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PREFACE

1. Mathematics reached a crisis at the end of the last century when a number
of paradoxes came to light. Mathematicians surmounted the difficulties by
revealing the origin of the troubles: the obscure notions, the inexact definitions;
then the modern mathematical exactness was created and all the earlier notions
and results were reappraised. After this great work nowadays mathematics is
firmly based upon its exactness.

Theoretical physics—in quantum field theory—reached its own crisis in the
last decades. The reason of the troubles is the same. Earlier physics treated
common, visible and palpable phenomena, everything used to be obvious. On
the other hand, modern physics deals with phenomena of the microworld where
nothing is common, nothing is visible, nothing is obvious. Most of the notions
applied to the description of phenomena of the microworld are the old ones and
in the new framework they are necessarily confused.

It is quite evident that we have to follow a way similar to that followed by
mathematicians to create a firm theory based on mathematical exactness; having
mathematical exactness as a guiding principle, we must reappraise physics, its
most common, most visible and most palpable notions as well. Doing so we can
hope we shall be able to overcome the difficulties.

2. According to a new concept, mathematical physics should be a mathemat-
ical theory of the whole physics, a mathematical theory based on mathematical
exactness, a mathematical theory in which only mathematically defined notions
appear and in which all the notions used in physics are defined in a mathemati-
cally exact way.

What does the term ‘mathematically exact’ cover? Since physics is a nat-
ural science, its criterion of truth is experiment. As a straightforward conse-
quence, theoretical physics has become a mixture of mathematical notions and
mathematically not formulated ‘tacit agreements’. These agreements are organic
parts of theoretical physics; they originate from the period when physics used to
treat palpable phenomena like those in classical mechanics and electrodynam-
ics. Today’s physics deals with phenomena on very small or very large scales.
Unfortunately, since the education of physicists starts with the classical theories
which are left more or less as they were at the beginning of this century, the
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acquired style of thinking is the mixture mentioned above and this is applied
further on to describe phenomena in regions where nothing is obvious, resulting
in confusion and unclear thinking.

Mathematical exactness means that we formulate all the ‘tacit agreements’
in the language of mathematics starting at the very beginning, with the most
natural, most palpable notions. Following this method, we have a good chance
of making an important step forward in modern theoretical physics.

At first sight this seems to a physicist like creating unnecessary confusion
around obvious things. Such a feeling is quite natural; if one has never driven a
car before, the first few occasions are terrible. But after a while it becomes easy
and comfortable and much faster than walking on foot; it is worth spending a
part of our valuable time on learning to drive.

3. To build up such a form of mathematical physics, we must start with the
simplest, most common notions of physics; we cannot start with quantum field
theory but we hope that we can end up with it.

The fundamental notion of mathematical physics is that of models. Our aim
is to construct mathematical models for physical phenomena. The modelling
procedure has two sides of equal importance: the mathematical model and the
modelled part of physical reality. We shall sharply distinguish between these two
sides. Physical reality is independent of our mind, it is as it is. A mathematical
model depends on our mind, it is as it is constructed by us. The confusion of
physical reality and its models has led to grave misunderstandings in connection
with quantum mechanics.

A mathematical model is constructed as a result of experiments and theoreti-
cal considerations; conclusions based on the model are controlled by experiments.
The mathematical model is a mathematical structure which is expected to reflect
some properties of the modelled part of reality. It lies outside the model to an-
swer what and how it reflects and to decide in what sense it is good or bad. To
answer these questions, we have to go beyond the exact framework of the model.

4. The whole world is an indivisible unity. However, to treat physics, we are
forced by our limited biological, mental etc. capacity to divide it into parts in
theory.

Today’s physics suggests the arrangement of physical phenomena in three
groups; the corresponding three entities can be called Spacetime, Matter and
Field.

The phenomena of these three entities interact and determine each other
mutually. At present it is impossible to give a good description of the complex
situation in which everything interacts with everything, which can be illustrated
as follows:
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Spocetime

5. Fortunately, a great number of phenomena allows us to neglect some
aspects of the interactions. More precisely, we can construct a good theory if
we can replace interaction by action, i.e. we can work as if the phenomena of
two of the entities above were given, fixed, ‘stiff’ and only the phenomena of
the third one were ‘flexible’, unknown and looked for. The stiff phenomena of
the two entities are supposed to act upon and even determine the phenomena of
the third one which do not react. We obtain different theories according to the
entities considered to be fixed.

Mechanics (classical and quantal), if spacetime and field phenomena are given
to determine phenomena of matter, can be depicted as:

M otter

Spocetime

Field

In some sense continuum physics and thermodynamics, too, are such theories.

Field theory (classical, i.e. electrodynamics), if spacetime and matter phe-
nomena are given to determine phenomena of field, is:
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Field

Gravitation theory, if matter and field are given to determine spacetime, is:

These theories in usual formulation are relatively simple and well applicable
to describe a number of phenomena: it is clear, however, that they draw roughly
simplified pictures of the actually existing physical world.

6. Difficulties arise when we want to describe complicated situations in which
only one of the three entities can be regarded as known and interactions occur
among the phenomena of the other two entities. The following graphically
delineated possibilities exist:

Spocetirne

Motter Field
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Spocetirne

Motter

Mqtter

Spocetime

Field

The third one is of no physical interest, so far. However, the other two are
very important and we are forced to deal with them. They represent qualitatively
new problems and they cannot be reduced to the previous well-known theories,
except some special cases treated in the next item.

Electromagnetic radiation of microparticles is, for instance, a phenomenon,
which needs such a theory. Usual quantum electrodynamics serves as a theory
for its description, and in general usual quantum field theory is destined to
describe the interaction of field and matter in a given spacetime.

As it is well known, usual quantum field theory has failed to be completely
correct and satisfactory. One might suspect the reason of the failure is that usual
quantum field theory was created in such a way that the notions and formulae of
mechanics were mixed with those of field theory. This way leads to nowhere: in
mechanics the field phenomena are fixed, in field theory the matter phenomena
are fixed; the corresponding notions ‘stiff’ on one side cannot be fused correctly
to produce notions ‘flexible’ on both sides.

The complicated mathematics of quantum field theory does not allow us to
present a simple example to illustrate what has been said, whereas classical
electrodynamics offers an excellent example. The electromagnetic field of a
point charge moving on a prescribed path is obtained by the Liénard–Wiechert
potential which allows us to calculate the force due to electromagnetic radiation
acting upon the charge. Then the Newtonian equation is supplemented with
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this radiation reacting force—which is deduced for a point charge moving on a
given path—to get the so-called Lorentz–Dirac equation for giving the motion of
a point charge in an electromagnetic field. No wonder, the result is the nonsense
of ‘runaway solutions’.

Electromagnetic radiation is an irreversible process; in fact every process in
Nature is irreversible. The description of interactions must reflect irreversibility.
Mechanics (Newtonian equation, Schrödinger equation) and electrodynamics
(Maxwell equations) i.e. the theories dealing with action instead of interaction
do not know irreversibility. Evidently, no amalgamation of these theories can
describe interaction and irreversibility.

7. There is a special case in which interaction can be reduced to some
combination of actions yielding a good approximation. Assume that matter
phenomena can be divided into two parts, a ‘big’ one and a ‘small’ one. The
big one and field (or spacetime) are considered to be given and supposed to
produce spacetime (or field) which in turn acts on the small matter phenomena
to determine them. The situations can be illustrated graphically as follows:

S pocetirne

Spocetirne

/\
/\

/
/

ar
F ieldMotter

An example for the application of this trick is the description of planetary
motion in general relativity, more closely, the advance of the perihelion of Mer-
cury. The field is supposed to be absent, the big Sun produces spacetime and
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this spacetime determines the motion of the small Mercury. Doing so we neglect
that spacetime is influenced by Mercury and the motion of the Sun is influenced
by spacetime as well, i.e. we neglect interaction.

The second example is similar. Suppose we want to determine how a light
charged particle moves in the field generated by a heavy charged particle. We
assume that spacetime and the heavy point charge are given and that they
produce an electromagnetic field and that this electromagnetic field determines
the motion of a light point charge. Doing so we neglect that the electromagnetic
field is influenced by the light point charge and the motion of the heavy point
charge is influenced by the electromagnetic field, i.e. we neglect interaction.
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SPACETIME MODELS





INTRODUCTION

1. The principles of covariance and of relativity

1.1. Today the guiding principle for finding appropriate laws of Nature is the
principle of general relativity: any kind of reference frame should finally conclude
the same laws of Nature; the laws are independent of the way we look at them.
The usual mathematical method of applying this principle is the following: in
a certain reference frame we have an equation that, as we suspect, expresses
some law independent of the reference frame. The way to check this is referred
to as the principle of covariance: transfer the equation into another reference
frame with an appropriate transformation (Galilean, Lorentzian, or a general
coordinate transformation), and if the form of the equation remains the same
after this procedure, then it can be a law of some phenomenon. This method
can be illustrated in the following way:

?----ID-1
lj
I Noture I
lg
l- 

-- - 
r- rrJ

ref. fr. 1 ref . tr. 2

It seems quite natural to organize the procedure in such a way; this is how
Galileo and Newton started it and this is how Einstein finally concluded the
principle of general relativity. What could be the next step? Very simple:
since the laws of Nature are the same for all reference frames, the theoretical
description does not need the reference frame any longer; there should exist a
way of describing Nature without reference frames. In fact, at that time Einstein
said this in another way: “the description of Nature should be coordinate-free”.

This was some 100 years ago but if we take a glance at some books on theo-
retical physics today, we stumble upon an enormous amount of indices; thinking
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starts from reference frames and remains there; the program of coordinate-free
description has not yet been accomplished.

The key step (but not the only step) towards being able to describe Nature
without reference frames is the mathematical formulation of the ‘tacit agree-
ment’ behind the nonmathematical notion of reference frames. This formulation
finally lifts the notion of the reference frame from the mist and starts reorga-
nizing the method of description in a way Einstein suggested. This reorganizing
results in describing Nature independently of reference frames. If we wish to test
our theory by experiments, we have to convert absolute quantities into relative
ones corresponding to reference frames and then to turn them into numbers by
choosing units of time, distance etc. arriving in this way to indices and trans-
formation rules. Compared with the previous situation, this can be illustrated
as follows:

Notu re

! retfr1 !

J---rr-r-i

?---(--I--l

! ,"f tr.Z :tt
L-------J

1.2. The most important result of the present book is this reorganizing of
the whole method of theoretical description. In this framework the principle of
covariance and the principle of relativity sound very simple (encouraging us that
this might be the right way).

Principle of covariance: according to our present knowledge, the descrip-
tion of Nature should be done by first choosing one of the nonrelativistic ∗ , special
relativistic or general relativistic spacetime models and then using the tools of the
chosen model.

Principle of relativity: there must be a rule in the spacetime models that
says how an arbitrary reference frame derives its own quantities from the absolute
quantities describing the phenomena.

2. Measure lines

2.1. In practice, the magnitudes of a physical quantity (observable) are
usually related to some unit of measurement, i.e., to a chosen and fixed value.

∗ also called Galilean
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We decide, for instance, which distance is called meter and then we express all
distances as non-negative multiples of meter.

In general the following can be said. Let A be the set of the magnitudes of an
observable. Taking an arbitrary element a of A and a non-negative real number
α, we can establish which element of A is α times a, denoted by αa. In other
words, we give a mapping, called multiplication by non-negative numbers,

R
+
0 ×A → A, (α, a) → αa

with the following properties: for all a ∈ A
(i) 0a is the same element, called the zero of A and is denoted by 0 as well;
(ii) 1a = a
(iii) β(αa) = (βα)a for all α, β ∈ R

+
0 and a ∈ A;

(iv) if a 6= 0 then Ja : R
+
0 → A, α 7→ αa is bijective.

In customary language we can say that A is a one-dimensional cone.
An addition can be defined on this one-dimensional cone. It is easy to see

that the mapping, called addition,

A×A → A, (b, c) 7→ Ja
(

Ja
−1(b) + Ja

−1(c)
)

=: b+ c

is independent of a.
Let us introduce the notations

−A := { (−1, a) | 0 6= a ∈ A}, A := (−A) ∪A.

Then we can give a multiplication by real numbers

R× A → A, (α,a) 7→ αa

and an addition
A× A → A, (b, c) 7→ b+ c

that are trivial extensions of the operations given on A, so that A becomes a
one-dimensional real vector space. For instance,

αa := −|α|a for α < 0, a ∈ A,

α(−a) := −αa for α > 0, a ∈ A,

α(−a) := |α|a for α < 0, a ∈ A.

Furthermore, the two ‘halves’ of this vector space have different importance:
the original cone contains the physically meaningful elements. We express this
fact mathematically by orienting A with the elements of A (see IV.5).

The preceding construction works e.g. for distance, mass, force magnitude,
etc. In some cases—e.g. for electric charge—we are given originally a one-
dimensional real vector space of observable values.
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Thus we accept that the magnitudes of observables are represented by ele-
ments of oriented one-dimensional real vector spaces calledmeasure lines. Choos-
ing a unit of measurement means that we pick a positive element of the measure
line.

2.2. In practice some units of measurement are deduced from other ones by
multiplication and division; for instance, if kg, m and s are units of mass,
distance and time period, respectively, then kg m

s2 is the unit of force. The
question arises immediately: how can we give a mathematically exact meaning
to such a symbol? According to what has been said, kg, m and s are elements
of one-dimensional vector spaces; how can we take their product and quotient?
To give an answer let us list the rules associated usually with these operations;
for instance,

(αkg)(βm) = (αβ)(kg m) (α, β ∈ R
+
0 ),

αm

βs
=
α

β

m

s
(α ∈ R

+
0 , β ∈ R

+).

Extending these rules to negative numbers, too, we see that the usual mul-
tiplication is a bilinear map on the measure lines and the usual division is a
linear-quotient map, with the additional property that the product and quotient
of nonzero elements are not zero.

Consequently, we can state that the product and quotient of units of measure-
ments are to be defined by their tensor product and tensor quotient, respectively
(see IV.3 and IV.4).

Thus if L, T and M denote the measure line of distance, time period and
mass, respectively, m ∈ L, s ∈ T, kg ∈ M, then kg m

s2 := kg⊗m
s⊗s ∈ M⊗L

T⊗T .

3. Spacetime heuristics

3.1. Space

3.1.1. Sitting in a room, we conceive that a corner of the room, a spot on
the carpet are points and the table is a part of our space. Looking through the
window we see trees, chimneys, hills that form other parts of our space. A car
travelling on the road is not a part of this space.

On the other hand, the seats, the dashboard, etc. constitute a space for
someone sitting in the car. Looking out he sees that the trees, the houses, the
hills are running, they are not parts of the space corresponding to the car.

Consequently, the space for us in the room and the space for the one in the
car are different. We have ascertained that space itself does not exist, i.e. there
is no absolute space, there are only spaces relative to material objects. A space
is constituted by material objects.
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3.1.2. Let us call the room (more widely, the Earth) and the car observers.
Then we can say that every observer has its own space, different observers have
different spaces. The space points of observers are material points.

We warn the reader that the term observer appears in the literature in dif-
ferent senses. Frequently one considers a single point as an observer. Making
experiments, however, a single point is not sufficient; for instance, a cloud cham-
ber, showing the path of an elementary particle in no manner can be considered
as a single point. So we emphasize that in our treatment an observer is a collec-
tion of material points.

We find the following properties of our space:

(S1) There are straight lines in it and an oriented straight line segment, a
vector can be drawn between any two of our space points; the vectors obey the
well known rules of addition and multiplication by real numbers.

(S2) Our space is three-dimensional: there are three essentially different
directions – right-left, forward-backward, up-down – from which every other
direction can be ‘combined’.

(S3) It is not trivial – but experiments show (the asymmetry of K mezon
decay) – that our space is oriented: the order right-forward-up and the order
left-backward-down are not equivalent.

(S4) The distance between two space points – in other words, the magni-
tude of a vector – is meaningful and the distances obey the triangle inequality;
moreover, we experience an angle between two vectors.

The listed properties can be summarized by stating that our space is a three
dimensional oriented Euclidean affine space. Of course, this is valid for the space
of a ‘good observer’, e.g. for an inertial observer whose space points are inertial
i.e. free of any action and do not move with respect to each other (the space of
a room having rubber walls and shaken by an earthquake is not such).

3.2. Time

3.2.1. Time is much more sophisticated than space. Processes indicate that
time progresses: the Sun proceeds in the sky, someone is speaking, a clock is
ticking etc. Time, too, is constituted by material objects.

In everyday conversations and in the usual terminology of physics, too, un-
fortunately, the word time can refer to

– a time period: ‘long time ago’, ‘it will take time’;

– a time point (instant): ‘what is the time?’ ‘at the same time’.

It is extremely important to distinguish between these two essentially different
notions. Note that a clock measures time periods by the number of its tickings
and does not measure but indicates time points.
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3.2.2. What is a time period exactly? I experience the time period between
my breakfast and my dinner, an elementary particle experiences its own life time
period between its birth and decay etc. We can accept as a fundamental fact
that time progresses for every material point. Visualizing this, we imagine that
a tiny chronometer (a quartz crystal) is tied to any material point and the ticks
(oscillations) measure the time period between arbitrary two occurrences of the
material point. Time progresses for every material point individually, i.e. every
material point has its proper time.

It may happen – why not? – that different proper time periods pass for
two material points between two of their meetings. Indeed, experiments with
elementary particles prove that this is the situation.

We find that time progresses in one direction only and the notion earlier-later
is meaningful for the occurrences of a material point: past (my breakfast) and
future (my dinner) cannot be interchanged. Summarizing, we find:

(T) Proper time of any material point is a physical reality, its progress has a
one-dimensional character and it is oriented.

3.2.3. Now let us examine what a time point is. It can be best grasped
by considering the notion ‘at the same time’, i.e. simultaneity. How can we
determine that an explosion in London and an other one in Paris occurred at the
same time, i.e. simultaneously? Saying that both occurred at two o’clock puts
off the answer because the question remains: how is two o’clock is established in
London and in Paris?

Of course, there are some conventions to establish simultaneity in different
space points on the Earth (using the position of the Sun or using radio signals). A
synchronization settles simultaneity again and again continuously and it creates
time points as simultaneous occurrences. A synchronization must have the
fundamental property that different occurrences of any material points cannot
be simultaneous.

It is evident that a synchronization is a human invention, not a physical fact.
Let us consider two space points L and P of an observer (e.g. London and

Paris) and a time point t of a synchronization. Then an occurrence lt in L and
an occurrence pt in P are simultaneous with respect to the synchronization in
question. Take another time point s of the synchronization, too.

As said, time progresses for every material point, in particular, for every space
point of an observer. It may happen – why not? – that the time passed in L
between lt and ls is not equal to the time passed in P between pt and ps .
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3.3. Motions

3.3.1. We experience material objects moving; in general, a material point
can move with respect to observers. The same material object moves differently
with respect to different observers.

Velocity is an everyday notion connected with a motion. It makes sense,
however, only with the use of a synchronization. Indeed, a motion is described
by a function that assigns space points to time points and velocity is derived
from this function.

Now we shall state some fundamental facts concerning motions without using
synchronizations.

The path of a motion in the space of an observer is the collection of space
points that the material point meets with.

Our first experience is:

(M1) Every straight line in an observer space can be the path of a motion.

As said, a synchronization is necessary to determine how fast a motion is.
However, we can declare the following important statement: it makes sense
without synchronization which one is faster of two motions having the same path
relative to an observer, and meeting in some space point.

Indeed, let us consider a foot race between a valley and a hill. The racers
leave the start together (their departure is the same occurrence at the start) but
they arrive at the goal separately (their arrivals are different occurrences at the
goal). The notion earlier-later is a physical fact at a space point, in particular
at the goal. The racer who arrives earlier is faster, who arrives later is slower.
Thus, we know which of the racers is faster or slower without knowing how fast
or slow they are (what their speeds are) according to a synchronization.

We emphasize that such a faster-slower relation is independent of synchro-
nizations but does depend on observers. A (long-long) car travelling along the
racing track observes that the winner runs backward slower than the others.

Then we can formulate our experience:

(M2) For every motion there is a faster motion on the same path.

(M3) For every motion all the possible slower ones can be realized on the
same path.

The first assertion is evident. The second means that given an arbitrary (long)
time interval t , then there is a racer (e.g. a snail) which arrives at the goal t

time later than the winner.

3.3.2. Newton’s first law concerns uniform motions on straight lines. It can
be well formulated as follows: every inertial observer can choose at least one
synchronization in such a way that the motion of an arbitrary inertial material
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point has constant velocity (which implies that the path of the motion is a
straight line).

Note that this formulation does not involve the explicit use of a synchroniza-
tion; it merely declares the possibility of some synchronizations. Nevertheless,
we look for another statement.

Namely, let the running time be measured by the material point and the
covered distance by the observer. This can be done as follows: after each
determined amount of ticks of its chronometer, the material point marks the
space point where it is and the observer measures the distance between these
marked space points. Then we can state that “an inertial material point moves
(if does not stand) in the space of any inertial observer in such a way that its
path is a straight line and it covers equal distances during equal proper time
periods”.

From that we conclude:

(U) Inertial proper times and inertial space distances are uniformly related
to each other.

3.3.3. There is a further, extremely important notion in connection with
motions.

Let us consider a race where the start and the goal coincide. Then the
time period between the starting and the arrival of a racer is measured by the
chronometer of the start-goal, hence we can say without any synchronization
how fast a racer is.

In general, the round-way speed is meaningful, without any synchronization,
for a material point moving on a closed path in an observer’s space.

3.4. Spacetime

3.4.1. We will construct models for spacetime on the base of our experience
concerning physical facts. Observers, space points, space vectors as well as proper
time periods are physical entities but synchronizations and time points are not.
Therefore synchronizations and the usual notion of velocity have no place in our
following arguments.

The model must be formulated in terms of absolute objects. The physical facts
listed above, in general, are not absolute, they are related to material objects,
differently to different material objects.

Of course, all of our experience is relative, too. We have to find the absolute
objects behind them.

A child claps in the car; this occurs sometime in some space point of the car
as well as sometime in some space point of the Earth. The clapping is a physical
fact characterized by ‘here and now’ or ‘there and then’ according to different
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points of view. Similarly, an explosion, a flash of a lamp, a collision of two
vehicles happen in reality; such possible (pointlike) occurrences are conceived to
be spacetime points.

One often says event instead of occurrence which causes a number of misun-
derstandings. Namely, the notion of an event is well defined in probability theory
and in physics as well. An event always happens to the object in question: the
clap is an event of the child, the explosion is an event of the bomb etc. they are
not events of spacetime. That is why we adhere to say occurrence.

Properties (S1)-(S3), (T) and (U) suggest us first of all that spacetime is a
four-dimensional oriented affine space.

3.4.2. Of course, we have to pose the uneasy questions: have we reasoned
properly? have we not made some mistakes? have we not left anything out of
consideration?

There is a serious objection to our reasoning: we have extrapolated our expe-
rience gained in human size to much larger and much smaller size, too.

The affine structure includes a concept of continuity. According to our com-
mon experience, i.e. from human point of view, water is a continuous material.
However, we already know that water is in fact rather coarse: a microbe does
not perceive it to be continuous at all. Are perhaps space and time coarse as
well? At present no experimental fact supports the coarse nature of space and
time but we cannot exclude it in good faith.

Let us accept the continuity of space and time. Our conviction that a vector
can be associated with two space points is based on the fact that e.g. we can
span a thread between the corner of the room and a spot on the carpet, or we
can produce a light beam between them. But how can we determine the vector
between two points whose distance is much smaller than the diameter of the
thread or the light beam? If we can define vectors for such near points, too, do
they obey the customary rules of addition and multiplication by real numbers?

We meet a similar problem if we want to give sense of vectors corresponding
to points very far from each other. A thread cannot but a light beam can draw
a straight line between Earth and Moon; however, it is not evident at all that
addition and multiplication by real numbers of such huge vectors make sense
with the customary properties.

Indeed, some experiments show that in astronomical size the vectorial opera-
tions cannot be defined for segments defined by light beams. At present we have
no similar knowledge regarding minute size.

Evidently, the same problems arise for small and large time periods.

3.4.3. The objections above do not matter much. By accepting our experience
regarding human size as global , i.e. extrapolating it to very small and large size,
too, we have made some abstractions to create mathematical models. Such a
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model is not reality itself; it is an image—a necessarily simplified and distorted
one—of reality. Reality and model should not be confused!

