in the ball is constant having the value

U =
1

4π

C

R
or

U = γcC, γc :=
1

3
√

3(4π)2V
,

where V is the volume of the body. The potential depends on the charge and
the volume. Now the potential is homogeneous in the body, the charge is not.
Nevertheless, let us consider as if it were homogeneous. If N is the particle number
of the ball, then C/N is the specific charge, V/N is the specific volume. We see
that the potential cannot be expressed as a function of the specific quantities only.

If the ball is an insulator, then we can realize a homogeneous charge distribution
on it. Then the potential is not constant in the ball; it is spherically symmetric,
its value at a distance r from the centre is

U(r) =
1

4πǫ

Cr2

R3
,

where ǫ is the (relative) permittivity of the material. Now the charge distribution
is homogeneous and the potential is not. Nevertheless, let us consider as if it were
homogeneous and let us replace it with its average value

1

4πǫ

C

3R
,
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which is obtained by integrating from 0 to R and then dividing it by R. Then we
have

U = γiC, γi :=
1

3ǫ 3
√

3(4π)2V
=
γc

3ǫ
.

We can see, as previously, that the potential depends on charge and volume but
cannot be expressed as a function of the specific quantities only.

These simple examples show that the assumption of homogeneity is rather
rough. Note also that our results apply for a ball; other forms yield other formulae:
the potential depends not only on the volume of the body but also on its form.

Moreover, besides the volume, the potential depends on other thermodynamical
quantities of the body, too. The formula for the insulator contains the permittivity
which depends on the phase of the body and in a given phase it depends on
temperature and pressure.

Based on straightforward assumptions on the molecular structure of materials,
we can deduce the Clausius–Mosotti formula (see 48.4):

ǫ− 1

ǫ+ 2
=

α

3v
,

where α is a constant and v is specific volume. Rearranging we get

ǫ(v, T ) = 1 +
3α

3v − α
,

i.e. the permittivity depends only on specific volume and not on temperature. This
seems strange because it is well know that permittivity depends on temperature.
Of course, it will depend on temperature if – corresponding to practice – we take
a given phase and the variables temperature and pressure in the phase. The
the specific volume will be a function of temperature and pressure, and in our
customary notations

ǫ(T, P ) = 1 +
3α

3v(T, P ) − α
.

The Clausius–Mosotti formula, of course being only a good approximation in
many cases, has no overall validity. There are materials whose permittivity cannot
be defined at all but it is true generally that the potential produced by charges on
a body depends on its thermodynamical state.

42.2 The pressure of a charged body

The identical microcharges on a body repulse each other, which makes the body
extend, or a greater pressure is necessary to keep the volume constant. Thus
pressure depends on the charge of the body which will be illustrated as follows.

Let us distribute homogeneously a charge C in a ball of volume V . The po-
tential U and the electric field E are spherically symmetric and the pressure Pc

due to the charge can be taken spherically symmetric, too. The charge density is
C/V , so the electric force acting on a small piece between the radii r and r + ∆r
with surface area A is approximately

A∆r
C

V
|E(r)|.
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In equilibrium this equals the force deriving from the pressure:

−Pc(r + ∆r)A+ Pc(r)A.

The equality of these expressions gives in the limit ∆r → 0 that

P ′
c(r) = −C

V
|E(r)| =

C

V
U ′(r),

from which we find that

Pc(r) =
CU(r)

V

(the constant of integration is zero because of spherical symmetry).
Neither the potential nor the pressure due to the charge is homogeneous. Nev-

ertheless, let us consider them to be homogeneous. Then the additional pressure
becomes

Pc =
CU

V
=
γiC

2

V

or a suitable multiple of it (see 42.9).

42.3 The internal energy of a charged body

The electric interaction of microcharges results in electric energy which is a part
of the internal energy of the body; thus the internal energy, too, depends on the
charge of the body. It is an elementary fact that the electric energy of the charge
distribution ρ is

1

2

∫

U(x)dρ(x),

where U is the potential produced by the charge distribution. Thus, the charged
conductor ball and insulator ball have electric energy

Ec :=
C2

8πR
=
γcC

2

2
and Ec :=

C2

24πǫR
=
γiC

2

2
,

respectively.

42.4 Extensive and intensive quantities

The previous heuristic considerations disclose that neither the potential nor the
pressure can be given as a function of specific volume and specific charge only.
Consequently, the potential and the pressure, though being intensive quantities,
do not have the usual property: if a homogeneous body is split into two parts and
the two parts are removed, then the potential and the pressure in the two halves
are not equal to the original ones.

Neither is internal energy a usual extensive quantity, specific internal energy
cannot be defined: if a homogeneous body is split into two parts and the two parts
are removed, then the internal energy of each half is not the half of the original
internal energy.

Charge, however, is a usual extensive quantity: half of the original charge will
be in each half part.
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42.5 Definition of a chargeable body

As mentioned, we can define only an electrically chargeable body, not material.
Moreover, the electrically charged homogeneous body is a strong idealization. Be-
sides its known thermodynamical quantities, it is characterized by its charge and
electric potential. If its charge is zero, then the body possesses the known ther-
modynamical properties.

Definition (D × R
+ × (Âs), eb,Pb, ub, R, Ec,Pc, uc,U) is called an electrically

chargeable body if (D, eb,Pb, ub, R) is a simple material,

Ec : D × R
+ × (Âs) → (J)+, Pc : D × R

+ × (Âs) → (Pa),

uc : D × R
+ × (Âs) → (J), U : D × R

+ × (Âs) → (V̂),

are continuous functions, continuously differentiable on R× R
+ × (Âs),

– T 7→ Ec(v, T,N,C) is monotone increasing for all v, N and C,
– v 7→ Pc(v, T,N,C) is locally monotone decreasing for all T , N and C,
– CU(v, T,N,C) > 0 if C 6= 0 and C 7→ U(v, T,N,C) is strictly monotone

increasing for all v, T and N , its derivative is everywhere positive,
moreover Ec(v, T,N, 0) = 0, Pc(v, T,N, 0) = 0, uc(v, T,N, 0) = 0, U(v, T,N, 0) =
0 for all (v, T,N) in D × R

+ .
The function U is the potential of the body, and the functions

E(v, T,N,C) := Neb(v, T ) + Ec(v, T,N,C),

P(v, T,N,C) := Pb(v, T ) + Pc(v, T,N,C),

u(v, T,N,C) := ub(v, T ) + uc(v, T,N,C)

are the internal energy, the pressure and the chemical potential of the body.

The subscript b refers to the basic quantities related to the material of the
body.

It follows from the definition that the inequalities

∂E
∂T

> 0,
∂P
∂v

< 0,
∂U
∂C

> 0 (∗)

hold on the regular domain, more precisely on R× R
+ × (Âs).

We emphasized before the definition that we can define only an electrically
chargeable body, not a material because the quantities connected to electricity
cannot be described by specific data. The definition involves the material of the
body which is related to the thermodynamical quantities only. There can be
quantities related to electricity which depend only on v and T ; they are considered
to characterize the material. Such a quantity is the permittivity of the material.
The formula in Paragraph 42.1 in the present notation reads

U(v, T,N,C) =
C

3ǫ(v, T ) 3
√

3(4π)2Nv
.
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In the definition and in quantities related to the material, the specific volume
is the convenient variable. In formulae concerning the body – as in the case of a
neutral body – the entire volume is more suitable.

Applying the customary ambiguous notation, we shall write either v or V as a
variable in a function.

42.6 Canonical variables

The conditions imposed on the constitutive functions allow us to give temperature
as a function of internal energy, volume, particle number and charge, i.e. internal
energy can be used as an independent variable instead of temperature. Thus, we
have, as earlier

T(E(V, T,N,C), V,N,C) = T, E(V,T(E, V,N,C), N,C) = E,

P(E, V,N,C) = P(V,T(E, V,N,C), N,C),

µ(E, V,N,C) = u(V,T(E, V,N,C), N,C),

U(E, V,N,C) = U(V,T(E, V,N,C), N,C).

42.7 Entropic property

According to the usual ‘rule’ (see Paragraph 16.3), the entropy (V, T,N,C) 7→
S(V, T,N,C) of a chargeable body should obey the relations

T
∂S
∂T

=
∂E
∂T

, T
∂S
∂V

=
∂E
∂V

+ P, T
∂S
∂N

=
∂E
∂N

− u, (1)

T
∂S
∂C

=
∂E
∂C

− U . (2)

If internal energy is used as a variable (in other words, canonical variables are
applied), then the function S(E, V,N,C) := S(V,T(E, V,N,C), N,C) satisfies

∂S

∂E
=

1

T
,

∂S

∂V
=

P

T
,

∂S

∂N
= − µ

T
,

∂S

∂C
= −U

T
.

Definition An electrically chargeable body in Definition 42.5 is entropic if there
is a function S, the entropy of the body, satisfying equalities (1) and (2) on
R× R

+ × (Âs).

If the entropy is twice differentiable, then Young’s theorem yields the known
equality

T
∂P
∂T

=
∂E
∂V

+ P (3)

and the additional equalities

∂E
∂C

= −T ∂U
∂T

+ U , ∂P
∂C

= − ∂U
∂V

,
∂u

∂C
=
∂U
∂N

. (4)
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Applying Proposition 16.4, we can state that the second derivative of entropy
as a function of the canonical variables, if particle number is fixed,

− 1

T2













∂T
∂E

∂T
∂V

∂T
∂C

P ∂T
∂E − T ∂P

∂E P ∂T
∂V − T ∂P

∂V P ∂T
∂C − T ∂P

∂C

−U ∂T
∂E + T ∂U

∂E −U ∂T
∂V + T ∂U

∂V −U ∂T
∂C + T ∂U

∂C













is negative definite and if particle number is allowed to vary, too, then the second
derivative is negative semidefinite.

42.8 Conventional chargeable body

According to our knowledge in electrostatics (see 42.1), potential can be taken
proportional to charge, the proportionality coefficient can depend on the thermo-
dynamical state of the body. Then (see 42.2) the additional pressure due to the
charge and the electric energy are proportional to the square of the charge. These
suggest the following definition.

Definition The chargeable body (D×R
+×(Âs), eb,Pb, ub, R, Ec,Pc, uc,U) is called

conventional if there are continuous functions η, π, ξ and γ defined on D × R
+

(mapping into convenient measure lines), continuously differentiable on R × R
+

so that

Ec(V, T,N,C) :=
η(V, T,N)C2

2
, Pc(V, T,N,C) :=

π(V, T,N)C2

2
,

uc(V, T,N,C) :=
ξ(V, T,N)C2

2
, U(V, T,N,C) := γ(V, T,N)C.

γ has positive values because potential is a strictly monotone increasing func-
tion of charge. 1

γ is called the capacity of the body.

42.9 Remarks on the entropic property

42.9.1 Doubts

Equalities (3) and (4) in Paragraph 42.7 give the necessary conditions

η = −T ∂γ
∂T

+ γ, π = − ∂γ

∂V
, ξ =

∂γ

∂N
(∗)

for a conventional body to be entropic.
Let

γ(V, T,N) :=
a

ǫ(V, T,N) 3
√
V
,

as in 42.1 where a > 0 is a constant, and of course, according to our customary
notation, ǫ(V, T,N) := ǫ(V/N, T ), furthermore,

π(V, T,N) := b
γ(V, T,N)

V
,
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as in 42.2 where b is a constant. If the body is entropic, then the middle equality
in (∗) yields

ba

ǫ
3
√
V 4

=
a ∂ǫ

∂V

ǫ2 3
√
V

+
a

3ǫ
3
√
V 4

implying

V
∂ǫ

∂V
= (b− 1/3)ǫ; (∗∗)

as a consequence, there is a c(T,N) such that

ǫ(V, T,N) = c(T,N)V b−1/3.

Then we can state that the following four conditions cannot simultaneously
hold:

1. the body is entropic,
2. the formula U(V, T,N,C) = aC

ǫ(V,T,N)
3√

V
well-known from electrostatics is

valid (where a is a positive constant),
3. the formula bCU

V deduced in 42.2 for the additional pressure due to the
charge is valid (where b is a constant),

4. the Clausius–Mosotti formula is valid for the permittivity.
Conditions 2 and 3 are consequences of fundamental relations in electricity

and mechanics. Condition 4 is based on fundamental relations in electricity and
‘natural assumptions’ on the molecular structure of bodies and it turns out to be
a good approximation of reality; the Clausius–Mosotti formula, however, differs
significantly from (is not a good approximation of) (∗∗). Thus if the common
conditions 2–4 are valid, then the body is not entropic. Conversely, if the body is
entropic, one of the three common conditions 2–4 is not valid.

This makes it doubtful whether it is reasonable to require that a chargeable
body be entropic. Of course, we cannot exclude that entropic property is a really
good one but then we have to revise our knowledge on electrostatics.

42.9.2 On the form of entropy

Note that we have not defined the actual form of entropy of a chargeable body:
only some properties of entropy are settled.

Let us suppose in analogy of our earlier formulae that

S :=
E + PV − uN − UC

T
.

We infer from (2) in 42.7 that if the body is entropic, then

∂Pc

∂C
V − ∂uc

∂C
N − ∂U

∂C
C = 0

which gives
πV − ξN = γ (∗∗)

for a conventional body, so

S = Sb +
(η − γ)C2

2T
,
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where Sb is the entropy of the body without charge.
Combining formula (∗) in the previous paragraph and (∗∗), we get

−V ∂γ

∂V
−N

∂γ

∂N
= γ.

It is known from the theory of first-order quasi-linear partial differential equa-
tions that γ satisfies the above equality if and only if there are functions α and β
of temperature such that

γ(V, T,N) =
α(T )

V
+
β(T )

N
.

This contradicts the forms of γ in 42.1.

42.10 Two customary conditions

In practice (electrotechnics) one always takes U = γC and Ec = CU
2 = γC2

2 .
Moreover, γ is considered to be independent of temperature (which seems a good
approximation in a large interval). For a conventional body, these assumptions
give

η = γ,
∂γ

∂T
= 0.

As a generalization, we suppose in the sequel that

∂E
∂C

= U , ∂U
∂T

= 0. (∗)

42.11 Exercises

1. Take the balls treated in Paragraph 42.1. Cut them in two equal parts and
make from both parts a new ball. Show that the potential of a new ball differs
from the original potential (potential and pressure have not the usual properties of
an intensive quantity) and the electrostatic energy of a new ball is not the half of
the original electrostatic energy (internal energy is not a usual extensive quantity,
specific internal energy makes no sense).

2. Using the exact value of the potential (instead of the average one), show
that the electrostatic energy of a homogeneously charged ball is

Ec =
3C2

40πǫR
.

3. Demonstrate that the assumptions U = γC and Ec = CU
2 of electrostatics

imply that γ (so the capacity) does not depend on temperature if the body is
entropic.

4. Give the function T (temperature as a function of internal energy, volume,
particle number and charge) for a conventional body if γ does not depend on
temperature.

5. In practice the properties of bodies are examined in a given phase at given
temperature and pressure (in the atmosphere). Let V denote the volume of the
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body in a phase as a function of (T, P,N,C). “We expect" that for given T , P and
N if the charge is increased, then the body extends. Formulate such an assertion
and show how it is related to the fact that for given V , T and N more charge
results in larger pressure.

6. Define the electrically chargeable composite body.

43 Processes of electrically chargeable bodies

Now we outline the description of a thermodynamical system of chargeable bodies;
on this basis an exact formulation can be given as in Paragraph 14.1.

43.1 Dynamical equation, dynamical quantitities

A process of a chargeable body is a function t 7→
(

V (t), T (t), N(t), C(t)
)

or

t 7→
(

E(t), V (t), N(t), C(t)
)

defined on a time interval and obeying the dynamical
equation

Ė = Q+W + L+D, V̇ = F, Ṅ = G, Ċ = J,

where, besides the known quantities, J is the electric current and D the electric
energy transport.

The electric energy transport is ideal (see 16.3) if D = UJ .
If n ≥ 2 bodies interact in a given environment, then the process of the system

is the joint of the processes of the bodies:
(

(Ei, Vi, Ni) | i = 1, . . . , n
)

obeys the
dynamical equation

Ėi = Qi +Wi + Li +Di, V̇i = Fi Ṅi = Gi, Ċi = Ji

(i = 1, . . . , n).

As all the other dynamical quantitities, the electric current Ji in the i-th body
consists of the currents coming from (or going to) the other bodies and of the
current due to a charge source:

Ji = Ji,s +
n
∑

k=a,1

Jik,

and similarly,

Di =

n
∑

k=a,1

Dik.

As earlier, we accept that the dynamical quantitities between the i-th and the
k-th body – so Jik, too – depend only on the states of the corresponding bodies.

Furthermore, we accept the mutuality property for Fik, Gik, Jik and

Aik := Qik +Wik + Lik +Dik,

e.g. in a symbolic form Jik = −Jki.
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43.2 Equilibrium properties, thermodynamical force

The equilibrium properties of the dynamical quantitities specify the connection
among the zero value of the dynamical quantitities and that of the thermodynam-
ical forcewhich is formulated intiuitively as follows:

The zero value of the dynamical quantitities describing the admitted interac-
tions (which characterize equilibrium) imply the zero value of the corresponding
thermodynamical force (the effective thermodynamical force), and the zero value
of the thermodynamical force belonging to the admitted interactions imply the zero
value of the corresponding dynamical quantitities.

A precise formulation is rather complicated even for neutral bodies and is more
complicated for chargeable bodies. Therefore, we do not give it in details; by the
way, it is not worth doing so because homogeneity is a too strong assumption for
electromagnetic phenomena. We shall formulate the equilibrium properties in each
special case treated in the sequel.

Now we describe only the thermodynamical force in more detail.
Following the method outlined in Paragraph 10.1, we choose two bodies, the

quantities of one of them are denoted by the usual symbols and those of the other
are distinguished by a subscript ∗. Thus heating, etc. is the function

(E, V,N,C,E∗, V∗, N∗, C∗) 7→ Q(E, V,N,C,E∗, V∗, N∗, C∗),

etc.
Recall that the potential is the intensive quantity corresponding to electricity;

the difference of the intensive quantities of the bodies, more closely,

(

−(T − T∗), P − P∗,−(µ− µ∗),−(U − U∗)
)

is the thermodynamical force acting on the body due to the other body and
(

1

T
− 1

T∗
,
P

T
− P∗
T∗
,−
(

µ

T
− µ∗
T∗

)

,−
(

U

T
− U∗
T∗

))

is the canonical thermodynamical force.
The dynamical quantitities are pseudolinear if









Q
F
G
J









=









λQ βQ ϑQ σQ

λF βF ϑF σF

λG βG ϑG σG

λJ βJ ϑJ σJ

















−(T − T∗)
P − P∗

−(µ− µ∗)
−(U − U∗)









=

=









λc
Q βc

Q ϑc
Q σc

Q

λc
F βc

F ϑc
F σc

F

λc
G βc

G ϑc
G σc

G

λc
J βc

J ϑc
J σc

J























1
T − 1

T∗

P
T − P∗

T∗

−
(

µ
T − µ∗

T∗

)

−
(

U
T − U∗

T∗

)















,

where the entries in the matrix, too, are functions of (E, V,N,C,E∗, V∗, N∗, C∗).
If λJ = 0, βJ = 0, ϑJ = 0, then J = σJ(U∗ − U), which is exactly Ohm’s law:

σJ is the electric conductance, 1
σJ

is the resistance between the bodies.
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We mention that according to our usual knowledge, resistance is a property
of a body but here resistance characterizes the interaction of two bodies. This
follows from the fact that the quantities are considered homogeneous: the value
of the potential is constant on a body. In continuum physics we can take into
account that the potential has different values in different points of the body, thus
the resistance can be assigned to a single body.

43.3 Dissipation inequality

The dissipation inequality in the ideal cases is required in the form

−Q

T
(T − T∗) + F (P − P∗) −G(µ− µ∗) − J(U − U∗) ≥ 0,

or, equivalently,

(Q− Pf + µL+ UJ)

(

1

T
− 1

T∗

)

+

+ F

(

P

T
− P∗
T∗

)

−G

(

µ

T
− µ∗
T∗

)

− J

(

U

T
− U∗
T∗

)

≥ 0,

where equality holds if and only if every dynamical quantity takes zero values.
Now we find a new member in the dissipation inequality, the power of the

electric current: −J(U − U∗).

43.4 Concluding remarks

Standstills, equilibria and stationary states of a system consisting of n chargeable
bodies are defined as in Paragraph 14.3.

Introducing

X :=

(

(J) × (m3) × R × (Âs)

)n

,

we can apply the formalism of Paragraph 15; the results, however, are applicable
only for entropic bodies. The entropic property is a doubtful assumption for
chargeable bodies, therefore we shall not require it in the sequel.

We shall treat only some special systems consisting of a body in a given en-
vironment. We shall impose diverse constraints; without constraints we should
get hardly tractable formulae and the same is true for two-body systems even for
reasonable constraints.

44 Some special systems

44.1 General formulae

We treat the processes of a body with constant particle number No in a given
environment. The environment is supposed to have constant temperature Ta,
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pressure Pa and potential Ua. Ideal working and electric energy transport are
taken; thus the dynamical equation becomes

Ė = Q− PF + UJ, V̇ = F, Ċ = J.

Moreover, we accept the conditions (∗) in Paragraph 42.10 from which

∂E
∂C

= U (∗)

plays a fundamental role. In particular, if temperature is used instead of internal
energy as a variable, the first law will have the form

∂E
∂T

Ṫ = Q−
(

P +
∂E
∂V

)

V̇ .

44.2 Fixed volume

The volume has the fixed value Vo, and the dynamical equation, reduced to the
variables T and C is very simple:

∂E
∂T

Ṫ = Q, Ċ = J. (1)

Let us suppose that

Q = −λQ(T − Ta) − σQ(U − Ua), J = −λJ(T − Ta) − σJ(U − Ua), (2)

where λQ, σQ etc. are constant. The dissipation inequality gives

λQ > 0, σJ > 0, λQσJ − σQλJ >
(σQ + TλJ)2

4t
.

The last inequality implies λQσJ > σQλJ : σQ and λJ are not too large which
has the physical meaning that the cross effects – the heating due to the potential
difference and the electric current induced by the temperature difference – are
smaller than the direct effects.

The above form of the dynamical quantitities implies that (To, Co) is an equi-
librium of the reduced dynamical equation if and only if

To = Ta, U(Vo, Ta, No, Co) = Ua.

Potential is a strictly monotone increasing function of charge, thus the equilibrium
is unique.

If (Vo/No, Ta) is in the regular domain, then the right hand side of the reduced
dynamical equation is differentiable, its derivative in the equilibrium is

(

− λQ

c − σQb
c

−λJ −σJb

)

where

b :=
∂U
∂C

(Vo, Ta, No, Co), c :=
∂E
∂T

(Vo, Ta, No, Co).
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This matrix has the characteristic polynomial

x 7→ cx2 + (λQ + σJbc)x+ (λQσJ − σQλJ)b.

All the coefficients are positive: c > 0 and b > 0 by the fundamental properties
of the body, λQ > 0, σJ > 0 and λQσJ − σQλJ > 0 by the dissipation inequality,
thus the eigenvalues of the matrix have negative real part:

Proposition If condition (∗) in Paragraph 44.1 holds and the dynamical quan-
titities have the form (2), then the equilibrium (Ta, Co) of the reduced dynamical
equation (1) is asymptotically stable.

44.3 Constant pressure

The chargeable body has constant pressure Pa.
Using

∂P
∂V

V̇ +
∂P
∂T

Ṫ +
∂P
∂C

Ċ = 0

to eliminate V̇ , we can reduce the dynamical equation to the variables T and C:
(

∂E
∂T

+

(

Pa +
∂E
∂V

) ∂P
∂T

− ∂P
∂V

)

Ṫ = Q−
(

(

Pa +
∂E
∂T

) ∂P
∂C

− ∂P
∂V

)

J, Ċ = J. (1)

We take again the dynamical quantitities

Q = −λQ(T − Ta) − σQ(U − Ua), J = −λJ(T − Ta) − σJ(U − Ua), (2)

where λQ, σQ, etc. are constant for which the dissipation inequality gives the same
relations as in the previous paragraph.

The above form of the dynamical quantitities imply that (To, Co) is an equi-
librium of the reduced dynamical equation if and only if

To = Ta, U(Vo, Ta, No, Co) = Ua,

where Vo is determined by P(Vo, Ta, No, Co) = Pa. The equilibrium is locally
unique.

Now we get asymptotic stability, as previously, if the polynomial

x 7→ cx2 + (λQ + σJbc+ λJh) + (λQσJ − σQλJ)b

has negative roots, where

b :=
∂U
∂C

(Vo, To, N,Co), c :=

(

∂E
∂T

+

(

Pa +
∂E
∂V

) ∂P
∂T

− ∂P
∂V

)

(VoTa, N,Co),

h := −
(

(

Pa +
∂E
∂T

) ∂P
∂C

− ∂P
∂V

)

(Vo, Ta, N,Co).

In the previous paragraph c is the specific heat at constant volume which is
necessarily positive; now c is the specific heat at constant pressure which is positive,
e.g. if the body is of normal dilation.
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Proposition If condition (∗) in Paragraph 44.1 holds, the body is of normal dila-
tion and the dynamical quantitities have the form (2), then the equilibrium (Ta, Co)
of the reduced dynamical equation (1) is asymptotically stable if

−λJh < λQ + σJbc.

The inequality above imposes a condition on λJ – on a cross effect – to be
sufficiently small.

44.4 Constant temperature

The chargeable body has constant temperature Ta and the dynamical equation
reduced to the variables V and C is very simple:

V̇ = F, Ċ = J. (1)

Let us suppose that

F = βF (P − Pa), J = βJ(P − Pa) − σJ(U − Ua), (2)

where βF , etc. are constant. Then the dissipation inequality gives

βF > 0, σJ > 0, βFσJ − β2
J

4
> 0.

The above form of the dynamical quantitities imply that (Vo, Co) is an equi-
librium of the reduced dynamical equation if and only if

P(Vo, Ta, No, Co) = Pa, U(Vo, Ta, No, Co) = Ua.

The equilibrium is locally unique.
If (Vo/N, Ta) is in the regular domain, then the right-hand side of the reduced

dynamical equation is differentiable, its derivative in the equilibrium is
(

−βF k βF z
−βJk − σJu βJz − σJb

)

,

where

k := −∂P
∂V

(Vo, Ta, No, Co), z :=
∂P
∂C

(Vo, Ta, No, Co),

u :=
∂U
∂V

(Vo, Ta, No, Co), b :=
∂U
∂C

(Vo, Ta, No, Co).

This matrix has the characteristic polynomial

x 7→ x2 + (βF k + σJb− βJz)x+ βFσJ(kb− zu).

Because k > 0 and b > 0 by the fundamental properties of the body and βF > 0
and σJ > 0 by the dissipation inequality, we have the following:

Proposition If the dynamical quantitities have the form (2), then the equilibrium
(Vo, Co) of the reduced dynamical equation (1) is asymptotically stable if

βJz < βF k + σJb, zu < kb.

Thus, asymptotic stability is assured if βJ , z and u are ‘sufficiently small’: the
electric current induced by the pressure difference is not too large, the pressure of
the body and the potential do not change too heavily by the change of charge and
volume, respectively.
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44.5 Direct currents

If a constant charge source Js is in the body, then the dynamical equation has the
form

Ė = Q− PF + U(Js + J), V̇ = F, Ċ = Js + J.

Then a stationary state can exist if J = −Js: a constant current (direct current)
flows from the body into the environment.

Let us take the simplest case when the temperature of the body is constant
and let Q, F and J as in the previous paragraphs. Then the stationary state is
determined by

P(Vo, Ta, No, Co) = Pa σJ

(

U(Vo, Ta, No, Co) − Ua

)

= Js

Replacing Ua with Ua + Js/σJ , we get formally the previous problem; thus the
corresponding conditions imply that the stationary state is asymptotically stable.

44.6 Exercises

1. If the temperature of the body is constant, then heating is determined by
springing and current.

2. What relations λQ, σQ, λJ and σJ have if the conductance matrix defined
according to Paragraph 11.4 is symmetric?

3. What can be said about asymptotic stability if λQ, etc. are not constant?
(Hint: the dissipation inequality does not imply the strict positivity relations).

4. What restrictions give the treated conditions of asymptotic stability for the
quantities γ, etc. of a conventional body?

5. Treat the isothermal–isobaric processes of a chargeable body.
6. Treat the adiabatic processes of a chargeable body.

45 Some important thermoelectric effects

45.1 Basic assumptions

Let us take two bodies interacting only thermally and electrically (the particle
number and the volume of the bodies are constant). Let us suppose that the
dynamical quantitities are pseudolinear:

Q = −λQ(T − T∗) − σQ(U − U∗),

J = −λJ(T − T∗) − σJ(U − U∗),

where λQ, etc. are continuous functions of temperature and charge.
If σJ is nowhere zero, then

U − U∗ = − 1

σJ

(

J + λJ(T − T∗)
)

, (∗)

thus,

Q = − ∆

σJ
(T − T∗) +

σQ

σJ
J, (∗∗)
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where ∆ := λQσJ − λJσQ (the determinant of the coefficient matrix).
The thermoelectric effects are based on the fact that σQ 6= 0 and λJ 6= 0, i.e.

heating is influenced by potential difference and electric current is influenced by
temperature difference.

45.2 The Seebeck effect

The Seebeck effect is that temperature difference can induce electric current: λJ 6=
0.

If no current flows, then the potential difference between contacting bodies,
given by (∗) of the previous paragraph, is

U − U∗ = −λJ

σJ
(T − T∗).

45.3 The Peltier effect

The Peltier effect is that electric current results in heating between bodies having
the same temperature; we get from (∗∗) of Paragraph 45.1

Q =
σQ

σJ
J.

45.4 The Thomson effect

Equality (∗) of Paragraph 45.1 gives

J(U∗ − U) =
1

σJ
J2 +

λJ

σJ
(T − T∗)J

for the power of the electric current. The first term on the right-hand side is
the well-known Joule effect, the second term is the Thomson effect. In special
circumstances, they result in the Joule heat and the Thomson heat, respectively.

If the two bodies are completely insulated from the environment, then

Ė = Q+ UJ, Ė∗ = Q∗ − U∗J

and Ė + Ė∗ = 0, thus,
Q+Q∗ = J(U∗ − U), (∗)

i.e. the power of the current results in heating.
Let the constant charge source Js be in one of the bodies and −Js in the other

and let the bodies be in thermal contact with the environment:

Ė = Qa +Q+ U(Js + J), Ė∗ = Q∗a +Q∗ − U∗(Js + J).

In a stationary state J = −Js, Ė = Ė∗ = 0, thus

Qa = −Q, Q∗a = −Q∗.

Supposing (∗), we deduce

−(Qa +Q∗a) = J(U∗ − U),

i.e. the heat emitted in unit time by the bodies together to the environment equals
the power of the current.
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45.5 Concluding remarks

We emphasize again that homogeneity is a rather rough approximation for electric
phenomena. Processes of chargeable bodies and thermoelectric effects are really
well described only if inhomogeneity is taken into account.

It is the most conspicuous that here the resistance is a mutual property of two
bodies while the potentials on the bodies have constant value. It is an elementary
fact, however, that the resistance is a property of a body and the potential of a
body is not constant (e.g. it changes linearly along the path of a direct current).

45.6 Exercise

Using the canonical thermodynamical force, we have

(

Q+ UJ
J

)

=

(

λc
Q + Uλc

J σc
Q + Uσc

J

λc
J σc

J

)

(

1
T − 1

T∗

−
(

U
T − U∗

T∗

)

)

.

The matrix on the right-hand side – if the volume and the particle number of
the body are constant – is the canonical conductance matrix between the bodies.
Show that

(

Q
J

)

=

(

αc
Q σc

Q

αc
J σc

J

)( 1
T − 1

T∗

− U−U∗

T∗

)

,

where αc
Q := λc

Q − Uσc
Q, αc

J := λc
J − Uσc

J .
The conductance matrix is of the Onsager type if σc

Q + Uσc
J = λc

J , or equiva-
lently, σc

Q = αc
J .

Give the treated thermoelectric effects with the aid of these coefficients and
consider the special case of the Onsager type conductance matrix.

46 Extended chargeable bodies

46.1 Definition of an extended chargeable body

So far we have examined phenomena in which the change of electric field is slow
enough and the electric field can be considered static, i.e. having a potential.

If the change is faster but ‘not too fast’, we can describe the electric field by a
potential but we have to take into account the time rate of the current, too.

This is formulated in electromagnetism as follows: varying charge (current)
induces an electromagnetic field which reacts on the current. If the charge does not
vary too fast – the current is quasi-stationary – then the reaction of the induced
electromagnetic field can be described by the time derivative of the current (the
second time derivative of charge) while the electric field has a potential.

This is on analogy to the faster volume change discussed in Section 38: the
dynamical equation refers to the second derivative of the volume, consequently, the
volume rate must be included into the collection of state variables. If the charge
varies in a quasi-stationary way, then current must be considered an independent
variable, i.e. the state of the body will be (V, T,N,C, J). We shall take the
simplest case when all the constitutive quantities but the potential do not depend
on the current.
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Definition (D× R
+ × (Âs) × (Â), eb,Pb, ub, R, Ec,Pc, uc,Uc,Ux) is an extended

electrically chargeable simple body if
– (D×R

+ ×(Âs), eb,Pb, ub, R, Ec,Pc, uc,Uc) is an electrically chargeable simple
body,

– Ux : D × R
+ × (Âs) × (Â) → (V̂) is a continuous function, continuously

differentiable on R × R
+ × (Âs) × (Â) and Ux(v, T,N,C, 0) = 0 for all v, T , N

and C.
The function U := Uc + Ux is the potential of the extended body.

46.2 Dynamical equation, dissipation inequalities

A process of an extended chargeable body is t 7→
(

E(t), V (t), N(t), C(t), J(t)
)

obeying the dynamical equation (in the ideal case)

Ė = Q− PF + µG+ UJ, V̇ = F, Ṅ = G,

Ċ = J, J̇ = K,

where (without sources) Q, F , G and K are functions of (E, V,N,C, J).
For more bodies, of course, a process is the joint of the processes. The mu-

tuality of the dynamical quantitities is formulated as previously. The dissipation
inequalities – on the analogy of those in Paragraph 39.3 – are obtained in such
a way that the terms containing J are omitted from the inequality in Paragraph
43.3 and two other inequalities are required:

−Q

T
(T − T∗) + F (P − P∗) −G(µ− µ∗) ≥ 0,

JUx ≥ 0, −K(U − U∗) ≥ 0,

where equality holds if and only if Q, F , G, Ux and K take zero value.
The first inequality can be written in the other usual form

(Q− PF + µG)

(

1

T
− 1

T∗

)

+ F

(

P

T
− P∗
T∗

)

−G

(

µ

T
− µ∗
T∗

)

≥ 0.

46.3 Quasi-stationary currents

We treat the processes of a body with constant volume Vo and particle number
No in a given environment which is supposed to have constant temperature Ta,
pressure Pa and potential Ua.

Accepting the relations (∗) in 42.10, we get the first law in the form

∂E
∂T

Ṫ = Q+ UxJ.

We take
Uc(V, T,N,C) = γC, (1)

where γ > 0 is a constant and

Ux(V, T,N,C, J) := RJ, (2)
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where R is a constant (the ohmic resistance of the body), positive because of the
second dissipation inequality. Then

U = γC +RJ.

The dynamical quantitities are taken in the form

Q = −λ(T − Ta), K = − 1

L
(U − Ua), (3)

where λ and L (the coefficient of self-induction) are constant, positive because of
the first and third dissipation inequalities.

The the dynamical equation reduced to the variables (T,C, J) reads

∂E(Vo, T,No, C)

∂T
Ṫ = −λ(T − Ta) +RJ2, (4)

Ċ = J, LJ̇ = −γC −RJ + Ua. (5)

The two members of equation (5) can be united into

LC̈ +RĊ + γC = Ua. (6)

46.4 Constant exterior potential

46.4.1 The equilibrium

If Ua is constant, then (To, Co, Jo) is an equilibrium if and only if

To = Ta, Co =
Ua

γ
, Jo = 0.

46.4.2 Stability of equilibrium: linearization

The derivative of the right-hand side of the dynamical equation (4)–(5) in equilib-
rium is





− λ
c 0 0

0 0 1
0 − γ

L − R
L





where

c :=
∂E
∂T

(Vo, Ta, No, Co).

The matrix has the characteristic polynomial

x 7→ x3 +

(

λ

c
+
R

L

)

x2 +
λR

cL
x+

γλ

cL
.

All the coefficients are positive, therefore the eigenvalues of the matrix have
negative real part if

λ

c
≥ γL−R2

LR
. (3)

Proposition If Ua is constant in the reduced dynamical equation (4)–(5), then
the equilibrium (To, Co, 0) is asymptotically stable if inequality (∗) holds.

Thus asymptotic stability holds if the ohmic resistance R is sufficiently large.
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46.4.3 Stability of equilibrium: a special method

Equation (6) is a second-order inhomogeneous linear differential equation with
constant coefficients. It is well known that its every solution has the form

C(t) =
Ua

γ
+ a1e

−α1t + a2e
−α2t,

where

α1 :=
R+

√

R2 − 4Lγ

2L
> 0, α2 :=

R−
√

R2 − 4Lγ

2L
> 0

and a1, a2 are constants. Then

J(t) = −α1a1e
−α1t − α2a2e

−α2t.

The charge exponentially tends to its equilibrium value Ua/γ and the current
exponentially tends to zero.

Putting the above functions into the equation (4) of the previous paragraph,
we get an equation for T . If we suppose that the specific heat is constant,

c :=
∂E
∂T

= const.

then we get the inhomogeneous first-order linear differential equation with constant
coefficients

c(T − Ta)̇ + λ(T − Ta) = ϑ,

where ϑ is a linear combination of exponentially damping functions. It is well
known that its every solution has the form

T (t) − Ta = αe−λt/c + θ(t),

where α is a constant and θ is a linear combination of functions that are products
of exponentially damping functions and polynomials, thus θ, too, is a damping
function. As a consequence, the temperature tends to its equilibrium value Ta.

Moreover, because of the properties of polynomials and exponential functions,
processes that “start sufficiently near to equilibrium, remain near to it", thus the
equilibrium is asymptotically stable.

It is worth comparing the present result with that in the previous paragraph.
Here we imposed a condition only on the specific heat, no restriction is necessary
to γ, λ, L and R (besides their being positive). The previous result cannot be
improved by assuming constant specific heat. This shows that the linearization
method is rather rough in some cases.

46.5 Periodic exterior potential

46.5.1 Solution of the dynamical equation

Let us suppose now that

Ua(t) = Um cosωt,
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where ω ∈ (1/s)+ and Um (the maximal value of the voltage) are constants. Then
equation (6) becomes an inhomogeneous second-order linear differential equation
in which the inhomogeneity is a trigonometric function. Instead of it, we consider
the equation of same type for the current:

LJ̈ +RJ̇ + γJ = U̇a.

It is well known that its every solution has the form

J(t) = Jm cos(ωt+ φ) + ϑ(t),

where

tgφ =
X

R
, Jm =

Um√
R2 +X2

with

X := ωL− γ

ω
(∗)

and ϑ is a linear combination of products of exponentially damping functions and
trigonometric functions.

Then charge, too, is a similar function: the sum of a function and a damping
function. We should like to have a similar result for temperature, too. This is
obtained easily if the specific heat of the body is constant; let it be c. Then we
have the differential equation for the temperature:

cṪ = −λ(T − Ta) +RJ2
m cos2(ωt+ φ) + θ(t),

where θ is a linear combination of products of exponentially damping functions
and trigonometric functions. Using well-known trigonometric relations, we can
rewrite the equation in the form

c

(

T − Ta − RJ2
m

2λ

)˙

= −λ
(

T − Ta − RJ2
m

2λ

)

+
1

2
RJ2

m cos 2(ωt+ φ) + θ(t).

Finally, we get

T (t) = Ta +
RJ2

m

2λ
+
RJ2

m

2ω
sin 2(ωt+ φ) + Θ(t),

where Θ is a linear combination of products of exponentially damping and trigono-
metric functions.

Thus we have shown that if specific heat of the body is constant, then the
temperature of the body, too, becomes periodic as time passes.

46.5.2 Heating effect of alternating current

Let us consider the periodic state

T (t) = Ta +
RJ2

m

2λ
+
RJ2

m

2ω
sin 2(ωt+ φ);



320 IX Electromagnetic phenomena in thermodynamics

the temperature of the body oscillates around a temperature larger than the tem-
perature of the environment. Then the heating has values

Q(t) = −λ(T (t) − Ta) = −RJ2
m

2
− λRJ2

m

2ω
sin 2(ωt+ φ).

If Q denotes the average heating (heating integrated on the time period π/ω and
then divided by it), then

−Q =
RJ2

m

2
.

Introducing the effective voltage and current

Ue :=
Um√

2
, Je :=

Jm√
2
,

we get

−Q = UeJe cosφ =
U2

eR

R2 +X2
,

the formula well known in electrotechnics.
Remark Note that in the case of an alternating current it is enough to con-

sider a single body in an environment for obtaining the known formula of Joule
heat whereas in the case of a direct current two bodies and an environment are
necessary. This is so, as mentioned earlier, because homogeneity is a rough ap-
proximation but ‘extended homogeneity’ is a better one.