If we admit that our experience is only local, i.e. considering it approximately
true even in human size, we have to give up the affine structure and we make
models in which spacetime is a four-dimensional manifold.

This book deals with models in which spacetime is accepted to has an affine
structure: the nonrelativistic model and the special relativistic model.

General relativistic spacetime models are based on differential manifolds.
The nonrelativistic spacetime model is suitable for the description of ‘sluggish’

mechanical phenomena—when bodies move relative to each other with velocities
much smaller than light speed—and of static electromagnetic phenomena.

The special relativistic spacetime model is suitable for the description of all
mechanical and electromagnetic phenomena, but it has a more complicated struc-
ture than the nonrelativistic one, therefore it is suitable for ‘brisk’ mechanical
phenomena and nonstatic electromagnetic phenomena.

To describe cosmic phenomena we have to adopt general relativistic spacetime
models.

3.4.4. Up to now we employed statments (S1)-(S3), (T) and (U) to accept
the affine structure of spacetime. It is noteworthy that (U) indicates also that
the proper time progress and the Euclidean structure of inertial observers are
connected somehow. Further properties of spacetime models will be obtained
later from (M1)-(M3) and from further special assumptions.

3.4.5. Of course, having a spacetime model as a mathematical structure, all
the intuitive notions appeared in our heuristics such as observers, proper times
etc. must be exactly defined in that mathematical framework. This holds for
synchronizations, too, which are important from a technical (not fundamental)
point of view.

A synchronization and an observer together will be called a reference frame.



I. NONRELATIVISTIC SPACETIME MODEL

1. Fundamentals

1.1. Absolute time progress

1.1.1. As mentioned earlier, experiments show that different proper time
periods can pass for elementary particles between their two meetings. On the
other hand, according to our (superficial) everyday experience, both the clock at
home and my watch have ticked just as many times between my departure and
return. Now we construct a spacetime model based on this assumption:

(A1) Proper time progress is absolute, i.e. the same time period elapses for
any two material points between two meetings.

According to another (superficial) everyday experience there is no upper limit
for the velocity of material objects; this can be rightly formulated as follows:

(A2) In the space of any inertial observer arbitrary round-way speed is pos-
sible.

1.1.2 According to what has been said in the Introduction, spacetime will be
modelled by an affine space.

Then it can be shown – the proof lies outside the purpose of this book – that
(M1)–(M3) and (A1)–(A2) imply that the absolute proper time progress is
described by a nonzero linear map τ defined on the underlying vector space of
spacetime.

Moreover, (U) and (S4) result in that there is a Euclidean structure h on
the kernel of τ .

1.2. The spacetime model

1.2.1. Now we are ready to formulate a correct definition.

Definition. A nonrelativistic spacetime model is (M,T,L, τ ,h) where
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— M is spacetime, an oriented four-dimensional real affine space (over the
vector space M),

— T is the measure line of time periods,
— L is the measure line of distances,
— τ : M → T describes the absolute proper time progress, a linear surjection,
— h : S× S → L⊗ L is the absolute Euclidean structure, a positive definite

symmetric bilinear map where S := Kerτ = {x ∈ M | τ · x = 0} .
The elements of M and of M are called world points and world vectors,

respectively.
For occurrences x and y (elements of M) τ · (y − x) is the absolute time

elapsed between x and y . x is earlier than y and later than y if τ · (y−x) > 0
and τ · (y−x) < 0 , respectively. (Recall that T is oriented, thus it makes sense
to speak about its positive and negative elements, see IV.5.3.)

x and y are absolutely simultaneous if τ · (y − x) = 0 .
Elements of S are called absolutely spacelike.
World vectors outside S are called timelike. The set of timelike elements

consists of two disjoint open subsets:

T
→ := {x ∈ M | τ · x > 0}, T

← := {x ∈ M | τ · x < 0}.

Vectors in T
→ and in T

← are called future directed and past directed, respec-
tively.

We often illustrate the world vectors in the plane of the page:

SSSSSS

TTTTTT TTTTTT

1.2.2. In this spacetime model there is a single synchronization (see later
in 3.3.), given by absolute simultaneity. x and y are simultaneous if and only
if y − x ∈ S which is equivalent to y ∈ x + S or x ∈ y + S . Thus, a set of
simultaneous world points is an affine hyperplane of M , directed by S .

To be simultaneous is an equivalence relation on M . An equivalence class, a
hyperplane directed by S is conceived to be an absolute time point or instant;
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the set of equivalence classes is T := M/S , the absolute time. We define the
subtraction T× T → T by

t− s := τ · (y − x) (y ∈ t, x ∈ s),

in another form,

(y + S)− (x+ S) := τ · (y − x).

It is not hard to see that this subtraction is well-defined and turns T into an
affine space over T . Then the time evaluation

τ : M → T, x 7→ x+ S

becomes an affine map over τ .

We say that t ∈ T is later than s ∈ T (or s is earlier than t ) and we write
s < t if t− s is a positive element of T.

Spacetime, too, will be illustrated in the plane of the page. Then vertical
lines stand for the instants (hyperplanes of simultaneous world points). A line
standing to the right of another is taken to be later.

If x is a world point, x + T
→ and x + T

← are called the futurelike and
pastlike part of M, with respect to x.

SSSSSS

TTTTTT TTTTTT
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1.3. Structure of world vectors and covectors

1.3.1. There are spacetime and time in our nonrelativistic spacetime model
and there is no space. However, there is something spacelike: the linear subspace
S of M. Later we see what the spacelike feature of S consists in. We find an
important ‘complementary’ connection between S and T. Let

i : S → M

denote the canonical injection (embedding; if q ∈ S, then i·q equals q regarded
as an element of M; evidently, i is linear). Then we can draw the diagram

S
i−→M

τ−→T ;

i is injective, τ is surjective, and Rani = Kerτ , thus τ · i = 0.
M∗, the dual of M will play an important role. Though it is also a four-

dimensional oriented vector space, there is no canonical isomorphism between
M and M∗; these vector spaces are different.

A diagram similar to the previous one is drawn for the transposed maps:

T
∗ τ∗

−→M∗
i∗−→S∗ .

τ ∗ is injective, i∗ is surjective (see IV.1.4) and Ranτ ∗ = Keri∗, thus i∗ · τ ∗ =
0.

It is worth mentioning that for k ∈ M∗, i∗ · k = k · i is the restriction of k

onto S : k · i = k|S .

1.3.2. Since τ ∗ is injective, its range is a one-dimensional linear subspace of
M∗ which will play an important role:

Ranτ ∗ = {τ ∗ · e | e ∈ T
∗} = {e · τ | e ∈ T

∗} = T
∗ · τ .

Observe that k ∈ M∗ is in T
∗ · τ if and only if i∗ · k = k · i = 0, thus

T
∗ · τ = {k ∈ M∗ | k · q = 0 for all q ∈ S}.

We say that T
∗ · τ is the annihilator of S.

Illustrating M∗ on the plane of the page, we draw a horizontal line for the
one-dimensional linear subspace T

∗ · τ .

TTTTTT
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As usual, the elements of M∗ are called covectors. The covectors in the linear
subspace T

∗ · τ are timelike, and the other ones are spacelike.

1.3.3. It will be often convenient to use tensorial forms of the above linear
maps. According to IV.3.4 and IV.1.2 we have

τ ∈ T⊗M∗ , i ∈ M⊗ S∗ ,

τ ∗ ∈ M∗ ⊗ T , i∗ ∈ S∗ ⊗M .

1.3.4. With the aid of τ , the orientations of M and T determine a unique
orientation of S.

Proposition. If (e1 , e2 , e3) is an ordered basis of S, then (x, e1 , e2 , e3)
and (y, e1 , e2 , e3) are equally oriented for all x,y ∈ T

→.

Proof. Evidently, (x, e1 , e2 , e3) and (αx, e1 , e2 , e3) are equally oriented
if α ∈ R

+, hence we can suppose that τ · y = τ · x, i.e. q := y − x ∈ S. Then

y ∧ e1 ∧ e2 ∧ e3 = (x+ q) ∧ e1 ∧ e2 ∧ e3 = x ∧ e1 ∧ e2 ∧ e3 ,

hence the statement is true by IV.5.1.

Definition. An ordered basis (e1 , e2 , e3) of S is called positively oriented
if (x, e1 , e2 , e3) is a positively oriented ordered basis of M for some (hence for
all) x ∈ T

→ .

1.3.5. (S,L,h) is a three-dimensional Euclidean vector space, S and L are
oriented. An important relation is the identification

S

L⊗ L
≡ S∗ .

We shall use the notation

N :=
S

L

and all the results of section V.3.
In particular, we use a dot product notation instead of h :

q · q′ := h(q, q′) ∈ L⊗ L (q, q′ ∈ S).

The length of q ∈ S is

|q| := √
q · q ∈ L

+
0 ,
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and the angle between the nonzero elements q and q′ of S is

arg(q, q′) := arccos
q · q′
|q||q′| .

The dot product can be defined between spacelike vectors of different types
(see later, Section 1.4) as well; e.g. if A and B are measure lines, for w ∈ S

A

and z ∈ S

B
we have

w · z ∈ L⊗ L

A⊗ B
, arg(w, z) := arccos

w · z
|w||z| ,

|w| :=
√
w ·w ∈ L

A
.

1.3.6. Do not forget that timelike vectors (elements of M outside S) have
no length, no angles between them.

T
∗ · τ is an oriented one-dimensional vector space, hence the absolute value

of its elements makes sense; thus a length (absolute value) can be assigned to a
timelike covector. However, the length of spacelike covectors (elements of M∗

outside T
∗ · τ ) and the angle between two covectors are not meaningful.

1.3.7. The Euclidean structure of our space is deeply fixed in our mind,
therefore we must be careful when dealing with M which has no Euclidean
structure; especially when illustrating it in the Euclidean plane of the page.
Keep in mind that vectors out of S have no length, do not form angles. The
following considerations help us to take in the situation.

Recall that the linear map τ : M → T can be applied to element of M

T
and

then it has values in T

T
≡ R (see V.2.1 ). Put

V (1) :=

{

u ∈ M

T

∣

∣

∣

∣

τ · u = 1

}

.

According to VI.2.2, V (1) is an affine subspace of M

T
over S

T
. It is illustrated

as follows:

SSSSSS

TTTTTT
TTTTTT V (1)V (1)V (1)V (1)V (1)V (1)
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Three elements of V (1) appear in the figure. Observe that it makes no sense
to say that

— u1 is orthogonal to S

T
(there are no vectors orthogonal to S

T
),

— the angle between u1 and u3 is less than the angle between u1 and u2

(there is no angle between the elements of V (1)) ,
— u2 is longer than u1 (the elements of V (1) have no length).
We shall see in 2.1.2 that the elements of V (1) can be interpreted as velocity

values.

1.3.8. Since there is no vector orthogonal to S, the orthogonal projection
of vectors onto S makes no sense. Of course, we can project onto S in many
equivalent ways; the following projections will play an important role.

Let u be an element of V (1). Then u ⊗ T := {ut | t ∈ T} is a one-
dimensional linear subspace of M; u⊗T and S are complementary subspaces,
thus every vector x can be uniquely decomposed into the sum of components
in u⊗ T and in S, respectively:

x = u(τ · x) + (x− u(τ · x)) .

The linear map
πu : M → S , x → x− u(τ · x)

is the projection onto S along u. It is illustrated as follows:

SSSSSS V (1)V (1)V (1)V (1)V (1)V (1)

V (1) is represented by a dashed line expressing that V (1) is in fact a subset
of M

T
.

Observe that
πu · i = 1S

and in a tensorial form πu ∈ S⊗M∗.

1.3.9. Proposition. Let u ∈ V (1). Then

ξu := (τ ,πu) : M → T× S x 7→ (τ · x, πu · x)
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is an orientation preserving linear bijection, and

ξ−1u (t, q) = ut+ q (t ∈ T, q ∈ S).

1.4. The arithmetic spacetime model

1.4.1. Let us number the coordinates of elements of R
4 from 0 to 3 :

(ξ0, ξ1, ξ2, ξ3) ∈ R
4. The canonical projection onto the zeroth coordinate,

pr0 : R
4 → R , (ξ0, ξ1, ξ2, ξ3) 7→ ξ0

is a linear map whose kernel is {0} × R
3 which we identify with R

3. Let H

denote the usual inner product on R
3 : H(x,y) =

3
∑

i=1

xiyi. Endow R and R
4

with the standard orientation.
It is quite evident that

(

R
4,R,R, pr0,H

)

is a nonrelativistic spacetime model
which we call the arithmetic nonrelativistic spacetime model.

In the arithmetic spacetime model we have:

M = M = R
4, T = R, L = R,

τ = pr0,

S = {0} × R
3 ≡ R

3, h = H.

T ≡ R× {(0, 0, 0)}, τ = pr0.

Then

i : S → M equals R
3 → R

4, (x1, x2, x3) 7→ (0, x1, x2, x3).

The usual identification yields M∗ = (R4)
∗ ≡ R

4; the covectors are indexed
in subscripts: (k0, k1, k2, k3) ∈ (R4)

∗
(see IV.1.4).

In the same way, T
∗ = R

∗ ≡ R, but here we cannot make distinction with
the aid of indices.

Then

i∗ : M∗ 7→ S∗ equals (R4)
∗ → (R3)

∗
, (k0, k1, k2, k3) 7→ (k1, k2, k3)

and
τ ∗ : T∗ → M∗ equals R

∗ → (R4)
∗
, e 7→ (e, 0, 0, 0).

1.4.2. It is an unpleasant feature of the arithmetic spacetime model that the
same object, R4, represents the affine space of world points and the vector space
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of world vectors and even the vector space of covectors. For a clear distinction
we shall write Greek letters indicating world points (affine space elements) and
Latin letters indicating world vectors or covectors.

Another shortcoming of this spacetime model is that spacetime seems to be
the Cartesian product of time and space. Then considering R

4 ≡ R × R
3 , we

write (α, ξ) or (ξ0, ξ) and (t, q) for its elements; similarly, (e,p) denotes an
element of (R× R

3)
∗ ≡ R

∗ × (R3)
∗
. Then

τ : R× R
3 → R, (α, ξ) 7→ α,

τ : R× R
3 → R, (t, q) 7→ t,

i : R3 → R× R
3, q 7→ (0, q),

i∗ : (R× R
3)
∗ → (R3)

∗
, (e,p) 7→ p,

τ ∗ : R∗ → (R× R
3)
∗
, e 7→ (e,0).

The last formula means that T
∗ · τ now equals R× {0}.

Of course, τ and τ are equal though we have written the same formula with
different symbols. This is a trick similar to that of subscripts and superscripts:
we wish to distinguish between different objects that appear in the same form.

1.4.3. Now we have M

T
= R

4

R
≡ R

4, and

V (1) =
{

(v0,v) ∈ R× R
3
∣

∣ v0 = 1
}

= {1} × R
3.

Here, too, we find a misleading feature of this spacetime model: V (1) seems
to have a distinguished, simplest element, namely (1,0) .

For (1,v) ∈ V (1) we easily derive that

π(1,v) : R× R
3 → R

3, (t, q) 7→ q − vt.

In particular, π(1,0) is the canonical projection from R× R
3 onto R

3 .

1.5. Classification of physical quantities

1.5.1. In physics one usually says e.g. that (relative) velocity and acceleration
are three-dimensional vectors and are considered as triplets of real numbers.
Although both are taken as elements of R

3, they cannot be added because they
have ‘different physical dimensions’. The framework of our spacetime model
assures a precise meaning of these notions.
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A physical dimension is represented by a measure line. Let A be a measure
line. Then the elements of

A are called scalars of type A,

A⊗M are called vectors of type A,

M

A
are called vectors of cotype A,

A⊗ (M⊗M) are called tensors of type A,

M⊗M

A
are called tensors of cotype A.

Covectors of type A, etc. are defined similarly with M∗ instead of M.
In the case A = R we omit the term ‘of type R

′. In particular, the elements
of M ⊗ M and M∗ ⊗ M∗ are called tensors and cotensors, respectively; the
elements of M∗ ⊗M and M⊗M∗ are mixed tensors.

Recall the identifications A⊗M ≡ M⊗ A etc. (see IV.3.6).
Because of the identification M

A
≡ M⊗ A

∗ the vectors of cotype A coincide
with the vectors of type A

∗.

1.5.2. The vectors and tensors of type A in the subspaces A ⊗ S and
A⊗ (S⊗ S), respectively, are called spacelike.

The covectors of type A in the subspace A⊗ (T∗ · τ ) are called timelike.
According to our convention (V.2.1 and V.2.2), the dot product of covectors

and vectors of different types makes sense; e.g.

for k ∈ B⊗M∗ and z ∈ A⊗M ≡ M⊗ A we have k · z ∈ B⊗ A.

In particular,

for τ ∈ T⊗M∗ and z ∈ A⊗M we have τ · z ∈ T⊗ A;

similarly,

for w ∈ M

A
we have τ ·w ∈ T

A
;

for T ∈ A⊗ (M⊗M) we have τ · T ∈ T⊗ A⊗M.

Evidently, z ∈ A⊗M is spacelike if and only if τ · z = 0.
In the same way, i∗ : M∗ → S∗ is lifted to covectors of type A, etc. i.e.

for i∗ ∈ S∗ ⊗M and k ∈ A⊗M∗ we have i∗ · k ∈ A⊗ S∗ etc.

Evidently, k ∈ A⊗M∗ is timelike if and only if i∗ · k = 0.



1. Fundamentals 41

1.5.3. In nonrelativistic physics one usually introduces the notion of scalars,
three-dimensional vectors, three-dimensional pseudovectors and pseudoscalars as
quantities having some prescribed transformation properties. One is forced to
adapt such a definition because only coordinates are considered, only numbers
and triplets of numbers are used, and one must know whether a triplet of numbers
is the set of coordinates of a vector, or not. Of course, vectors can have different
‘physical dimensions’.

Now we formulate the corresponding notion in the framework of our nonrela-
tivistic spacetime model. The elements of

R are the scalars,

S are the spacelike vectors,

S ∧ S are the spacelike pseudovectors of type L,

S ∧ S ∧ S are the pseudoscalars of type
3
⊗ L.

The first and the second names do not require an explanation. The third
and fourth names are based on the fact that we have canonical linear bijections
S ∧ S → S ⊗ L and S ∧ S ∧ S → L ⊗ L ⊗ L (see V.3.17); pseudovectors are
‘similar’ to spacelike vectors of type L, and pseudoscalars are ‘similar’ to scalars

of type
3
⊗ L.

Having the notion of vectors of type A, it is evident how we shall define
spacelike pseudovectors and pseudoscalars of diverse types. For the sake of
simplicity, we consider now ‘physically dimensionless’ quantities: R, N, N∧N,
N∧N∧N. Then we have the linear bijections j : N∧N → N and jo : N∧N∧
N → R.

Let R : S → S be an orthogonal map which is considered to be an orthogonal
map N → N as well. We say that R is a rotation if it has positive determinant.
The determinant of the inversion P := −1S is negative.

By definition,
0
⊗ R :=

0
⊗ P := 1R ; the scalars are invariant.

Vectors are transformed under R and P according to the definition of these
operations.

Pseudovectors are transformed by R∧R and P ∧P (IV.3.21.); formulae in
V.3.16 say that

j ◦ (R ∧R) = R ◦ j, j ◦ (P ∧ P ) = −P ◦ j = j

which means that the pseudovectors are transformed by rotations like vectors
but they are invariant under the inversion.

Similarly we have that

jo ◦ (R ∧R ∧R) = jo, jo ◦ (P ∧ P ∧ P ) = −jo,



42 I. Nonrelativistic spacetime model

the pseudoscalars are invariant under rotations and they change sign by the
inversion.

1.6. Comparison of spacetime models

1.6.1. A spacetime model is defined as a mathematical structure. It is an
interesting question both from mathematical and from physical points of view:
how many ‘different’ nonrelativistic spacetime models exist?

To answer, first we must define what the ‘difference’ and the ‘similarity’
between two spacetime models mean. We proceed as it is usual in mathematics;
for instance, one defines the linear structure (vector space) and then the linear
maps as the tool of comparison between linear structures; two vector spaces are
of the same kind if there is a linear bijection between them, in other words, if
they are isomorphic.

Definition. The nonrelativistic spacetime model (M,T,L, τ ,h) is isomor-
phic to the nonrelativistic spacetime model (M′,T′,L′, τ ′,h′) if there are
(i) an orientation preserving affine bijection F : M → M′, over the linear

bijecion F .
(ii) an orientation preserving linear bijection B : T → T

′,
(iii) an orientation preserving linear bijection Z : L → L

′ such that
(I) τ ′ ◦ F = B ◦ τ,
(II) h′ ◦ (F × F ) = (Z ⊗Z) ◦ h.

The triplet (F,B,Z) is an isomorphism between the two spacetime mod-
els.

If the two models coincide, isomorphism is called automorphism. An auto-
morphism (F,B,Z) of (M,T,L, τ ,h) is strict if B = 1T and Z = 1L.

Two commutative diagrams illustrate the isomorphism:

M
τ−→ T

F




y





yB

M′ −→
τ ′

T
′

S× S
h−→ L⊗ L

F × F




y





yZ ⊗Z

S′ × S′ −→
h′

L
′ ⊗ L

′

.

The definition is quite natural and simple. It is worth mentioning that (I)
implies that for q ∈ S we have τ ′ · F · q = B · τ · q = 0 which means that F

maps S into (and even onto) S′; hence the requirement in (II) is meaningful.
It is evident that (F−1,B−1,Z−1), the inverse of (F,B,Z), is an iso-

morphism as well. Moreover, if (F ′,B′,Z ′) is an isomorphism between non-
relativistic spacetime models (M′,T′,L′, τ ′,h′) and (M′′,T′′,L′′, τ ′′,h′′), then
(F ′ ◦ F ,B′ ◦B,Z ′ ◦Z) is an isomorphism, too.
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1.6.2. Proposition. The nonrelativistic spacetime model (M,T,L, τ ,h) is
isomorphic to the arithmetic spacetime model.

Proof. Take
(i) a positive element s of T,
(ii) a positive element m of L,
(iii) an element e0 of T→ such that τ · e0 = s,
(iv) a positively oriented orthogonal basis (e1, e2, e3), normed to m, of S,
(v) an element o of M.
Then u := e0

s
is in V (1) and it is not hard to see that

F : M → R
4, x 7→

(

τ · (x− o)

s
,

(

eα · πu·(x− o)

m2

)

α=1,2,3

)

,

B : T → R, t 7→ t

s
,

Z : L → R, d 7→ d

m

is an isomorphism.

Observe that (e0, e1, e2, e3) is a positively oriented basis in M, and F is
the affine coordinatization of M corresponding to o and that basis.

The isomorphism above has the inverse

R
4 → M, (ξ0, ξ1, ξ2, ξ3) 7→ o+

3
∑

i=o

ξiei,

R → T, α 7→ αs,

R → L, δ 7→ δm.

1.6.3. An important consequence of the previous result is that two arbitrary
nonrelativistic spacetime models are isomorphic, i.e. are of the same kind. The
nonrelativistic spacetime model as a mathematical structure is unique. This
means that there is a unique ‘nonrelativistic physics’.

Please, note: the nonrelativistic spacetime models are of the same kind,
but, in general, are not identical. They are isomorphic, but, in general, there
is no ‘canonical’ isomorphism between them, we cannot identify them by a
distinguished isomorphism. It is a situation similar to that well known in the
theory of vector spaces: all N -dimensional vector spaces are isomorphic to K

N

but, in general, there is no canonical isomorphism between them.
Since all nonrelativistic spacetime models are isomorphic, we can use an

arbitrary one for investigation and application. However, an actual model can
have additional structures. For instance, in the arithmetic model, spacetime and
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time are vector spaces, time is canonically embedded into spacetime as R×{0},
V (1) has a distinguished element, (1,0) . This model tempts us to multiply
world points by real numbers (although this has no physical meaning and that
is why it is not meaningful in the abstract spacetime structure), to consider
spacetime to be the Cartesian product of time and space (but space does not
exist!), to say that the distinguished element of V (1) is orthogonal to the space
(such an orthogonality makes no sense in the abstract spacetime structure), etc.