46.5.3 Complex resistance

The formulae regarding alternating currents can be simplified by using complex
quantities whose real part corresponds to physical quantities. Now we refer to the
complex quantities by a tilde.

Then

Ũa(t) = Ume
iωt,

and differentiating

L ˙̃J +RJ̃ + γC̃ = Ume
iωt

we get the equation

L ¨̃J +R ˙̃J + γJ̃ = iωUme
iωt

whose periodic solution has the form J̃me
iωt, where

J̃m =
Um

Z

and (with the notation (∗) of Paragraph 46.5)

Z := R+ iX

is the complex resistance (or impedance).
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Then cosφ = R
|Z| and

Z = |Z|eiφ, ReJ(t) = |J̃m| cos(ωt+ φ) =
Um cosφ

R
cos(ωt+ φ),

thus |J̃m| = Jm.
Lastly, the energy dissipation (average heating) can be written in the form

−U2
e

R

R2 +X2
.

We see that it is determined essentially by the real part of the complex resistance
(the ohmic resistance): the less the real part compared with the imaginary part,
the less the energy dissipation.

46.6 Exercises

1. Is it true that periodic exterior potential implies that the temperature of the
body becomes periodic as time passes if the pressure of the body is constant? Is
the constant pressure of the body (see 12.12) physically realizable?

2. Show directly that the average of t 7→ RJ(t)2 equals the average heating of
the body.

3. Take the differential equation

L ¨̃C +R ˙̃C + γC̃ = Ume
iωt

for the charge and solve it by the method of Paragraph 46.5.3.
Of course, knowing the current, we obtain the charge by integration. For the

periodic solution we have
C̃(t) = C̃me

iωt

where

C̃m =
J̃m

iω
=

Um

iωZ
.

Then we can say that

iωZ = γ − ω2L+ iωR

is the reciprocal of the ‘complex capacity’. Give the real part and the imaginary
part of the complex capacity.

47 Bodies consisting of ions

Up to now we have treated bodies that can be charged – in principle – arbitrarily.
There are bodies consisting of charged particles, ions. For such a body the particle
number and the charge are not independent: charge is proportional to particle
number, C = αN . Correspondingly, J = αG (which is Faraday’s law: converting
is proportional to the current), thus the dynamical equation becomes

Ė = Q− PF + (µ+ αU)G, V̇ = F, Ṅ = G.
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For such a body the chemical potential µ never appears in itself, it has no phys-
ical meaning, it is replaced with the electrochemical potential µ + αU . Then
the difference of electrochemical potentials constitutes a part of the thermodynam-
ical force, too, and equilibrium is determined by the equality of electrochemical
potentials. Thus in such an equilibrium a potential difference can exist between
the bodies (this is the base of the galvanic batteries).

So far we have considered chargeable bodies of simple material but the most in-
teresting bodies consist of more ions (and neutral molecules). A lot of solutions are
ion mixtures; their chemical properties are strongly related to electricity, chemical
reactions are influenced by electric phenomena and vice versa. Well-known ex-
amples are the galvanic batteries (electric current produced by chemical reaction)
and electrolysis (chemical reaction due to electric current).

The detailed treatment of ionic bodies and their processes are beyond the scope
of this book.

48 Electrically polarizable bodies

48.1 Electric field of a polarized body

Besides charges, also electric dipoles induce electric field. An insulator in an
electric field is polarized and, as a consequence, the electric field is modified, so
the electric energy, the dynamics of precesses etc. are modified, too. Some of
these modifications can be taken into account by permittivity and others can
be neglected (in the presence of charges). In this section we examine just the
thermodynamical aspects of polarization when charge is zero.

Electric dipole as a self-consistent quantity makes sense only when the dipole is
at rest with respect to the body in question. Resting dipoles produce pure electric
field; varying dipoles produce magnetic field, too. If the change of dipoles is not
too fast, we can neglect the magnetic effects. Then electric dipole is the extensive
quantity, electric field is the corresponding intensive quantity.

Dipoles are space vectors having unit Âsm. Electric field is a space vector, too,
having unit V̂/m. Polarization, the density of dipoles, is a space vector having
unit Âs/m2.

Let us recall the following elementary knowledge of electrostatics.

Let us take a ball with homogeneous polarization P. The electric field produced
by this polarization will be homogeneous inside the ball having value −P/3; in
particular, the polarization and the produced electric field have opposite directions
(outside the body the electric field is not homogeneous).

More generally, if an ellipsoid is endowed with a homogeneous polarization
parallel to an axis of the ellipsoid, then the produced electric field in the body is
proportional to the polarization (so is homogeneous). The electric field produced
by homogeneous polarization in bodies of other form is not homogeneous.

We shall consider in the sequel (except Paragraph 50.3) as if a homogeneous
polarization in a body produced a homogeneous electric field in the body (similarly,
as we considered previously as if a homogeneous charge distribution produced a
homogeneous potential).
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48.2 Polarization in an exterior field

The polarization of a body is determined by the dipoles of the molecules which
depends strongly on the electric field acting on the body.

Bodies can be polarized in two ways:
1) The molecules have no intrinsic dipole but an exterior electric field deforms

the molecules inducing dipoles on them that are more or less parallel to the exterior
field; these microscopic dipoles result in a macroscopic polarization.

2) The molecules have an intrinsic dipole whose macroscopic effect – the po-
larization of the body – depends on the average direction of the dipoles; if the
dipoles are totally disordered (the average direction is zero), then no macroscopic
polarization is observed. Exterior electric field orders the dipoles, so it induces a
polarization. Polarization – ordered dipoles – can exist even without an exterior
field (ferroelectric and ferrielectric materials).

An electric field moves a positive charge in the direction of the field and moves
a negative charge oppositely. Thus in both cases 1) and 2) the direction of the
polarization induced by an exterior field equals the direction of the field, and the
electric field inside the body becomes smaller than the exterior field.

48.3 Fundamental assumptions

Let us consider a system of polarized bodies. The electric field produced by a body
penetrates into the other bodies, thus the bodies modify their polarization mutu-
ally: interaction at a distance plays a fundamental role in processes. This differs
significantly from the previous cases where only contact interaction appeared (of
course, it is true that the charge of a body interacts at a distance with the charge
of another body but this interaction does not change the amount of charges but
only their distribution which is not relevant because it is always considered homo-
geneous, therefore, we could leave out of consideration interaction at a distance).
Now interaction at a distance is an essential feature of phenomena: polarization
changes as a consequence of interaction at a distance and not as a consequence of
dipole transport between the bodies.

The polarization of a body produces electric field in and outside the body,
which modifies the polarization of other bodies, the electric field produced by the
other bodies modifies the polarization of the body in question, therefore, its electric
field is modified as well, thus the polarization of the other bodies will be modified
again ... and so on. The description of a system of polarized bodies seems to be
too complicated.

According to the previous and the present paragraphs,
– we shall examine only a single body in a homogeneous exterior

field (which can depend on time).
– the electric field in the body produced by a homogeneous polar-

ization is taken to be parallel and opposite to the polarization,
– the polarization induced in the body by an exterior field is consid-

ered to be parallel to the field and to have the same direction.
Consequently, the electric fields, the polarization and dipoles can be treated as

scalars (except Paragraph 50.3), so the symbols of these quantities represent values
with respect to a given direction (the value can be either positive or negative).
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48.4 The Clausius–Mosotti formula

Let us take a body whose molecules do not have intrinsic dipole and let us put
it in a constant exterior electric field Ea; the molecules are deformed and become
dipoles. Let P be the polarization of the body in equilibrium (when no change
occurs). It seems a good assumption that the dipole pm of a molecule in equilibri-
um is proportional to the electric field acting on the molecule (this is not necessarily
true outside equilibrium: if the electric field changes, then the dipole changes, too,
but its change does not follow immediately that of the electric field because of
inertia); let α > 0 be the proportionality coefficient. Let E be the electric field
in the body. The electric field acting on a molecule is not E because this field
contains the field produced by the molecule, too. We obtain the field acting on
the molecule by ‘removing’ the molecule and calculating the field produced without
the molecule. This can be done as follows. Let us remove a small piece of the body
around the molecule, i.e. let us imagine that a small cavity exists in the body. The
electric field produced by the small piece is supposed to be −δcP (which is true if
the piece is an ellipsoid), where δc can depend on the thermodynamical state of
the body. Then the electric field in the cavity is

E + δcP.

Contracting the cavity to the point of the molecule in such a way that δc is
constant (this is the case if all cavities are balls), we get the electric field acting
on the molecule. Thus the dipole of a molecule is

pm = α(E + δcP).

If there are N molecules in the volume V , then P = Npm

V = pmv, therefore,

P =
α

v
(E + δcP)

which yields

P = χE,

where

χ :=
α

v − αδc

is the electric susceptibility.
If the electric field produced by the body equals −δP (which is true if the body

is an ellipsoid), then

E = Ea − δP,

thus,

P = κEa,

where

κ :=
χ

1 + δχ
=

α

v + α(δ − δc)

is the electric susceptance.
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We see that χ and κ depend on the form of the cavity. If the cavity is a ball,
then δc = 1/3 and

χ =
3α

3v − α
or

3χ

3 + χ
=
α

v
.

Introducing the electric permittivity ǫ := 1+χ, we get the Clausius–Mosotti
formula:

ǫ− 1

ǫ+ 1
=

α

3v
.

It seems, the ball form cavity can be motivated by homogeneity; the action on
a molecule, however, does not have a spherical symmetry, thus the more general
formula – δc instead of 1/3 – is not superfluous.

Of course, the Clausius–Mosotti formula does not have an overall validity: it
gives a qualitatively good approximation for certain materials in certain thermo-
dynamical states.

48.5 The notion of induced polarization

The previous considerations concern equilibrium (for the time being, let equilibri-
um be an intuitive notion). Let us imagine that the body is in equilibrium in an
exterior field. The field deformed the molecules (or ordered the dipoles), a polar-
ization is established by the exterior field. Let the exterior field change abruptly;
then the deformation of the molecules (or the ordering of the dipoles) changes,
too, but this change is behind the change of the exterior field: outside equilibrium
the actual polarization differs from the equilibrium polarization corresponding to
the actual exterior field. If a new constant exterior field is established, then a
new equilibrium polarization will come into being which can depend on the former
equilibrium polarization.

Let us introduce the notion of induced polarization: this is the equilibri-
um polarization realized by a constant exterior field from an initial
polarization.

48.6 Definition of a polarizable body

Polarization is the dipole density. Thus if polarization P is on the body of volume
V , then the body has the dipole

p := PV ∈ (Âsm).

It is convenient to use this quantity as a variable of the polarizable body.

Definition
(

D × R
+ × (Âsm), eb,Pb, ub, R, Ep,Pp, up,Eg,Pin

)

is called a simple
polarizable body if (D, eb,Pb, ub, R) is a simple material,

Ep : D × R
+ × (Âsm) → (J)+, Pp : D × R

+ × (Âsm) → (Pa),

up : D × R
+ × (Âsm) → (J), Eg : D × R

+ × (Âsm) → (V̂/m),
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are continuous functions, continuously differentiable on R× R
+ × (Âsm),

– T 7→ Ep(v, T,N,p) is monotone increasing for all possible v, N and p,
– v 7→ Pp(v, T,N,p) is locally monotone decreasing for all possible T , N and

p,
– pEg(v, T,N,p) < 0 if p 6= 0 and p 7→ Eg(v, T,N,p) is strictly monotone

decreasing for all possible v, T and N , having everywhere negative derivative,

furthermore,

Ep(v, T,N, 0) = 0, Pp(v, T,N, 0) = 0, up(v, T,N, 0) = 0, Eg(v, T,N, 0) = 0

for all elements (v, T,N) of D × R
+,

lastly,
Pin : D × R

+ × (Âsm) × (V̂/m) → (Âs/m2)

is a continuous function, continuously differentiable on R×R
+ × (Âsm) × (V̂/m),

– EaPin(v, T,N,p,Ea) > 0 if Ea 6= 0 and Ea 7→ Pin(v, T,N,p,Ea) is strictly
monotone increasing for all possible v, T , N and p, having everywhere negative
derivative.

Eg is the electric field produced by the body,

E(v, T,N,p) := Neb(v, T ) + Ep(v, T,N,p),

P(v, T,N,p) := Pb(v, T ) + Pp(v, T,N,p),

u(v, T,N,p) := ub(v, T ) + up(v, T,N,p)

are the internal energy, the pressure and the chemical potential, respectively,
of the body.

Pin is the polarization induced by the exterior field.

As a consequence of the definition, the inequalities

∂E
∂T

> 0,
∂P
∂v

< 0,
∂Eg

∂p
< 0

hold on the regular domain R× R
+ × (Âsm).

The electric susceptance of the body

κ(v, T,N,p,Ea) :=
∂Pin(v, T,N,p,Ea)

∂Ea

is positive (and is defined if (v, T ) ∈ R).
Let us compare the present definition with the definition of chargeable bodies.

p ∈ (Âsm) here corresponds to C ∈ (Âs) there; Eg corresponds to U there; condi-
tions imposed on the corresponding quantities are similar. There is an important
difference, however: the induced polarization Pin has no counterpart in a charge-
able body. The treatment of processes will reveal its importance: if the exterior
field is constant, then the equilibrium polarization of the body equals
the induced polarization:

p

V
= Pin(V, T,N,p,Ea).
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It is worth emphasizing that we can define only a polarizable body, not a
material because the quantities connected to electricity cannot be described by
specific data. The definition involves the material of the body which is related to
the thermodynamical quantities only.

In the definition and in quantities related to the material, the specific volume
is the convenient variable. In formulae concerning the body – as in the case of a
chargeable body – the entire volume is more suitable.

Applying the customary ambiguous notation, we shall write either v or V as a
variable in a function.

48.7 Canonical variables

The conditions imposed on the constitutive functions allow us to give temperature
as a function of internal energy, volume, particle number and charge, i.e. internal
energy can be used as an independent variable instead of temperature. Thus, we
have, as earlier

T(E(V, T,N,p), V,N,p) = T, E(V,T(E, V,N,p), N,p) = E,

P(E, V,N,p) = P(V,T(E, V,N,p), N,p),

µ(E, V,N,p) = u(V,T(E, V,N,p), N,p),

Eg(E, V,N,p) = Eg(V,T(E, V,N,p), N,p)

(the same symbol Eg appeared on both sides of the last equality for different
functions because of scarcity of letters).

48.8 Entropic property

According to the usual ‘rule’ (see Paragraph 16.3) the entropy (V, T,N,p) 7→
S(V, T,N,p) of a polarizable body should obey the relations

T
∂S
∂T

=
∂E
∂T

, T
∂S
∂V

=
∂E
∂V

+ P, T
∂S
∂N

=
∂E
∂N

− u, (1)

T
∂S
∂p

=
∂E
∂p

+ Eg. (2)

If internal energy is employed as a variable (in other words, canonical variables
are used), then the function S(E, V,N,p) := S(V,T(E, V,N,p), N,p) satisfies

∂S

∂E
=

1

T
,

∂S

∂V
=

P

T
,

∂S

∂N
= − µ

T
,

∂S

∂p
=

Eg

T
.

Definition The polarizable body in Definition 48.6 is entropic if there is a func-
tion S, the entropy of the body, satisfying equalities (1) and (2) on R × R

+ ×
(Âsm).
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If the entropy is twice differentiable, then Young’s theorem yields the known
equality

T
∂P
∂T

=
∂E
∂V

+ P (3)

and the additional equalities

∂E
∂p

= T
∂Eg

∂T
− Eg,

∂P
∂p

=
∂Eg

∂V
,

∂u

∂p
= −∂Eg

∂N
. (4)

We shall see in Paragraph 51.4 that it is doubtful whether it is reasonable to
require that a polarizable body be entropic.

48.9 Conventional polarizable body

According to our knowledge in electrostatics (see 48.1), the electric field Eg pro-
duced by a polarization P can be taken to be proportional to the polarization, the
constant of proportionality can depend on the thermodynamical state of the body.
Then electrostatics says that the electric energy density equals − 1

2Eg · P, thus the
energy density is proportional to the square of polarization. Then an analogy with
chargeable bodies suggests the following definition.

Definition The polarizable body defined in 48.6 is called conventional if there
are continuous functions η, π, ξ and γ defined on D×R

+ (mapping into convenient
measure lines), continuously differentiable on R× R

+ so that

Ep(V, T,N,p) :=
η(V, T,N)p2

2
, Pp(V, T,N,p) :=

π(V, T,N)p2

2
,

up(V, T,N,p) :=
ξ(V, T,N)p2

2
, Eg(V, T,N,p) := −γ(V, T,N)p.

γ is positive because the produced electric field is a strictly monotone decreasing
function of polarization. δ := γV is the depolarization factor of the body.

This corresponds formally to a conventional chargeable body: C and U are to
be replaced with p and −Eg, respectively.

48.10 Two customary conditions

In practice (electrotechnics) one always takes Eg = −γp = −δP and Ep =

− 1
2Egp = − γp2

2 . Moreover, γ is considered to be independent of temperature.
For a conventional body these assumptions give

η = γ,
∂γ

∂T
= 0.

As a generalization, we suppose in the sequel that

∂E
∂p

= −Eg,
∂Eg

∂T
= 0. (∗)
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48.11 Exercises

1. Cut a conventional body in two equal parts and form both parts to a body
having the same depolarization coefficient as has the original body. Show that the
electric field in the new bodies coincide with the original one (electric field has the
usual property of an intensive quantity); on the contrary, the electrostatic energy
of one of the halves is not the half of the original electrostatic energy (internal
energy is not a usual extensive quantity, specific internal energy makes no sense).

2. Verify that

η = −T ∂γ
∂T

+ γ, π = − ∂γ

∂V
, ξ = − ∂γ

∂N

for an entropic polarizable body.
If the depolarization factor δ = γV does not depend on the thermodynamical

state of the body, then

π = − δ

V 2
.

3. Give the function T (temperature as a function of internal energy, volume,
particle number and dipole) for a conventional body if γ does not depend on
temperature.

49 Induced polarization

49.1 Dielectric bodies

The Clausius–Mosotti formula shows that for certain bodies (whose molecules do
not have intrinsic dipole) the induced polarization in equilibrium is proportional
to the exterior field; the following is obtained by supposing this is true outside
equilibrium, too.

Definition A simple polarizable body is called dielectric if there is a continuous
function κ : D × R

+ → R
+, continuously differentiable on R× R

+ such that

Pin(v, T,N,p,Ea) = κ(v, T,N)Ea.

In other words, a polarizable body is dielectric if its susceptance (see 48.6) does
not depend on the exterior field and the dipole (or polarization) of the body.

The equilibrium polarization P of a dielectric body is

P = κEa. (∗)

If the body is conventional, then

E = Ea − δP

is the electric field in the body, thus we get

P = χE, (∗∗)
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for the equilibrium polarization, where

χ :=
κ

1 − δκ

is the electric susceptibility. It is worth noting the inverse relation, too:

κ =
χ

1 + δχ
.

We have to bear in mind that κ, δ and χ are functions of (v, T,N).
Warning (i) The actual polarization (outside equilibrium) of a body can differ

from the induced one and it need not be proportional to the actual electric field
in the body, as explained below. Let the body be in equilibrium in an exterior
field Ea1. Let the exterior field change abruptly to Ea2 at the instant t1. Then
the polarization P of the body will vary in time in such a way that P(t1) = κEa1

and P(t2) = κEa2 for some instant t2 (which can be infinity; see later in Section
51). Then the instantaneous electric field at the instant t between t1 and t2 is
E(t) = Ea2 − δP(t) but P(t) 6= κEa2, so P(t) 6= χE(t).

Thus relations (∗) and (∗∗) are valid only in equilibrium.
(ii) In the usual literature some notions are confused. In general, susceptance

is not defined at all, susceptibility is defined by P = χE (and considered true even
outside equilibrium) and then one often takes as if P = χEa held.

49.2 Langevin–Weiss induced polarization

In the previous paragraph we considered bodies whose molecules do not have an
intrinsic dipole. If the molecules have an intrinsic dipole π, then some heuristics
(not detailed here) results in the Langevin–Weiss formula

Pin(v, T,N,p,Ea) =
1

v

(

α(Ea − λ(v, T,N)P) + πL

(

π(Ea − λ(v, T,N)P)

kT

))

,

where λ := δ − δc (δ and δc are the depolarization factors used in 48.4), α is the
Clausius–Mosotti constant, P := p

V and

L : R → R, x 7→
{

cthx− 1
x if x 6= 0,

0 if x = 0

is the Langevin function.
A body whose induced polarization is given by the above formula, is called a

Langevin–Weiss body.
Thus the equilibrium polarization P of a Langevin–Weiss body is determined

by the Langevin–Weiss equation

P =
1

v

(

α(Ea − λ(v, T,N))P + πL

(

π(Ea − λ(v, T,N)P)

kT

))

The solution of this equation is, in general, not unique which will be shown
in detail in the theory of magnetization because Langevin–Weiss magnetization
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corresponds to an everyday phenomenon but Langevin–Weiss polarization is not
frequent: there are few materials whose molecules have a significant intrinsic dipole
but there are a lot of them whose molecules have a significant intrinsic magnetic
momentum.

49.3 Properties of the Langevin function

It is a simple fact that L is odd, i.e. L(−x) = −L(x), moreover L is analytic,

L(x) =
x

3
− x3

45
+ . . . ,

L′(x) =

{

− 1

sh2
x

+ 1
x2 > 0 if x 6= 0,

1
3 if x = 0,

L′′(x) =

{

2
(

chx

sh3
x

− 1
x3

)

if x 6= 0,

0 if x = 0.

It is quite evident that L′ > 0 and L′′(x) < 0 if x > 0, L′′(x) > 0 if x < 0, thus
L is strictly monotone increasing and is concave on the positive half line (convex
on the negative half line), consequently,

L(x) <
x

3
(x > 0).

Lastly, we have
lim

x→∞
L(x) = 1.

49.4 Exercises

1. Use the properties of the Langevin function to verify that if λ = 0 and
the exterior field is not too strong – precisely: if πEa ≪ kT – then the induced
polarization is approximately proportional to the exterior field, the susceptance is

κ ≈ 1

v

(

α+
π2

3kT

)

.

2. Give the susceptibility in the previous case.
3. Demonstrate that the Langevin–Weiss induced polarization satisfies the

requirement of Definition 48.6: the derivative of Pin with respect to Ea (the sus-
ceptance) is positive.

50 Further observations

50.1 Equilibrium relations

In equilibrium the polarization of the body equals the induced polarization:

p

V
= Pin(V, T,N,p,Ea).
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Let us suppose that this allows us to express the equilibrium dipole peq – at
least locally – as a function of the thermodynamical state of the body and the
exterior field:

(V, T,N,Ea) 7→ peq(V, T,N,Ea). (∗)

The electric field in the body in equilibrium is

Eeq(V, T,N,Ea) = Ea + Eg(V, T,N,peq(V, T,N,Ea))

If this allows us to express the exterior field as a function of the field in the body,
i.e. to give a function (V, T,N,Eeq) 7→ Ea(V, T,N,Eeq), then we arrive at the
equilibrium dipole function

(V, T,N,Eeq) 7→ peq(V, T,N,Eeq). (∗∗)

Then the equilibrium susceptibility is defined to be

χ(V, T,N,Eeq) :=
∂(V peq(V, T,N,Eeq))

∂Eeq
.

We stress that susceptance is defined generally (see 48.6) whereas susceptibility
is meaningful only in equilibrium (which was mentioned in Paragraph 49.1 for
dielectric bodies).

Putting the expression (∗) for the equilibrium dipole peq in the constitutive
functions of the body, we get the equilibrium quantities corresponding to a given
exterior field; e.g.

(V, T,N,Ea) 7→ P(V, T,N,peq(V, T,N,Ea))

is the equilibrium pressure as a function of the thermodynamical state of the body
and the exterior field.

50.2 Remarks on usual treatments

The notion of induced polarization and that of the electric field produced by the
polarization do not appear in usual treatments of thermodynamics. Electric field
there means either the exterior field Ea or the field E in the body, and they are
often confused. Polarization always means its equilibrium value, i.e. one of the
functions (∗) or (∗∗) of the previous paragraph.

Furthermore, it is required (the bodies are supposed to be entropic) that −Ea

or −E stand instead of the formulae of Paragraph 48.8.
If −Ea is taken, then

T
∂S
∂p

− ∂E
∂p

= −Ea. (∗)

This is impossible because the left-hand side is independent of the exterior field (it
depends only on the thermodynamical state and polarization of the body). The
same is true if −E = −Ea − Eg is taken.

Because usually one always considers only equilibrium, we can make the rela-
tions in question meaningful if the exterior field is considered as a function of the
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quantities of the body in the following way: we give the exterior field inducing the
equilibrium dipole p in the thermodynamical state (V, T,N) of the body; in other
words, the function

(V, T, V,p) 7→ Ea,eq(V, T,N,p)

defined implicitly by p/V = Pin(V, T,N,p,Ea).
This seems rather artificial; nevertheless, it would be acceptable if entropy were

suitable for a Liapunov function assuring asymptotic stability. We shall see that
this is not satisfied.

50.3 Vectorial quantities

We can modify the notion of a polarized body in such a way that the dipole p,
the electric fields Ea and Eg and the induced polarization Pin are considered as

vectors. Then (Âsm) and (V̂/m) in Definition 48.6 is replaced with N(Âsm) and
N(V̂/m), respectively, where N is the Euclidean space of spacelike vectors without
physical dimension: e.g. p ∈ N(Âsm).

Besides the above formal changes, we have to make the following alteration:
– if p 6= 0, then p · Eg(v, T,N,p) < 0 (the dot denotes scalar product), more-

over, the function α 7→ −|Eg(v, T,N, αp)| defined for real α-s is strictly monotone
decreasing for all possible v, T and N , having negative derivative.

The entropic property, the conventional body, the dielectric body are defined
formally as earlier but the Langevin–Weiss body cannot be defined.

50.4 Exercises

1. Give a relation between the susceptance defined in 48.6 and the susceptibility
defined in 50.1. Apply the result for a Langevin–Weiss body.

2. In practice the equilibrium quantities (in a phase) are usually given as
functions of temperature, pressure, particle number and electric field (exterior or
in the body) without referring to polarization. The volume – at least locally – can
be given as a function (T, P,N,p) 7→ V (T, P,N,p). Replacing here p with the
equilibrium function peq obtained in 50.1, we get the desired function for volume:

Veq(T, P,N,Ea) := V
(

T, P,N,peq(V, T,N,Ea)
)

or
Veq(T, P,N,Eeq) := V

(

T, P,N,peq(V, T,N,Eeq)
)

.

Define the equilibrium susceptance and the equilibrium susceptibility as a func-
tion of temperature, pressure, particle number and electric field.

51 Processes of a polarizable body

51.1 Dynamical equation, dynamical quantitities

A process of a polarizable body in a given environment is a function t 7→
(

E(t), V (t), N(t),p(t)
)

defined on a time interval obeying the dynamical equa-
tion

Ė = Q− PF + µG− Egr,
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V̇ = F, Ṅ = G, ṗ = r

(in the ideal case, see Paragraph 16.3), where Q, F , G and r are given as functions
of the state of the body and the state of the environment. For instance, if the
environment is characterized by its temperature Ta, pressure Pa (which determine
the chemical potential µa) and by the exterior field Ea, then the heating is a
function

(E, V,N,p, Ta, Pa,Ea) 7→ Q(E, V,N,p, Ta, Pa,Ea)

or

(V, T,N,p, Ta, Pa,Ea) 7→ Q(V, T,N,p, Ta, Pa,Ea).

51.2 Equilibrium properties, thermodynamical force

If the environment is constant, then an equilibrium of the body is a constant
process in which every dynamical quantity takes zero value.

As said, electric field is the intensive quantity corresponding to polarization.
Polarization phenomena have the particular feature – as a consequence of the
action at a distance – that equilibrium is not characterized by the equality
of the intensive quantities: neither the electric field Eg produced by the body
polarization nor the electric field E = Ea +Eg in the body is equal to the exterior
field Ea in equilibrium.

Equilibrium is characterized by the fact that the actual polarization of the
body equals the induced polarization. Thus we accept that if no constraint is
imposed on the precesses, then (Vo, To, No,po) is an equilibrium if and only if

To = Ta, P(Vo, To, No,po) = Pa, u(Vo, To, No,po) = µa,

po

Vo
= Pin(Vo, To, No,po,Ea).

As a consequence, the difference p/V − Pin offers itself for the component
of the thermodynamical force corresponding to electricity. This is, however, not
an intensive quantity. We look for convenient intensive quantities. The funda-
mental properties of the body imply that the polarization and the electric field
produced by it determine each other uniquely; therefore, we accept the difference
of the electric fields produced by p/V and Pin as a convenient member of the
thermodynamical force, as follows.

If Eh denotes the (fictitious) electric field produced by the induced polarization,
i.e.

Eh(V, T,N,p,Ea) := Eg(V, T,N, V Pin(V, T,N,p,Ea)),

then (with the customary symbolic notations)

(

−(T − Ta), P − Pa,−(µ− µa),Eg − Eh

)

is the thermodynamical force acting on the body and

(

1

T
− 1

Ta
,
P

T
− Pa

Ta
,−
(

µ

T
− µa

Ta

)

,
Eg

T
− Eh

Ta

)
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is the canonical thermodynamical force.
We note that the last member of the thermodynamical force is not the difference

of a quantity concerning the body only and a quantity concerning the environment
only: Eh depends on the body state, too.

The dynamical quantitities are pseudolinear if
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λQ βQ ϑQ ρQ

λF βF ϑF ρF

λG βG ϑG ρG

λr βr ϑr ρr
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=
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r βc
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1
T − 1

Ta

P
T − Pa

Ta

−
(

µ
T − µa

Ta

)

Eg

T − Eh

Ta













,

where the matrix entries are functions of (E, V,N,p, Ta, Pa,Ea) (or (V, T,N,p,
Ta, Pa,Ea)).

The equilibrium properties of the dynamical quantitities specify the connection
among the zero value of the dynamical quantitities and that of the thermodynam-
ical forcewhich is formlated intuitively as follolws:

The zero value of the dynamical quantitities describing the admitted interac-
tions (which characterizes equilibrium) imply the zero value of the corresponding
thermodynamical force (the effective thermodynamical force), and the zero value of
the thermodynamical force belonging to the admitted interactions implies the zero
value of the corresponding dynamical quantitities.

A precise formulation is rather complicated even for neutral bodies and is more
complicated for polarizable bodies. Therefore, we do not give it in detail; by the
way, it is not worth doing so because homogeneity is a too strong assumption for
electromagnetic phenomena. We shall formulate the equilibrium properties in each
special case treated in the sequel.

51.3 Dissipation inequality

The dissipation inequality – on the analogy of earlier inequalities – is required in
the form

−Q

T
(T − Ta) + F (P − Pa) −G(µ− µa) + r(Eg − Eh) ≥ 0,

where equality holds if and only if all the dynamical quantitities take zero value.
Equivalently,

(Q− PF + µG− Egr)

(

1

T
− 1

Ta

)

+

+ F

(

P

T
− Pa

Ta

)

−G

(

µ

T
− µa

Ta

)

+ r

(

Eg

T
− Eh

Ta

)

≥ 0.



336 IX Electromagnetic phenomena in thermodynamics

51.4 Electrostriction

If the processes are slow enough, we can consider that they are isothermal–isobaric:
the body temperature and pressure are constant Ta and Pa, respectively. If, more-
over, the particle number is constant, too, then the change of polarization deter-
mines that of volume by the relation

∂P
∂V

V̇ +
∂P
∂p

ṗ = 0, (∗)

thus

V̇ =

∂P
∂p

− ∂P
∂V

ṗ.

Experience shows that the body contracts as its polarization grows which is
called electrostriction. The denominator in the right-hand side above is positive,
electrostriction implies that the numerator is negative (for positive p).

If the body is entropic, then ∂P
∂p

=
∂Eg

∂V . Experience indicates that the right-
hand side here is positive; e.g. if the body is conventional and the depolarization
factor δ is independent of the state of the body, then

∂Eg

∂V = δ
V 2 p.

Thus the phenomenon of electrostriction and the fact that the electric field
produced by a given dipole decreases as the volume of the dipole increases are not
compatible with the entropic property.

52 Some special systems

52.1 General formulae

We treat the processes of a body with constant particle number No in a given
environment. The environment is supposed to have constant temperature Ta,
pressure Pa and exterior field Ea. Thus, the dynamical equation becomes

Ė = Q− PF − Egr, V̇ = F, ṗ = r.

Moreover, we accept the conditions (∗) in Paragraph 48.10 from which

∂E
∂p

= −Eg (∗)

plays a fundamental role. In particular, if temperature is used instead of internal
energy as a variable, the first law will have the form

∂E
∂T

Ṫ = Q−
(

P +
∂E
∂V

)

V̇ .

The entropic property is a doubtful assumption for polarizable bodies, more-
over, the canonical thermodynamical force is not obtained as the derivative of the
total entropy of the body and the environment, therefore, we cannot apply the
results of Paragraph 15; some special systems will be treated without entropy.
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52.2 Fixed volume

The volume has the fixed value Vo, and the dynamical equation, reduced to the
variables T and p is very simple:

∂E
∂T

Ṫ = Q, ṗ = r. (1)

Let us suppose that

Q = −λQ(T − Ta) − ρQ(Eh − Eg), r = −λr(T − Ta) − ρr(Eh − Eg) (2)

where λQ, ρQ etc. are constant. The dissipation inequality gives

λQ > 0, ρr > 0, λQρr − ρQλr >
(ρQ − Tλr)2

4T
.

The above form of the dynamical quantitities implies that (To,po) is an equi-
librium of the reduced dynamical equation if and only if

To = Ta, po = VoPin(Vo, Ta, No,po,Ea).

If (Vo/No, Ta) is in the regular domain, then the right-hand side of the reduced
dynamical equation is differentiable, its derivative in the equilibrium is





− λQ+ρQba
c − ρQb(1−d)

c

−λr − ρrba −ρrb(1 − d)



 ,

where

c :=
∂E
∂T

(Vo, Ta, No,po), b := −∂Eg

∂p
(Vo, Ta, No,po),

a :=
∂Pin

∂T
(Vo, Ta, No,po,Ea), d := Vo

∂Pin

∂p
(Vo, Ta, No,po,Ea).

If the eigenvalues of this matrix, i.e. the roots of the characteristic polynomial

x 7→ cx2 + (λQ + ρQba+ ρrbc(1 − d))x+ (λQρr − λrσQ)b(1 − d)

have negative real parts, then the equilibrium is asymptotically stable; if there is
an eigenvalue having positive real value, then the equilibrium is unstable. Because
the basic properties of the body imply that c > 0 and b > 0, and the dissipation
inequality implies that λQ > 0, ρr > 0 and λQρr −ρQλr > 0, we have the following
result.

Proposition If condition (∗) in Paragraph 52.1 holds and the dynamical quan-
titities have the form (2), then the equilibrium (Ta,po) of the reduced dynamical
equation (1) is

– asymptotically stable if

1 − d > 0, −ρQba < λQ + ρrbc(1 − d),

– instable if
1 − d < 0.
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Thus, the question of stability–instability is decided essentially by the sign of
1 − d. For a dielectric body d = 0, thus the condition of stability is satisfied. For
a Langevin–Weiss body the physical meaning of the sign of 1 − d will be clarified
later in connection with magnetic processes.

52.3 Constant pressure

Similarly to Paragraph 44.3, the dynamical equation reduced to the variables T
and p is

(

∂E
∂T

+

(

Pa +
∂E
∂V

) ∂P
∂T

− ∂P
∂V

)

Ṫ = Q−
(

(

Pa +
∂E
∂T

) ∂P
∂p

− ∂P
∂V

)

r, ṗ = r.

Let the dynamical quantitities be as in the previous paragraph. Then (To,po)
is an equilibrium if and only if

To = Ta, po = VoPin(Vo, Ta, No,po,Ea)

where Vo is determined by P(Vo, Ta, No,po) = Pa. The equilibrium is locally
unique.

If the equilibrium is in the regular domain, then the right-hand side of the
reduced dynamical equation is differentiable and its derivative in equilibrium has
the characteristic polynomial

x 7→ cx2 +
(

λQ + hλr + (ρQ + hρr)ba+ ρr(1 − d)bc
)

x+ (λQρr − λrρQ)(1 − d)b,

where a, b and d are the quantities introduced in the previous paragraph and

c :=

(

∂E
∂T

+

(

Pa +
∂E
∂V

) ∂P
∂T

− ∂P
∂V

)

(Vo, Ta, No,po),

h := −
(

(

Pa +
∂E
∂T

) ∂P
∂p

− ∂P
∂V

)

(Vo, Ta, No,po).

If the roots of the characteristic polynomial have negative real parts, then
the equilibrium is asymptotically stable; if a root has positive real part, then the
equilibrium is unstable. The reader is asked to discuss the possibilities.

52.4 Constant temperature

The dynamical equation reduced to the variables V and p is

V̇ = F, ṗ = r.

Let us suppose that

F = βF (P − Pa), r = βr(P − Pa) − ρr(Eg − Eh),
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where βF , βr and ρr are constant. The dissipation inequality implies

βF > 0, ρr > 0, βF ρr − β2
r

4
> 0.

The above form of the dynamical quantitities implies that (Vo,po) is an equi-
librium of the reduced dynamical equation if and only if

P(Vo, Ta, No,po) = Pa, po = VoPin(Vo, Ta, No,po,Ea).

If (Vo/N, Ta) is in the regular domain, then the right-hand side of the reduced
dynamical equation is differentiable, its derivative in the equilibrium is

(

−βF k βF z
−βrk − ρrbw βrz − ρr(1 − d)b

)

,

where

k := −∂P
∂V

(Vo, Ta, No,po), z :=
∂P
∂p

(Vo, Ta, No,po),

w :=
∂Pin

∂V
(Vo, Ta, No,po,Ea), b := −V ∂Eg

∂p
(Vo, Ta, No,po).

This matrix has the characteristic polynomial

x 7→ x2 + (βF k + ρr(1 − d)b− βrz)x+ βF ρrb
(

(1 − d)k − wz
)

.

The reader is asked to discuss stability–instability of equilibrium.

52.5 Exercises

1. If both temperature and pressure are constant (and the particle number is
fixed), then we have a relation between polarization change and the dipole change
(see Paragraph 51.4), thus the dynamical equation can be reduced to p. Suppose
that

Eg = − δ

V
p, Pin =

α

v
Ea, r = ηV (Eg − Eh)

where δ, α and η are positive constants. Solve the reduced dynamical equation.
2. Treat the adiabatic processes of a polarizable body.

53 Extended polarizable bodies

53.1 Definition of an extended polarizable body

Up to now we have investigated phenomena in which the polarization and the
electric field can be considered as static because they change slowly enough. If the
change is faster, then we have to take into account that the polarization produces
a magnetic field too, which in turn induces an electric field. If the change is not
too fast, then magnetic effects can be left out by taking an electric field consisting
of two parts, one is due to the polarization, the other is due to the time rate of
the polarization.
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This is done on a clear analogy to Paragraph 46.1: the time rate of the dipole
is to be an independent variable, i.e. the state of a body – the variables of the
constitutive functions – will be (V, T,N,p, r). Now we shall consider the simple
case when only the electric field depends explicitly on the time rate of the dipole.

Definition (D × R
+ × (Âsm) × (Âm), eb,Pb, ub, R, Ep,Pp, up,Eg,Pin,Egx) is an

extended simple polarizable body if
– (D×R

+×(Âsm), eb,Pb, ub, R, Ep,Pp, up,Egp,Pin) is a simple polarizable body,

– Egx : D×R
+×(Âsm)×(Âm) → (V̂/m) is a continuous function, continuously

differentiable on R×R
+ × Âsm) × (Âm) and Egx(v, T,N,p, 0) = 0 for all possible

v, T , N and p.
The function Eg := Egp +Egx is the electric field produced by the polar-

ization.

53.2 Dynamical equation, dissipation inequalities

A process of an extended polarizable body in a given environment is a function
t 7→

(

E(t), V (t), N(t),p(t), r(t)
)

obeying the dynamical equation

Ė = Q− PF + µG− Egr, V̇ = F, Ṅ = G,

ṗ = r, ṙ = z

where (without sources) Q, F , G and z are functions of (E, V,N,p, r).
The dissipation inequalities are required on the analogy to those in Paragraph

46.2:

−Q

T
(T − Ta) + F (P − Pa) −G(µ− µa) ≥ 0,

−rEgx ≥ 0, z(Eg − Eh) ≥ 0

where equality holds if and only if Q, F , G, Egx and z take zero value.

53.3 Processes of special systems

As in the case of quasi-stationary currents, instead of giving the complicated gen-
eral treatment, we illustrate the processes of extended polarizable bodies by the
following special example: the volume Vo and particle number No and the body
are fixed, the environment is supposed to have constant temperature Ta, pressure
Pa and electric field Ea.

Furthermore, we assume that

Pin(V, T,N,p,Ea) = κEa, (1)

where κ > 0 is constant,

Egp(V, T,N,p) = −δp

V
, (2)

where δ > 0 is constant and

Egx(V, T,N,p, r) := −αr

V
, (3)
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where α > 0 is constant. Then

Eg = −δp

V
− αr

V
.