To avoid such confusions, we should keep away from similar specially con-
structed models for theoretical investigation and application of the nonrelativis-
tic spacetime model. However, for solving special problems, for executing some
particular calculations, we can choose a convenient concrete model. In the same
way as in the theory of vector spaces where a coordinatization—i.e. the use of
K

N —may help us to perform our task.

1.6.4. In present day physics one uses tacitly the arithmetic spacetime
model. One represents time points by real numbers, space points by triplets
of real numbers. To arrive at such representations, one chooses tacitly a unit
of measurement for time and an initial time point, a unit of measurement for
distance and an initial space point (origin) and an orthogonal spatial basis whose
elements have unit length.

However, all the previous notions have merely a heuristic sense. Take a
glance at the isomorphism established in 1.6.2 to recognize that the nonrela-
tivistic spacetime model will give these notions a mathematically precise mean-
ing. Evidently, s and m are the units of time period and distance, respectively,
{e1, e2, e3} is the orthogonal spatial basis whose elements have unit length; τ(o)
is the initial time point and o includes somehow the origin of space as well. At
present only the sense of e0 is not clear; later we shall see that it determines
the space in question, because we know that absolute space does not exist; e0
characterizes an observer which realizes a space.

1.7. The split spacetime model

1.7.1. As we have said, the arithmetic spacetime model is useful for solving
particular problems, for executing practical calculations. Moreover, at present,
one usually expounds theories, too, in the frame of the arithmetic spacetime
model, so we ought to ‘translate’ every notion in the arithmetic language. How-
ever, the arithmetic spacetime model is a little ponderous; that is why we intro-
duce an ‘intermediate’ spacetime model between the abstract and the arithmetic
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ones, a more terse model which has all the essential features of the arithmetic
spacetime model.

1.7.2. Let (M,T,L, τ ,h) be a nonrelativistic spacetime model, and use the
notations introduced in this chapter. Let prT : T × S → T be the canonical
projection (t, q) 7→ t.

Then (T×S,T,L, prT,h) is a nonrelativistic spacetime model, called the split
nonrelativistic spacetime model corresponding to (M,T,L, τ ,h).

It is quite obvious that for all o ∈ M and u ∈ V (1),

M → T× S, x 7→ ξu · (x− o)

T → T, t → t

L → L, d → d

is an isomorphism of the two nonrelativistic spacetime models where ξu is
defined in 1.3.9.

1.7.3. In the split spacetime model

τ : T× S → T, (t, q) 7→ t,

i : S → T× S, q 7→ (0, q).

With the usual identification (see IV.1.3) we have that in the split spacetime
model the covectors are elements of T

∗ × S∗, correspondingly,

τ ∗ : T∗ → T
∗ × S∗, e 7→ (e,0),

i∗ : T∗ × S∗ → S∗, (e,p) 7→ p.

As a consequence, T
∗ · τ = T

∗ × {0}.
In this model

V (1) = {1} × S

T

and we easily derive for (1,v) ∈ V (1) :

π(1,v) : T× S → S, (t, q) 7→ q − vt.

1.8. Exercises

1. Let {e0, e1, e2, e3} be a basis in M such that {e1, e2, e3} is an or-
thogonal basis in S, normed to m ∈ L

+. Put s := τ · e0, u := e0

s
. Then

{

τ
s
,
(

π∗
u
·ei

m2

)

i=1,2,3

}

is the dual of the basis in question.
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2. (i) Let (e0, e1, e2, e3) be a positively oriented basis in M such that
(e1, e2, e3) is a positively oriented orthogonal basis in S, normed to m ∈ L

+.
Put s := τ · e0. Take another ‘primed’ basis with the same properties. Then

ǫ :=

3∧
i=0

ei

sm3
=

3∧
i=0

e′i

s′m′3
∈

4∧ M

T⊗ L⊗3
,

which is called the Levi-Civita tensor of the nonrelativistic spacetime model.

In other words, if u ∈ V (1) and (n1,n2,n3) is a positively oriented or-
thonormal basis in N = S

L
, then

ǫ = u ∧ 3∧
α=1

nα.

(ii) Let (k0,k1,k2,k3) ) and (k′0,k′1,k′2,k′3) be the dual of the bases in
question (see the previous exercise). Then

ǫ := sm3 3∧
i=0

ki = s′m′
3 3∧
i=0

k′i ∈ T⊗ L
⊗3 ⊗ 4∧ M∗,

which is called the Levi-Civita cotensor of the nonrelativistic spacetime model.

In other words, if the elements ηα ∈ L⊗M∗ are such that i∗ ·ηα (α = 1, 2, 3)
form a positively oriented orthonormal basis in N = S

L
, then

ǫ = τ ∧ 3∧
α=1

ηα.

3. ǫ and ǫ can be regarded as linear maps from T ⊗ L
⊗3 into

4∧ M and

from
4∧ M into T⊗L

⊗3 (recall that
4∧ M∗ ≡

[

4∧ M
]∗
). Prove that ǫ is the

inverse of ǫ .

4. Take the arithmetic spacetime model and the usual matrix form of linear
maps R

M → R
N . Then

τ = (1 0 0 0),

i =







0 0 0
1 0 0
0 1 0
0 0 1






, π(1,v) =





−v1 1 0 0
−v2 0 1 0
−v3 0 0 1



 .
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2. World lines

2.1. History of a masspoint: world line

2.1.1. Let us consider a pointlike material body. As mentioned in the
Introduction, and is well-known, its motion makes sense only relative to other
material objects, i.e., motion is a relative notion. The motion is described
usually by a function assigning space points (of an observer) to time points
(of a synchronization), i.e. in a reference frame.

Our spacetime model allows us an absolute description (independent of refer-
ence frames, to de defined later). We have to recognize only that the existence
or the history) of the body is an absolute notion and this history seems to be a
motion to another material object.

The history of a material point can be described in the spacetime model by
a function that assigns world points to instants; the world point assigned to an
instant gives the instantaneous spacetime position of the existence of the material
point. Of course, the instant of the assigned world point must coincide with the
instant itself.

Definition. A function r : T  M is called a world line function if
(i) Domr is an interval,
(ii) r is piecewise twice continuously differentiable,
(iii) τ

(

r(t)
)

= t for all t ∈ Domr.
A subset C of M is a world line if it is the range of a world line function.
The world line function r and the world line Ranr are global if Domr = T.

It can be shown easily that a world line C uniquely determines the world line
function r such that C = Ranr.

2.1.2. Let the world line function r be twice differentiable at t. Then
ṙ(t) ∈ M

T
and r̈(t) ∈ M

T⊗T (see VI.3.9); moreover,

τ · ṙ(t) = lim
s→t

τ ·
(

r(s)− r(t)
)

s− t
= lim

s→t

τ
(

r(s)
)

− τ
(

r(t)
)

s− t
= lim

s→t

s− t

s− t
= 1

and similarly we deduce τ · r̈(t) = 0; in other words,

ṙ(t) ∈ V (1), r̈(t) ∈ S

T⊗ T
.

The same is true for the right and left derivatives at instants t where r is
not twice differentiable.

The functions ṙ : T  V (1) and r̈ : T 
S

T⊗T can be interpreted as the
absolute velocity and the absolute acceleration of the material point whose history
is described by r.
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That is why we call the elements of V (1) absolute velocity values and the
elements of S

T⊗T absolute acceleration values.

2.1.3. Recall that V (1) is a three-dimensional affine space over S

T
. The

elements of S

T
will be called relative velocity values; later we shall see the

motivation of this name.

We know that the Euclidean structure of S induces Euclidean structures on S

T

and on S

T⊗T (see 1.2.5). The magnitude of a relative velocity value is a positive

element of L

T
; the magnitude of an acceleration value is a positive element of

L

T⊗T .

L and T are the measure lines of distances and time periods, respectively.
Choosing a positive element in L and in T we fix the unit of distances and
the unit of time periods; for instance, (meter=)m ∈ L and (second=)s ∈ T.
Then the units of measurements of the relative velocity and the acceleration are
m
s

∈ L

T
and m

s2 := m
s⊗s ∈ L

T⊗T , respectively.

We emphasize the following important facts.

(i) The absolute velocity values are timelike vectors of cotype T, in particular
they are future directed. They form a three-dimensional affine space which is
not a vector space; in particular, there is no zero absolute velocity value. An
absolute velocity value has no magnitude, absolute velocity values have no angles
between themselves.

(ii) The relative velocity values are spacelike vectors of cotype T, they form a
three-dimensional Euclidean vector space; there is a zero relative velocity value.
Magnitudes and angles make sense for relative velocity values.

(iii) The absolute acceleration values are spacelike vectors of cotype T⊗T, they
form a three-dimensional Euclidean vector space; the acceleration values have
magnitudes and angles between themselves.

The absence of magnitudes of absolute velocity values means that ‘quickness’
makes no absolute sense; it is not meaningful that a material object exists more
quickly than another. An absolute velocity value characterizes somehow the
tendency of the history of a material point. Mass points can move slowly or
quickly relative to each other.

2.1.4. A world line function in the arithmetic spacetime model is r =
(r0, r) : R  R × R

3 such that r0(t) = t for all t ∈ Domr. In other words, a
world line function is given by a function r : R  R

3 in the form t 7→
(

t, r(t)
)

.

The first and the second derivative of the world line function (i.e. velocity
and acceleration) are t 7→

(

1, ṙ(t)
)

and t 7→
(

0, r̈(t)
)

, respectively.
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2.2. A characterization of world lines

World lines are special curves in M (for the notion of curves see VI.4.3).
It is evident that if C is a world line then C ∩ t has at most one element for

all t ∈ T (where T is identified with the affine subspaces in M, directed by S,
see 1.1.4). We shall use the symbol

C ⋆ t

for the unique element of C∩ t if this latter is not void. Then we have that the
world line function r corresponding to C is given by

Domr = {t ∈ T | C ∩ t 6= ∅},
r(t) = C ⋆ t (t ∈ Domr).

It is evident as well that a twice differentiable curve C for which C∩ t has at
most one element for all t ∈ T need not be a world line: it can have a spacelike
tangent vector.

Every nonzero tangent vector of a world line is timelike. The converse is true
as well.

Proposition. Let C be a connected twice differentiable curve in M whose
nonzero tangent vectors are timelike; then C is a world line.

Proof. Let p : R  M be a parametrization of C. Then τ ·
(

ṗ(α)
)

6= 0 for
all α ∈ Dom p. The function τ ◦ p : R  T is defined in an interval, is twice
continuously differentiable, its derivative τ · ṗ is nowhere zero; hence it is strictly
monotonous, its inverse z := (τ ◦ p)−1 is twice continuously differentiable as well
and ż(t) = 1/

(

τ · ṗ
(

z(t)
))

, as it is well known. It is obvious then that r := p ◦ z
is a world line function and Ranr = C.

2.3. Classification of world lines

Definition. The twice continuously differentiable world line function r and
the corresponding world line are called
(i) inertial if r̈ = 0,
(ii) uniformly accelerated if r̈ is constant,
(iii) twist-free if r̈(s) is parallel to r̈(t) for all t, s ∈ Domr.

Proposition. The twice continuously differentiable world line function r is
(i) inertial if and only if there are xo ∈ M and uo ∈ V (1) such that

r(t) = xo + uo

(

t− τ(xo)
)

(t ∈ Domr);
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(ii) uniformly accelerated if and only if there are xo ∈ M, uo ∈ V (1) and
ao ∈ S

T⊗T such that

r(t) = xo + uo

(

t− τ(xo)
)

+
1

2
ao

(

t− τ(xo)
)2

(t ∈ Domr);

(iii) twist-free if and only if there exist xo ∈ M, uo ∈ V (1), 0 6= ao ∈ S

T⊗T and

a twice continuously differentiable function h : T  T⊗ T for which h(0) = 0,

ḣ(0) = 0 and

r(t) = xo + uo

(

t− τ(xo)
)

+ aoh
(

t− τ(xo)
)

(t ∈ Domr).

Proof. The validity of the assertions comes from the theory of differential
equations; (i) and (ii) are quite trivial. For (iii) observe that r is twist-free if
and only if there is a nonzero acceleration value ao and a continuous function
α : T  R (which can be zero) such that r̈(t) = aoα(t). If xo is a point in the
range of r, we define χ : T  R by χ(t) := α

(

τ(xo) + t
)

which means that

χ
(

t− τ(xo)
)

= α(t). Then h will be the function whose second derivative is χ
and that satisfies the initial condition given above.

Observe that a twice continuously differentiable world line function r is twist-
free if and only if r̈/|r̈| is constant on each interval where the second derivative
is not zero.

An inertial world line is uniformly accelerated (with zero acceleration) and a
uniformly accelerated world line is twist-free (with constant acceleration).

A world line is inertial if and only if it is a straight line segment.

2.4. Newtonian equation

2.4.1. We shall say some words about the Newtonian equation though it does
not belong to the subject of this volume; the Newtonian equation motivates
the notion of force fields and potentials which will make us understand the
importance of splitting of vectors and covectors (see Section 6).

First of all we have to say something about mass. One usually introduces
the unit of mass, kg, as a unit independent of the unit of distances, m, and
of the unit of time periods, s. This means in our language that we introduce
the measure line M of mass as a measure line ‘independent’ of L and T. We
shall do so in another book where we wish to treat physical theories in a form
suitable for applications, so in a form which applies the SI physical dimensions.
However, for the present purposes we choose another possibility.

The results of quantum mechanics showed that Nature establishes a relation
among the measure lines L, T and M . Namely, it is discovered, that the
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values of angular momentum are integer multiples of a given quantum denoted
by h/4π where h is known as the Planck constant. Hence we can choose R for
the measure line of angular momentum; a real number (more precisely an integer)
n represents the angular momentum value nh/4π. As it is known, angular
momentum is the product of mass, position and velocity; thus its measure line
is M⊗ L⊗ L

T
which is identified with R; consequently, M ≡ T

L⊗L .

In this book, for easier theoretical considerations, we take T

L⊗L as the measure
line of masses. If m is the unit distance and s is the unit time period then s

m2

is the unit mass. One finds the experimental data

h/4π = 1.05 . . . · 10−34m
2 kg

s
,

hence if we take it equal to the real number one we arrive at the definition

kg := 9.4813 . . . · 1033 s

m2
.

2.4.2. Since acceleration values are elements of S

T⊗T and ‘the product of mass

and acceleration equals the force’, the force values are elements of T

L⊗L ⊗ S

T⊗T ≡
S

T⊗L⊗L ≡ S
∗

T
; moreover, ‘a force can depend on time, on space and on velocity’.

Thus we accept that a force field is a differentiable mapping

f : M×V (1) 
S∗

T

and the history of the material point with mass m under the action of the force
field f is given by the Newtonian equation

mẍ = f(x, ẋ),

i.e. the world line modelling the history is a solution of this differential equation.

2.4.3. The most important force fields can be derived from potentials; e.g.
the gravitational field and the electromagnetic field. Usually the gravitational
field is the gradient of a scalar potential and the electromagnetic field is given
by the gradient of a scalar potential and the curl of a vector potential. The
gravitational force acting on a material point depends only on the spacetime
position of the masspoint, the electromagnetic force depends on the velocity of
the masspoint as well. To introduce the notion of potential in the spacetime
model, we have to rely on these facts. Now we give the convenient definition and
we shall show in Section 6 that it is suitable indeed.
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A potential is a twice differentiable mapping

K : M  M∗

(in other words, a potential is a twice differentiable covector field).
The field strength corresponding to K is D ∧ K : M  M∗ ∧ M∗ (the

antisymmetric or exterior derivative of K, see VI.3.6).
The force field f has a potential (is derived from a potential) if
— there is an open subset O ⊂ M such that Domf = O×V (1),
— there is a potential K defined on O such that

f(x, ẋ) = i∗ · F (x)ẋ
(

x ∈ O, ẋ ∈ V (1)
)

,

where F := D ∧ K and i : S → M is the embedding. Checking this formula,
the reader can seize the opportunity to practice using the dot product.

2.5. Exercises

1. Let r1 and r2 be world line functions. Characterize the function r1 − r2.
2. Another formulation of the preceding exercise: give necessary and sufficient

conditions for a function z that r + z be a world line for all world lines r.
3. Describe the world line function s in the split spacetime model (cf. 2.1.4).

3. Observers

3.1. The notions of an observer and its space

3.1.1. Observers played an important role in our heuristics treated in the
Introduction; an observer in the real word is a material object or a set of material
objects, e.g the earth, the houses on it form an observer, the car is another
observer.

Now we are in position to give an exact definition in the spacetime model.
We can imagine that an observer is a collection of material points existing

‘in close proximity’ to each other. The existence of a masspoint in spacetime is
described by a world line. Thus an observer would be modelled by a collection
of world lines that fill ‘continuously’ a domain of spacetime. How can a conve-
nient notion of such continuity be defined? To all points of every world line of
the observer we assign the corresponding absolute velocity value; in this way we
define an absolute velocity field: a function defined for some world points and
having values in V (1) . Conversely, given an absolute velocity field (with conve-
nient mathematical properties), we can recover the world lines of the observers:
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world lines having everywhere the velocity value prescribed by the velocity field.
We shall see that the velocity field is extremely suitable for our purposes, hence
we prefer it to the collection of world lines.

Definition. An observer is a smooth map U : M  V (1) whose domain is
connected.

If DomU = M, the observer is called global.

We emphasize that we are dealing with mathematical models; an observer as
it is defined is a mathematical model for a physical object. To underline this
fact we might use the term ‘observer model’ instead of ‘observer’ but we wish to
avoid ponderousness. If necessary, we shall say physical observer for the material
objects in question.

3.1.2. Let U be an observer. The integral curves of the differential equation

(x : T  M)? ẋ = U(x)

have exclusively timelike tangent vectors, thus they are world lines (see 2.2).

The maximal integral curves of this differential equation will be called U -
lines.

If the world line function r is a solution of the above differential equation—
i.e. Ranr is an integral curve of U —then ṙ(t) = U(r(t)) and so r̈(t) =
DU(r(t)) · ṙ(t) = DU(r(t)) · U(r(t)) for all t ∈ Domr. This motivates that

AU : M 

S

T⊗ T
, x 7→ DU(x) · U(x)

is called the acceleration field corresponding to the observer U .

3.1.3. Definition. An observer U is called fit if all the world line functions
giving the U -lines have the same domain; this uniquely determined interval of
T is the lifetime of the observer.

It may happen that the maximal integral curves of a global observer are not
global world lines (see Exercise 3.4). A global observer U is fit if and only if all
U -lines are global.

3.1.4. In the arithmetic spacetime model an observer is given by a function
V : R × R

3
 R

3 in the form (1,V ) = (1, V 1, V 2, V 3). If we denote the
partial derivatives corresponding to R and R

3 by ∂0 and ∇ = (∂1, ∂2, ∂3),
respectively, then the acceleration field of the observer is (0, ∂0V + V · ∇V ) =
(

0, (∂0V
i +

3
∑

k=1

V k∂kV
i)i=1, 2, 3

)

.
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3.1.5. As it is stated in the Introduction, a physical observer—a material
object—establishes space for itself. The points of its space are just the material
points that it consists of. In our model these points correspond to the maximal
integral curves of the observer. Thus the space of an observer U is just the
collection of U -lines:

Definition. Let U be an observer and let SU denote the set of maximal
integral curves of U . SU is called the space of the observer U , or the U -space.

The elements of the U -space are world lines. We have to get accustomed to
this situation, which is strange at first sight but common in mathematics: the
elements of a set are sets themselves.

A maximal integral curve of U will be called a U -line if considered to be a
subset of M and will be called a U -space point if considered to be an element
of SU .

We measure distances in our physical space, we know what is near, what is
far. We define limit procedures regarding our space. These notions must appear
in the model, too.

It can be shown (see [1]) that, in general, the U -space can be endowed with
a smooth structure in a natural way, thus limits, differentiability etc. will make
sense. However, in this book we avoid the general theory of smooth manifolds,
that is why, in general, we do not deal with the structure of observer spaces.
Later the spaces of some special observers, important from the point of view of
applications, will be treated in detail.

3.1.6. Recall from the theory of differential equations that different integral
curves of U do not intersect (VI.6.2). Let us introduce the map CU : DomU →
SU in such a way that CU(x) is the (unique) U -line passing through x.

We shall say as well that CU(x) is the U -space point that the world point
x is incident with.

3.2. Classification of observers

3.2.1. We have considered the room and the car as examples of physical
observers. However, much ‘worse’ material objects can be observers as well.
For instance, the stormy sea: the distance of its space points (which are the
molecules of the water) and even the direction of their mutual positions are not
constant. A ship on the stormy sea is a little better because it does not change
its shape, it is rigid. However, it rotates, i.e. the directions of relative positions
of its space points vary with time. The slightly waving water is better than the
stormy one because it does not whirl. These examples show from what point of
view we should classify observers in our spacetime model.
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We mention that physical observers, in reality, are never rigid and rotation-
free; at least molecular motion contradicts these properties. Besides, a physical
observer is never global, it cannot fill all the spacetime. All these notions,
as all models, are idealizations, extrapolations for a convenient mathematical
description.

Recall the notation introduced in 2.2.

Definition. A fit observer U is called
(i) rigid if for all q1, q2 ∈ SU the distance between q1 ⋆ t and q2 ⋆ t , in other

words |q1 ⋆ t− q2 ⋆ t| , is the same for all t in the lifetime of U ;
(ii) rotation-free if for all q1, q2 ∈ SU the direction of the vector q1 ⋆ t− q2 ⋆ t

is the same for all t in the lifetime of U ;
(iii) twist-free if all U -space points are twist-free;
(iv) inertial if U is a constant function; in other words, if the U -lines are
parallel straight line segments in spacetime.

Except the inertial observers, it is difficult to give a good illustration of these
types of observers. The following figure tries to show a rigid or rotation-free
observer.

:

:

Suppose q1 runs in the plane of the sheet. Letting q2 bend below the plane
of the sheet in such a way that its points have the same distances from the
corresponding points of q1, we can draw a picture of a rigid observer which is
not rotation-free.

Letting q2 bend in the plane of the sheet we can draw a picture of a rotation-
free observer which is not rigid.

3.2.2. We call attention to the fact that a fit observer whose space points are
all inertial (i.e. straight line segments) is not necessarily inertial: it may occur
that its integral curves are not parallel (see Exercise 5.4.1).

Evidently, an inertial observer is rigid, rotation-free and twist-free. The
converse is not true: see 5.2.

A fit observer U is rigid and rotation-free if and only if for all q1, q2 ∈ SU ,
q1 ⋆ t− q2 ⋆ t is the same for all t in the lifetime of U .
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3.3. Reference frames, splitting of spacetime

3.3.1. Synchronization means defining simultaneity ’continuously’. Evi-
dently, if we want to give somehow a synchronization, then we must adhere
to the following rules:

1. every world point x must be simultaneous with itself,

2. if x is simultaneous with y then y is simultaneous with x ,

3. if x is simultaneous with y and y is simultaneous with z then x is
simultaneous with z .

Thus, a synchronization is an equivalence relation. Moreover, a further evident
requirement is that

4. different occurrences of any world line cannot be simultaneous.

Thus, x and y cannot be simultaneous if y − x is timelike.

Further, we expect that the equivalence classes be ’good’ sets; all these lead
us to the following definition,

Definition. A synchronization is an equivalence relation defined in a con-
nected open subset of spacetime, such that every equivalence class is a three-
dimensional submanifold whose every tangent space is transversal to all timelike
vectors.

In other words, the tangent spaces must be spacelike. It is trivial that there
is only one global (i.e. everywhere defined) synchronization in the nonrelativistic
spacetime model: the equivalence class of x is x+ S .

3.3.2. The following definition seems superfluous but it is necessary for better
comprehending the relativistic case.

Definition. An observer and a synchronization together form a reference
frame.

Evidently, an observer now uniquely determines a reference frame. Thus, in
the nonrelativistic spacetime model, but only here, we can say observer instead
of reference frame.

3.3.3. Given an observer U , then the map

ξU : DomU → T× SU , x 7→
(

τ(x), CU(x)
)

is clearly injective, its inverse is

(t, q) 7→ q ⋆ t
(

(t, q) ∈ RanξU ⊂ T× SU

)

where the notation introduced in 2.2 is used.
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In this way spacetime points in the domain of U are represented by pairs of
time points and U -space points. We say that the observer U splits spacetime
into time and U -space with the aid of ξU .