The dynamical quantitities are

Q = −λ(T − Ta), z = −V

ρ
(Êg − Eh), (4)

where λ > 0 and ρ > 0 are constant.

Let us recall that

Eh = −δκEa.

Then the dynamical equation reduced to the variables (T,p, r) is

∂E(Vo, T,No,p)

∂T
Ṫ = −λ(T − Ta) +

αr2

Vo
,

ṗ = r, ρṙ = −δp − αr + δκVoEa. (5)

The last two equations can be united in

ρp̈ + αṗ + δp = δκVoEa. (6)

53.4 Constant or periodic exterior field

We have the same formal relations and equations as in Paragraph 46.3: L, R, γ
and Ua are replaced with ρ, α, δ and δκVoEa, respectively. Therefore, the results
of Paragraphs 46.4 and 46.5 remain valid for constant and periodic exterior fields.

If the field is periodic, then both the dipole p of the body and the time rate r of
the dipole are sums of a periodic function and an exponentially damping function
and this is true for the temperature, too, if specific heat is constant.

If Ea(t) = Em cosωt or with the use of complex quantities, Ẽa(t) = Eme
iωt,

then the periodic solution has the form

p̃(t) = p̃me
iωt

where
p̃m

Vo
=

δκ

ω
(

iα−
(

ρω − δ
ω

))Em. (∗)

Thus the real solution is

p(t) = |p̃m| sin(ωt+ φ),

where

tgφ :=
α

ρω − δ
ω

.
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53.5 Complex susceptance

The coefficient of Em in (∗) of the previous paragraph can be considered as a
complex susceptance; this is real if and only if α = 0.

Similarly to 46.5.2, we get for the average heating

−Q =
δ2κ2V 2

o E
2
mα

2ω2
(

α2 +
(

ωρ− δ
ω

)2
) .

Energy dissipation (the average heating) depends essentially on the imaginary
part of the complex susceptance: the less the imaginary part compared to the real
part, the less the heating.

It might be strange that here the imaginary part plays a similar role to the
real part of complex resistance for alternating currents. The complex susceptance,
however, is analogous to the complex capacity (see Exercise 3 of 46.6) and not
to the complex resistance, and the imaginary part of the complex capacity is
proportional to the ohmic resistance.

53.6 Exercises

1. Define complex susceptibility, describe its actual form and give a relation
between complex susceptance and complex susceptibility.

2. Admit arbitrary induced polarization instead of (3) in 53.3 and prove that
in the case of a constant electric field the equilibrium is asymptotically stable if
1 − d > 0 and is instable if 1 − d < 0, where d is the quantity introduced in 52.2.

54 Magnetizable bodies

54.1 Magnetic field of a magnetized body

Electromagnetic field is produced by electric charges and electromagnetic dipoles.
An electromagnetic dipole appears to an observer (a body) as an electric dipole
and a magnetic dipole. Previously, we have treated electric dipoles, now we come
to magnetic dipoles, called generally magnetic momentums. We can repeat what
we said in Paragraph 48.1: magnetic momentums resting with respect to the body
produce only magnetic fields. Magnetic momentum is the extensive quantity,
magnetic field is the intensive quantity characterizing magnetism from a thermo-
dynamical point of view though the latter does not have all the usual properties
of an intensive quantity.

Magnetic momentums and magnetic fields are usually considered to be space
vectors though they are in fact antisymmetric tensors; their units are Ăm2 abd
V̆s/m2, respectively. Magnetization, the density of magnetic momentums has the
unit Ă/m.

Let us recall the following elementary knowledge of magnetostatics.

Let us take a ball with homogeneous magnetization M. The magnetic field
produced by this magnetization will be homogeneous inside the ball having value
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2M/3; in particular, the magnetization and the produced magnetic field have equal
directions (outside the body the magnetic field is not homogeneous).

More generally, if an ellipsoid is endowed with a homogeneous magnetization
parallel to an axis of the ellipsoid, then the produced magnetic field in the body
is proportional to the magnetization (so is homogeneous). The magnetic field
produced by homogeneous magnetization in bodies of other form is not homoge-
neous. We shall consider in the sequel as if a homogeneous magnetization in a
body produced a homogeneous magnetic field in the body.

54.2 Magnetization in an exterior field

A body can be magnetized (similarly to polarization) in two ways:

1) The molecules have no intrinsic magnetic momentum but an exterior mag-
netic field, modifying the currents inside the molecules, induces magnetic momen-
tums that are more or less parallel to the exterior field; these microscopic magnetic
momentums result in a macroscopic magnetization.

2) The molecules have an intrinsic magnetic momentum whose macroscopic
effect – the magnetization of the body – depends on the average direction of the
magnetic momentums; if the magnetic moments are totally disordered (the aver-
age direction is zero), then no macroscopic magnetization is observed. Exterior
magnetic field orders the magnetic moments, so it induces a magnetization. Mag-
netization – ordered magnetic moments – can exist even without an exterior field
(ferromagnetic and ferrimagnetic materials).

We have essentially repeated what we said for polarization but there is a sig-
nificant difference in item 1).

An electric field moves a positive charge in the direction of the field and moves
a negative charge oppositely. Thus the direction of the dipole of a molecule
induced by an exterior field equals the direction of the field.

We know that a current i running around a surface area F has a magnetic
momentum iF whose direction is such that vectors of the current, the radius and
the magnetic momentum are right handed. If such a circle-current is put into
a magnetic field having the same direction as the magnetic moment, then the
Lorentz force displaces the current towards the centre, the encircled area becomes
smaller, so the magnetic momentum decreases.

The electron movements in the molecules can be roughgly considered as circle-
currents. If the magnetic momentums of such circle-currents (and the spins of
the electrons) give zero resultant magnetic momentum, then the molecules do
not have intrinsic magnetic momentum. An exterior magnetic field decreases the
magnetic momentum of circle-currents having the same direction as the field has
and increases the magnetic momentum of circle-currents having opposite direction.
Thus (if spin plays a negligible role) the direction of the magnetic moment
of a molecule induced by an exterior field is opposite to the direction
of the field.

The magnetic moment due to the spin of electrons can modify the situation,
so it may happen that the induced magnetic moment and the exterior field have
the same direction.



344 IX Electromagnetic phenomena in thermodynamics

Thus the magnetic moment induced by a magnetic field can either have oppo-
site or equal direction to the direction of the field. If the directions are opposite,
the magnetic field in the body becomes smaller than the exterior field; if the di-
rections coincide, then the magnetic field in the body becomes larger than the
exterior field.

54.3 Fundamental assumptions

We can repeat what we said in Paragraph 48.2: magnetization strongly depends
on exterior effects, changes due to action at a distance. Therefore, we do not deal
with systems consisting of more bodies. As in the electric case,

– we shall examine only a single body in a homogeneous exterior
magnetic field (which can depend on time),

– the magnetic field in the body produced by a homogeneous mag-
netization is taken to be parallel to the magnetization and to have the
same direction,

– the magnetization induced in the body by an exterior field is
considered to be parallel to the field.

Consequently, the magnetic fields, the magnetization and magnetic momentum
can be considered as scalar quantities, so their symbols will represent values with
respect to a given direction (the value can either be positive or negative).

54.4 The Clausius–Mosotti formula

The Clausius–Mosotti formula for materials whose molecules do not have intrinsic
magnetic moment can be derived on the analogy to the electric case. Let M be
the equilibrium magnetization of the body in a homogeneous exterior field Ba.
Let us suppose that the magnetic moment mm of a molecule is proportional to
the magnetic field Bm acting on the molecule; let −α < 0 be the proportionality
coefficient. If B is the magnetic field in the body, then the ‘cavity method’ applied
in Paragraph 48.4 – if the piece corresponding to the cavity produces magnetic
field δcM – results in that the field acting on a molecule becomes

B − δcM.

The proportionality
mm = −α(B − δcM)

gives for the magnetization M = mmv

M = χB,

where
χ := − α

v − αδc

is the magnetic susceptibility.
If the magnetic field produced by the body equals δM (which is true if the

body is an ellipsoid), then
B = Ba + δM,
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thus
M = κBa,

where

κ :=
χ

1 − δχ
=

−α
v + α(δ − δc)

is the magnetic susceptance.
The classical formula is obtained for ball cavities when δc = 2/3,thus

χ = − 3α

3v − 2α
,

or
3χ

3 − 2χ
= −α

v
.

Introducing the magnetic permeability µ := 1
1−χ , we get the Clausius–

Mosotti formula:
µ− 1

µ+ 1
=

α

3v
.

54.5 Definition of a magnetizable body

Magnetization is the magnetic moment density. Thus if magnetization M is on
the body of volume V , then the body has the magnetic moment

m := MV ∈ (Ăm2).

Definition (D×R
+×(Ăm2), eb,Pb, ub, R, Em,Pm, um,Bg,Min) is called a simple

magnetizable body if (D, eb,Pb, ub, R) is a simple material,

Em : D × R
+ × (Ăm2) → (J)+, Pm : D × R

+ × (Ăm2) → (Pa),

um : D × R
+ × (Ăm2) → (J), Bg : D × R

+ × (Ăm2) → (V̆s/m2)

are continuous functions, continuously differentiable on R× R
+ × (Ăm2),

– T 7→ Em(v, T,N,m) is monotone increasing for all possible v, N and m,
– v 7→ Pm(v, T,N,m) is locally monotone decreasing for all possible T , N and

m,
– mBg(v, T,N,m) > 0 if m 6= 0 and m 7→ Bg(v, T,N,m) is strictly monotone

increasing for all possible v, T and N , having everywhere positive derivative,
furthermore,

Em(v, T,N, 0)=0, Pm(v, T,N, 0)=0, um(v, T,N, 0)=0, Bg(v, T,N, 0)=0

for all elements (v, T,N) of D × R
+,

lastly,

Min : D × R
+ × (Ăm2) × (V̆s/m2) → (Ă/m),

is a continuous function, continuously differentiable on R×R
+ ×(Ăm2)×(V̆s/m2)

such that Ba 7→ Min(v, T,N,m,Ba) is strictly monotonic (increasing or decreas-
ing) for all possible v, T , N and m, having everywhere non-zero derivative.
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Bg is the magnetic field produced by the body

E(v, T,N,m) := Neb(v, T ) + Em(v, T,N,m),

P(v, T,N,m) := Pb(v, T ) + Pm(v, T,N,m),

u(v, T,N,m) := ub(v, T ) + um(v, T,N,m)

are the internal energy, the pressure and the chemical potential, respectively,
of the body.

Min is the magnetization induced by the exterior field.

As a consequence of the definition, the inequalities

∂E
∂T

> 0,
∂P
∂v

< 0,
∂Bg

∂m
> 0

hold on the regular domain R× R
+ × (Ăm2).

The magnetic susceptance of the body

κ(v, T,N,m,Ba) :=
∂Min(v, T,N,m,Ba)

∂Ba

is defined if (v, T ) ∈ R.
The present definition is nearly an exact copy of the definition of a polarizable

body. There are two differences: 1. The produced electric field is a decreasing
function of polarization whereas the produced magnetic field is an increasing func-
tion of magnetization. 2. The induced polarization is an increasing function of the
exterior field whereas the induced magnetization can either be an increasing or a
decreasing function of the exterior field.

The induced magnetization has the same physical meaning as induced polar-
ization: the equilibrium magnetization realized by a constant exterior
field from an initial magnetization; thus

m

V
= Min(V, T,N,m,Ba)

holds for the equilibrium magnetic moment. Here and often in the sequel, as in the
electric case, we find it convenient to use the entire volume instead of the specific
volume and applying the customary ambiguous notation, we shall write either v
or V as a variable in a function.

We emphasize again that we can define only a magnetizable body, not a mate-
rial because the quantities connected to magnetism cannot be described by specific
data. The definition involves the material of the body which is related to the ther-
modynamical quantities only.

54.6 Canonical variables, entropic property

We can repeat what we said about polarizable bodies: temperature can be ex-
pressed as a function of internal energy, volume, particle number and magnetic
moment, in other words, we can use the canonical variables (E, V,N,m).

Entropic property is defined similarly by replacing p with m and −Eg with
Bg; the different signs correspond to the rule in Paragraph 16.3.

It is doubtful, here again, whether entropic property is a really good require-
ment, because of arguments similar to those in Paragraph 50.2.
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54.7 Conventional magnetizable body

Based on the known results of magnetostatics, the magnetic field Bg produced by
a magnetization M can be taken proportional to the magnetization (cf. 54.1), the
proportionality coefficient can depend on the thermodynamical state of the body.
Moreover, the magnetostatical energy density is 1

2Bg · M, thus the energy density
is proportional to the square of the magnetic moment. These suggest the following
definition.

Definition The magnetizable body defined in 54.5 is called conventional if there
are continuous functions η, π, ξ and γ defined on D×R

+ (mapping into convenient
measure lines), continuously differentiable on R× R

+ so that

Em(V, T,N,m) :=
η(V, T,N)m2

2
, Pm(V, T,N,m) :=

π(V, T,N)m2

2
,

um(V, T,N,m) :=
ξ(V, T,N)m2

2
, Bg(V, T,N,m) := γ(V, T,N)m.

γ is positive because the produced magnetic field is a strictly monotone in-
creasing function of magnetization. δ := γV is the demagnetization factor of
the body.

This corresponds exactly to a conventional polarizable body: p and −Eg are
replaced with m and Bg, respectively.

54.8 Two customary conditions

In practice one always takes Bg = γm = δM and Em = 1
2Bgm = γm2

2 . Moreover,
γ is considered to be independent of temperature. For a conventional body these
assumptions give

η = γ,
∂γ

∂T
= 0.

As a generalization, we suppose in the sequel that

∂E
∂m

= Bg,
∂Bg

∂T
= 0. (∗)

54.9 Exercises

Formulate the counterpart of the exercises in 48.11.

55 Induced magnetization

55.1 Diamagnetic and paramagnetic bodies

The Clausius–Mosotti formula shows that for certain bodies (whose molecules do
not have intrinsic magnetic moment) the induced magnetization in equilibrium is
proportional to the exterior field.
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Definition A simple magnetizable body is called diamagnetic or paramagnetic
if there is a continuous function κ : D × R

+ → R
− or R

+, respectively, continu-
ously differentiable on R× R

+ and

Min(v, T,N,m,Ba) = κ(v, T,N)Ba.

In other words, a magnetizable body is diamagnetic or paramagnetic if its
susceptance (see 54.5) does not depend on the exterior field and the magnetic
moment (or magnetization) of the body.

The names may seem curious because in electricity the positive susceptance
(the only possibility) is di(a)electric whereas in magnetism the negative suscep-
tance is diamagnetic. The dielectric and diamagnetic bodies have in common the
property that the produced field is opposite to the exterior field, in other
words, the field in the body becomes smaller than the exterior field.

The equilibrium magnetization M of a diamagnetic or paramagnetic body is

M = κBa. (∗)

If the body is conventional, then

B = Ba + δM,

is the magnetic field in the body, thus we get

M = χB, (∗∗)

for the equilibrium magnetization where

χ :=
κ

1 + δκ

is the magnetic susceptibility. It is worth noting the inverse relation, too:

κ =
χ

1 − δχ
.

We have to bear in mind that κ, δ and χ are functions of (v, T,N).
We emphasize that equalities (∗) and (∗∗) are valid only in equilibrium, and

we can repeat the warning in Paragraph 49.1.
In the usual literature some notions and formulae regarding susceptibility are

confused as in the case of electricity. Moreover, earlier (and sometimes even nowa-
days) one takes erroneously H instead of B, i.e. one writes M = χH though
arguments based on the molecular structure of materials clearly show that mag-
netization is proportional to B.

55.2 Langevin–Weiss induced magnetization

For bodies whose molecules have an intrinsic magnetic moment, a formula similar
to that in Paragraph 49.2 can be deduced; if the intrinsic magnetic moment of
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a molecule is π, then with the notations λ := δ − δc and M := m/V we get the
Langevin–Weiss formula:

Min(v, T,N,m,Ba) =
1

v

(

−α(Ba+λ(v, T,N)M)+πL

(

π(Ba+λ(v, T,N)M)

kT

))

.

A body whose induced magnetization is given by the above formula, is called
a Langevin–Weiss body.

55.3 Approximate solution of the Langevin–Weiss equation

The actual magnetization of the body and the induced magnetization are equal
in equilibrium, thus the equilibrium magnetization of a Langevin–Weiss body is
determined by the Langevin–Weiss equation

M =
1

v

(

−α(Ba + λM) + πL

(

π(Ba + λM)

kT

))

.

Using the properties of the Langevin function (see 49.3), we get for π(Ba +
λM) ≪ kT that

M ≈ 1

v

(

−α(Ba + λM) +
π2

3kT
(Ba + λM)

)

.

Thus, if

λ

(

−α+
π2

3kT

)

6= v,

we can define the equilibrium susceptance:

κ(v, T,N) ≈ −α+ π2

3kT

v − λ(v, T,N)
(

−α+ π2

3kT

) .

Taking λ = 0, we obtain the formula

κ ≈ 1

v

(

−α+
π2

3kT

)

known in the literature.
On the other hand, taking α = 0, λ 6= 0 and putting

C :=
π2

3k
, Θ(v, T,N) :=

Cλ(v, T,N)

v
,

we arrive at the Curie–Weiss formula

κ(v, T,N) ≈ 1

v

C

T − Θ(v, T,N)
.

The susceptibility has a similar form; with the notation

Θ̂ := Θ +
δC

v
=
C(λ+ δ)

v
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we have

χ(v, T,N) ≈ 1

v

C

T − Θ̂(v, T,N)
.

Note that both Θ and Θ̂ can depend on the thermodynamical state of the body
which is seldom mentioned in the usual literature.

55.4 Examination of the Langevin–Weiss equation

Let us study the solutions of the Langevin–Weiss equation for a given (v, T,N),
excluding the trivial case λ(v, T,N) = 0 and let α = 0 for the sake of simplicity (the
case α 6= 0 can be treated in the same way, only the combination of constants will
be more complicated). Using the notation Θ introduced in the previous paragraph
and

r :=
Ba

πλ
, x :=

π(Ba + λM)

kT
,

we can rewrite the equation in the form

T

3Θ
x− r = L(x).

The solutions are given by the points that the straight line determined by the
left-hand side and the graph of the Langevin function have in common. We know
(see Paragraph 49.3) that L′(x) < L′(0) = 1/3 if x 6= 0; as a consequence, if
T ≥ Θ, then the straight line meets the graph of L in a single point: there is a
unique solution. If T < Θ, then there are two or three solutions. Two solutions
exist if the straight line touches and then cuts the curve; three solutions exist if
the straight line cuts the curve in three points (Figure 55.1).

If there are three solutions, x−, xm and x+ so that x− < xm < x+, then the
slope of the curve in the middle solution is larger than the slope of the straight
line and the slopes in the other two solutions are less, i.e.

L′(xm) >
T

3Θ
, L′(x±) <

T

3Θ
.

If there are two solutions, xt and xc where xt corresponds to the touching
point, then

L′(xt) =
T

3Θ
, L′(xc) <

T

3Θ
.

If there is only one solution xc, then

L′(xc) <
T

3Θ
.

In particular, there are three solutions if T < Θ and r = 0: x− = −x+ and
xm = 0. r = 0 means that the exterior magnetic field is zero. The magnetization
corresponding to the non-zero solutions is called spontaneous magnetization. Thus,
the Langevin–Weiss equation gives account of the well-known experimental fact
that bodies of certain materials (e.g. iron) can have equilibrium magnetization
even if the exterior field is zero.
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L

Figure 55.1

Figure 55.2

Ba

M
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Figure 55.2 illustrates the possible equilibrium magnetizations in the presence
of a given exterior field. The continuous lines contains the pairs (Ba,M) for which

L′
(

π(Ba + λM)

kT

)

<
T

3Θ
,

the dashed line contains the pairs for which

L′
(

π(Ba + λM)

kT

)

>
T

3Θ

and the circles show the points for which

L′
(

π(Ba + λM)

kT

)

=
T

3Θ
.

55.5 Exercises

1. Corresponding to Paragraph 50.1, define the equilibrium constitutive func-
tions for the variables (v, T,N,Ba) with the aid of the equilibrium magnetic
moment(v, T,N,Ba) 7→ meq(v, T,N,Ba). Define the equilibrium susceptibility
in general.

2. Formulate and solve the exercise corresponding to Exercise 2 in 50.4.
3. If specific volume in the previous exercise depends negligibly on the magnetic

field, then the specific volume v of the material of the body can be used as a
function of temperature and pressure.

Take the ‘reference values’ T0 and P0 (say the temperature and the pressure of
the atmosphere) and put v0 := v(T0, P0),

α0 := − 1

v0

∂Pb

∂T
∂Pb

∂v

(v0, T0), κ0 := − 1

v0

1
∂Pb

∂v

(v0, T0)

(α0 is the isothermal expansion coefficient and κ0 is the isothermal compressibility
factor, and, of course, they have nothing to do with the proportionality coefficient
for molecular magnetic moments and susceptance denoted by the same letters).
Then

v(T, P ) = v0

(

1 + α0(T − T0) − κ0(P − P0)
)

+ ordo(T − T0, P − P0).

Give an explicit formula how susceptibility and susceptance depend on tem-
perature and pressure near to the reference values.

4. Define magnetizable bodies considering the magnetic quantities as vectors
(antisymmetric tensors) (cf. 50.3).

56 Processes of a magnetizable body

56.1 Dynamical equation, dynamical quantitities

A process of a magnetizable body in a given environment is a function t 7→
(

E(t), V (t), N(t),m(t)
)

defined on a time interval obeying the dynamical equa-
tion

Ė = Q− PF + µG+ Bgr,
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V̇ = F, Ṅ = G, ṁ = r

(in the ideal case, see Paragraph 16.3) where the dynamical quantitities Q, F ,
G and r are given as functions of the state of the body and the state of the
environment. For instance, if the environment is characterized by its temperature
Ta, pressure Pa (which determine the chemical potential µa) and by the exterior
field Ba, then the heating is a function

(E, V,N,m, Ta, Pa,Ba) 7→ Q(E, V,N,m, Ta, Pa,Ba)

or
(V, T,N,m, Ta, Pa,Ba) 7→ Q(V, T,N,m, Ta, Pa,Ba).

56.2 Equilibrium properties, thermodynamical force

If the environment is constant, then an equilibrium of the body is a constant
process in which every dynamical quantity takes zero value.

Equilibrium is characterized – from a magnetic point of view – by the fact that
the actual magnetization of the body equals the induced magnetization. Thus we
accept that if no constraint is imposed on the processes, then (Vo, To, No,mo) is
an equilibrium if and only if

To = Ta, P(Vo, To, No,mo) = Pa, u(Vo, To, No,mo) = µa,

mo

Vo
= Min(Vo, To, No,mo,Ba).

Let us introduce, similarly to the electric case, the (fictitious) magnetic field
Bh produced by the induced magnetization, i.e.

Bh(V, T,N,m,Ba) := Bg(V, T,N, VMin(V, T,N,m,Ba)).

Then (with the customary symbolic notations)

(

−(T − Ta), P − Pa,−(µ− µa),−(Bg − Bh)
)

is the thermodynamical force acting on the body and

(

1

T
− 1

Ta
,
P

T
− Pa

Ta
,−
(

µ

T
− µa

Ta

)

,−
(

Bg

T
− Bh

Ta

))

is the canonical thermodynamical force.
We should point out as in the electric case, that here the last member of the

thermodynamical force is not the difference of a quantity concerning the body
only and a quantity concerning the environment only: Bh depends on the body
state, too. Moreover, the sign of the last member of the thermodynamical force
is opposite to that of the corresponding member in Paragraph 51.2 because the
polarization and the produced electric field have opposite directions whereas the
magnetization and the produced magnetic field have equal directions.

Pseudolinear dynamical quantitities are defined as in 51.2, Eg − Eh replaced
with −(Bg − Bh).
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The equilibrium properties of the dynamical quantitities specify the connection
among the zero value of the dynamical quantitities and that of the thermodynam-
ical force which is formulated intuitively as follows:

The zero value of the dynamical quantitities describing the admitted interac-
tions (which characterizes equilibrium) imply the zero value of the corresponding
thermodynamical force (the effective thermodynamical force), and the zero value of
the thermodynamical force belonging to the admitted interactions implies the zero
value of the corresponding dynamical quantitities.

A precise formulation is rather complicated even for neutral bodies and is more
complicated for magnetizable bodies. Therefore, we do not give it in details; by
the way, it is not worth doing so because homogeneity is a too strong assumption
for electromagnetic phenomena. We shall formulate the equilibrium properties in
each special case treated in the sequel.

56.3 Dissipation inequality

The dissipation inequality – on the analogy of earlier inequalities – is required in
the form

−Q

T
(T − Ta) + F (P − Pa) −G(µ− µa) − r(Bg − Bh) ≥ 0,

where equality holds if and only if all the dynamical quantitities take zero value.
Equivalently,

(Q− PF + µG− Egr)

(

1

T
− 1

Ta

)

+

+ F

(

P

T
− Pa

Ta

)

−G

(

µ

T
− µa

Ta

)

+ r

(

Bg

T
− Bh

Ta

)

≥ 0.

56.4 Magnetic cooling

Magnetostriction, a well-known experimental fact, can be treated as electrostric-
tion (see 51.4); as a consequence, we get that ∂P/∂m < 0.

Another interesting phenomenon is that the adiabatic decreasing of magnetiza-
tion results in a temperature decrease which gives an efficient method for cooling
near absolute zero temperature: a large magnetization is induced in the body by a
strong magnetic field at constant temperature; then the body gets heat insulated,
the exterior field is switched off and the body pressure is kept constant. The
magnetization collapses and the body cools.

This is described as follows.
The body has fixed particle number, constant pressure Pa and is heat insulated.

Thus the relation
∂P
∂V

V̇ +
∂P
∂T

Ṫ +
∂P
∂m

ṁ = 0,

the first law

Ė = −PaV̇ + Bgṁ
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and the customary condition
∂E
∂m

= Bg

yield that

(

∂E
∂T

+

(

Pa +
∂E
∂V

) ∂P
∂T

− ∂P
∂V

)

Ṫ =

(

Pa +
∂E
∂V

)− ∂P
∂m

− ∂P
∂V

ṁ.

The coefficient of Ṫ is the specific heat at constant pressure which can be
supposed positive. If the expansion heat is positive, then the coefficient of ṁ is
positive as well. Thus Ṫ and ṁ have the same sign. Decreasing magnetization
causes decreasing temperature.

56.5 On the negative temperature

Absolute temperature is defined in such a way that zero is the smallest temperature
value. Sometimes, however, one asserts that negative temperature can be achieved
in special circumstances by increasing temperature beyond plus infinity.

The argument is the following. Take a body whose molecules have an intrinsic
magnetic moment and put it in an exterior field. The field induces magnetiza-
tion on the body by ordering the molecular dipoles in the direction of the field.
Temperature influences the ordering; if the temperature increases, then the or-
dering decreases, at ‘infinite’ temperature the disorder is complete, magnetization
disappears (this is reflected in the Curie–Weiss law, too).

Now let us consider the situation from the point of view of energy. The mag-
netic moment m in the magnetic field Ba has energy −Bam: this increases as
m decreases. Let Ba > 0. If m > 0 (magnetization and the exterior field have
the same direction), then the decrease of m – the increase of energy – means the
increase of disorder. On the contrary, if m < 0 (magnetization and the exterior
field have opposite directions), then the increase of m – the decrease of energy
– means the increase of disorder. According to statistical physics, entropy is a
measure of disorder. Thus if the magnetization and the exterior field have the
same direction, then the increase of energy implies the increase of entropy. On the
contrary, if the magnetization and the exterior field have opposite directions, then
the decrease of energy implies the increase of entropy. As a consequence, in the
latter case the partial derivative of entropy (at constant volume) with respect to
energy is negative, so because of

∂S

∂E
=

1

T
, (∗)

the temperature, too, is negative. Thus negative temperature is achieved in a
simple way: put a magnetizable body in an exterior field, wait until it is magnetized
and then reverse the direction of the field abruptly.

One usually says that a state with negative temperature is unstable, a process
starts in which the body passes into a state with positive temperature but not
through the zero temperature but the infinite temperature; the states with negative
temperature are ‘beyond’ plus infinity.
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Such an argument for the negative temperature is mistaken for more reasons.
First: The relation between entropy and disorder appears intuitively without

exact formulae. Perhaps this flaw could be eliminated.
Second: The temperature of a body is the property of the body alone (at least

up to now) but now it would be a common property of the body and the exterior
field because it depends on the mutual direction of the magnetization and the field.
Nothing changes in the body, only the direction of the exterior field is reversed,
and does the temperature become negative? If it does, the temperature depends
on the exterior field; then the entropy, too, must depend on the exterior field
because of the equality (∗). But there is no hint in the argument that entropy, the
measure of disorder, depends on the exterior field.

Third: The energy and the internal energy are confused. The internal energy,
the entropy and the temperature of the body have the known relation (∗) (if the
body is entropic) and the internal energy cannot be replaced with another energy.
The magnetic part of internal energy comes from the magnetic interaction of the
molecules. Besides this internal energy the body can have a magnetic potential
energy because of an exterior field; this energy, however, is not a part of inter-
nal energy. An analogy: the energy of molecules deriving from their gravitation
interaction is a part of internal energy but their potential energy due to the grav-
itation of the earth is not a part of internal energy. The quantity −Bam in the
argument is the magnetic potential energy which is not a part of internal energy;
the magnetic internal energy 1

2Bgm is independent of the exterior field.
Fourth: The argument is based on usual treatments in which every formula

refers to equilibrium when the magnetization of the body and the exterior field
are related, M = κBa (the body is paramagnetic). In the argument, however, the
magnetization and the exterior field are independent.

Fifth: Formulae valid exclusively in equilibrium are applied for non-equilibri-
um. Let us see it more closely, it is very instructive.

Saying that the exterior field orders the magnetic moments and so induces
a magnetization, and saying that smaller magnetization corresponds to higher
temperature, one has in mind equilibrium. As in Paragraph 50.2, we can give an
equilibrium relation

(V, T,N,Ba) 7→ Meq(V, T,N,Ba),

which for non-zero Ba is a strictly monotonically decreasing function of T and
tends to zero az T tends to infinity (see Paragraph 55.3). This is all right but is
not true outside equilibrium.

The internal energy, the entropy (if exists!) and the temperature of the body
having magnetic moment m are well-defined quantities regardless the exterior field,
they are the same in every exterior field. The negative temperature, on the cited
arguments, is a false notion.

If a magnetizable body is in equilibrium in an exterior field and the field is
reversed abruptly, then the quantities of the body (temperature, internal energy,
etc.) remain unchanged but a non-equilibrium or possibly an unstable equilibrium
is established, thus a process starts tending to an asymptotic stable equilibrium
(where the magnetization and the exterior field have the same direction) as we
shall see in the next paragraph.
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57 Some special systems

57.1 General formulae

As said, it is not reasonable to suppose that a magnetizable body is entropic.
On the analogy of Paragraph 52.1, we can treat several systems consisting of a
body with constant particle number No in a given environment having constant
temperature Ta, pressure Pa and homogeneous magnetic field Ba.

We accept the relations in 54.8 implying that if temperature is used as a vari-
able, then the first law will have the form

∂E
∂T

Ṫ = Q−
(

P +
∂E
∂V

)

V̇ .

57.2 Fixed volume

The volume has the fixed value Vo and the dynamical equation reduced to the
variables T and m is very simple:

∂E
∂T

Ṫ = Q ṁ = r.

Let us suppose that

Q = −λQ(T − Ta) + ρQ(Bg − Bh), r = −λR(T − Ta) + ρr(Bg − Bh), (∗)

where λQ, ρQ, etc. are constant. The dissipation inequality gives

λQ > 0, ρr > 0, λQρr − ρQλr >
(ρQ − Tλr)2

4T
.

The above form of the dynamical quantitities implies that (To,mo) is an equi-
librium of the reduced dynamical equation if and only if

To = Ta, mo = VoMin(Vo, To, No,mo,Ba).

If (Vo/No, Ta) is in the regular domain, then the right-hand side of the reduced
dynamical equation is differentiable, its derivative in the equilibrium is

(

− λQ−ρQba
c − ρQb(1−d)

c
−λr − ρrba −ρrb(1 − d)

)

,

where

c :=
∂E
∂T

(Vo, Ta, No,mo), b :=
∂Bg

∂m
(Vo, Ta, No,mo),

a :=
∂Min

∂T
(Vo, Ta, No,mo,Ba), d := V

∂Min

∂m
(Vo, Ta, No,mo,Ba).

This matrix is formally the same as the one in 52.2, therefore, the conditions
for asymptotic stability and instability are the same as well.

The question of stability–instability is decided essentially by the sign of 1 − d.
For a diamagnetic or paramagnetic body d = 0, thus the condition of stability is
satisfied.
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M(1)

M(2)
Ba(1)

Ba(2)

Ba(-)

Ba(+)

Figure 57.1

57.3 Hysteresis

Let us examine the stability conditions of the previous paragraph for a Langevin–
Weiss body. Let us introduce the notation Θo := Θ(Vo, Ta, No) and let us recall
that if Ta ≥ Θo, then there is only one equilibrium magnetization; if Ta < Θo,
then there are two or three.

A simple calculation yields that

d = L′
(

π(Ba + λmo/Vo

kTa

)

3Θo

Ta
,

therefore, the sign of 1 − d equals the sign of

Ta

3Θo
− L′

(

π(Ba + λmo/Vo

kTa

)

.

Figure 55.2 shows the possible equilibrium magnetizations for given Ba. Ac-
cording to Paragraph 55.4 we see that the equilibria on the continuous line are
asymptotically stable, the equilibria on the dashed line are instable, and the lin-
earization method does not give information about the stability–instability of the
two equilibria corresponding to the circles.

Our result reflects the well-known phenomenon of hysteresis for Ta < Θo. Let
us consider a given Ba(1) to which the equilibrium magnetization M(1) corresponds
on the upper continuous line in Figure 57.1. Let the exterior field decrease to Ba(2);
then M(1) is not an equilibrium magnetization, so a process starts. Three equilibri-
um magnetizations correspond to Ba(2), the middle one is instable. The attraction
domain of M(2) is above the dashed line. Thus, the process starting from M(1)
tends to M(2). The same happens if the exterior field decreases until Ba(−). If
the exterior field becomes less than this value, then the equilibrium magnetization
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‘jumps down’ to the lower line, i.e. the process starting from a magnetization
on the upper continuous line tends to an equilibrium on the lower continuous
line. Similar statements are valid if we increase the exterior field corresponding to
equilibria on the lower continuous line. The new equilibrium magnetization remain
on the lower continuous line until the exterior remains less than Ba(+); if the
exterior field becomes larger than this value, then the equilibrium magnetization
‘jumps up’ to the upper continuous line.

57.4 Theory and experience

The properties of a Langevin–Weiss body reflect well the experimental fact: bod-
ies of certain materials (e.g. iron) can have magnetization without exterior field
(spontaneous magnetization) and exhibit a hysteresis under a determined temper-
ature (for higher temperaturethe hysteresis disappears). Materials not showing
hysteresis are characterized by Θ < 0.

The temperature Θ in which the spontaneous magnetization disappears is
called the Curie temperature.

The bodies above the Curie temperature are paramagnetic as it is well seen by
the formulae of 55.4. Of course, the Langevin–Weiss body draws only a qualita-
tively good picture of reality. The hysteresis curves in reality do not run vertically
up and down; moreover, the zero spontaneous magnetization is unstable here which
does not fit experience.

Three different behaviours can be distinguished below the Curie temperature:
ferromagnetic, ferrimagnetic and antiferromagnetic. The Langevin–Weiss
magnetization cannot give account of these behaviours.

57.5 Exercises

1. Treat the isobaric and isothermal processes of a magnetizable body with
fixed particle number in a given environment.

2. Formulate Exercise 1 in 52.5 for a magnetizable body and solve it.
3. Define the extended magnetizable body, give the dynamical equation, the

dissipation inequality for such a body in a given environment, and treat the pro-
cesses in a periodic exterior field.
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58 Simple materials

1. Formal symbols

e specific internal energy,
v specific volume,
T temperature,
P pressure,
µ chemical potential,

s :=
e+ Pv − µ

T
specific entropy,

h := e+ Pv = µ+ Ts specific enthalphy,
f := e− Ts = µ− Pv specific free energy.

Entropic property:

Tds = de+ Pdv.

Gibbs–Duhem relation (equivalent to the entropic property):

dµ = vdP − sdT.

2. Notations of functions

variables variables variables
(v, T ) (e, v) (T, P )

specific internal energy e e e

specific volume v v v

temperature T T T
pressure P P P
chemical potential u µ µ
specific entropy s s s

specific enthalpy h h h

specific free energy f f f

3. Relations among partial derivatives with respect to the variables (v, T ) and
the variables (e, v):
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∂T

∂e
=

1
∂e
∂T

•, ∂T

∂v
= −

∂e
∂v
∂e
∂T

•,

∂P

∂e
=

∂P
∂T
∂e
∂T

•, ∂P

∂v
=

(

∂P
∂v

− ∂P
∂T

∂e
∂v
∂e
∂T

)

•,

∂e

∂T
=

1
∂T
∂e

•, ∂e

∂v
= −

∂T
∂v
∂T
∂e

•,

∂P
∂T

=
∂P
∂e
∂T
∂e

•, ∂P
∂v

=

(

∂P

∂v
− ∂P

∂e

∂T
∂v
∂T
∂e

)

•

4. Relations among partial derivatives with respect to the variables (v, T ) and
the variables (T, P ) (in a phase):

∂v

∂P
=

1
∂P
∂v

•, ∂v

∂T
= −

∂P
∂T
∂P
∂v

•,

∂e

∂P
=

∂e
∂v
∂P
∂v

•, ∂e

∂T
=

(

∂e

∂T
− ∂e

∂v

∂P
∂T
∂P
∂v

)

•,

∂P
∂v

=
1

∂v
∂P

•, ∂P
∂T

= −
∂v
∂T
∂v
∂P

•,

∂e

∂v
=

∂e
∂P
∂v
∂P

•, ∂e

∂T
=

(

∂e

∂T
− ∂e

∂P

∂v
∂T
∂v
∂P

)

• .

5. Conditions of intrinsic stability:
– in the variables (v, T ):

∂e

∂T
> 0,

∂P
∂v

< 0;

– in the variables (e, v):

∂T

∂e
> 0,

∂P

∂v

∂T

∂e
− ∂P

∂e

∂T

∂v
= detD(T,P) < 0.

6. Entropic property
– in the variables (v, T ):

T
∂s

∂T
=

∂e

∂T
, T

∂s

∂v
=
∂e

∂v
+ P;

– in the variables (e, v):

∂s

∂e
=

1

T
,

∂s

∂v
=

P

T
.
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The Gibbs–Duhem relation (equivalent to the entropic property):
– in the variables (v, T ):

∂u

∂v
= v

∂P
∂v

,
∂u

∂T
= −s + v

∂P
∂T

;

– in the variables (T, P ) (in a phase):

∂µ

∂T
= −s,

∂µ

∂P
= v .

7. Necessary condition for entropic property if entropy is twice differentiable:
– in the variables (v, T ):

T
∂P
∂T

=
∂e

∂v
+ P;

– in the variables (e, v):

∂T

∂v
= P

∂T

∂e
− T

∂P

∂e
.

8. The second derivative of specific entropy in the variables (e, v) for an entropic
material:

D
2s = − 1

T2





∂T
∂e

∂T
∂v

P ∂T
∂e − T ∂P

∂e P ∂T
∂v − T ∂P

∂v



 .

This implies that

detD2s = − 1

T3
detD(T,P) > 0.

9. Thermal expansion property:
(

∂e

∂v
+ P

)

∂P
∂T

≥ 0.

10. Specific heats:

cv =
∂e

∂T
, cp = cv +

(

∂e

∂v
+ P

) ∂P
∂T

− ∂P
∂v

= cv + T

(

∂P
∂T

)2

− ∂P
∂v

;

the third equality holds for entropic material.
11. Noteworthy relations among certain partial derivatives if the material is

entropic:
– in the variables (v, T ):

∂f

∂v
= −P, ∂f

∂T
= −s,

e = f − T
∂f

∂T
;

– in the variables (T, P ) (in a phase):

∂h(T, P )

∂T
= cp(T, P ),

h = µ− ∂µ

∂T
.



364 Tables

59 Simple bodies

1. Formal symbols:

N particle number,
E = Ne (entire) internal energy,
V = Nv (entire) volume,
S := Ns = E+P V −µN

T (entire) entropy,
H := Nh = E + PV = µN + TS (entire) enthalpy,
F := Nf = E − TS = µN − PV (entire) free energy.

Entropic property:

TdS = dE + PdV − µdN.

Gibbs–Duhem relation (equivalent to the entropic property):

Ndµ = V dP − SdT.