U -lines

Definition. ξU is the splitting of spacetime according to U .

If SU is endowed with the smooth structure mentioned previously then ξU
will be smooth. Its properties will be clarified in special cases.

3.4. Exercise

The observer
(ξ0, ξ1, ξ2, ξ3) 7→ (1, −(ξ1)

2
, 0, 0)

in the arithmetic spacetime model is global, its maximal integral curve passing
through (ξ0, ξ1, ξ2, ξ3) is

{

(t, 0, ξ2, ξ3)
∣

∣ t ∈ R
}

if ξ1 = 0,
{

(t,
1

t− ξ0 + 1/ξ1
, ξ2, ξ3)

∣

∣

∣

∣

t > ξ0 − 1/ξ1
}

if ξ1 > 0,

{(t, 1

t− ξ0 + 1/ξ1
, ξ2, ξ3)|t < ξ0 − 1/ξ1} if ξ1 < 0.

Consequently, most of the maximal integral curves of the observer are not global.

4. Rigid observers

4.1. Inertial observers

4.1.1. Let us consider a global inertial observer with constant absolute
velocity value u ; we shall refer to this observer by u and we omit the epithet
global.
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Recall the linear map πu—the projection onto S along u ⊗ T—defined in
1.3.8.

The observer space Su is the set of straight lines directed by u; more closely,

Cu(x) = x+ u⊗ T := {x+ ut | t ∈ T}.

Note that

(x+ u⊗ T) ⋆ t = x+ u(t− τ(x)).

As a consequence, the inertial observer is rigid and rotation-free:

(x2 + u⊗ T) ⋆ t−(x1 + u⊗ T) ⋆ t =

=
(

x2 + u
(

t− τ(x2)
))

−
(

x1 + u(t− τ(x1)
))

=

= x2 − x1 − u
(

τ · (x2 − x1)
)

=

= πu · (x2 − x1).

4.1.2. According to the previous formula, if q2 and q1 are u -space points
then q2 ⋆ t− q1 ⋆ t is the same vector in S for all t ∈ T : more closely, it equals
πu ·(x2−x1) where x1 and x2 are arbitrary elements of q1 and q2, respectively.
Regarding this vector as the difference of the u -space points, we define an affine
structure on Su in a natural way.

Proposition. Su, endowed with the subtraction

q2 − q1 := πu · (x2 − x1) (q1, q2 ∈ Su, x1 ∈ q1, x2 ∈ q2)

is an affine space over S.

Observe that if x1 ∈ q1, x2 ∈ q2 and τ(x1) = τ(x2), then q2− q1 = x2−x1.

e{e t
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It is worth remarking that

(x+ q) + u⊗ T = (x+ u⊗ T) + q (x ∈ M, q ∈ S),

which is not trivial because here the same sign + denotes different operations:
the first one refers to the addition between elements of M and M; the second
and the third ones denote a set addition between elements of M and M; the
fourth one indicates the addition between elements of Su and S. This formula
has the generalization

(x+ x) + u⊗ T = (x+ u⊗ T) + πu · x (x ∈ M, x ∈ M).

4.1.3. The space of any inertial observer is a three-dimensional oriented
Euclidean affine space (over S). In this way we regain our experience regarding
our physical space from the spacetime model (see the Introduction).

Keep in mind that the space of every inertial observer is an affine space over
the same vector space S. Now we see why the vectors in S are called spacelike.

The following assertion is proved without any difficulty.

Proposition. The splitting of spacetime according to an inertial observer
with velocity value u ,

M → T× Su, x 7→ ξu(x) :=
(

τ(x), Cu(x)
)

= (x+ S, x+ u⊗ T)

is an orientation preserving affine bijection having ξu = (τ ,πu) as its underlying
linear map.

4.1.4. We have to get accustomed to the fact that a physical notion which
seems ‘structureless’, ‘as simple as possible’ (e.g. a space point of an observer)
is modelled by a less simple, structured mathematical object (by a line). In
mathematics it is customary that the elements of a set are themselves sets or
functions.

However, we have a tool to reduce some of our mathematical objects to simpler
ones. This tool is the vectorization of affine spaces: choosing an arbitrary element
(‘reference origin’) in an affine space, we can represent every element of the affine
space by a vector.

An inertial observer with velocity value u, taking a to ∈ T and a qo ∈ Su ,
can establish the vectorization of time and u -space:

Vo : T× Su → T× S, (t, q) → (t− to, q − qo)

by which, in particular, we represent u -space points by vectors in S that are
simpler objects than straight lines in M.
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Notice that choosing to and qo is equivalent to choosing a spacetime reference
origin o ∈ M: o := qo ⋆ to, to = τ(o), qo = Cu(o).

Definition. An inertial observer with origin is a pair (u, o) where u is a
the constant velocity value of an inertial observer and o is a world point.

The vectorized splitting of spacetime corresponding to (u, o) is the map

ξu,o := Vo ◦ ξu : M → T× S, x→
(

τ(x)− τ(o), Cu(x)− Cu(o)
)

=

=
(

τ · (x− o), πu · (x− o)
)

.

Note that
ξu,o = ξu ◦Oo,

where ξu = (τ ,πu) and Oo is the vectorization of M with origin o :, i.e.
Oo : M → M, x 7→ x− o.

4.1.5. Let us consider the arithmetic spacetime model and the inertial ob-
server with constant value (1,v). The space point of the observer that (α, ξ) is
incident with is the straight line (α, ξ) + (1,v)R = {(α+ t, ξ + vt) | t ∈ R}.

As concerns the affine structure of the set of such lines we have

[(α, ξ) + (1 + v)R]− [(β, ζ) + (1,v)R] = ξ − ζ − v(α− β) ∈ R
3.

Let the observer in question choose (0,0) as reference origin. Then the observer
space will be represented by R

3; the space point (α, ξ)+(1,v)R will correspond
to the difference of this straight line and that passing through (0,0)which is
(1,v)R ; this difference is exactly ξ − vα.

Consequently, the vectorized splitting of spacetime due to this observer is

R× R
3 → R× R

3, (α, ξ) 7→ (α, ξ − vα).

In particular, the splitting of spacetime according to the ’basic observer’—the
one whose value is the basic velocity value (1,0) —with reference origin (0,0) is
the identity of R×R

3 : the arithmetic spacetime model is the Cartesian product
of vectorized time and vectorized space relative to the basic observer.

In other words, the observer with reference origin makes the correspondence
that previously has been accepted as a natural identification. The vectorized
splitting of spacetime is described by the formula above.

4.2. Characterization of rigid observers ∗

4.2.1. Now we derive some mathematical results to characterize some prop-
erties of observers. Simple but important relations for deducing our results are
the following.
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Recall that CU(x) denotes the U -line passing through x. Then t 7→
CU(x) ⋆ t is the corresponding world line function. So we have

CU(x) ⋆ τ(x) = x

and
d

dt

(

CU(x) ⋆ t
)

= U
(

CU(x) ⋆ t
)

.

Proposition. Let U be a fit global observer.
(i) U is rigid if and only if

(

U(x+ q)− U(x)
)

· q = 0 (x ∈ M, q ∈ S).

(ii) U is rigid and rotation-free if and only if

U(x+ q)− U(x) = 0 (x ∈ M, q ∈ S),

which is equivalent to the existence of a smooth map V : T  V (1) such that

U = V ◦ τ.

Proof. Let q1, q2 ∈ SU .
(i) The function

t 7→ |q1 ⋆ t− q2 ⋆ t|2

is constant if and only if its derivative

t 7→ 2
(

U(q1 ⋆ t)− U(q2 ⋆ t)
)

· (q1 ⋆ t− q2 ⋆ t)

is zero.
Putting x := q2 ⋆ t, q := q1 ⋆ t − q2 ⋆ t in the derivative we infer that the

derivative is zero if and only if the equality in the assertion holds (every x ∈ M
is of the form q2⋆t for some q2 and t and every q ∈ S is of the form q1⋆t−q2⋆t
for some q1).
(ii) The function

t 7→ q1 ⋆ t− q2 ⋆ t

is constant if and only if its derivative

t 7→ U(q1 ⋆ t)− U(q2 ⋆ t)

is zero.
Reasoning as previously we get the desired result.
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4.2.2. Let U be a global rigid observer. For to, t ∈ T let us define

RU(t, to) : S → S, q 7→ CU(xo + q) ⋆ t − CU(xo) ⋆ t,

where xo is an arbitrary element of to (i.e. xo ∈ M and τ(xo) = to).

RRRRRR

Proposition. If U is a global rigid observer then RU(t, to) is a rotation
in S (a linear orthogonal map with determinant 1) for all to, t ∈ T. Moreover,
RU(t, to) is independent of xo appearing in its definition.

The global rigid observer U is rotation-free if and only if RU(t, to) = 1S for
all to, t ∈ T.

Proof. Evidently,
RU(t, to)(0) = 0.

Moreover, since U is rigid, for all q1, q2 ∈ S we have

| RU(t, to)(q1)−RU(t, to)(q2) | =
=
∣

∣

(

CU(xo + q1) ⋆ t− CU(xo) ⋆ t
)

−
(

CU(xo + q2) ⋆ t− CU(xo) ⋆ t
) ∣

∣ =

=
∣

∣ CU(xo + q1) ⋆ t− CU(xo + q2) ⋆ t
∣

∣ =
∣

∣ (xo + q1)− (xo + q2)
∣

∣ =

= | q1 − q2 |.

As a consequence, RU(t, to) is a linear orthogonal map (see V.3.7).
For fixed to and fixed q ∈ S, the function T → S, t 7→ RU(t, to) · q

is smooth since it is the difference of two solutions of the smooth differential
equation ẋ = U(x). Consequently, t 7→ detRU(t, to) is a smooth function.
Since the determinants in question can be 1 or −1 only and

RU(to, to) = 1S,

all the determinants in question equal 1.
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If yo is another element of to, then with the notation qo := yo − xo ∈ S we
deduce

CU(yo + q) ⋆ t− CU(yo) ⋆ t = CU(xo + qo + q) ⋆ t− CU(xo + qo) ⋆ t =

=
(

CU(xo + qo + q) ⋆ t− CU(xo) ⋆ t
)

−
(

CU(xo + qo) ⋆ t− CU(xo ⋆ t)
)

=

= RU(t, to) · (qo + q)−RU(t, to) · qo = RU(t, to) · q,
which means that the definition of RU(t, to) is independent of xo.

4.2.3. Proposition. For all to, t, s ∈ T we have
(i) RU(to, to) = 1S,

(ii) RU(t, to)
−1

= RU(to, t),
(iii) RU(t, to) = RU(t, s) ·RU(s, to).

Proof. (i) is trivial.
The defining formula of RU(t, to) can be rewritten in the following form: if

q, qo are U -space points then

q ⋆ t− qo ⋆ t = RU(t, to) · (q ⋆ to − qo ⋆ to) (to, t ∈ T). (∗)
Interchanging t and to we get

q ⋆ to − qo ⋆ to = RU(to, t) · (q ⋆ t− qo ⋆ t)

from which we infer (ii).
In a similar way we obtain (iii.)

Observe that (∗) implies that if RU(t, to) is known for a to and for all t
then every U -space point q can be deduced from an arbitrarily chosen qo.

4.2.4. Let U be a global rigid observer. For fixed to ∈ T, the function
T → S⊗ S∗, t 7→ RU(t, to) is smooth (because for all q ∈ S, t 7→ RU(t, to) · q
is smooth); we introduce

ṘU(t, to) :=
dRU(t, to)

dt
∈ S⊗ S∗

T
(t, to ∈ T),

which can be regarded as a linear map

ṘU(t, to) : S → S

T
, q 7→ d

dt
RU(t, to) · q

(VI.3.11). We deduce from the defining formula of RU(t, to) that

ṘU(t, to) · q = U
(

CU(xo + q) ⋆ t
)

− U
(

CU(xo) ⋆ t
)

=

= U
(

CU(xo) ⋆ t+RU(t, to) · q
)

− U
(

CU(xo) ⋆ t
)

=

= U
(

q ⋆ t+RU(t, to) · q
)

− U(q ⋆ t),
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where xo is an arbitrary element of to and q is an arbitrary element of SU .
Substituting RU(t, to)

−1 · q for q and introducing the linear map

ΩU(t) := ṘU(t, to) ·RU(t, to)
−1

: S → S

T

for t ∈ T, we obtain

ΩU(t) · q = U(q ⋆ t+ q)− U(q ⋆ t) (t ∈ T, q ∈ S).

We know that ΩU(t) is antisymmetric (see 11.1.10). Since q ⋆ t can be an
arbitrary world point, we have proved:

Proposition. If U is a global rigid observer then ΩU(t) is an antisymmetric
linear map for all t ∈ T; it is independent of to appearing in its definition.
Moreover,

U(x+ q)− U(x) = ΩU

(

τ(x)
)

· q (x ∈ M, q ∈ S). (∗∗)

The global rigid observer U is rotation-free if and only if ΩU(t) = 0 for all
t ∈ T.

Notice that the restriction of U to an arbitrary simultaneous hyperplane t
is an affine map whose underlying linear map is ΩU(t).

ΩU(t) can be interpreted as the angular velocity of the observer at the
instant t (see 11.1.10).

4.2.5. For arbitrarily fixed to ∈ T, the function t 7→ RU(t, to) defines the
function t 7→ ΩU(t) according to the preceding paragraph. Conversely, if the
function t 7→ ΩU(t) is known, then t 7→ RU(t, to) is determined as the unique
solution of the differential equation

(X : T → S⊗ S∗)? Ẋ = ΩU ·X

with the initial condition
X(to) = 1S.

4.2.6. We see from the formula (∗∗) of 4.2.4 that the rigid observer U is
completely determined by an arbitrarily chosen U -space point qo and by the
angular velocity of the observer, i.e. by the function t 7→ ΩU(t). Indeed, putting
q := qo ⋆ τ(x)− x in that formula we obtain

U(x) = U
(

qo ⋆ τ(x)
)

+ΩU

(

τ(x)
)

·
(

x− qo ⋆ τ(x)
)

(x ∈ M)

and we know that the values of U on qo coincide with the derivative of the
world line function t 7→ qo ⋆ t.



4. Rigid observers 65

4.3. About the spaces of rigid observers ∗

4.3.1. Proposition. Let U be a fit global observer. U is rigid and rotation-
free if and only if SU , equipped with the subtraction

q1 − q2 := q1 ⋆ t− q2 ⋆ t (q1, q2 ∈ SU , t ∈ T)

is an affine space over S.

Proof. If U is rigid and rotation-free then, for all q1, q2 ∈ SU , q1 ⋆ t− q2 ⋆ t
is the same element of S for all t ∈ T. It is not hard to see that the subtraction
in the assertion satisfies the requirements listed in the definition of affine spaces.

Conversely, if SU is an affine space over S with the given subtraction then,
in particular, q1 ⋆ t− q2 ⋆ t is independent of t for all q1, q2 ∈ SU , hence U is
rigid and rotation-free.

4.3.2. If U is a global rigid and rotation-free observer, then SU is an affine
space, thus the differentiability of the splitting of spacetime according to U

makes sense.

Proposition. Let U be a global rigid and rotation-free observer. Then the
splitting

ξU : M → T× SU , x 7→
(

τ(x), CU(x)
)

is a smooth bijection,
DξU(x) =

(

τ ,πU(x)

)

(x ∈ M),

and the inverse of ξU is smooth as well.

Proof. For x ∈ M and t ∈ T we have CU(x) ⋆ t = x + U(x)
(

t − τ(x)
)

+

ordo
(

t− τ(x)
)

(VI.3.3). Thus for all y, x ∈ M (see Exercise 4.5.1),

CU(y)− CU(x) = y − CU(x) ⋆ τ(y) =

= y − x+ U(x)
(

τ(y)− τ(x)
)

+ ordo
(

τ(y)− τ(x)
)

and so

ξU(y)− ξU(x) =
(

τ(y)− τ(x), CU(y)− CU(x)
)

=

=
(

τ · (y − x), πU(x) · (y − x)
)

+ ordo
(

τ (y − x)
)

.

Hence ξU is differentiable, its derivative is the one given in the proposition.
As a consequence, we see that ξU is smooth; its inverse is smooth by the inverse
mapping theorem.

4.3.3. The space of a rigid and rotation-free global observer, endowed with a
natural subtraction, is an affine space over S. The space of another observer is
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not affine space with that subtraction (in fact that subtraction makes no sense for
other observers). This does not mean that the space of other observers cannot
be endowed with an affine structure in some other way.

Let us consider a fit global observer U . For every instant t we can define the
instantaneous affine structure on SU by the subtraction q1−q2 := q1⋆t−q2⋆t. In
general, different instants determine different instantaneous affine structures and
all instants have the same ‘right’ for establishing an affine structure on the U -
space. There is no natural way to select an instant and to use the corresponding
instantaneous affine structure as the affine structure of SU .

Nevertheless, we can define a natural affine structure on the spaces of rigid
global observers.

4.3.4. Though the Earth rotates, we experience on it an affine structure
independent of time. A stick on the earth represents a vector. Evidently, the stick
rotates together with the earth. The stick will be represented in the following
reasoning by two points (the extremities of the stick) in the observer space. Now
we wish to define that two points in the space of a rigid observer determine a
vector (rotating together with the observer).

Let U be a rigid global observer. If q1 and q2 are points in the observer
space SU then for all t, t′ ∈ T

q1 ⋆ t− q2 ⋆ t = RU(t, t′) · (q1 ⋆ t′ − q2 ⋆ t
′).

Let us introduce

SU := {s : T → S | s is smooth, s(t) = RU(t, t′) · s(t′) for all t, t′ ∈ T}.

It is a routine to check that SU , endowed with the usual pointwise addition
and pointwise multiplication by real numbers, is a vector space; it is three-
dimensional, because SU → S, s 7→ s(t) is a linear bijection for arbitrary t ∈ T
(which means in particular, that the function s is completely determined by
a single one of its values). Moreover, if s1 and s2 are elements of SU , then
s1(t) · s2(t) is the same for all instants t, thus

SU × SU → L⊗ L, (s1, s2) 7→ s1 · s2 : = s1(t) · s2(t)

is a positive definite symmetric bilinear map which turns SU into a Euclidean
vector space.

Now it is quite evident that SU , endowed with the subtraction

q1 − q2 :=
(

T → S, t 7→ (q1 ⋆ t− q2 ⋆ t)
)

will be an affine space over SU . In other words, the difference of two U -space
points is exactly the difference of the corresponding world line functions, as the
difference of functions is defined.
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If U is rotation-free, then SU consists of the constant functions from T into
S which can be identified with S. So we get back our previous result that the
space of a global rigid and rotation-free observer is an affine space over S in a
natural way.

If U is not rotation-free then SU is a three-dimensional Euclidean affine
space in a natural way, but the underlying vector space is not S; in fact the
underlying vector space SU depends on the observer itself.

4.3.5. The space of a global rigid observer is an affine space, thus the
differentiability of the splitting of spacetime according to the observer makes
sense. This question, reduced to a simpler affine structure, will be studied in the
next section.

4.4. Observers with origin ∗

4.4.1. The vectorization of observer spaces simplifies some formulae for
inertial observers and it will be a powerful tool for noninertial rigid observers.

Let U be a global rigid and rotation-free observer. Choosing an instant to
and a U -space point qo, we give the corresponding vectorization of time and
U -space:

Vo : T× SU → T× S, (t, q) 7→ (t− to, q − qo).

We see that in this way U -space points (curves in M) are represented by
spacelike vectors (points in S).

Notice that choosing to and qo is equivalent to choosing a ‘spacetime reference
origin’ o ∈ M: o := qo ⋆ to, to = τ(o), qo = CU(o). That is why we have used
the symbol Vo for the vectorization which can be written in the following form,
too:

Vo : T× SU → T× S, (t, q, ) 7→ (t− τ(o), q ⋆ τ(o)− o) ,

since q − qo = q ⋆ t− qo ⋆ t for all t ∈ T, in particular for t := τ(o).
If U is not rotation-free, the result of a similar vectorization

Vo : T× SU → T× SU , (t, q) 7→ (t− to, q − qo)

is not simple enough because the elements of SU are functions. That is why we
make a further step by the linear bijection

Lo : SU → S, s 7→ s(to).

Since Lo ·(q−qo) = (q−qo)(to) = q⋆to−qo⋆to, we get the double vectorization
of time and U -space:

Wo := (1T ×Lo) ◦ Vo : T× SU → T× S, (t, q) 7→ (t− τ(o), q ⋆ τ(o)− o) ,
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which coincides formally with the vectorization of time and space of a rigid and
rotation-free observer.

4.4.2. Definition. A rigid observer with reference origin is a pair (U , o)
where U is a global rigid observer and o is a world point.

If U is rotation-free, the vectorized splitting of spacetime corresponding to
(U , o) is the map

ξU,o := Vo ◦ ξU : M → T× S, x 7→
(

τ(x)− τ(o), CU(x)− CU(o)
)

=
(

τ(x)− τ(o), CU(x) ⋆ τ(o)− o
)

,

and if U is not rotation-free then the double vectorized splitting of spacetime is
the map

ξU,o :=Wo ◦ ξU : M → T× S, x 7→
(

τ(x)− τ(o), CU(x) ⋆ τ(o)− o
)

.

4.4.3. Proposition. Let (U , o) be an observer with reference origin.
If U is rotation-free then the vectorized splitting is a smooth bijection whose

inverse is smooth as well and

DξU,o(x) = (τ ,πU(x)) (x ∈ M).

If U is not rotation-free, the double vectorized splitting is a smooth bijection
whose inverse is smooth as well and

DξU,o(x) =
(

τ ,RU(τ(x), to)
−1 · πU(x)

)

(x ∈ M)

where to := τ(o).

Proof. For rotation-free observers the assertion is trivial because of 4.3.2 and
because the derivative of Vo is the identity of T× S.

For the double vectorization we argue as follows: the map M → S, x 7→
CU(x) ⋆ to − o = RU(τ(x), to)

−1 ·
(

x−CU(o) ⋆ τ(x)
)

(see formula (∗) in 4.2.3.)
is clearly differentiable, its derivative is the linear map (see Exercise 11.2.2)

M → S, x 7→ −RU(τ(x), to)
−1 ·ΩU

(

τ(x)
)

·
(

x− CU(o) ⋆ τ(x)
)

τ · x +

+RU(τ(x), to)
−1 ·

(

x− U
(

CU(o) ⋆ τ(x)
)

τ · x
)

=

= RU(τ(x), to)
−1 · πU(x) · x.

Since Wo is an affine bijection, it follows that the splitting ξU : M → T×SU

is smooth and has a smooth inverse as well (cf. 4.3.5.).
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4.4.4. Dealing with observers in the arithmetic spacetime model it is ex-
tremely convenient to consider observers with reference origin where the refer-
ence origin coincides with the origin (0,0) of R× R

3. Namely, in this case the
(double) vectorized observer spaces are R

3 and the (double) vectorized split-
ting is a linear map R × R

3 → R × R
3 whose zeroth component is the zeroth

projection.

4.5. Exercises

1. If SU is the affine space over S with the subtraction given in 4.3.1, then

CU(x+ q) = CU(x) + q,

CU(y)− CU(x) = CU(y) ⋆ τ(x)− x =

= y − CU(x) ⋆ τ(y).

for all x, y ∈ M, q ∈ S .

2. Prove that

ΩU(t) = ṘU(t, t) (t ∈ T)

(see 4.2.4).

3. We know that the derivative at a point of a double vectorization is of the
form (τ ,R−1 · πu) : M → T × S where u ∈ V (1) and R is an orthogonal
map S → S, i.e. R> = R−1 (see 4.4.3). Recall that the adjoint R> is
identified with the transpose R∗ due to the identification S

L⊗L ≡ S∗. Thus we
have R∗ ≡ R> = R−1 and so (i ·R)∗ = R−1 · i∗. Prove that

(τ ,R−1 · πu)
∗−1 = (u,R−1 · i∗).

4. Let U be a global rigid observer. Using Proposition 4.2.1. prove that
DU(x)|S is antisymmetric for all x ∈ M (which is proved in 4.2.4 in another
way).

5. Let U be a fit global observer. Demonstrate that U is rotation-free if
and only if there is a smooth map α : T×M× S → R such that

(i) CU(x+ q) ⋆ t− CU(x) ⋆ t = α(t, x, q)q (t ∈ T, x ∈ M, q ∈ S);

(ii) α(τ(x), x, q) = 1 (x ∈ M, q ∈ S);

(iii) α(t, x, 0) = 1 (t ∈ T, x ∈ M).

6. Using the previous result prove that if U is a global rigid and rotation-free
observer then there is a smooth map β : M → R

T
such that DU(x)|S = β(x)1S

for all x ∈ M.
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5. Some special observers

5.1. Why inertial observers are better than others

5.1.1. We know that the space of a rigid and rotation-free global observer,
even if it is not inertial, is an affine space over S. However, the splitting of
spacetime according to noninertial observers is not affine.

Proposition. Let U be a rigid and rotation-free global observer. The
splitting of spacetime according to U ,

ξU : M → T× SU , x 7→
(

τ(x), CU(x)
)

is an affine map if and only if U is inertial.

Proof. We have seen that if U is inertial then ξU is affine.

We know that ξU is differentiable, DξU(x) = (τ ,πU(x)) (see 4.3.2). If ξU
is affine, then DξU(x) is the same for all x ∈ M. This means that πU(x) does
not depend on x which implies that U is a constant map as well.

5.1.2. We can say that if SU is affine but U is not inertial then the affine
structures of M and T×SU —though they are mathematically isomorphic—are
not related from a physical point of view.

If SU is affine, then (T× SU ,T,L, τ ,h) is a nonrelativistic spacetime model
and so it is isomorphic to the spacetime model (M,T,L, τ ,h); however, the
physically meaningful triplet (ξU ,1T,1L) is an isomorphism between them if
and only if U is inertial.

This shows that global inertial observers play an important role in applica-
tions. Let U be a global inertial observer and suppose an assertion is formulated
for some objects related to T×SU ; then the assertion concerns an absolute fact
if it uses only the affine structure of T × SU . The assertion has not necessar-
ily an absolute content if it uses other properties of T × SU ; for instance, the
Cartesian product structure or the affine structure of SU alone.

5.2. Uniformly accelerated observer

5.2.1. The rigid global observer U is called uniformly accelerated if its
acceleration field is a nonzero constant, i.e. there is a 0 6= a ∈ S

T⊗T such
that

AU(x) := DU(x) · U(x) = a. (x ∈ M).

Equivalently, for all U -space points q, d2

dt2 (q ⋆ t) = a (t ∈ T).
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We have for all x ∈ M and t ∈ T that

CU(x) ⋆ t = x+ U(x)
(

t− τ(x)
)

+
1

2
a
(

t− τ(x)
)2

and

U
(

CU(x) ⋆ t
)

=
d

dt

(

CU(x) ⋆ t
)

= U(x) + a
(

t− τ(x)
)

. (∗)

Now it follows that for all x ∈ M, q ∈ S and t ∈ T

CU(x+ q) ⋆ t− CU(x) ⋆ t = q +
(

U(x+ q)− U(x)
)(

t− τ(x)
)

.

Since U is rigid, the length of this vector is independent of t, so it equals
the length of q. Then assertion (i) in Proposition 4.2.1 implies that

U(x+ q)− U(x) = 0 (x ∈ M, q ∈ S)

which means, according to the quoted proposition, that U is rotation-free.

U - lines

U (o)

5.2.2. U is constant on the simultaneous hyperplanes. Thus U
(

CU(x)⋆

τ(y)
)

= U(y) for all x, y ∈ M and we infer from (∗) that

U(y) = U(x) + a
(

τ (y − x)
)

(x, y ∈ M).

As a corollary, the uniformly accelerated observer U is uniquely determined
by a single value of U at an arbitrary world point and by the constant value of
the acceleration field of U .

We see as well that the uniformly accelerated observer is an affine map from
M into V (1) whose underlying linear map is a · τ .
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5.2.3. Let the previous observer choose a reference origin o. Then

CU(x)− CU(o) = x− CU(o) ⋆ τ(x) =

= x− o− U(o)
(

τ(x)− τ(o)
)

− 1

2
a
(

τ(x)− τ(o)
)2
.

As a consequence, the vectorized splitting of spacetime is

M → T× S, x 7→
(

τ · (x− o), πU(o) · (x− o)− 1

2
a(τ · (x− o))

2

)

.

5.2.4. For α > 0, the observer

(

ξ0, ξ1, ξ2, ξ3
)

7→
(

1, αξ0, 0, 0
)

in the arithmetic spacetime model is uniformly accelerated. Its maximal integral
curve passing through

(

ξ0, ξ1, ξ2, ξ3
)

is

{(

t, ξ1 + αξ0(t− ξ0) +
1

2
α(t− ξ0)

2
, ξ2, ξ3

) ∣

∣

∣

∣

t ∈ R

}

=

=

{(

t, ξ1 +
1

2
αt2 − 1

2
α(ξ0)

2
, ξ2, ξ3

) ∣

∣

∣

∣

t ∈ R

}

.

Accordingly, if the observer chooses (0,0) as a reference origin then the
vectorized splitting becomes

R× R
3 → R× R

3,
(

ξ0, ξ1, ξ2, ξ3
)

7→
(

ξ0, ξ1 − 1

2
α(ξ0)

2
, ξ2, ξ3

)

.

5.3. Uniformly rotating observer

5.3.1. The global observer U is called uniformly rotating if there is a nonzero
antisymmetric linear map Ω : S → S

T
(in other words, Ω ∈ N∧N

T
, N := S

L
),

called the angular velocity, such that

U(x+ q)− U(x) = Ω · q (x ∈ M, q ∈ S).

Proposition 4.2.1 (i) implies that U is rigid. Moreover, we easily obtain that

RU(t, to) = e(t−to)Ω (to, t ∈ T),
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because this is the (necessarily unique) solution of the initial value problem given
in 4.2.5.

Consequently, 4.2.2. yields that if o, x ∈ M, τ(o) = to and t ∈ T then

CU(x) ⋆ t = CU(o) ⋆ t+ e(t−to)Ω · (CU(x) ⋆ to − o) . (∗)

Every U -line is obtained from a given one and from Ω. This formula becomes
simpler if we consider x ∈ to :

CU(x) ⋆ t = CU(o) ⋆ t+ e(t−to)Ω · (x− o).

U itself is determined by its values on a given U -line qo and by Ω (4.2.6):

U(x) = U
(

qo ⋆ τ(x)
)

+Ω ·
(

x− qo ⋆ τ(x)
)

(x ∈ M).

5.3.2. Reformulating the previous result we can say that a uniformly rotating
observer can be given by the history of a point of the observer (by a space point
of the observer) and by its angular velocity. If we deal with a uniformly rotating
observer then we are to look for its ‘best’ space points to have a simple description
of the observer. Even if the observer is given by one of its space points and by
its angular velocity, it may happen that we find a ‘better’ space point than the
given one.

Now we shall examine a uniformly rotating observer U that has an inertial
spacepoint. Then there is an o ∈ M and a c ∈ V (1) such that qo := o+ c⊗ T
is a U -line. U equals c on qo, thus

U(x) = c+Ω · πc · (x− o) (x ∈ M).

We see that U is an affine map, the underlying linear map is Ω · πc whose
range coincides with the range of Ω which is a two- dimensional linear subspace
in S

T .
We know that the kernel of Ω is one-dimensional and orthogonal to Ran Ω

(see V.3.9). If e ∈ KerΩ, then U(o + e + ct) = c for all t ∈ T, i.e. U is
constant on the inertial world line o+ e+ c⊗ T as well. Thus it is a maximal
integral curve of U , parallel to qo. It is an easy task to show that

{x ∈ M | U(x) = c} = o+KerΩ+ c⊗ T.

The observer has the acceleration field

AU(x) = DU(x) · U(x) = Ω · πc · U(x) = Ω ·
(

U(x)− c
)

=

= Ω ·Ω · πc · (x− o) (x ∈ M).
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Since Ker(Ω2) = KerΩ (Exercise V.3.21.2), the set of acceleration-free world
points is {x ∈ M | πc · (x− o) ∈ KerΩ} which equals o+KerΩ+ c⊗ T.

Thus for all e ∈ KerΩ, o+ e+ c⊗T is an inertial U -space point and there
are no other inertial U -space points. The inertial U -space points corresponding
to different elements of KerΩ are different. The set

{o+ e+ c⊗ T | e ∈ KerΩ}

in SU is called the axis of rotation.

5.3.3. The axis of rotation makes sense for arbitrary uniformly rotating
observers (see Exercise 5.4.4).

The Earth can be modelled by a uniformly rotating observer. Note that
the angle between the axis of rotation and the direction of progression makes
no absolute sense. The direction of progression is the direction of the relative
velocity with respect to the Sun. The axis of rotation (KerΩ, an oriented one-
dimensional linear subspace in S) and a relative velocity value (an element of S

T

as we shall see in Section 6.2) make an angle; however, KerΩ and an absolute
velocity value (c in the former treatment) form no angle.

5.3.4. Let the previous observer choose o as a reference origin. Then formula
(∗) in 5.3.1 yields that

CU(x) ⋆ to − o = e−(τ(x)−τ(o))Ω ·
(

x−
(

o+ c(τ(x)− τ(o))
))

,

thus the double vectorized splitting of spacetime becomes

M → T× S, x 7→
(

τ · (x− o), e−τ ·(x−o)Ω · πc · (x− o)
)

.

5.3.5. For ω > 0, the observer

(

ξ0, ξ1, ξ2, ξ3
)

7→
(

1, −ωξ2, ωξ1, 0
)

in the arithmetic spacetime model is uniformly rotating. Its maximal integral
curve passing through

(

ξ0, ξ1, ξ2, ξ3
)

is

{(

t, ξ1 cosω(t− ξ0)− ξ2 sinω(t− ξ0),

ξ1 sinω(t− ξ0) + ξ2 cosω(t− ξ0), ξ3
) ∣

∣ t ∈ R
}

.

If the observer chooses (0,0) as a reference origin, the double vectorized
splitting will be

R× R
3 → R× R

3,
(

ξ0, ξ1, ξ2, ξ3
)

7→
(

ξ0, ξ1 cosωξ0 + ξ2 sinωξ0, −ξ1 sinωξ0 + ξ2 cosωξ0, ξ3
)

.
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5.4. Exercises

1. Let U be a global observer. Demonstrate that the following assertions are
equivalent:
(i) the acceleration field of U is zero,
(ii) all the integral curves of U are straight lines.
Such an observer need not be inertial. Consider the observer

(

ξ0, ξ1, ξ2, ξ3
)

7→
(

1, 0, ξ1, 0
)

in the arithmetic spacetime model. Give its maximal integral curves. Show that
the observer is not rigid.

2. Let U be a global observer. Demonstrate that the following assertions are
equivalent:
(i) the acceleration field of U is a nonzero constant,
(ii) all the integral curves of U are uniformly accelerated with the same nonzero

acceleration.
Such an observer need not be uniformly accelerated. Consider the observer

(

ξ0, ξ1, ξ2, ξ3
)

7→
(

1, 0, ξ0 + ξ1, 0
)

in the arithmetic spacetime model.
3. Prove that a global rigid observer whose integral curves are straight lines

is inertial.
4. Define the axis of rotation for an arbitrary uniformly rotating observer.
5. Find the axis of rotation of the observer given in 5.3.5.
6. Since M and V (1) are affine spaces, it makes sense that a global observer

U : M → V (1) is affine; let DU : M → S

T
be the underlying linear map (the

derivative of U at every point equals the linear map under U). The restriction
of DU onto S will be denoted by ΩU ; it is a linear map from S into S

T
. Prove

that for all x ∈ M the world line function

T → M, t 7→ x+U(x)
(

t− τ(x)
)

+
1

2
DU · U(x)

(

t− τ(x)
)2
+

+

∞
∑

n=3

1

n!

(

(

t− τ(x)
)

ΩU

)n−2
·DU · U(x)

(

t− τ(x)
)2

gives the maximal integral curve passing through x .
7. Let U be an affine observer. Then ΩU := D U |

S
: S → S

T
is a linear

map. Prove that
(i) CU(x+ q) = CU(x) + q (x ∈ M, q ∈ S)

if and only if q ∈ KerΩU ;
(ii) U is rigid if and only if ΩU is antisymmetric.
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8. Let U be a rigid affine observer. Then, according to the previous exercise,
ΩU is antisymmetric.

We distinguish four cases:

(i) ΩU 6= 0, DU · u 6= 0 for all u ∈ V (1);

(ii) ΩU 6= 0, DU · c = 0 for some c ∈ V (1);

(iii) ΩU = 0, DU · u 6= 0 for all u ∈ V (1);

(iv) ΩU = 0, DU · c = 0 for some c ∈ V (1) (i.e. DU = 0).

Demonstrate that
(iv) is an inertial observer,
(iii) is a uniformly accelerated observer,
(ii) is a uniformly rotating observer having an inertial space point,
(i) is a uniformly rotating observer having a uniformly accelerated space point.
(Hint: the kernel of ΩU 6= 0 is one-dimensional, U and DU are surjections.

Hence there is a c ∈ V (1) such that a := DU · c is in the kernel of ΩU .
Consequently, there is a world point o such that for all world points x

U(x) = U(o) + DU · (x− o) = c+ΩU · πc · (x− o) + aτ · (x− o)

and so the observer has the acceleration field

AU(x) = a+ΩU ·ΩU · πc · (x− o).)

9. Take an o ∈ M and define the observer

U(x) :=
x− o

τ · (x− o)
(x ∈ o+ T→).

Prove that
(i) every U -space point is inertial, more closely,

CU(x) ⋆ t = o+
x− o

τ · (x− o)

(

t− τ(o)
) (

x ∈ DomU , t > τ(o)
)

;

(ii) the acceleration field corresponding to U is zero which follows from

DU(x) =
πU(x)

τ · (x− o)
;

(iii) U is not rigid; the distance between two U -space points increases as time
passes.
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10. Take an o ∈ M, a u ∈ V (1), an s ∈ T
+ and define the observer

U(x) := u+
πu · (x− o)

s
(x ∈ M).

Demonstrate that
(i) U is an affine observer, more closely

DU(x) =
πu

s
for all x ∈ M;

(ii) the acceleration field corresponding to U is

x 7→ πu · (x− o)

s2
=

U(x)− u

s
;

(iii) CU(o+ q) ⋆ t = o+ u
(

t− τ(o)
)

+ e(t−τ(o))/sq (q ∈ S).
(iv) U is rotation-free and is not rigid: the distance between two U -space
points increases with time.

6. Kinematics

6.1. The history of a masspoint is observed as a motion

6.1.1. The motion of a material point relative to an observer is described by
a function assigning to an instant the space point where the material point is at
that instant.

Now we are able to give how an observer determines the motion from the
history of a material point.

Definition. Let U be a fit observer and let r be a world line function,
Ranr ⊂ DomU . Then

rU : T  SU , t 7→ CU

(

r(t)
)

is called the motion relative to U , or the U -motion, corresponding to the world
line function r.

U-lines
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6.1.2. If U is a global rigid observer, then SU is an affine space thus the
differentiability of rU makes sense and rU is piecewise twice differentiable.

Given a rigid and rotation-free global observer U and a motion relative to U ,
i.e. a piecewise twice differentiable function m : T  SU , we can regain the
history, i.e. the world line function r for which rU = m holds. Indeed, for
every t, m(t) is a U -space point, i.e. a maximal integral curve of U ; then r(t)
will be the unique element in t ∩m(t). In other words, using the splitting ξU
we have

r(t) = ξU
−1(t,m(t)

)

= m(t) ⋆ t.

Similar considerations can be made for a general global rigid observer.

6.1.3. Let us consider the arithmetic spacetime model. As we know (see
2.1.4), a world line function r in it is given by a function r : R  R

3 in the
form r(t) =

(

t, r(t)
)

. Paragraph 4.1.5 shows that r is the corresponding motion
relative to the basic observer. We see that the history is regained very simply
from the motion (in view of the previous considerations it is a consequence of
the fact that, for the basic observer (1,0), ξ(1,0) is the identity the fact that for

the basic observer (1,0), the splitting ξ(1,0) is the identity of R× R
3).

Thus if r : R  R
3 describes the motion relative to the basic observer then

r(t) =
(

t, r(t)
)

(t ∈ Domr)

is the corresponding world line function.

6.2. Relative velocities

6.2.1. Proposition. Let U be a global rigid and rotation-free observer; if
the world line function r is twice differentiable then rU is twice differentiable
as well and

ṙU (t) = ṙ(t)− U
(

r(t)
)

, r̈U(t) = r̈(t)−AU

(

r(t)
)

.

Proof. Taking into account the relations

CU

(

r(s)
)

− CU

(

r(t)
)

= CU

(

r(s)
)

⋆ s− CU

(

r(t)
)

⋆ s =

= r(s)− r(t)−
[

CU

(

r(t)
)

⋆ s− CU

(

r(t)
)

⋆ t
]

we deduce

ṙU (t) = lim
s→t

CU

(

r(s)
)

− CU

(

r(t)
)

s− t
= ṙ(t)− U

(

r(t)
)

,
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from which r̈U(t) = r̈(t) − DU
(

r(t)
)

· ṙ(t) follows immediately. Since now
U = V ◦ τ (see 4.2.1 (ii)), we have DU = (DV ◦ τ) ·τ and AU = DV ◦ τ ; thus
the equality regarding the relative acceleration is verified.

The first and the second derivative of rU is accepted as the relative velocity
and the relative acceleration of r with respect to the global rigid and rotation-
free observer U , respectively.

6.2.2. The preceding result motivates the following definition.

Definition. Let u and u′ be elements of V (1) . Then

vu′u := u′ − u

is called the relative velocity of u′ with respect to u.

Proposition. Suppose u, u′ and u′′ are elements of V (1). Then
(i) vu′u is in S

T
,

(ii) vu′u = −vuu′ ,
(iii) vu′′u = vu′′u′ + vu′u.

These relations are very simple and they are in accordance with our everyday
experience:
(i) the relative velocity values form a three-dimensional Euclidean vector space,

the length of a relative velocity is in L

T
;

(ii) if a body moves with a given relative velocity with respect to another body
then the second body moves relative to the first one with the opposite velocity.
(iii) the sum of relative velocity values in a given order yields the resulting
relative velocity value.

6.2.3. Let us imagine that a car is going on a straight road and it is raining.
The raindrops hit the road and the car at different angles. What is the relation
between the two angles?

Let u and u′ be two different elements of V (1) (the absolute velocity values
of the road and of the car, respectively). If w is an element of V (1) , too,
w 6= u, w 6= u′ (the absolute velocity value of the raindrops),

θ(w) := arccos
vwu · vu′u

|vwu||vu′u|
, θ′(w) := arccos

vwu′ · (−vuu′)

|vwu′ ||vuu′ |
are the angle formed by the relative velocity values vwu and vu′u and the angle
formed by the relative velocity values vwu′ and −vu′u = vuu′ , respectively (the
angles at which the raindrops hit the road and the car, respectively).

A simple calculation yields that

cos θ(w) =
|vwu′ |
|vwu|

cos θ′(w) +
|vu′u|
|vwu|

.
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We call attention to an interesting limit case. Suppose u and u′ are fixed
and w tends to infinity, i.e. it varies in such a way that |vwu| tends to infinity;
then |vwu′ | tends to infinity as well and the quotient of these quantities tends
to the number 1:

lim
w→∞

cos θ(w) = lim
w→∞

cos θ′(w),

which implies lim
w→∞

θ(w) = lim
w→∞

θ′(w).

Roughly speaking, the raindrops arriving with an ‘infinitely big’ relative ve-
locity hit the road and the car at the same angle. Replacing ‘raindrops with
infinitely big relative velocity’ by a ‘light beam’ we get that nonrelativistically
there is no aberration of light: a light beam forms the same angle with the road
and the car moving on the road.

We have spoken intuitively; of course the question arises at once: what
is the model of a light beam in the nonrelativistic spacetime model? What
mathematical object in the nonrelativistic spacetime model will correspond to a
light beam? We shall see that none. A light beam cannot be modelled in the
present spacetime model.

6.2.4. We can obtain the results of 6.2.1 by choosing a reference origin o in
M, too, for the global rigid and rotation-free observer U . Let us put to := τ(o),
qo := CU(o). Evidently, the derivative of the vectorized motion

rU : T  S , t 7→ rU(t)− qo

equals the derivative of rU . Since

rU(t)− qo = CU

(

r(t)
)

− qo = CU

(

r(t)
)

⋆ t− qo ⋆ t =

= r(t)− qo ⋆ t,

we get immediately

ṙU (t) = ṙ(t)− U(qo ⋆ t) = ṙ(t)− U
(

r(t)
)

, (t ∈ T),

because U is constant on the simultaneous hyperplanes.

We mention, that in practice it is more convenient to use the vectorized motion
in such a form that time is vectorized, too:

T  S , t 7→ rU(to + t)− qo = r(to + t)− qo ⋆ (to + t).
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6.3. Motions relative to a rigid observer ∗

6.3.1. Recall that the space SU of a rigid global observer U is an affine space
over SU consisting of functions T → S whose values ‘rotate together with the
observer’. Thus, in general, it is somewhat complicated to control the affine
structure based on these vectors; we can simplify the calculations by performing
a double vectorization of the observer space, corresponding to a chosen reference
origin o in M. Let to := τ(o), qo := CU(o) and let Lo : SU → S be the linear
bijection introduced in 4.4.1.

Let us take the motion rU corresponding to the world line function r and
let us consider the double vectorized motion

rU : T  S , t 7→ Lo ·
(

rU(t)− qo
)

= CU

(

r(t)
)

⋆ to − o =

= RU(t, to)
−1 ·

(

r(t)− qo ⋆ t
)

.

For the sake of simplicity, we shall use the notations r(t) := rU(t), R(t) :=
RU(t, to), Ω(t) := ΩU(t), uo(t) := U(qo ⋆ t), ao(t) := AU(qo ⋆ t).

Then the previous formula can be written in the form

R(t) · r(t) = r(t)− qo ⋆ t;

differentiating with respect to t and then omitting t from the notation we obtain

Ṙ · r +R · ṙ = ṙ − uo

yielding
R · ṙ = −Ω ·R · r + ṙ − uo. (∗)

A second differentiation gives

Ṙ · ṙ +R · r̈ = −Ω̇ ·R · r −Ω · Ṙ · r −Ω ·R · ṙ + r̈ − ao

from which we infer

R · r̈ = −2Ω ·R · ṙ −Ω ·Ω ·R · r − Ω̇ ·R · r + r̈ − ao.

6.3.2. Let us introduce the notation

ω(t) := R(t)
−1 ·Ω(t) ·R(t) = R(t)

−1 · Ṙ(t) (t ∈ T).

From R · ω = Ω ·R we derive that Ṙ · ω +R · ω̇ = Ω̇ ·R+Ω · Ṙ, which implies
Ω ·R · ω +R · ω̇ = Ω̇ ·R+Ω ·Ω ·R; then we can state that

ω̇ = R−1 · Ω̇ ·R.
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Consequently, the last formula in the preceding paragraph can be written in the
form

r̈ = −2ω · ṙ − ω · ω · r − ω̇ · r +R−1(r̈ − ao).

−2ω · ṙ and −ω · ω · r are called the Coriolis acceleration and the centrifugal
acceleration with respect to the observer.

6.3.3. Recall that r : T  S denotes the double vectorized motion: r̈(t) =
Lo · (rU(t) − qo); consequently, the relative velocity value at the instant t,
ṙU (t) = L−1o · ṙ(t) is in SU , i.e. it is a function from T into S which is
uniquely determined by an arbitrary one of its values:

ṙU (t)(s) = RU(s, to) · ṙ(t) (s ∈ T).

Since Ω(t) · (r(t)− qo ⋆ t) = U(r(t))− U(qo ⋆ t), formula (∗) in 6.3.1 gives

ṙU (t)(t) = ṙ(t)− U
(

r(t)
)

.

The expression on the right-hand side coincides with that for the relative
velocity with respect to a rotation-free observer. However, keep in mind that
now this expression is only a convenient representative (a value) of the relative
velocity and not the relative velocity itself.