2. Notations of functions (the exclamation mark calls attention that the same
letter denotes two different – but strongly related – functions):

– in the variables (V, T,N):

E internal energy E(V, T,N) = Ne(V/N, T )
P pressure P(V, T,N) = P(V/N, T ) (!)
u chemical potential u(V, T,N) = u(V/N, T ) (!)
S entropy S(V, T,N) = Ns(V/N, T )
H enthalpy H(V, T,N) = Nh(V/N, T )
F free energy F(V, T,N) = N f(V/N, T )

– in the variables (E, V,N):

T temperature T(E, V,N) = T(E/N, V/N) (!)
P pressure P(E, V,N) = P(E/N, V/N) (!)
µ chemical potential µ(E, V,N) = µ(E/N, V/N) (!)
S entropy S(E, V,N) = Ns(E/N, V/N)
H enthalpy H(E, V,N) = Nh(E/N, V/N)
F free energy F(E, V,N) = N f(E/N, V/N)

3. Partial derivatives in the variables (V, T,N) (ambiguous notation: the vari-
ables (V, T,N) on the left-hand side and the variables (v, T ) and N on the right-
hand side):

∂P
∂V

=
1

N

∂P
∂v

,
∂P
∂N

=
1

N

(

−v ∂P
∂v

)

,

and similar equalities for u, too;

∂E
∂V

=
∂e

∂v
,

∂E
∂T

= N
∂e

∂T
,

∂E
∂N

= e− v
∂e

∂v
,
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and similar equalities for S, F and H.
If the body is entropic:

T
∂S
∂V

=
∂E
∂V

+ P, T
∂S
∂T

=
∂E
∂T

, T
∂S
∂N

=
∂E
∂N

− u,

∂F
∂V

= −P, ∂F
∂T

= −S, ∂F
∂N

= u,

E = F − T
∂F
∂T

.

4. Partial derivatives in the variables (E, V,N) (ambiguous notation: the vari-
ables (E, V,N) on the left-hand side and the variables (e, v) and N on the right-
hand side):

∂T

∂E
=

1

N

∂T

∂e
,

∂T

∂V
=

1

N

∂T

∂v
,

∂T

∂N
=

1

N

(

−e∂T

∂e
− v

∂T

∂v

)

,

and similar equalities for P and µ, too;

∂S

∂E
=
∂s

∂e
,

∂S

∂V
=
∂s

∂v
,

∂S

∂N
= s − e

∂s

∂e
− v

∂s

∂v
,

and similar equalities for H and F, too.
If the body is entropic:

∂S

∂E
=

1

T
,

∂S

∂V
=

P

T
,

∂S

∂N
= − µ

T
.

5. The second derivative of the entropy in the variables (E, V,N) for an entropic
body:

D
2S = − 1

T2













∂T
∂E

∂T
∂V

∂T
∂N

P ∂T
∂E − T ∂P

∂E P ∂T
∂V − T ∂P

∂V P ∂T
∂N − T ∂P

∂N

−µ ∂T
∂E + T ∂µ

∂E −µ ∂T
∂V + T ∂µ

∂V −µ ∂T
∂N + T ∂µ

∂N













.

60 Composite materials (mixtures, solutions)

1. Formal symbols:

e specific internal energy,
v specific volume,
c = (c1, . . . , cn) concentrations,
T temperature,
P pressure,
µα chemical potential of the α-th component in the mixture,
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g :=
m
∑

α=1
µαcα specific Gibbs function,

s :=
e+ Pv − g

T
specific entropy,

h := e+ Pv = g + Ts specific enthalpy,
f := e− Ts = g − Pv specific free energy.

Entropic property:

Tds = de+ Pdv −
m
∑

α=1

µa
dcα.

The Gibbs–Duhem relation (equivalent to the entropic property):

m
∑

α=1

cα
dµα = −sdT + vdP,

or

dg = −sdT + vdP +

m
∑

α=1

µα
dcα.

2. Notation of functions in the variabales (v, T, c), in the variables (e, v, c)
and in the variabales (T, P, c) is the same as for simple materials, i.e. e, T, vZ

etc.; furthermore, the notation of the Gibbs function (in the given order of the
variables):

g, g, g .

3. Entropic property
– in the variables (v, T, c):

T
∂s

∂T
=

∂e

∂T
, T

∂s

∂v
=
∂e

∂v
+ P, T

∂s

∂c
=
∂e

∂c
− [u1, . . . , um];

– in the variables (e, v, c):

∂s

∂e
=

1

T
,

∂s

∂v
=

P

T
,

∂s

∂c
= − [µ1, . . . ,µm]

T
.

The Gibbs–Duhem relation (equivalent to the entropic property):
– in the variables (v, T, c):

m
∑

α=1

cα ∂uα

∂v
= v

∂P
∂v

,

m
∑

α=1

cα ∂uα

∂T
= −s + v

∂P
∂T

,

or
∂g

∂v
= v

∂P
∂v

,
∂g

∂T
= −s + v

∂P
∂T

,
∂g

∂c
= v

∂P
∂c

+ [u1, . . . , um];
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– in the variables (T, P, c) (locally in a phase):

m
∑

α=1

cα ∂µ
α

∂T
= −s,

m
∑

α=1

cα ∂µ
α

∂P
= v ,

or
∂g

∂T
= −s,

∂g

∂P
= v ,

∂g

∂c
= [µ1, . . . , µn].

4. Noteworthy relations among certain partial derivatives if the mixture is
entropic:

– in the variables (v, T, c):

∂f

∂v
= −P, ∂f

∂T
= −s,

∂f

∂c
= [u1, . . . , un],

e = f − T
∂f

∂T
;

– in the variables (T, P, c) (locally in a phase):

∂h(T, P, c)

∂T
= cp(T, P, c),

h = g − ∂g

∂T
.

61 Composite bodies

1. Formal symbols:

Nα particle numberof the α-th component,

N :=
n
∑

α=1
Nα entire particle number, Nα = Ncα,

E = Ne (entire) internal energy,
V = Nv (entire) volume,

G := Ng =
m
∑

α=1
µαNα (entire) Gibbs function,

S := Ns =
E + PV −G

T
(entire) entropy,

H := Nh = E + PV = G+ TS (entire) enthalpy,
F := Nf = E − TS = G− PV (entire) free energy.

Entropic property:

TdS = dE + PdV −
m
∑

α=1

µα
dNα.

The Gibbs–Duhem relation (equivalent to the entropic property):
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m
∑

α=1

Nα
dµα = −SdT + V dP,

or

dG = −SdT + V dP +

m
∑

α=1

µα
dNα.

2. Notation of functions, N := (N1, . . . , Nm) (the exclamation mark calls
attention that the same letter denotes two different – but strongly related – func-
tions):

– in the variables (V, T,N):

E internal energy E(V, T,N) = Ne(V/N, T,N1/N, . . . , Nm/N)
P pressure P(V, T,N) = P(V/N, T,N1/N, . . . , Nm/N) (!)
uα chemical potential of

the α-th component uα(V, T,N) = uα(V/N, T,N1/N, . . . , Nm/N) (!)
G Gibbs function G(V, T,N) = Ng(V/N, T,N1/N, . . . , Nm/N)
S entropy S(V, T,N) = Ns(V/N, T,N1/N, . . . , Nm/N)
H enthalpy H(V, T,N) = Nh(V/N, T,N1/N, . . . , Nm/N)
F free energy F(V, T,N) = N f(V/N, T,N1/N, . . . , Nm/N)

– in the variables (E, V,N):

T temperature T(E, V,N) = T(E/N, V/N,N1/N, . . . , Nm/N) (!)
P pressure P(E, V,N) = P(E/N, V/N,N1/N, . . . , Nm/N) (!)
µα chemical potential of

the α-th component µα(E, V,N) = µα(E/N, V/N,N1/N, . . . , Nm/N) (!)
G Gibbs function G(E, V,N) = Ng(E/N, V/N,N1/N, . . . , Nm/N)
S entropy S(E, V,N) = Ns(E/N, V/N,N1/N, . . . , Nm/N)
H enthalpy H(E, V,N) = Nh(E/N, V/N,N1/N, . . . , Nm/N)
F free energy F(E, V,N) = N f(E/N, V/N,N1/N, . . . , Nm/N)

– in the variables (T, P, V,N) (locally in a phase):

µα chemical potential of
the α-th component µα(T, P,N) = µα(T, P,N1/N, . . . , Nm/N) (!)

G Gibbs function G(T, P,N) = Ng(T, P,N1/N, . . . , Nm/N)
H enthalpy H (T, P,N) = Nh(T, P,N1/N, . . . , Nm/N)

3. Partial derivatives in the variables (V, T,N) with resepcet to V and T are
the same as for simple bodies, furthermore, if the first m − 1 concentrations are
taken to be independent,

∂P
∂Nβ

=
1

N

(

−v ∂P
∂v

+
∂P
∂cβ

−
m−1
∑

γ=1

cγ ∂P
∂cγ

)

(β = 1, . . . ,m− 1),
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∂P
∂Nm

=
1

N

(

−v ∂P
∂v

−
m−1
∑

γ=1

cγ ∂P
∂cγ

)

,

and similar equalities for uα, too;

∂E
∂Nβ

= e − v
∂e

∂v
+

∂e

∂cβ
−

m−1
∑

γ=1

cγ ∂e

∂cγ
(β = 1, . . . ,m− 1),

∂E
∂Nm

= e − v
∂e

∂v
−

m−1
∑

γ=1

cγ ∂e

∂cγ
,

and similar euqalities for S, F and H, too.
If the body is entropic:

T
∂S
∂V

=
∂E
∂V

+ P, T
∂S
∂T

=
∂E
∂T

, T
∂S
∂Nα

=
∂E
∂Nα

− uα (α = 1, . . . ,m),

∂F
∂V

= −P, ∂F
∂T

= −S, ∂F
∂Nα

= uα (α = 1, . . . ,m),

E = F − T
∂F
∂T

.

4. Partial derivatives in the variables (E, V,N) with respect to E and V are
the same as for simple materials, furthermore, if the first m− 1 concentrations are
taken to be independent,

∂T

∂Nβ
=

1

N

(

−e∂T

∂e
− v

∂T

∂v
+
∂T

∂cβ
−

m−1
∑

γ=1

cγ ∂T

∂cγ

)

(β = 1, . . . ,m− 1),

∂T

∂Nm
=

1

N

(

−e∂T

∂e
− v

∂T

∂v
−

m−1
∑

γ=1

cγ ∂T

∂cγ

)

,

and similar equalitries for P and µα, too,

∂S

∂Nβ
= s − e

∂s

∂e
− v

∂s

∂v
+

∂s

∂cβ
−

m−1
∑

γ=1

cγ ∂s

∂cγ
(β = 1, . . . ,m− 1),

∂S

∂Nm
= s − v

∂s

∂e
− v

∂s

∂v
−

m−1
∑

γ=1

cγ ∂s

∂cγ
,

and similar equalities for H and F.
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If the body is entropic:

∂S

∂E
=

1

T
,

∂S

∂V
=

P

T
,

∂S

∂Nα
= −µα

T
(α = 1, . . . ,m).

5. Some important relations in the variables (T, P,N):

∂G

∂T
= −S ,

∂G

∂P
= V ,

∂G

∂Nα
= µα (α = 1, . . . ,m),

H = G − T
∂G

∂T
,

∂H (T, P,N1 . . . , Nm)

∂T
= Ncp(T, P,N).



Appendix

0 Equalities and equations

Serious misunderstandings can arise from the fact that equalities and equations,
two different objects, denoted by similar symbols, are frequently confused.

First olf all, let us fix some elementary notations. Let A and B two sets; then
f : A B denotes a function whose domain, Domf is a subset of A and its range,
Ranf is a subset of B; if the domain of f equals A, we write f : A → B.

0.1 Let us consider two functions, f : A B and g : A B. The equality

g = f

means that we assert that the two functions are equal, i.e. Domg = Domf and
g(x) = f(x) for all x in the common domain. One frequently writes

g(x) = f(x)

for expressing this equality.
For example,

sin 2x = 2 sin x cosx

and
(x− 2)(x− 3) = x2 − 5x+ 6

are such equalities.
0.2 Let us consider two functions, f : A B and g : A B. The equation

(x ∈ A)? g(x) = f(x) (∗)

means that we define the subset of A consisting of the elements, belonging to
both Domf and Domg, at which the two (different) functions g and f take the
same values. In other words, the above equation means the set

{x ∈ A | g(x) = f(x)}.

One frequently writes simply

g(x) = f(x)

for expressing this equation, so eqality and equation appear in the same form.
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A solution of the above equation is just an element of the set in question.
There is no solution if the set is void and the solution is unique if the set is a
singleton.

For example,
(x ∈ R)? sin 2x = sin x+ cosx

and
(x ∈ R)? (x− 2)(x− 3) = 2x2 + 3

are such equations.
It may happen that the sets A and B consist of functions, thus f and g are

functions of functions. For instance, let both A and B be the set of continuously
differentiable functions defined on some interval of the real line and having values in
a finite dimensional vector space X; so, if x ∈ A, then it is a function x : R  X
whose domain is an interval. Let R : X  X be a continuously differentiable
function. Denoting the differentiation by a dot and putting g(x) := ẋ, f(x) :=
R ◦ x, the equation (∗) gives a usual ordinary differential equation, for which we
will use the notation

(x : R  X)? ẋ = R(x).

0.3 In the same sense, we must distinguish between inequalities and inequa-
tions for functions having real values.

The inequality
g < f

meanS that the two functions have the same domain, Domg = Domf , and g(x) <
f(x) for all x in the common domain.

The inequation
(x ∈ A)? g(x) < f(x)

means that we define the subset of A consisting of the elements, belonging to both
Domf and Domg, at which the the values of g are less than the values of f .

0.4. Lastly, we mention the defining equality := which means that an object –
a set, a function etc. – arising in the text in a complicated or compound form and
put on the side of = will be denoted in the sequel by the simpler symbol appearing
on the side of :. For example,

s(x) :=
sin x+ x2

x2 + 3
.

1 Vector spaces and linear maps

1.1 The notions and elementary results regarding vector spaces and linear maps
are supposed to be known. All the vector spaces in the following will be real and
finite dimensional. The set of linear maps X → Y is denoted by Lin(X,Y ).

If K is a linear subspace of the vector space X, then its translations, the sets
of the form x+K = {x+m | m ∈ K} (x ∈ X) are called affine subspaces of X
over K.
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1.2 The dual of the vector space X is

X∗ := Lin(X,R).

If p ∈ X∗ and x ∈ X, now we write px = xp for the value of p at x.
A linear map A : X → X∗ is symmetric, if yAx = xAy for all x, y ∈ X; it is
– positive (negative) definite if xAx > 0 (< 0) for all 0 6= x ∈ X,
– positive (negative) semidefinite if xAx ≥ 0 (≤ 0) for all x ∈ X.
We can define similarly that a linear map X∗ → X is symmetric, positive

definite, etc.
On the contrary, the notion of symmetricity, positive definiteness etc. are not

meaningful for a linear map X → X or X∗ → X∗ unless an inner product is given
on X.

If an inner product <,> is given on X, then a linear map L : X → X is
symmetric with respect to the inner product if < y,Lx >=< Ly, x >=< x,Ly >
for all x, y ∈ X, and it is positive definite with respect to the inner product if
< x,Lx > > 0 for all 0 6= x ∈ X.

1.3 The real number λ is the eigenvalue of the linear map L : X → X if there
is a non-zero vector x ∈ X such that Lx = λx.

The linear subspace {x ∈ X | Lx = λx} is called the eigenspace of L corre-
sponding to λ.

The geometric multiplicity of an eigenvalue is the dimension of the corre-
sponding eigenspace.

λ is an eigenvalue of L if and only if det(L − λI) = 0 where I is the identity
map. The algebraic multiplicity of λ is the multiplicity of the root λ of the
polynomial ξ 7→ det(L− ξI).

The geometric multiplicity is less or equal to the algebraic multiplicity.
We can define similary the eigenvalues, etc. of a linear map X∗ → X∗.
On the contrary, the notion of eigenvalue is not meaningful for a linear map

X → X∗ or X∗ → X.

1.4

Proposition Let
(i) B ∈ Lin(X∗,X) be symmetric and positive definite,

(ii) F ∈ Lin(X,X∗) be symmetric and negative semidefinite.
Then BF ∈ Lin(X,X) has the following properties:

– the algebraic and geometric multiplicities of all eigenvalues are equal,
– the non-zero eigenvalues are negative.

Proof Now B−1 ∈ Lin(X,X∗) is symmetric and positive definite, too. As a
consequence,

(x, y) 7→< x, y >:= (B−1x)y

is an inner product on X. BF is symmetric and negative semidefinite with respect
to this inner product because

< x,BFy >= (B−1x)(BFy) = xFy = (Fx)y =< BFx, y >;
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and

< x,BFx >= xFx ≤ 0.

Then well-known results regarding linear operators in Euclidean spaces (vector
spaces with inner product) imply our assertions.

1.5 Let K be a linear subspace of X and let i : K → X be the canonical
(identity) embedding. Then i∗ : X∗ → K∗ is the linear surjection defined by
i∗p = pi := p ◦ i = p|K .

The annullator of K,

Ko := {p ∈ X∗ | i∗p = 0}

is a linear subspace in X∗ and dimKo = dimX − dimK.

In the following three propositions BK : K∗ → K is a given linear map and
B := iBKi

∗ : X∗ → X.

Proposition 1 KerBK = {0} if and only if KerB = Ko.

Proof KerBK = {0} is equivalent to BKi
∗p = 0 if and only if i∗p = 0, i.e. p ∈ Ko.

Because i is injective the kernel of BKi
∗ equals the kernel of B.

Proposition 2 BK is symmetric if and only if if B is symmetric.

Proof If BK is symmetric, then

qBp = qiBKi
∗p = (i∗q)BK(i∗p) = (i∗p)BK(i∗q) = pBq

for all p, q ∈ X∗. If B is symmetric, then – beacuse for all h, k ∈ K∗ there are
p, q ∈ X∗ so that h = i∗p, k = i∗q –,

kBKh = i∗qBKi
∗p = qBp = pBq = hBKk.

Proposition 3 BK is positive semidefinite if and only if B is positive semidefinite.

Proof If B is positive semidefinite, then – because for all h ∈ K∗ there is a p ∈ X∗

such that h = i∗p –, hBKh = i∗pBKi
∗p = pBp ≥ 0. If BK is positive semidefinite,

then pBp = piBKi
∗p = (i∗p)BK(i∗p) ≥ 0 for all p ∈ X∗.

In the following two propositons B : X∗ → X is a given linear map.

Proposition 4 If RanB ⊂ K and B is symmetric, then there is a linear map
BK : K∗ → K such that iBKi

∗ = B.

Proof The linear map BK is well defined by BKi
∗p := Bp (p ∈ K) because if

i∗p1 = i∗p2, then (p1−p2)B = 0 and the the symmetricity ofB impliesB(p1−p2) =
0 i.e. BKi

∗p1 = BKi
∗p2.

Proposition 5 There is a linear map BK : K∗ → K such that iBKi
∗ = B if and

only if RanB ⊂ K and Ko ⊂ KerB.
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Proof The conditions are evidently necessary. If the conditons are satisfied, then
BKi

∗p := Bp (p ∈ K∗) is a good definition because i∗p = 0 implies Bp = 0.
1.6 Let m,n ∈ N and I1, . . . , Im, J1, . . . , Jn one-dimensional real vector spaces.

Then a linear map L :
m

X
i=1

Ii →
n

X
k=1

Jk can be represented by a matrix

{Lki ∈ Jk ⊗ I∗
i | k = 1, . . . n, i = 1, . . . ,m)

according to the usual rules of matrix multiplication.
In particular, if m = n, then L is square matrix. Its symmetricity makes sense

only if Jk = I∗
k for all k = 1, . . . , n (or, equivalently, Ii = J∗

i for all i = 1, . . . , n).
Then the definiteness of such a matrix is determined by the sign of its minors in
the known way.

2 Measure lines

The values of a physical quantity constitute a measure line, an oriented one-
dimensional real vector space, i.e. every value is a unique multiple of an arbitrarily
chosen non-zero element and the positive values are distinguished. For instance,
the the measure line of distances is the multiple of ‘meter’ and the positive mul-
tiples have a physical meaning.

Thus if D is a measure line, then for all 0 < m ∈ D we have D = {αm | α ∈ R}.
The element m represents the unit of measurement. We find suitable to refer to a
measure line by the corresponding unit, i.e. we shall write (m) instead of D; the
positive and non-negative values will be denoted by (m)+ and (m)+

0 , respectively;
thus, (m)+ := {αm | α > 0}.

A precise meaning can be given for the product of measure lines, denoted by
⊗, which obeys the usual rules; e.g. (m) ⊗ (kg) = (m kg).

The dual of a measure line is its “reciprocal"; e.g. (m)∗ =
(

1
m

)

. An element
of a measure line, multiplied by an element of the dual, results in a real number.
The division by a measure line is defined by the multiplication by the dual, e.g.

(m)

(s)
:= (m) ⊗ (1/s) =

(m

s

)

.

3 Inverse function theorem and implicit function
theorem

3.1 Let X and Y be finite dimensional vector spaces. The function f : X  Y is
differentiable at the interior point a of its domain if there is a linear map Df(a) :
X → Y (the derivative of f at a) such that

lim
x→a

f(x) − f(a) − Df(a)(x− a)

|x− a| = 0,

where | | is an arbitrary norm on X.
The derivative of f is the function X  Lin(X,Y ), a 7→ Df(a). If this function

is continuous, f is called continuously differentiable. If Df is differentiable, f
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is called twice differentiable. The second derivative of f at a is a linear map
D

2f(a) : X → Lin(X,Y ) which is considered in the ususal way as a bilinear map
X ×X → Y .

Let X1, X2 and Y be finite dimensional vector spaces. The function f : X1 ×
X2  Y is partially differentiable with respect to the first variable at the interior
point of its domain (a1, a2) if the function X1  Y , x1 7→ f(x1, a2) is differentiable
at a1; this partial derivative is denoted by D1f(a1, a2) or ∂1f(a1, a2). The partial
derivative with respect to the second (third, fourth, etc. if there are more variables)
variable is defined similarly.

3.2

Proposition (Inverse function theorem) Let X and Y be vector spaces having
equal finite dimension and f : V  U a continuously differentiable function. If
a ∈ Domf and Df(a) is injective, then a has a neighbourhood G such that f |G is
injective, f [G] is open and (f |G)−1 is continuously differentiable.

Note that Df(a) is bijective because the vector spaces have equal dimension.

Proposition (Implicit function theorem) Let X1, X2 and Y be finite dimensional
vector spaces, dimX1 = dimY and f : X1 ×X2  Y a continuously differentiable
function. If (a1, a2) ∈ Domf and D1f(a1, a2) is injective, then a2 has a neigh-
bourhood G ⊂ X2 and there is a uniquely determined continuously differentiable
function ϕ : G → X1 such that Graphϕ ⊂ Domf , ϕ(a2) = a1 and

f(ϕ(x2), x2) = f(a1, a2) (x2 ∈ G);

furthermore,
Dϕ(x2) = − (D1f(ϕ(x2), x2))

−1
D2f(ϕ(x2), x2).

The implicit function theorem says that the given conditions allow us to express
x1 as function of x2 (locally, in a neighbourhood of (a1, a2)) from the equation
f(x1, x2) = f(a1, a2).

3.3 For the sake of thermodyanamical applications, we formulate a special form
of the above theorems.

Let m,n ∈ N and let I1, . . . , Im and J1, . . . , Jn be one dimensional vector
spaces.

If f = (f1, . . . , fn) :
m

X
i=1

Ii 

n

X
k=1

Jk is differentiable at a = (a1, . . . , am), then

the matrix of the linear map Df(a) :
m

X
i=1

Ii →
n

X
k=1

Jk is

{∂ifk(a1, . . . , am) | k = 1, . . . n, i = 1, . . . ,m} .

In applications of the inverse function theorem m = n and the injectivity of
Df(a) is equalent to the fact that the determinant of the matrix

{∂ifk(a1, . . . , an) | k, i = 1, . . . , n}

is not zero.
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In applications of the implicit function theorem m > n and in view of the
identification

m

X
i=1

Ik ≡
(

n

X
i=1

Ik

)

×
(

m

X
i=n+1

Ii

)

,

the partial derivative of f with respect to the first n variables at (a1, . . . , am) is

the linear map
n

X
i=1

Ii →
n

X
k=1

Jk, whose matrix is

{∂ifk(a1, . . . , am) | k = 1, . . . , n, i = 1, . . . , n} . (∗)

Similarly, the partial derivative of f with respect to the last m − n variables at

the given point is the linear map
m

X
i=n+1

Ii →
n

X
k=1

Jk whose matrix is

{∂ifk(x1, x2) | k = 1, . . . , n, i = n+ 1, . . . ,m} .

The first n variables can be expessed as a function of the last m− n variables
if the determinant of the matrix (∗) is not zero.

Of course – by rearranging the variables – we can formulate a similar assertion
for arbitrary n variables.

3.4 Now we consider a special form of the implicit function theorem in order
to introduce a convention about notations. For the sake of simplicity, we take real
functions. Let R

3
 R, (x, y, z) 7→ f(x, y, z) be a continuously differentiable

function and let us suppose that ∂3f(x0, y0, z0) 6= 0. Then there is a uniquely
determined continuously differentiable function z : R

2
 R defined in a neigh-

bourhood of (x0, y0) such that z(x0, y0) = z0 and f(x, y, z(x, y)) = f(x0, y0, z0) for
all (x, y) in the domain of z.

The partial derivatives of z satisfy

∂iz(x, y) = − ∂if(x, y, z(x, y))

∂3f(x, y, z(x, y))
(i = 1, 2)

As usual, these relations are written in the form

∂z

∂x
= −

∂f
∂x
∂f
∂z

,
∂z

∂y
= −

∂f
∂y

∂f
∂z

.

This is, however, rather misleading becasue the function on the right-hand
side is defined in R

3 whereas the function on the left-hand side is defined in R
2.

Correctly the third variable on the right-hand side should be replaced with the
implicit function z.

We shall use a similar notation, supplemented by the symbol • which reminds
us of the fact that the right-hand side must be composed by the graph function
(x, y) 7→ (x, y, z(x, y)):

∂z

∂x
= −

∂f
∂x
∂f
∂z

• ∂z

∂y
= −

∂f
∂y

∂f
∂z

• .
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4 Legendre transformation

LetX be a finite dimensional real vector space and Φ : X  R a twice continuously
differentiable function. Then DΦ : X  X∗ is continuously differentiable. Let us
suppose that the linear map D

2Φ(x) : X → X∗ is injective (consequently bijective)
for all x ∈ Domf . Then the function

X ×X∗
 X∗, (x, p) 7→ DΦ(x) − p

is continuously differentiable, its partial derivative with respect to the first variable,
D2Φ is everywhere injective, thus the implicit relation

DΦ(x) = p

allows us to express x locally as a function of p; such a function x̂ : X∗
 X is

continuously differentiable and

Dx̂(p) =
(

DΦ(x̂(p)
)−1

. (∗)

Definition The Legendre transform of Φ is

Ψ : X∗
 R, p 7→ Φ(x̂(p)) − px̂(p).

Using well-known simple results of the differential calculus, we can easily prove:

Proposition Ψ is twice continuously differentiable and

DΨ = −x̂ (∗∗)

It is worth noting that equalities (∗) and (∗∗) imply: if D
2Φ(x̂(p)) is negative

definite, then D
2Ψ(p) is positive definite.

Let us repeat the above formulae in the usual loose way: we leave the variable
x for its ‘conjugate’ variable

p =
∂Φ

∂x

meanwhile the function Φ is replaced with the function Ψ = Φ − px for which

−x =
∂Ψ

∂p

holds.

5 Submanifolds

Let n,m, k ∈ N, m ≤ n. A subset U of the n dimensional vector space X is called
an m-dimensional Ck-submanifold if for every point x of U there is a (local)
parameterization p : Rm

 X such that
– p is injective and p−1 is continuous,
– p is k times continuously differentiable (thus also p is continuous),
– Dp(ξ) is injective for all ξ ∈ Domp,
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– x ∈ Ranp.
A submanifold will mean a C1-submanifold.
The m-dimensional linear subspace

Tx(U) := RanDp(p−1(x))

is called the tangent space of U at x. It can be shown that the tangent space is
independent of the parameterization.

If F : X  R
n−m is k times continuously differentiable, then for all a ∈ RanF

Ua := {x ∈ DomF | F (x) = a, DF (x) is surjective}

is a Ck-submanifold and
Tx(Ua) = KerDF (x).

6 Differential equations

6.1 Let X be a finite dimensional vector space, R : X → X a continuously
differentiable function.

The notions and elementary results regarding the differential equation

(x : R  X)? ẋ = R(x)

are supposed to be known.

6.2 Let F : X × R  X and φ, ψ : X × R  R be continuously differentiable
functions such that

∂φ(x, ξ)

∂ξ
< 0.

If (a, α) is in the domain of the above functions and φ(a, α) = 0, then the
implicit function theorem assures the existence of a continuously differentiable
function ξ̂ : X  R such that φ(x, ξ̂(x)) = 0.

Let us consider the differential equations
(

(x, ξ) : R  X × R
)

? ẋ =F (x, ξ),

σξ̇ =φ(x, ξ) + σψ(x, ξ)
(1)

for σ > 0 and
(x : R  X)? ẋ = F (x, ξ̂(x)). (2)

Let us suppose that there are positive numbers σ0 and T so that for all 0 <
σ < σ0 there are solutions

– (rσ, ρσ) : [0, T ] → X × R of the differential equation (1) with the initial
condition rσ(0) = a, ρσ(0) = α,

– r : [0, T ] → X of the differential equation (2) with the initial condition
r(0) = a.

Then
lim
σ→0

rσ(t) = r(t), lim
σ→0

ρσ(t) = ξ̂(r(t))

for all t ∈ [0, T ].
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7 Stability theory

7.1 Let us consider the differential equation

(x : R  X)? ẋ = R(x) (∗)

where R : X  X is a continuously differentiable function.
xo ∈ DomR is called an equilibrium if R(xo) = 0. (In thermodynamics such

an element is called a standstill, equilibrium is a special type of standstill.)
A subset U of DomR is an invariant set of the differential equation if for all

solutions r Ranr ∩ U 6= ∅ implies Ranr ⊂ U .
Let U be an invariant set and xo ∈ U an equilibrium.
The equilibrium xo is stable in U if for all neighbourhood G of xo there is

another neighbourhood D such that every solution starting from D ∩ U runs in
G (in fact in G ∩ U because of the invariance of U), i.e. if r(t0) ∈ D ∩ U , then
r(t) ∈ G ∩ U for all t > t0.

The equilibrium xo is asymptotically stable in U if it is stable in U and xo

has a neighbourhood ∆ such that lim
t→∞

r(t) = xo for all solutions r starting from

∆ ∩ U .
A set E of equilibria in U is strictly asymptotically stable in U if all xo ∈ E
– is stable in U ,
– has a neighbourhood ∆ such that lim

t→∞
r(t) ∈ E for all solutions R starting

from ∆ ∩ U .
Of course, U = DomR is possible; then we do not say ‘in U ’.

7.2 The fundamental theorems of stability theory are the following.
Let L : X  R be a continuously differentiable function and let us introduce

the function
•
L := DL ·R : X  R,

called the derivative of L along the differential equation.
If r is a solution of the differential equation, then

(L ◦ r)̇ =
•
L ◦ r.

If xo is an equilibrium, then
•
L(xo) = 0.

Proposition 1 Let xo be an equilibrium of the differential equation (∗) in 7.1. If
there is a continuously differentiable real function L defined in a neighbourhood of
xo such that
– L has a strict local maximum at xo,

–
•
L has a (strict) local minimum at xo,

then xo is (asymptotically) stable.
If

– L has not a local maximum at xo,

–
•
L has a strict local minimum at xo,

then xo is instable.
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Such an L is called a Liapunov function for the (asymptotic) stability or insta-
bility of the equilibrium.

Proposition 2 Let R(x) = Ax where A : X → X is a linear map and Axo = 0.
(i) If the real part of every eigenvalue of A is negative, then xo is an asymp-

totically stable equilibrium.
(ii) If A has an eigenvalue with positive real part, then xo is an instable equi-

librium.
(iii) If the real part of every eigenvalue of A is non-positive, furthermore,
– the eigenvalues with zero real part have equal algebraic and geometric mul-

tiplicity, then xo is a stable equilibrium,
– there is an eigenvalue with zero real part whose algebraic multiplicity is not

equal to the geometric multiplicity, then xo is an instable equilibrium.
(iv) KerA is strictly asymptotically stable if and only if the zero eigenvalue of

A has equal algebraic and geometric multiplicity, all the other eigenvalues have
negative real part.

Proposition 3 Let xo be an equilibrium of the differential equation (∗) in 7.1. If
(i) all the eigenvalues of the linear map DR(xo) have negative real part, then

xo is asymptotically stable,
(ii) an eigenvalue of the linear map DR(xo) has positive real part, then xo is

instable.

Proposition 4 Let H := {xo ∈ DomR | R(xo) = 0} and let us suppose that
(i) there is a non-zero linear subspace V in X such that H = V ∩ DomR,

(ii) for all xo ∈ H
– KerDR(xo) = V ,
– the zero eigenvalue of DR(xo) has equal algebraic and geometric multiplicity,
– all the non-zero eigenvalues of DR(xo) have negative real part.
Then H is strictly asymptotically stable.

7.3 Let an u-dimensional submanifold U be an invariant set of the differential
equation (∗) in 7.1. If p : R

u
 X is a (local) parameterization of U , then

the restriction of the differential equation onto U (onto Ranp) is reduced to the
differential equation

(ξ : R  R
u)? ξ̇ = Dp(ξ)−1R(p(ξ)) (∗)

which means that ξ satisfies the above equation if and only if x = p ◦ ξ satisfies
the original equation.

Proposition 1 If U is an invariant submanifold of the differential equation and
there is a continuously differentiable function L : X  R defined in a neighbour-
hood of the equilibrium xo ∈ U and

(i) L has a strict local conditional maximum at xo with respect to U ,

(ii)
•
L has a (strict) local conditional minimum at xo with respect to U ,

then xo is (asymptotically) stable in U .
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Proof Recall that conditional extremum with respect to U means that the restric-
tion of the functions onto U has an extremum.

Let p be a parameterization of U in a neighbourhood of xo. It is evident that
ξo := p−1(xo) is an equilibrium of the reduced equation. Furthermore, Λ := L ◦ p
has a strict maximum at ξo.

Because DΛ = (DL ◦ p)Dp, the derivative of Λ along the reduced equation,

•
Λ = (DL ◦ p)(f ◦ p) =

•
L ◦ p

has a (strict) minimum at ξo.
Consequently, ξo is an (asymptotically) stable equilibrium of the reduced dif-

ferential equation which implies immediately that xo is (asymptotically) stable in
U .

Proposition 2 Let U be an invariant submanifold of the differential equation and
let E be the set of equilibria in U . Let us suppose that

(1) E is a submanifold,
(2) for all x ∈ E,

(i) the kernel of the linear map DR(x)|Tx(U) : Tx(U) → Tx(U) equals Tx(E),
(ii) the zero eigenvalue of DR(x)|Tx(U) has equal algebraic and geometric

multiplicity,
(iii) all the non-zero eigenvalues have negative real part.

Then E is strictly asymptotically stable in U .

Proof Let e and u be the dimension of E and U , respectively. There is a (local)
parameterization p : Re × R

u−e
 X of U such that p(·, 0) : Re

 X is a (local)
parameterization of E. Then

Ran
(

Dp(η, 0)|Re×{0}
)

= Tp(η,0)(E).

The set of equilibria of the reduced equation (∗) is

p−1(E) = (Re × {0}) ∩ Domp,

whose tangent space at (η, 0) equals

R
e × {0} = Dp(η, 0)−1[Tp(η,0)(E)].

The derivative of the right-hand side of the reduced equation at an equilibrium
(η, 0) is

D(η, 0) := Dp(η, 0)−1
DR(p(η, 0))Dp(η, 0).

Thus the spectral properties of D(η, 0) coincide with the spectral properties of
DR(p(η, 0)) (they have the same eigenvalues and corresponding multiplicities) and

KerD(η, 0) =
(

Dp(η, 0)
)−1

[KerDR(p(η, 0))] = R
e × {0};

consequently, the set of equilibria of the reduced differential equation is strictly
asymptotically stable according to Propoposition 4 in 7.2.
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8 Concentrations

8.1 Let m ∈ N. Then

Dm :=

{

(x1, . . . , xm) ∈ R
m

∣

∣

∣

∣

n
∑

α=1

xα = 0

}

is an m − 1 dimensional linear subspace. It is evident, that for arbitrary α =
1, . . . ,m, omitting the α-th component, we establish a linear bijection between
Dm and R

m−1 i.e. we give a coordinatization of Dm. For instance,

Km : Dm → R
m−1, (x1, . . . , xm) 7→ (x1, . . . , xm−1)

is such a coordinatization, whose inverse

Pm : Rm−1 → Dm, (x1, . . . , xm−1) 7→ (x1, . . . , xm−1,−
m−1
∑

α=1

xα)

is the corresponding parameterization.
Let i : Dm → R

m denote the canonical (identity) embedding; its transpose
i∗ : (Rm)∗ → D∗

m is a linear surjection. As usual, the dual of Rm is identified with
R

m. Let us introduce the notation

[p] := [p1, . . . , pm] := i∗(p1, . . . , pm) (p ∈ R
m).

Thus if p ∈ R
m and x ∈ Dm, then

[p]x =
n
∑

α=1

pαxα.

It is a simple fact that [p] = [q] if and only if there is an a ∈ R such that pα−qα = a
for all α = 1, . . . ,m.

The coordinatization Km determines a coordinatization of D∗
m, too:

(K−1
m )∗ : D∗

m → R
m−1, [p] 7→ (p1 − pm, . . . , pm−1 − pm).

8.2

Bm :=

{

(c1, . . . , cm) ∈ R
m

∣

∣

∣

∣

n
∑

α=1

cα = 1

}

is an m − 1 dimensional affine subspace over Dm. This affine subspace, too, can
be coordinatized by omitting an arbitrary component; for instance,

Km : Bm → R
m−1, (c1, . . . , cm) 7→ (c1, . . . , cm−1),

whose inverse

Pm : Rm−1 → Bm, (c1, . . . , cm−1) 7→ (c1, . . . , cm−1, 1 −
m−1
∑

α=1

cα)
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is the corresponding parameterization.
If f : Bm  R is a differentiable function, then Df(c) ∈ D∗

m. It is important:
the partial derivatives of f make no sense because c1, . . . , cm do not vary indepen-
dently in Bm. Thus Df cannot be obtained as the joint of its partial derivatives.
If Bm is coordinatized, then Df can be represented by partial derivatives but these
partial derivatives depend on the coordinatization. More closely, if Df(c) = [p],
then

∂f(Pm(c1, . . . , cm−1))

∂cα
= pα − pm (α = 1, . . . ,m− 1).

If φ : Bm  D∗
m is a differentiable function, then Dφ(c) ∈ Lin(Dm,D

∗
m), thus

its positive (negative) definiteness is a meaningful notion. If φ = [φ1, . . . , φm] and
Bm is coordinatized by the first m−1 components, then Dφ positive definite if and
only if the matrix

{

∂
(

(φβ − φm) ◦ Pm

)

∂cα

∣

∣

∣

∣

α, β = 1, . . . ,m− 1

}

is positive definite.

8.3 Let us consider

Cm := {c ∈ Bm | cα > 0, α = 1, . . . ,m}.

Cm is an open subset in Bm whose closure is

Cm = {c ∈ Bm | cα ≥ 0, α = 1, . . . , n}.

It is evident that if c is in Cm or Cm, then 0 < cα < 1 and 0 ≤ cα ≤ 1
(α = 1, . . . ,m), respectively.

Note that if c ∈ Cm and there is an α such that cα = 1, then the other
components of c are zero. We introduce the notation

(1)α := {the α-th component is 1, the other are 0}.

Let n < m. If c ∈ Cn, then (c1, . . . , cn, 0, . . . , 0) ∈ Cm, where, of course,
(m−n) zeros are between the parantheses. In this way we consider Cn as a subset
of Cm; consequently, the elements of Cn are accumulation points of Cm.

9 Something else

Proposition Let I be an open interval and fn : I → R (n ∈ N) injective contin-
uous functions so that f := lim

n
fn exists and is an injective continuous function.

If f−1
n is differentiable for all n and y ∈ Ranf has a neighbourhood K such that

L := sup
{∣

∣

∣

(

f−1
n

)′
(z)
∣

∣

∣ | z ∈ K, n ∈ N

}

< ∞,

then lim
n
f−1

n (y) = f−1(y).
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Proof The injective continuous functions on an interval are strictly monotone; let
us suppose that the functions in question are strictly monotone increasing.

Let y ∈ Ranf , i.e. y = f(x) for some x ∈ I. If x1, x2 ∈ I and x1 < x < x2,
then lim

n
fn(x1) = f(x1) < y < lim

n
fn(x2) = f(x2). Thus, there are an η > 0 and

an no ∈ N such that fn(x1) < y − η, y + η < fn(x2) for all n > no.
The continuous image of an interval is an interval, therefore the previous in-

equalities tell us that y (even a neighbourhood of y) is in the range of fn if n > no.
Furthermore, f = lim

n
fn implies that for every neighbourhood U of y there is

an nU ∈ N such that fn(f−1(y)) ∈ U for all n > nU .
Then if n > max{no, nK}, it follows from the mean value theorem that

∣

∣f−1
n (y) − f−1(y)

∣

∣ =
∣

∣f−1
n (y) − f−1

n (fn(f−1(y)))
∣

∣ ≤ L|y − fn(f−1(y))|

and the right-hand side tends to zero az n tends to infinity.
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