6.4. Some motions relative to an inertial observer

6.4.1. In this paragraph u denotes a global inertial observer.
Suppose r is an inertial world line function, use the notations of 2.3.1(iii)

and put to := τ(xo) :

r(t) = xo + uo(t− to). (∗)

Applying one of the formulae in 4.1.1, we get the corresponding motion relative
to u :

ru(t) =
(

xo + uo(t− to)
)

+ u⊗ T = (xo + u⊗ T) + (u− uo)(t− to) =

= qxo + vuou(t− to)

where qxo
:= xo + u⊗ T is the u -space point that xo is incident with.

This is a uniform motion along a straight line.
Conversely, suppose that we are given a uniform motion relative to the inertial

observer u, i.e. there is a qo ∈ Su, a to ∈ T and a vo ∈ S

T
such that

ru(t) = qo + vo(t− to) (t ∈ T).
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Then the corresponding history is inertial; putting xo := qo ⋆ to, uo := u+ vo,
we get the world line function (∗) which gives rise to the given motion.

6.4.2. Let r be a twist-free world line function (see 2.3.1(iii)):

r(t) = xo + uo(t− to) + aoh(t− to).

Then
ru(t) = qxo

+ vuou(t− to) + aoh(t− to),

where qxo
:= xo + u⊗ T.

If the world line function is not inertial, i.e. ḧ 6= 0 , then the motion is not
uniform. The motion is rectilinear relative to the observer if and only if vuou is
parallel to ao.

6.4.3. Now we see that the property ‘rectilinear’ of a motion is not absolute,
in general. The same history can appear as a rectilinear motion to an observer
and as a nonrectilinear one to another observer; exceptions are the uniformly
rectilinear motions, i.e. the inertial histories.

Recall that assertion involving the inertial observer u is absolute if and only
if it can be formulated exclusively with the aid of the affine structure of T×Su.

Let ru : T → Su be a motion. Saying that the motion is rectilinear we state
that the range of ru is a straight line in the observer space, i.e. we involve the
affine structure of Su only. This is not an absolute property.

Saying the motion is rectilinear and uniform we state that
{(

t, ru(t)
) ∣

∣ t ∈ T
}

is a straight line in T× Su; this is an absolute property.

6.4.4. Suppose that the inertial observer u chooses a reference origin o.
Then, qo := o + u ⊗ T is the u -space point that o is incident with; hence the
vectorized motion corresponding to the world line function r becomes

T  S, t 7→ r(t)−
(

o+ u(t− to)
)

,

or
T  S, t 7→ r(to + t)− (o+ ut),

where to := τ(o).
In particular, if r is the twist-free world line function treated in 6.4.2. and

τ(xo) = to (which can be assumed without loss of generality) then the vectorized
motion is

T → S, t 7→ qo + vuout+ aoh(t),

where qo := xo − o.
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Since qo = qxo − qo holds as well, comparing our present result with that of
6.4.2, evidently we have—as it must be by definition—that the vectorized motion
equals to t 7→ ru(to + t)− qo. The advantage of the vectorized motion is that it
is easier to calculate.

6.5. Some motions relative to a uniformly accelerated observer

6.5.1. Let r be the previous twist-free world line function and let us examine
the corresponding motion relative to a uniformly accelerated observer U with
constant acceleration a. We easily obtain by 5.2.1 that

CU

(

r(t)
)

⋆ s = xo + uo(t− to) + aoh(t− to) + U
(

r(t)
)

(s− t) +
1

2
a(s− t)

2
.

Then 5.2.2 helps us to transform this expression:

U
(

r(t)
)

= U(xo) + a(t− to)

and so

CU

(

r(t)
)

⋆ s = xo + U(xo)(s− to) +
1

2
a(s− to)

2
+

+
(

uo − U(xo)
)

(t− to) +

(

aoh(t− to)−
1

2
a(t− to)

2

)

.

Denoting by qxo
the U -space point that xo is incident with and putting

vo := uo − U(xo), we can write:

rU(t) = qxo + vo(t− to) +

(

aoh(t− to)−
1

2
a(t− to)

2

)

.

In particular, it is a uniformly accelerated motion, if ḧ = const., i.e. if r is
inertial or uniformly accelerated.

6.5.2. Let the previous uniformly accelerated observer U choose a reference
origin o. Then the U -space point that o is incident with is given by the world
line function t 7→ qo ⋆ t := o+ U(o)(t− to) +

1
2a(t− to)

2
; hence the vectorized

motion corresponding to the world line function r becomes

T  S, t 7→ r(t)− qo ⋆ t

or
T  S, t 7→ r(to + t)− qo ⋆ (to + t).
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In particular, the vectorized motion corresponding to the twist-free world line
function r treated above is

T → S, t 7→ qo + vot+

(

aoh(t)−
1

2
at2
)

,

where qo := xo − o and vo := uo − U(o) = uo − U(xo) (recall that U is
constant on simultaneous hyperplanes).

We see in this case, too, that the vectorized motion is t 7→ rU(to + t) − qo,
as it must be, but it is more complicated to determine the motion rU and then
the vectorized motion than to calculate the vectorized motion directly.

6.6. Some motions relative to a uniformly rotating observer ∗

6.6.1. Let the uniformly rotating observer U choose a reference origin o. If
qo is the U -space point that o is incident with and Ω is the constant angular
velocity of the observer, then the double vectorized motion is

T → S, t 7→ e−(t−to)Ω ·
(

r(t)− qo ⋆ t
)

.

In particular, if qo is an inertial world line, qo = o+c⊗T, and r is an inertial
world line function, r(t) = xo + uo(t − to), where we supposed without loss of
generality that τ(xo) = τ(o) = to, then the double vectorized motion becomes

T → S, t 7→ e−(t−to)Ω ·
(

qo + vuoc(t− to)
)

where qo := xo − o; again it is more convenient to use vectorized time:

T → S, t 7→ e−tΩ · (qo + vuoct).

If vuoc = 0, i.e. the relative velocity of the material point with respect to
the axis of rotation is zero, then the motion relative to the observer is a simple
rotation around the axis. If vuoc 6= 0, then the motion is the ‘rotation of a
uniform motion’. Anyway, the observed rotation of the inertial masspoint is
opposite to the rotation of the observer (take into account the negative sign in
the exponent).

6.6.2. In the case of inertial observers and uniformly accelerated observers,
the vectorized motion can be deduced a little easier than motion. On the
other hand, for uniformly rotated observers, it is significantly simpler to get
the double vectorized motion than motion itself, as it will be seen from the
following calculation.
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Let U and r be as in the preceding paragraph. Then qo := CU(o) = o+c⊗T

and so

CU

(

r(t)
)

⋆ s = qo ⋆ s+ e(s−to)Ω ·
(

CU

(

r(t)
)

⋆ to − o
)

=

= qo ⋆ s+ e(s−to)Ω · e−(t−to)Ω ·
(

CU

(

r(t)
)

⋆ t− qo ⋆ t
)

=

= qo ⋆ s+ e−(t−to)Ω · e(s−to)Ω ·
(

xo − o+ vuoc(t− to)
)

.

The functions

T → S, s 7→ qo(s) := e(s−to)Ω · (xo − o)

T → S

T
, s 7→ vo(s) := e(s−to)Ω · vuoc

are in SU and in SU

T
(they are a vector and a vector of cotype T in the observer

space), respectively. Thus we have got for the motion that

rU(t) = qo + e−(t−to)Ω · (qo + vo(t− to)) (t ∈ I).

Originally, the exponent of Ω is a linear map from S into S. Here it is
regarded as a linear map from SU into SU defined by

(

e−(t−to)Ω · s
)

(s) := e−(t−to)Ω · s(s) (s ∈ SU , s ∈ T).

6.7. Exercise

Let U be a uniformly rotating observer that has an inertial space point. Use
the notations of Section 5.3. For qo ∈ S and vo ∈ S

T
define the world line

function
t 7→ o+ c(t− to) + e(t−to)Ω · (qo + vo(t− to)) .

Prove that the corresponding motion relative to the observer U is a uniform
straight line motion.

7. Some kinds of observation

7.1. Vectors observed by inertial observers

7.1.1. Let C1 and C2 be two world lines defined over the same time
interval J. The vector between C1 and C2 at the instant t ∈ J is C2 ⋆t−C1 ⋆t.
The distance at t between the two world lines is |C2 ⋆ t− C1 ⋆ t|.
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The two world lines represent the history of two material points. An inertial
observer u observes the two material points describing their history by the
corresponding motions r1,u and r2,u. Hence, the vector observed by the inertial
observer between the material points at the instant t is evidently

r2,u(t)− r1,u(t) = (C2 ⋆ t+ u⊗ T)− (C1 ⋆ t+ u⊗ T) = C2 ⋆ t− C1 ⋆ t.

The observed vector coincides with the (absolute) vector; consequently, the
observed distance, too, coincides with the (absolute) distance.

7.1.2. The question arises how a straight line segment in the space of an
inertial observer is observed by another observer. The question and the answer
are formulated correctly as follows.

Let us consider two inertial observers uo and u . Let Ho be a subset (a
geometrical figure) in the uo -space. The corresponding figure observed by u at
the instant t —called the trace of Ho at t in Su —is the set of u -space points
that coincide at t with the points of Ho :

{q ⋆ t+ u⊗ T | q ∈ Ho}.

Introducing the mapping

Pt : Suo → Su, q 7→ q ⋆ t+ u⊗ T,

we see that the trace of Ho at t equals Pt[Ho]. It is quite easy to see (recall the
definition of subtraction in observer spaces) that

Pt(q2)− Pt(q1) = q2 ⋆ t− q1 ⋆ t = q2 − q1

for all q1, q2 ∈ Suo
. Thus Pt is an affine map whose underlying linear map is

the identity of S.
We can say that the observed figure and the original figure are congruent.

Evidently, every figure in the uo -space is of the form qo +Ho, where qo ∈ Suo

and Ho ⊂ S; then Pt [qo +Ho] = Pt(qo) +Ho.
In particular, a straight line segment in the uo -space observed at an arbitrary

instant by the observer u is a straight line segment parallel to the original one.
Moreover, the original and the observed segments have the same length; the
original and the observed angle between two segments are equal as well.

7.1.3. It is an important fact that the spaces of different global inertial
observers are different affine spaces over the same vector space S. Thus, though
the observer spaces are different, it makes sense that a vector in the space of an
inertial observer coincides with a vector in the space of another inertial observer.
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Evidently, the coincidence of vectors in different observer spaces is a symmetric
and transitive relation (if ‘your’ vector coincides with ‘my’ vector then ‘mine’
coincides with ‘yours’; if, moreover, ‘his’ vector coincides with ‘yours’ then it
coincides with ‘mine’ as well.)

This is a trivial fact here that does not hold in the relativistic spacetime
model.

7.2. Measuring rods

7.2.1. A physical observer makes measurements in his space: measures
the distance between two points, the length of a line, etc. In practice such
measurements are based on measuring rods: one takes a rod, carries it to
the figure to be measured, puts it consecutively at convenient places . . . One
supposes that during all this procedure the rod is absolutely rigid: it remains a
straight line segment and its length does not change.

We are interested in whether the nonrelativistic spacetime model allows such
measuring rods, i.e. whether we can permit in it the existence of such an
absolutely rigid rod.

As we shall see, the answer is positive (in contradistinction to the relativistic
case).

7.2.2. The existence of an absolutely rigid rod—if it is meaningful—can be
determined uniquely by the history of its extremities. Two world lines C0 and
C1 correspond to the two extremities of a measuring rod if and only if they are
defined on the same interval J and their distance at every instant is the same:
|C1 ⋆ t− C0 ⋆ t| = d for all t ∈ J.

Then for all α ∈ [0, 1] we can define the world line Cα as follows:

Cα ⋆ t := C0 ⋆ t+ α (C1 ⋆ t− C0 ⋆ t) (t ∈ J).

It is quite evident that the set of world lines, {Cα | α ∈ [0, 1]} gives an
existence of a rigid rod: at every instant t ∈ J , {Cα ⋆ t | α ∈ [0, 1]} is a straight
line segment in S, having the length d.

8. Vector splittings

8.1. What is a splitting?

Recall what has been said in 3.1.1: in the experience of a physical observer
relative to a phenomenon, and in the notions deduced from experience, properties
of the phenomenon are mixed with properties of the observer. Our aim is to
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find the absolute notions that model some properties or aspects of phenomena
independently of observers and then to give how the observers derive relative
notions from the absolute ones (how the absolute objects are observed).

We know already how spacetime is observed as space and time and how the
history of a mass point is observed as a motion. In the following, the splitting
of force fields, potentials etc. will be treated: such splittings describe somehow
the observed form of force fields, potentials, etc. We begin with the splitting
of vectors and covectors according to velocity values and then we define the
splitting of vector fields and covector fields according to observers.

8.2. Splitting of vectors

8.2.1. For u ∈ V (1) we have already defined

πu : M → S, x 7→ x− (τ · x)u

and the linear bijection

ξu := (τ ,πu) : M → T× S, x 7→ (τ · x,πu · x)

having the inverse
(t, q) 7→ ut+ q

(1.2.8). Thus
πu = 1M − u⊗ τ , π∗u = 1M∗ − τ ⊗ u.

Moreover,
τ · πu = 0, πu · i = 1S, πu · u = 0.

8.2.2. Definition. τ · x and πu · x are called the timelike component and
the u -spacelike component of the vector x. (τ · x, πu · x) is the u -split form
of x. ξu := (τ ,πu) is the splitting of M corresponding to u, or the u -splitting
of M.

Note that ξu ·q = (0, q) for all q ∈ S. In other words, S is split into {0}×S

trivially. In applications it is convenient to identify {0} × S with S and to
assume that the split form of a spacelike vector q is itself.

8.2.3. If A is a measure line then A⊗M is split into (A⊗T)× (A⊗ S) by
ξu ; similarly, M

A
is split into T

A
× S

A
. Correspondingly, the timelike component

and the u -spacelike component of a vector of type A are in A⊗ T and A⊗ S,
respectively, and the timelike component and the u -spacelike component of a
vector of cotype A are in T

A
and S

A, respectively.
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In particular, ξu splits M

T
into R× S

T
and for all u′ ∈ V (1)

ξu · u′ = (1,u′ − u) = (1,vu′u);

the u -spacelike component of the velocity value u′ is the relative velocity of u′

with respect to u.
Thus V (1) is split into {1}× S

T
; in applications it is often convenient to omit

the trivial component {1}, and to regard only πu instead of ξu as the splitting
of V (1) :

V (1) → S

T
, u′ 7→ u′ − u = vu′u.

8.2.4. The timelike component of a vector is independent of the velocity value
u producing the splitting but the u -spacelike components vary with u, except
when the vector is spacelike (an element of S); then the timelike component is
zero and the u -spacelike component is the vector itself for all u ∈ V (1).

The transformation rule that shows how the u -spacelike components of a
vector vary with u can be well seen from the following formula giving the u′ -
spacelike component of the vector having the timelike component t and the
u -spacelike component q.

Definition. Let u,u′ ∈ V (1). Then

ξu′u := ξu′ · ξ−1u : T× S → T× S

is called the vector transformation law from u -splitting into u′ -splitting.

Proposition.

ξu′u · (t, q) = (t,−vu′ut+ q) (t ∈ T, q ∈ S).

Using the matrix form of the linear maps T×S → T×S (see IV.3.7), we can
write

ξu′u =

(

1T 0

−vu′u 1S

)

.

According to the identification Lin(T) ≡ R we have 1T ≡ 1. Moreover,
applying the usual convention that the identity of a vector space is denoted by
1 (the identity is the operation of multiplication by 1), we obtain

ξu′u =

(

1 0

−vu′u 1

)

.

In the lower left position of the matrix a linear map T → S must appear;
recall that vu′u ∈ S

T
≡ Lin(T,S).



8. Vector splittings 91

8.2.5. Let us give the transformation rule in a form which is more usual in
the literature.

Let (t, q) and (t′, q′) be the u -split form and the u′ -split form of the same
vector, respectively. Let v denote the relative velocity of u′ with respect to u.
Then

t′ = t, q′ = q − vt.

Usually one calls this formula—or, rather, a similar formula in the arithmetic
spacetime model—the Galilean transformation rule and one even defines Galilean
transformations by it.

The transformation rule is a mapping from T × S into T × S. A (special)
Galilean transformation is to be defined on spacetime vectors, i.e. as a mapping
from M into M. Thus the transformation rule and a Galilean transformation
cannot be equal. In the split spacetime model T× S stands for both spacetime
vectors and spacetime. Thus, using the split model (or, similarly, the arithmetic
spacetime model) one can confuse the transformation rule with a mapping de-
fined on spacetime vectors or on spacetime. This indicates very well that we
must not use the split model or the arithmetic model for the composition of
general ideas.

Of course, there is some connection between transformation rules and Galilean
transformations. We shall see (11.3.7) that there is a special Galilean transfor-
mation L(u,u′) : M → M such that

ξu′u = ξu ·L(u,u′) · ξ−1u .

8.3. Splitting of covectors

8.3.1. For u ∈ V (1), M∗ is split by the transpose of the inverse of ξu :

ηu :=
(

ξ−1u

)∗
: M∗ → (T× S)

∗ ≡ T
∗ × S∗,

where we used the identification described in IV.1.3. Then for all k ∈ M∗,
(t, q) ∈ T× S we have

(ηu · k) · (t, q) = k · ξ−1u · (t, q) = k · (ut+ q) = (k · u)t+ k · q.

Of course, in the last term k can be replaced by k|
S
= i∗·k, where i : S → M

is the canonical embedding. Furthermore, recall that k ·u ∈ R

T
≡ T

∗ and (k ·u)t
stand for the tensor product of k · u and t. Then, in view of our convention
regarding the duals of one-dimensional vector spaces (IV.3.8), we can state that
ηu · k = (k · u, i∗ · k). Recall that i∗ · k = k · i; moreover, our dot notation
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convention allows us to interchange the order of k and u to have the more
suitable forms

ηu · k = (k · u,k · i) = (u · k, i∗ · k) (k ∈ M∗).

Definition. u · k and i∗ · k are called the u -timelike component and the
spacelike component of the covector k. (u · k, i∗ · k) is the u -split form of the
covector k. ηu is the splitting of M∗ corresponding to u, or the u -splitting
of M∗.

Note that ηu · (eτ ) = (e,0) for all e ∈ T
∗. In other words, T∗ ·τ is split into

T
∗×{0} trivially. In applications it is convenient to identify T

∗×{0} with T
∗

and consider that the split form of eτ is simply e.

8.3.2. The spacelike component of a covector is independent of the velocity
value u establishing the splitting, but the u -timelike components vary with u,
except when the covector is timelike (an element of T∗·τ ; then the spacelike com-
ponent is zero and the u -timelike component coincides with the corresponding
element of T

∗). The transformation rule that shows how the u -timelike com-
ponents of a covector vary with u can be well seen from the following formula
giving the u′ -timelike component of the covector having the u -timelike compo-
nent e and the spacelike component p.

Definition. Let u,u′ ∈ V (1). Then

ηu′u := ηu′ · η−1u : T∗ × S∗ → T
∗ × S∗

is called the covector transformation law from u -splitting into u′ -splitting.

Proposition.

ηu′u · (e,p) = (e+ p · vu′u,p) (e ∈ T
∗, p ∈ S∗).

Proof. It is not hard to see that

η−1u (e,p) = eτ + π∗u · p

from which we easily obtain the desired formula.

Using the matrix form of the linear maps T
∗ × S∗ → T

∗ × S∗, we can write

ηu′u =

(

1T∗ vu′u

0 1S∗

)

≡
(

1 vu′u

0 1

)

.

In the upper right position a linear map S∗ → T
∗ must appear. The

identifications Lin(S∗,T∗) ≡ T
∗ ⊗ S ≡ S

T
justify that vu′u stands in that

position.
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The definitions imply that ηu′u =
(

ξ−1uu′

)∗
, which is reflected in the matrix

form as well.

8.3.3. In 1.2.8 we have drawn a good picture how vectors are split. Now we
give an illustration for splitting of covectors.

Recall that for all u ∈ V (1), the surjection πu : M → S is the left inverse
of the canonical embedding i : S → M, i.e. πu · i = 1S. As a consequence, the
injection π∗u : S∗ → M∗ is the right inverse of the surjection i∗ : M∗ → S∗ :

i∗ · π∗u = 1S∗ .

Since T
∗ · τ = Keri∗ (see 1.2.1),

S∗ · πu = Ranπ∗u

is a three-dimensional linear subspace in M∗, complementary to T
∗ ·τ . Evidently,

the restriction of i∗ is a linear bijection from S∗ · πu onto S∗.
Moreover, we easily find that

S∗ · πu = {k ∈ M∗ | k · u = 0};

in other words, S∗ · πu is the annihilator of u⊗ T.
Then the splitting of covectors according to u is illustrated as follows:

SSSSSS

TTTTTT

k− (u ·k) ·τ is in S∗ ·πu, its image by i∗ is the spacelike component of k.

8.4. Vectors and covectors are split in a different way

The splitting of vectors and the splitting of covectors according to u ∈ V (1)
are essentially different. The timelike component of vectors is independent of
u, whereas the spacelike component of covectors is independent of u. The
transformation laws for vectors and covectors are essentially different as well.
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The reason of these differences lies in the fact that there is no one-dimensional
vector space A in such a way that M∗ could be canonically identified with M

A
,

in contradistinction to the relativistic case.

8.5. Splitting of vector fields and covector fields according to inertial

observers

8.5.1. In applications, vectors and covectors appear in two ways: first, as
values of functions defined in time; secondly, as values of functions defined in
spacetime. The first case can be reduced to the second one: a function defined
in time can be considered a function defined in spacetime that is constant on the
simultaneous hyperplanes. Thus we shall study vector fields and covector fields,
i.e. functions X : M  M and K : M  M∗, respectively.

An inertial observer u splits vector fields and covector fields in two steps by
splitting the range and then the domain of these functions.

First, at every world point x the values of the fields, X(x) and K(x), are
split according to the velocity value u of the observer; thus the half u -split
form of the fields will be

ξu ·X : M  T× S, x 7→
(

τ ·X(x), πu ·X(x)
)

,

ηu ·K : M  T
∗ × S∗, x 7→

(

u ·K(x), i∗ ·K(x)
)

.

Secondly, the observer splits spacetime as well (the observer regards spacetime
as time and space); accordingly, instead of world points, instants and u -space
points will be introduced to get the completely u -split form of the fields:

ξu ·X ◦ ξ−1u : T× Su  T× S, (t, q) 7→
(

τ ·X(q ⋆ t), πu ·X(q ⋆ t)
)

,

ηu ·K ◦ ξ−1u : T× Su  T
∗ × S∗, (t, q) 7→

(

u ·K(q ⋆ t), i∗ ·K(q ⋆ t)
)

where q ⋆ t := ξ−1u (t, q) (see 3.2.2).

8.5.2. Let us examine more closely a covector field K : it has the half split
form

(−Vu,Au) := ηu ·K : M  T
∗ × S∗, x 7→

(

u ·K(x), i∗ ·K(x)
)

,

and the completely split form

ηu ·K ◦ ξ−1u : T× Su  T
∗ × S∗, (t, q) 7→

(

− Vu(q ⋆ t),Au(q ⋆ t)
)

.

A covector field K is a potential (see 2.4.3). (t, q) 7→ Vu(q ⋆ t) and (t, q) 7→
Au(q ⋆ t) are called the corresponding scalar potential and vector potential
according to u.
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If u′ is another inertial observer then, in view of 8.3.2,

Vu′ = Vu − vu′u ·Au, Au′ = Au.

Introducing V := Vu , V ′ := Vu′ , A := Au, A′ := Au′ , v := vu′u, we get
the formulae

V ′ = V − v ·A, A′ = A,

which are the well-known nonrelativistic transformation law for scalar and vector
potentials in electromagnetism.

This supports our choice that (absolute) potentials are cotensor fields.
The reader is asked to bear the following remark in mind. One usually

says that if an observer perceives scalar potential V and vector potential A,
then another observer moving with relative velocity v perceives scalar potential
V − v ·A and vector potential A , i.e. ‘the vector potential is not transformed’.
However, an observer u perceives spacetime as time and u -space, perceives
the potentials to be functions depending on time and u -space; thus, in fact, an
observer works with the completely split form of the potentials. In particular, if
u′ 6= u, then A ◦ ξ−1

u
6= A ◦ ξ−1u′ : the observed vector potentials are different!

Remember, usually one does not distinguish between the half split forms and
the completely split forms.

8.5.3. Similarly, one usually says that force is not transformed, a force field is
the same for all observers. Of course, this is true for the half split form of force
fields; the completely split forms of force fields—which are actually observed—
depend on the observers.

A force field

f : M×V (1) 
S

T⊗ L⊗ L

has exclusively spacelike values, thus its half split form is f itself for all global
inertial observers. On the other hand, f has the completely split form

T× Su × S

T


S

T⊗ L⊗ L
, (t, q,v) 7→ f(q ⋆ t,u+ v)

strongly depending on u.

8.5.4. Let the inertial observer u choose a reference origin o; then (u, o)
performs another splitting using ξu,o instead of ξu. The half split form of vector
fields and covector fields according to (u, o) is the same as the half split form
according to u; on the other hand, the observer with reference origin obtains
functions T× S  T× S and T× S  T

∗ × S∗ for the completely split forms
of the fields.
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8.6. Splitting of vector fields and covector fields according to

rigid observers

8.6.1. Recall that the space SU of a global rigid observer U is an affine
space over S or SU (Section 4.3), depending on whether U is rotation-free or
not. The corresponding splitting of spacetime, ξU : M → T × SU is a smooth
bijection whose inverse is smooth as well.

The splitting of a vector field X according to U is defined by the correspond-
ing formula of coordinatization: at every world point x, the value of the field,
X(x), is split—i.e. is mapped from M into T × S or T × SU —by DξU(x).
Similarly, the covector field K, is split in such a way that at every world point
x the value of the field, K(x) is split—i.e. is mapped from M∗ into T

∗×S∗ or

T
∗ × S∗U —by

(

(DξU(x))
∗)−1

. Thus the half U -split forms of such fields are

M  T× S (or T× SU), x 7→ DξU(x) ·X(x),

M  T
∗ × S∗ (or T

∗ × S∗U), x 7→
(

(DξU(x))
∗)−1 ·K(x).

We get the completely U-split forms by substituting ξ−1U (t, q) = q ⋆ t for x in
these formulae.

8.6.2. If U is rotation-free, then, in view of 4.3.2, the half split forms of the
fields are

M  T× S, x 7→
(

τ ·X(x), πU(x) ·X(x)
)

,

M  T
∗ × S∗, x 7→

(

U(x) ·K(x), i∗ ·K(x)
)

.

The values of the fields at x are split by the corresponding value U(x) of
the observer.

8.6.3. If U is not rotation-free, SU is an inconvenient object; that is why
we let the global rigid observer choose a reference origin o and use the double
vectorization ξU,o of spacetime.

Then the half split forms become

M  T× S, x 7→ DξU,o(x) ·X(x) =
(

τ ·X(x), R(x)−1 · πU(x) ·X(x)
)

,

M  T
∗ × S∗, x 7→

(

(DξU,o(x))
∗)−1 · K(x) =

=
(

U(x) ·K(x), R(x)
−1 · i∗ ·K(x)

)

,

where
R(x) := RU

(

τ(x), to
)

,

(see 4.4.3 and Exercise 4.5.3).
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8.7. Exercises

1. Give the split form of vector fields and covector fields that depend only on
time; more closely, if χ : T  M and κ : T  M∗, consider the splitting of the
fields X := χ ◦ τ and K := κ ◦ τ.

2. We know, it has an absolute meaning that a function s defined in spacetime
depends only on time: if s is constant on the simultaneous hyperplanes.

On the other hand, it does not have an absolute meaning that s depends
only on space (absolute space does not exist). If U is an observer, it makes
sense that s depends only on U -space, in other words, s is U -static: if s is
constant in the U -space points (on the U -lines), i.e. if the completely split
form of s depends only on the elements of SU .

Let o ∈ M, c ∈ V (1), C : S → M, and let U be the global inertial observer
with velocity value u. Prove that the vector field x 7→ C

(

πc ·(x−o)
)

is U -static
if and only if u = c.

3. Take the arithmetic spacetime model. Give the completely split form of
the vector fields

(

ξ0, ξ
)

7→
(

|ξ|,0
)

,
(

ξ0, ξ
)

7→
(

ξ0 + |ξ|, ξ2 + ξ3, 1 + ξ1, 0
)

according to the inertial observer with velocity value (1,v).
Consider the previous mappings to be covector fields and give their completely

split form.
4. Take the arithmetic spacetime model. Give the completely split form of

the vector field
(

ξ0, ξ
)

7→
(

ξ1 + ξ2, cos
(

ξ0 − ξ3
)

, 0, 0
)

according to the uniformly accelerated observer with reference origin treated
in 5.2.4 and to the uniformly rotating observer with reference origin treated

in 5.3.5.
[

It is easy to obtain the composition of this vector field and the

inverse of the splitting if we use different symbols for the variables; e.g. the
splitting due to the uniformly accelerated observer has the inverse (ζ0, ζ) 7→
(

ζ0, ζ1 + 1
2α(ζ

0)
2
, ζ2, ζ3

)

.
]

5. In the split spacetime model the splitting of vectors according to the basic
velocity value (1,0) is the identity of T × S. The splitting according to (1,v)
is

T× S → T× S, (t, q) 7→ (t, q − vt),

which coincides with the transformation rule from (1,0) into (1,v). Because of
the special structure of the split spacetime model a splitting and a transformation
rule—which are in fact different objects in principle—can be equal. To deal with
fundamental ideas do not use the split spacetime model or the arithmetic one.
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6. In the split spacetime model the splitting of covectors according to the
basic velocity value (1,0) is the identity of T

∗×S∗ and the splitting according
to (1,v) equals

T
∗ × S∗ → T

∗ × S∗, (e,p) 7→ (e+ p · v, p).
Again we see that the splitting coincides with the transformation rule from

(1,0) into (1,v).

9. Tensor splittings

9.1. Splitting of tensors, cotensors, etc.

9.1.1. The various tensors are split according to u ∈ V (1) by the maps

ξu ⊗ ξu : M⊗M → (T× S)⊗ (T× S) =

= (T⊗ T)× (T⊗ S)× (S⊗ T)× (S⊗ S),

ξu ⊗ ηu : M⊗M∗ → (T× S)⊗ (T∗ × S∗) =

= (T⊗ T
∗)× (T⊗ S∗)× (S⊗ T

∗)× (S⊗ S∗),

ηu ⊗ ξu : M∗ ⊗M → (T∗ × S∗)⊗ (T× S) =

= (T∗ ⊗ T)× (T∗ ⊗ S)× (S∗ ⊗ T)× (S∗ ⊗ S),

ηu ⊗ ηu : M∗ ⊗M∗ → (T∗ × S∗)⊗ (T∗ × S∗) =

= (T∗ ⊗ T
∗)× (T∗ ⊗ S∗)× (S∗ ⊗ T

∗)× (S∗ ⊗ S∗).

Since we know ξu and ηu, our task is only to determine the above splittings
in a perspicuous way. First recall that the elements of the Cartesian products
on the right-hand sides can be well given in a matrix form (see IV.3.7). Second,
with the aid of the usual identifications, consider ξu = (τ ,πu) ∈ (T×S)⊗M∗,
ηu = (u, i∗) ∈ (T∗ × S∗) ⊗M, take into account the identifications T ⊗M∗ ≡
M∗ ⊗ T, τ ≡ τ ∗ and T

∗ ⊗M ≡ M⊗ T
∗, u ≡ u∗ (see IV.3.6), and apply the

dot products to have
for T ∈ M⊗M :

(ξu ⊗ ξu)(T ) = ξu · T · ξ∗u = ξu · T · η−1u =

(

τ · T · τ τ · T · π∗u
πu · T · τ πu · T · π∗u

)

=

=

(

τ · T · τ τ · T − u(τ · T · τ )
T · τ − u(τ · T · τ ) T − u⊗ (τ · T )− (T · τ )⊗ u+ u⊗ u(τ · T · τ )

)

,

for L ∈ M⊗M∗ :

(ξu ⊗ ηu)(L) = ξu ·L · η∗u = ξu ·L · ξ−1u =

(

τ ·L · u τ ·L · i
πu ·L · u πu ·L · i

)

=

=

(

τ ·L · u τ ·L · i
L · u− u(τ ·L · u) L · i− u⊗ (τ ·L · i)

)

,
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for P ∈ M∗ ⊗M :

(ηu ⊗ ξu)(P ) = ηu · P · ξ∗u = ηu · P · η−1u =

(

u · P · τ u · P · π∗u
i∗ · P · τ i∗ · P · π∗u

)

=

=

(

u · P · τ u · P − (u · P · τ )u
i∗ · P · τ i∗ · P − (i∗ · P · τ )⊗ u

)

,

for F ∈ M∗ ⊗M∗ :

(ηu ⊗ ηu)(F ) = ηu · F · η∗u = ηu · F · ξ−1u =

(

u · F · u u · F · i
i∗ · F · u i∗ · F · i

)

.

(To see, e.g. that πu · T · τ = T · τ − u(τ · T · τ ), take T = x⊗ y.)

9.1.2. The splittings corresponding to different velocity values u and u′ are
different. To compare the different splittings we can deduce transformation rules
by giving

ξu′u ·
(

α b

a A

)

· ξu′u
∗,

where α ∈ T⊗T, a ∈ S⊗T, b ∈ T⊗S , A ∈ S⊗S, and using similar formulae
for the other three cases as well. In general, the transformation rules are rather
complicated. We shall study them for antisymmetric tensors and cotensors.

9.2. Splitting of antisymmetric tensors

9.2.1. If the tensor T is antisymmetric—i.e. T ∈ M∧M —then τ ·T ·τ = 0,
τ · T · π∗u = −(πu · T · τ )∗ and πu · T · π∗u ∈ S ∧ S, which (of course) means
that the split forms of T are antisymmetric as well. Thus splittings map the
elements of M ∧M into elements of the form

(

0 −a∗

a A

)

≡
(

0 −a

a A

)

,

where a ∈ S⊗T, A ∈ S∧S; a∗ ∈ T⊗S is the transpose of a, which is identified
with a in the usual identification T ⊗ S ≡ S ⊗ T. We shall find convenient to
write

(S⊗ T)× (S ∧ S) ≡(T× S) ∧ (T× S),

(a,A) ≡
(

0 −a

a A

)

.

The corresponding formula in 9.1.1 gives us for T ∈ M ∧M

ξu · T · ξ∗u =
(

T · τ , T − (T · τ ) ∧ u
)

.
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Definition. T ·τ and T − (T ·τ )∧u are called the timelike component and
the u -spacelike component of the antisymmetric tensor T .

9.2.2. Notice the similarity between splittings of vectors and splittings of
antisymmetric tensors. The timelike component of T is independent of u, the
u -spacelike component varies with u except when T is spacelike, i.e. is in
S∧S; then the timelike component is zero and the u -spacelike component is T

itself for all u.
The following transformation rule shows well how the splittings depend on

the velocity values.

Proposition. Let u,u′ ∈ V (1). Then

ξu′u · (a,A) · ξu′u
∗ = (a,−a ∧ vu′u +A) (a ∈ S⊗ T, A ∈ S ∧ S).

Proof. Use the matrix forms:
(

1 0

−vu′u 1

)(

0 −a

a A

)(

1 −vu′u

0 1

)

=

(

0 −a

a −a ∧ vu′u +A

)

.

9.3. Splitting of antisymmetric cotensors

9.3.1. If F ∈ M∗ ∧M∗ then u · F · u = 0, u · F · i = −(i∗ · F · u)∗ and
i∗ ·F ·i ∈ S∗∧S∗; the split forms of F are antisymmetric as well. Thus splitting
maps the elements of M∗ ∧M∗ into elements of the form

(

0 −z∗

z Z

)

≡
(

0 −z

z Z

)

≡ (z,Z) ∈ (S∗ ⊗ T
∗)× (S∗ ∧ S∗),

where we used notations similar to those in 9.2.1.
The corresponding formula in 9.1.1 gives for F ∈ M∗ ∧M∗ :

ηu · F · η∗u = (i∗ · F · u, i∗ · F · i) .

Definition. i∗ ·F ·u and i∗ ·F · i are called the u -timelike component and
the spacelike component of the antisymmetric cotensor F .

9.3.2. Notice the similarity between splittings of covectors and splittings of
antisymmetric cotensors. The spacelike component of F is independent of u,
the u -timelike component varies with u except when F is in M∗ ∧ (T∗ · τ ) :=
{k ∧ (e · τ ) | k ∈ M∗, e ∈ T

∗}; then the spacelike component is zero and the
u -timelike component is the same for all u.
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The following transformation rule shows well, how the splittings depend on
the velocity values.

Proposition. Let u,u′ ∈ V (1). Then

ηu′u · (z,Z) · ηu′u
∗ = (z +Z · vu′u,Z) (z ∈ T

∗ ⊗ S∗, Z ∈ S∗ ∧ S∗).

Proof. Use the matrix forms:
(

1 vu′u

0 1

)(

0 −z

z Z

)(

1 0

vu′u 1

)

=

(

0 −(z +Z · vu′u)
z +Z · vu′u Z

)

.

9.4. Splitting of cotensor fields

9.4.1. A rotation-free rigid observer U splits various tensor fields in such a
way that the value of the tensor field at the world point x is split according to
U(x); for the sake of definiteness we shall consider cotensor fields. The half split
form of the cotensor field F : M  M∗ ⊗M∗ according to U is

M  (T∗ × S∗)⊗ (T∗ × S∗), x 7→ ηU(x) · F (x) · ηU(x)
∗.

The completely split form of F according to U is

T× SU  (T× S∗)⊗ (T∗ × S∗), (t, q) 7→ ηU(q⋆t) · F (q ⋆ t) · ηU(q⋆t),

where q ⋆ t = ξ−1U (t, q).
In particular, if F is antisymmetric, then it has the half split form

M  (S∗ ⊗ T
∗)× (S∗ ∧ S∗), x 7→

(

i∗ · F (x) · U(x), i∗ · F (x) · i
)

.

9.4.2. Now let us suppose that U is a global inertial observer with constant
velocity value u. Then the antisymmetric cotensor field F has the half split
form

(Eu,Bu) := ηu · F · η∗u : M  (S∗ ⊗ T
∗)× (S∗ ∧ S∗),

x 7→
(

i∗ · F (x) · u, i∗ · F (x) · i
)

and the completely split form

ηu · F · η∗u ◦ ξ−1u : T× SU  (S∗ ⊗ T
∗)× (S∗ ∧ S∗),

(t, q) 7→
(

Eu(q ⋆ t),Bu(q ⋆ t)
)

.
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If u′ is another global inertial observer, then 9.3.2 gives

Eu′ = Eu +Bu · vu′u, Bu′ = Bu.

9.4.3. Introducing E := Eu, E′ := Eu′ , B := Bu, B′ := Bu′ , v := vu′u,
we get the formula

E′ = E +B · v, B′ = B

which is the well-known nonrelativistic transformation law for the electric field
E and magnetic field B. (Here B is an antisymmetric spacelike tensor of
cotype L

⊗4, an element of S∗ ∧ S∗ = S∧S
L⊗L⊗L⊗L , which can be identified with

a vector of cotype L
⊗3, an element of S

L⊗L⊗L ≡ S
∗

L
(V.3.17.); with the aid of

this identification magnetic field is regarded as a vector field and then instead of
B · v one has a vectorial product.)

This supports the idea that (absolute) electromagnetic fields exist whose time-
like and spacelike components according to an observer are the observed electric
and magnetic fields, respectively.

One usually says that if an observer perceives electric field E and magnetic
field B, then another observer moving with the velocity v perceives electric
field E+B ·v and magnetic field B. However, an observer perceives spacetime
as time and u -space, perceives the fields as functions depending on time and u -
space; thus, in fact, an observer observes the completely split form of the fields,
and we can repeat the remark at the end of 8.5.3.

9.4.4. Consider the completely split form of a potential K according to the
inertial observer u :

(−V c
u,A

c
u) := ηu ·

(

K ◦ ξ−1u

)

: T× Su  T
∗ × S∗.

Its derivative is

D(−V c
u,A

c
u) = ηu · (DK ◦ ξ−1u ) · ηu

∗

having the transpose
(

D(−V c
u,A

c
u)
)∗

= ηu ·
(

(DK ◦ ξ−1u )
)∗ · ηu

∗.

Consequently, for the exterior derivatives (see VI.3.6(i)) we have

D ∧ (−V c
u,A

c
u) = ηu ·

(

(D ∧K) ◦ ξ−1u

)

· ηu
∗.

Let F := D∧K, use the notations of the previous paragraph and let ∂o and
∇ denote the partial derivations with respect to T and Su, respectively. Then
(see VI.3.7(ii)) the above equality yields

−∂oAc
u −∇V c

u = Ec
u, ∇∧Ac

u = Bc
u.
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9.4.5. Let us consider the force field defined by the potential K :

f(x, ẋ) = i∗ · F (x) · ẋ
(

x ∈ DomK, ẋ ∈ V (1)
)

.

(F := D ∧K).

According to 9.3.1, the value of the force field at (x, ẋ) is the ẋ -timelike
component of the antisymmetric cotensor F (x).

A masspoint at the world point x having the instantaneous velocity value ẋ
‘feels’ only the ẋ -timelike component of the field; a masspoint always ‘feels’ the
time component of the field according to its instantaneous velocity value.

Consider now the inertial observer with velocity value u and use the notations
of the previous paragraphs. Then

f(x, ẋ) = i∗ · F (x) · u+ i∗ · F (x)(ẋ− u) =

= Eu(x) +Bu(x) · vẋu,

a well-known formula for the Lorentz force in electromagnetism.

9.4.6. If a potential K is timelike, i.e. has values in T
∗ · τ , (in fact K is a

scalar field: there is a function V : M  T
∗ such that K = V · τ ) then D ∧K

takes values in M∗ ∧ (T∗ · τ ); consequently the corresponding force field does
not depend on velocity values; the spacelike component of K is zero and the
half split form of K is the same for all observers.

The possibility of (absolute) scalar potentials is a peculiar feature of the non-
relativistic spacetime model in contradistinction to relativistic spacetime models.
(Newtonian gravitational fields, elastic fields are modelled by such timelike po-
tentials in nonrelativistic physics.)

9.4.7. Let us mention the case of a general (rotating) global rigid observer
U . Then it is convenient to choose a reference origin o for the observer and
consider the corresponding double vectorization of spacetime.

We easily infer from the splitting of vector fields and covector fields that the
half split forms of various tensor fields according to (U , o) are obtained from
the half split forms according to a rotation-free observer in such a way that
RU(τ(x), to)

−1 · πU(x) and RU(τ(x), to)
−1 · i∗ are substituted for πU(x) and

i∗, respectively (then i ·RU(τ(x), to) is substituted for i).
For instance, the half split form of an antisymmetric cotensor field F becomes

M  (S∗ ⊗ T
∗)× (S∗ ∧ S∗),

x 7→
(

R(x)−1 · i∗ · F (x) · U(x), R(x)−1 · i∗ · F (x) · i ·R(x)
)

,

where R(x) := RU

(

τ(x), to
)

.
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9.5. Exercises

1. Give the u -split form of tensors in S ⊗ S, S ⊗ M, M ⊗ S, S ⊗ M∗,
M∗ ⊗ S, (T∗ · τ )⊗M, M⊗ (T∗ · τ ), (T∗ · τ )⊗M∗, M∗ ⊗ (T∗ · τ ) and derive
the transformation rules between their u′ -splitting and u -splitting.

2. Derive the transformation rules for the splitting of arbitrary tensors.
3. A potential in the arithmetic spacetime model is a function (−V,A) : R×

R
3
 (R × R

3)∗ which is the completely split form of the potential according
to the basic observer.

The half split form of this potential according to the inertial observer with
velocity value (1,v) is (−V + v ·A,A).

Choose (0,0) as a reference origin for the observer and give the completely
split form of the potential.

4. An antisymmetric cotensor field in the arithmetic spacetime model is a
function (E,B) : R×R

3
 (R3)∗×

(

(R3)∗ ∧ (R3)∗
)

, being the completely split
form of the field according to the basic observer:

(E,B) =







0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0






.

The half split form of this field according to the inertial observer with velocity
value (1,v) is (E +B · v, B) .

Choose (0,0) as a reference origin for the observer and give the completely
split form of the field.

5. Take the uniformly accelerated observer treated in 5.2.4.
The half split forms of the previous potential and field according to this

observer are

(−V + αtA1, A) and ((E1, E2 − αtB3, E3 + αtB2), B) ,

where t is the time evaluation: R× R
3 → R, (ξ0, ξ) 7→ ξ0.

Choose (0,0) as a reference origin for the observer and give the completely
split forms.

6. Take the uniformly rotating observer treated in 5.3.5.
Let (−V ′,A′) and (E′,B′) denote the half split forms of the previous po-

tential and field, respectively, according to this observer. Then

V ′ = V + ω(x2A1 − x1A2),

A′1 = A1 cosωt−A2 sinωt,

A′2 = A1 sinωt+A2 cosωt,

A′3 = A3
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and

E′1 = (E1 + ωx1B3) cosωt− (E2 + ωx2B3) sinωt,

E′2 = (E1 + ωx1B3) sinωt+ (E2 + ωx2B3) cosωt,

E′3 = E3 − ω(x2B2 + x1B1),

B′1 = B1 cosωt−B2 sinωt,

B′2 = B1 sinωt+B2 cosωt,

B′3 = B3,

where t is the time evaluation R×R
3 → R, (ξ0, ξ) 7→ ξ0 and xi is the evaluation

of the i -th space coordinate: R× R
3 → R, (ξ0, ξ) 7→ ξi.

10. Reference systems

10.1. The notion of a reference system

10.1.1. Observers, reference frames, reference systems, coordinatizations
are fundamental notions of usual textbooks in describing physical phenomena.
However, these notions are often applied in different (sometimes heuristic i.e.
not precisely defined) senses.

Our intention is to give an absolute description of phenomena, i.e. a descrip-
tion free of reference frames and coordinates. Reference frames and coordinates
have only a practical (not theoretical) importance: it is convenient and suit-
able to use observers or coordinates for solving concrete problems, for achieving
numerical characterization of quantities.

We defined reference frames in 3.3.2. In nonrelativistic spacetime model an
observer determines a reference frame uniquely. A reference frame can introduce
coordinates which model how timepoints are indicated by a ‘synchronometer’
and how spacepoints are labelled by triplets of numbers.

The reader is assumed to be familiar with coordinatizations of affine spaces
(see Section VI.5.).

10.1.2. Recall that an observer U makes the splitting ξU = (τ, CU) : M 

T× SU .

Definition. A reference system is a triplet (U , T, SU) where
(i) U is an observer,
(ii) T : T  R is a strictly monotone increasing mapping,
(iii) SU : SU  R

3 is a mapping
such that (T × SU) ◦ ξU = (T ◦ τ, SU ◦ CU) : M  R × R

3 is an orientation
preserving (local) coordinatization of spacetime.
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Note the difference between the symbols: T and SU are sets whereas T and
SU are the corresponding mappings.

According to the definition, T ◦ τ is smooth which implies by VI.3.5 that T
is smooth as well. Because of (ii) the derivative of T —denoted by T ′ —is
everywhere positive,

0 < T ′(t) ∈ T
∗ ≡ R

T
(t ∈ DomT ),

i.e. T is an (orientation preserving) coordinatization of time.
If U is a global rigid observer then SU is an affine space and CU is a smooth

map (see 4.4.3); consequently, we can state that SU is a coordinatization of SU .
On the contrary, since SU , in general, is not an affine space, and we introduced
the notion of coordinatization only for affine spaces, we cannot state that SU is
a coordinatization of U -space; nevertheless it will be called the coordinatization
of U -space. (We mentioned that in any case SU can be endowed with a
smooth structure; in the framework of smooth structures SU does become a
coordinatization.)

10.1.3. Let us consider a coordinatization K : M  R× R
3 .

As usual, the coordinates in R × R
3 are numbered from zero to three. Ac-

cordingly, we find it convenient to write a coordinatization of spacetime in the
form K = (κ0,κ) : M  R × R

3. Using the notations pr0 : R × R
3 → R

and pr : R × R
3 → R

3 for the canonical projections, we have κ0 = pr0 ◦ K,
κ = pr ◦K.

The following important relation holds for an arbitrary coordinatization K :

Dκ(x) · ∂0K−1
(

K(x)
)

= 0 (x ∈ DomK).

Indeed, according to the definition of partial derivatives (VI.3.8) and the rules
of differentiation (VI.3.4), we have

∂0K
−1(K(x)

)

=
(

DK−1
) (

K(x)
)

· (1,0) = DK(x)−1 · (1,0), (∗)
Dκ(x) = pr ·DK(x),

from which we infer the desired equality.
We say that a coordinatization K is referencelike or corresponds to a reference

system if there is a reference system (U , T, SU) such that K = (T × SU) ◦ ξU .
In that case

κ0 = T ◦ τ, κ = SU ◦ CU

and
(

Dκ0
)

(x) = T ′
(

τ(x)
)

τ



10. Reference systems 107

from which we deduce

T ′
(

τ(x)
)

=
1

τ · ∂0K−1
(

K(x)
)

in the following way:

pr0 ·DK(x) = T ′
(

τ(x)
)

τ ,

pr0 = T ′
(

τ(x)
)

τ ·DK(x)−1,

1 = T ′
(

τ(x)
)

τ ·DK(x)−1 · (1,0),
1 = T ′

(

τ(x)
)

τ · ∂0K−1
(

K(x)
)

.

10.1.4. Proposition. A coordinatization K = (κ0,κ) : M  R × R
3 is

referencelike if and only if
(i) K is orientation preserving,
(ii) ∂0K

−1(K(x)
)

is a future directed timelike vector,

(iii) κ0(x) < κ0(y) is equivalent to τ(x) < τ(y) for all x, y ∈ DomK.
In this case K corresponds to the reference system given by

U(x) =
∂0K

−1(K(x)
)

τ · ∂0K−1
(

K(x)
) = ∂0K

−1(K(x)
)

· T ′
(

τ(x)
)

(x ∈ DomK),

(1)

T (t) = κ0(x) (t ∩DomK 6= ∅, x ∈ t),(2)

SU(q) = κ(x) (q ∈ SU , x ∈ q).(3)

Proof. If K = (T × SU) ◦ ξU , then (i) is trivial and (iii) follows from
κ0 = T ◦ τ and the strictly monotonous character of T. As concerns (ii), note
that a world line function r satisfies ṙ(t) = U

(

r(t)
)

and takes values in the

domain of K if and only if K
(

r(t)
)

=
(

T (t), ξ
)

, i.e. r(t) = K−1
(

T (t), ξ
)

for a

ξ ∈ R
3 and for all t ∈ Domr. As a consequence, we have

U
(

r(t)
)

=
d

dt
K−1

(

T (t), ξ
)

= ∂0K
−1(T (t), ξ

)

· T ′(t) =

= ∂0K
−1(K

(

r(t)
))

· T ′(t)

implying
U(x) = ∂0K

−1(K(x)
)

· T ′
(

τ(x)
)

, (x ∈ DomK),

which proves (ii) since T ′
(

τ(x)
)

> 0. It proves equality (1) as well; equalities
(2) and (3) are trivial.
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Suppose now that K = (κ0,κ) is a coordinatization that fulfills conditions
(i)–(iii).

Then condition (ii) implies that U defined by the first equality in (1) is an
observer.

According to (iii), K is constant on simultaneous hyperplanes, thus T is
well defined by the formula (2). Moreover, T is strictly monotone increasing.

If r is a world line function such that ṙ(t) = U
(

r(t)
)

then according to (∗)
in the preceding paragraph

d

dt

(

κ
(

r(t)
))

= Dκ
(

r(t)
)

· U
(

r(t)
)

= Dκ
(

r(t)
)

· ∂0K
−1(K

(

r(t)
))

τ · ∂0K−1
(

K
(

r(t)
)) = 0,

which means that κ ◦ r is a constant mapping, in other words, κ is constant on
the U -lines; hence SU is well defined by the formula (3).

Finally, it is evident that K = (T × SU) ◦ ξU .
It is suitable to use P := K−1, the parametrization corresponding to K.

Then—putting φ(P ) instead of φ ◦ P for any function φ —we can rewrite
formula (1) in the proposition:

U(P ) =
∂0P

τ · ∂0P
.

10.1.5. Condition (iii) in the previous proposition can be replaced by

(iii)’ for all x ∈ DomK there is an e(x) ∈ (T∗)+ such that

Dκ0(x) = e(x)τ ,

i.e. the derivative of κ0 in every point is a positive multiple of τ .
Indeed, if K corresponds to a reference system then e(x) = T ′

(

τ(x)
)

.

Conversely, if (iii)’ holds, then the restriction of κ0 onto every simultaneous
hyperplane t has zero derivative: D

(

κ0
∣

∣

t

)

(x) = Dκ0(x)
∣

∣

S
= 0 (x ∈ t) thus

κ0 is constant on every simultaneous hyperplane which allows us to define T by
the formula (1) in the previous proposition.

Moreover, Lagrange’s mean value theorem implies that every x in the domain
of K has a neighbourhood such that for all y in that neighbourhood there is a
z on the straight line segment connecting x and y in such a way that

κ0(y)− κ0(x) = Dκ0(z) · (y − x) = e(z)τ · (y − x),

hence κ0(y) − κ0(x) > 0 is equivalent to τ · (y − x) > 0 in the neighbourhood
in question. Since the domain of K is connected, this relation holds globally as
well.
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10.2. Galilean reference systems

10.2.1. Now we are interested in what kinds of affine coordinatizations of
spacetime can correspond to reference systems.

Let us take an affine coordinatization K of M. Then there are
— an o ∈ M,
— an ordered basis (x0,x1,x2,x3) of M such that

K(x) =
(

ki · (x− o) | i = 0, 1, 2, 3
)

(x ∈ M),

where (k0, k1, k2, k3) is the dual of the basis in question.

Proposition. The affine coordinatization K corresponds to a reference
system if and only if
(i) (x0,x1,x2,x3) is a positively oriented basis,
(ii) x0 is a future directed timelike vector,
(iii) x1,x2,x3 are spacelike vectors.

Then the corresponding observer is global and inertial having the constant
value

u :=
x0

s
,

and

K(x) =

(

τ · (x− o)

s
,
(

pα · πu · (x− o)
)

α=1,2,3

)

(x ∈ M),

K−1(ξ0, ξ) = o+ ξ0su+
3
∑

α=1

ξαxα

(

(ξ0, ξ) ∈ R× R
3
)

where
s := τ · x0

and {pα := kα|E = kα · i | (α = 1, 2, 3)} is the dual of the basis {x1, x2, x3}
of S.

Proof. We show that the present conditions (i)–(iii) correspond to conditions
(i)–(ii) listed in Proposition 10.1.4 and condition (iii)’ in 10.1.5.

(i) The coordinatization is orientation preserving if and only if the corre-
sponding basis is positively oriented;
(ii) ∂0K

−1(K(x)) = x0;
(iii)’ Dκ0(x) = k0 for all x ∈ M. Since k0 ·xα = 0, k0 = eτ for some e ∈ T

∗

if and only if xα -s (α = 1, 2, 3) are spacelike; then, because of k0 · x0 = 1 > 0,
e = 1

τ ·x0

> 0.

According to our result, an affine reference system will be given in the form
(u, o, s,x1,x2,x3) .
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Note that an affine coordinatization K corresponds to a reference system if
and only if the restriction of K (the linear map under K) onto S is a linear
bijection between S and {0} × R

3.

10.2.2. Definition. A coordinatization K is called Galilean if
— K is affine,
— K · i : S → {0} × R

3 is h –H -orthogonal
where H is the usual inner product on R

3 ≡ {0} × R
3 .

Proposition. A coordinatization K is Galilean if and only if there are
(i) an o ∈ M,
(ii) an ordered basis (e0, e1, e2, e3) of M,
— (e0, e1, e2, e3) is positively oriented,
— s := τ · e0 > 0,
— (e1, e2, e3) is a (necessarily positively oriented) orthogonal basis in S,

normed to an m ∈ L
+, such that

K(x) =

(

τ · (x− o)

s
,

(

eα · πu · (x− o)

m2

)

α=1,2,3

)

(x ∈ M),

where

u :=
e0

s

is the constant value of the corresponding inertial observer.

Proof. It is quite evident that an affine coordinatization is Galilean if and
only if the spacelike elements of the corresponding basis in M are orthogonal
to each other and have the same length. We know that the dual of the basis
(e1, e2, e3) becomes

(

e1

m2 ,
e2

m2 ,
e3

m2

)

in the identification S∗ ≡ S

L⊗L which
proves the equality regarding K.

According to our result, a Galilean reference system will be given in the form
(u, o, s,m, e1, e2, e3) and we shall use the following names: u is its velocity
value, o is its origin, s is its time unit, m is its distance unit, (e1, e2, e3)
is its space basis. Moreover, putting e0 := su , we call (e0, e1, e2, e3) its
spacetime basis .

10.2.3. Let K be a Galilean coordinatization and use the previous notations.
Recalling 1.5.2, we see that the Galilean coordinatization establishes an

isomorphism between the spacetime model (M,T,L, τ ,h) and the arithmetic
spacetime model. More precisely, the coordinatization K and the mappings
B : T → R, t 7→ t

s
and Z : L → R, d 7→ d

m
constitute an isomorphism.

This isomorphism transforms vectors, covectors and tensors, cotensors, etc.
into vectors, covectors, etc. of the arithmetic spacetime model.
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In particular,

K : M → R× R
3, x 7→

(

τ · x
s

,
(eα · πu · x

m2

)

α=1,2,3

)

,

is the coordinatization of vectors; note that it maps S onto {0} × R
3;

(K−1)
∗
: M∗ × R× R

3, k 7→ (k · ei | i = 0, 1, 2, 3) ,

is the coordinatization of covectors; note that it maps T
∗ · τ onto R× {0}.

We can generalize the coordinatization for vectors (covectors) of type or cotype

A, i.e. for elements in M ⊗ A or M

A

(

M∗ ⊗ A, M
∗

A

)

, too, where A is a

measure line. For instance, elements of M

T
or M

L⊗L are coordinatized by the

basis
(

ei

s
| i = 0, 1, 2, 3

)

and by the basis
(

ei

m2 | i = 0, 1, 2, 3
)

, respectively:

M

T
→ R× R

3, w 7→ s

(

τ ·w
s

,
(eα · πu ·w

m2

)

α=1,2,3

)

,

M

L⊗ L
→ R× R

3, p 7→ m2

(

τ · p
s

,
(eα · πu · p

m2

)

α=1,2,3

)

.

10.3. Subscripts and superscripts

10.3.1. In textbooks one generally uses, without a precise definition, Galilean
coordinatizations and the arithmetic spacetime model. Vectors, covectors and
tensors, cotensors, etc. are given by coordinates relative to a spacetime basis.
Let us survey the usual formalism from our point of view.

Let us take a Galilean coordinatization and let us use the previous notations.
If (k0, k1, k2, k3) is the dual of the basis (e0, e1, e2, e3), then

xi := ki · x (i = 0, 1, 2, 3)

are the coordinates of the vector x; we know that

x0 :=
τ · x
s

, xα :=
eα · x
m2

(α = 1, 2, 3).

The covector k has the coordinates

ki := k · ei (i = 0, 1, 2, 3).

Let us accept the convention that the coordinates of vectors are denoted by
superscripts and the coordinates of covectors are denoted by subscripts, and we
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shall not indicate that the coordinates run from 0 to 3. Then the symbol x ∼ xi

and k ∼ ki will mean that the vector x (covector k) has the coordinates xi

(ki).

We have k · x =
3
∑

i=0

kix
i. According to the Einstein summation convention

we shall omit the symbol of summation as well: k · x = kix
i.

The various tensors are given by coordinates with respect to the tensor
products of the corresponding bases (e.g. (ei ⊗ ej | i, j = 0, 1, 2, 3) or
(ei ⊗ kj | i, j = 0, 1, 2, 3)), as the following symbols show:

T ∈ M⊗M, T ∼ T ij ,

L ∈ M⊗M∗, L ∼ Li
j ,

P ∈ M∗ ⊗M, P ∼ Pi
j ,

F ∈ M∗ ⊗M∗, F ∼ Fij .

Applying the Einstein summation convention we can write, e.g. T ·k ∼ T ijkj ,
L · x ∼ Li

jx
j , L · T ∼ Li

jT
jk, TrL = Li

i, etc.

We know that x · y makes no sense for x,y ∈ M; in coordinates this means
that xiyi makes no sense. Similarly, L ·k makes no sense for L ∈ M⊗M∗ and
k ∈ M∗; in coordinates this means that Li

jkj makes no sense. More precisely,
xiyi, etc. do not make an absolute sense. Of course, the value of this expression
can be computed, but it depends on the coordinatization: taking the coordinates

x′i and y′i relative to another coordinatization and computing x′iy′i we get a
different value.

We can see that, in general, a summation makes an absolute sense only for
equal subscripts and superscripts.

10.3.2. Recall that we have the identification S∗ ≡ S

L⊗L and under this

identification the dual of the orthogonal basis (e1, e2, e3) becomes ( eα

m2 | α =
1, 2, 3). The coordinates of p ∈ S∗ are pα := p · eα (α = 1, 2, 3). If we consider
p as an element of S

L⊗L then it has the coordinates pα := m2
(

eα

m2 · p
)

= pα
(α = 1, 2, 3).

Similarly, q ∈ S has the coordinates qα := eα

m2 ·q (α = 1, 2, 3). If we consider

q as an element of S∗ ⊗ L⊗ L, then its coordinates are qα := 1
m2 (q · eα) = qα

(α = 1, 2, 3).

Thus dealing exclusively with spacelike vectors, we need not distinguish be-
tween superscripts and subscripts. We know that q·q makes sense for a spacelike
vector q, and q · q ∼ qαqα = qαqα = qαqα.

We emphasize that this is true only if we use an orthogonal and normed basis
in S (see V.3.20).
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10.4. Reference systems associated with global rigid observers ∗

10.4.1. We know that the space SU of a global rigid observer U is a three-
dimensional affine space. Moreover, given to ∈ T and qo ∈ SU , or, equivalently,
given o ∈ M —called the origin—such that o = qo ⋆ to, to = τ(o), qo = CU(o) ,
we establish the (double) vectorization

T× SU → T× S, (t, q) 7→ (t− to, q ⋆ to − qo ⋆ to)

= (t− τ(o), q ⋆ τ(o)− o) ,

which is an orientation preserving affine bijection.
Then choosing an s ∈ T

+ (a positively oriented basis in T) —called the
time unit—and a positively oriented basis (x1, x2, x3) in S —called the space
basis—, we can establish coordinatizations of time and U -space:

T (t) :=
t− τ(o)

s
(t ∈ T),

SU(q) := (pα · (q ⋆ τ(o)− o) | α = 1, 2, 3) , (q ∈ SU),

where (p1, p2, p3) is the dual of the basis in question.
Evidently, T and SU are orientation preserving affine bijections; we know

that ξU is an orientation preserving smooth bijection whose inverse is smooth
as well (see 4.3.2 and 4.4.3), thus (U , T, SU) is a reference system. For the
corresponding coordinatizatioin K := (T × SU) ◦ ξU we have

K(x) =

(

τ · (x− o)

s
, (pα · (CU(x) ⋆ τ(o)− o))α=1,2,3

)

(x ∈ M),

K−1(ξ0, ξ) = CU

(

o+

3
∑

α=1

ξαxα

)

⋆
(

τ(o) + ξ0s
) (

(ξ0, ξ) ∈ R× R
3
)

.

T and SU are affine coordinatizations of time and U -space. Evidently,
K = (T × SU) ◦ ξU is an affine coordinatization of spacetime if and only if ξU
is an affine map which holds if and only if U is a global inertial observer (see
5.1).

10.4.2. Let us take a uniformly accelerated observer U having the constant
acceleration value a (see 5.2).

Then, according to 5.2.3, for the coordinatization treated in 10.4.1 we have

K(x) =

(

τ · (x− o)

s
, pα ·

(

πU(o) · (x− o)− 1

2
a(τ · (x− o))

2

)

α=1,2,3

)

(x ∈ M)
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and

K−1(ξ0, ξ) = o+ ξ0sU(o) +

3
∑

α=1

ξαxα +
1

2

(

ξ0
)2
s2a ((ξ0, ξ) ∈ R× R

3).

10.4.3. Let us take a uniformly rotating observer U , and let o, c and Ω

be the quantities introduced in 5.3.
Then, according to 5.3.4, for the coordinatization treated in 10.4.1 we have

K(x) =

(

τ · (x− o)

s
,
(

pα · e−(τ ·(x−o))Ω · πc · (x− o)
)

α=1,2,3

)

(x ∈ M),

K−1(ξ0, ξ) = CU(o) ⋆
(

τ(o) + ξ0s
)

+ eξ
0sΩ ·

3
∑

α=1

ξαxα

(

(ξ0, ξ) ∈ R× R
3
)

.

10.4.4. To summarize the results from this subsection, we can say:
Galilean reference system = global inertial observer + measuring time with

respect to an initial instant and a time unit + introducing orthogonal (Cartesian)
coordinates in the observer space.

Affine reference system = global inertial observer + measuring time with
respect to an initial instant and a time unit + introducing (oblique-angled)
rectilinear coordinates in the observer space.

Other reference systems treated previously = global rigid observer + mea-
suring time with respect to an initial instant and a time unit + introducing
rectilinear coordinates in the observer space.

For the solution of some practical problems we often use reference systems in
which curvilinear coordinates (e.g. spherical coordinates or cylindrical coordi-
nates) are introduced in the observer space.

10.5. Equivalent reference systems

10.5.1. In textbooks one usually formulates the principle—without a precise
definition—that the Galilean reference systems are equivalent with respect to
the description of phenomena. It is very important that then one takes tacitly
into consideration Galilean reference systems with the same time unit and the
same distance unit.

Reference systems as we defined them are mathematical objects. The physical
object modelled by them will be called here a physical reference systems. When
could we consider two physical reference systems to be equivalent? The answer
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is: if the experiments prepared in the same way in the reference systems give the
same results. Let us see some illustrative examples.

Take two physical Galilean reference systems in which the time units and dis-
tance units are different and perform the following experiment in both systems:
let an iron ball of unit diameter moving with unit relative velocity hit a sheet
of glass of unit width perpendicularly. It may happen that the ball bounces in
one of the reference systems, the glass breaks in the other. The two reference
systems are not equivalent.

Take an affine reference system in which the first space basis element is
perpendicular to the other two basis elements; take another affine reference
system in which the first space basis element is not perpendicular to the other
two basis elements. Perform the following experiment in both systems: let a ball
moving parallel to the first space axis hit a plane parallel to the other two axes.
The ball returns to its initial position in one of the reference systems and does
not in the other. The two reference systems are not equivalent.

10.5.2. Recall the notion of automorphisms of the spacetime model (1.5.4).
An automorphism is a transformation that leaves invariant (preserves) the struc-
ture of the spacetime model. Strict automorphisms do not change time periods
and distances.

It is quite natural that two objects transformed into each other by a strict
automorphism of the spacetime model are considered equivalent (i.e. identical
from a physical point of view).

In the next paragraph we shall study the Noether transformations that involve
the strict automorphisms of the spacetime model. Now we recall the basic facts.

Let SO(h) denote the set of linear maps R : S → S that preserve the
Euclidean structure and the orientation of S : h ◦ (R ×R) = h and detR = 1
(see 11.1.2).

Let us introduce the notation

N+→ := {L : M → M | L is affine, τ ·L = τ , L|
S
∈ SO(h)}

and let us call the elements of N+→ proper Noether transformations. It is quite
evident that (L, 1T, 1L) is a strict automorphism of the spacetime model if and
only if L is a proper Noether transformation (11.6.4).

An affine map tiL : T → T can be assigned to every proper Noether trans-
formation L in such a way that τ ◦ L = (tiL) ◦ τ (see 11.6.3).

10.5.3. Definition. The coordinatizations K and K ′ are called equivalent
if there is a proper Noether transformation L such that

K ′ ◦ L = K.

Two reference systems are equivalent if the corresponding coordinatizations
are equivalent.
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Proposition. The reference systems (U , T, SU) and (U ′, T ′, SU′) are equiv-
alent if and only if
(i) L−1 · U ′ ◦ L = U , in other words, L · U = U ′ ◦ L,
(ii) T ′ ◦ (tiL) = T, in other words, T ′−1 ◦ T = tiL.
(iii)

(

S−1
U′ ◦ SU

)

◦ CU = CU′ ◦ L.
Proof. Let K and K ′ denote the corresponding coordinatizations. It is

quite trivial that if the relations above hold, then K and K ′ are equivalent.
Let us suppose now that the two reference systems are equivalent. Then

(i) K = K ′ ◦ L , K−1 = L−1 ◦K ′−1 hold for the coresponding coordinatiza-
tions. Then τ ·L = τ together with 10.1.4 imply

U(x) =
∂0K

−1(K(x)
)

τ · ∂0K−1
(

K(x)
) =

L−1 · ∂0K ′−1
(

K ′(L(x))
)

τ ·L−1 · ∂0K ′−1
(

K ′(L(x))
) =L−1·U ′

(

L(x)
)

.

(ii) The equalities

T ◦ τ = pr0 ◦K = pr0 ◦K ′ ◦ L = T ′ ◦ τ ◦ L = T ′ ◦ (tiL) ◦ τ

yield the desired relation immediately.
(iii) Consider the equalities

SU ◦ CU = pr ◦K = pr ◦K ′ ◦ L = SU′ ◦ CU′ ◦ L.

10.5.4. Now we shall see that our definition of equivalence of reference
systems is in accordance with the intuitive notion expounded in 10.5.1.

Proposition. Two Galilean reference systems are equivalent if and only if
they have the same time unit and distance unit, respectively.

Proof. Let the Galilean coordinatizations K and K ′ be defined by the
origins o and o′ and the spacetime bases (e0, e1, e2, e3) and (e′0, e

′
1, e

′
2, e

′
3),

respectively.

Then L := K ′−1 ◦K : M → M is the affine bijection determined by

L(o) = o′, L · ei = e′i (i = 0, 1, 2, 3).

Evidently, L is orientation preserving. Moreover, τ · L = τ if and only if
τ · e0 = τ · e′0, and L|

S
∈ SO(h) if and only if |eα| = |e′α| (α = 1, 2, 3).

10.6. Exercises

1. Reference systems give rise to coordinatizations, hence we can apply all
the notions introduced in VI.5, e.g. the coordinatized form of vector fields.
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Let K be a coordinatization corresponding to a reference system whose
observer is U . Demonstrate that the coordinatized form of U according to
K is the constant mapping (1,0). (U is a vector field of cotype T, hence by
definition, (DK · U) ◦K−1 is its coordinatized form according to K.)

2. Take a uniformly accelerated observer U having the acceleration value
a 6= 0. Define a Galilean reference system with arbitrary time unit s and
distance unit m , an origin o and with a spacetime basis such that e0 := sU(o),
e1 := m a

|a| , e2 and e3 are arbitrary. Demonstrate that then U has the

coordinatized form

(

ξ0, ξ1, ξ2, ξ3
)

7→
(

1, αξ0, 0, 0
)

,

where α is the number for which |a| = αm
s2 holds.

The U -line passing through o+
3
∑

i=0

ξiei becomes

{(

t, ξ1 + αξ0(t− ξ0) +
1

2
α(t− ξ0)

2
, ξ2, ξ3

) ∣

∣

∣

∣

t ∈ R

}

.

3. Take a uniformly rotating observer U having the angular velocity Ω and
suppose there is an inertial U -space point qo = o + c ⊗ T. Define a Galilean
reference system with origin o, with arbitrary time unit s and distance unit m

and e0 := sU(o), e3 positively oriented in KerΩ, |e3| = m, e1 and e2 being
arbitrary. Demonstrate that then U has the coordinatized form

(

ξ0, ξ1, ξ2, ξ3
)

7→
(

1, −ωξ2, ωξ1, 0
)

,

where ω is the number for which |Ω| = ω 1
s

holds.

The U -line passing through o+
3
∑

i=0

ξiei becomes

{

(

t, ξ1 cosω(t− ξ0)− ξ2 sinω(t− ξ0),

ξ1 sinω(t− ξ0) + ξ2 cosω(t− ξ0), ξ3
) ∣

∣ t ∈ R

}

.

4. Prove that two affine reference systems are equivalent if and only if they
have the same time unit and the corresponding elements of the space bases have
the same length and the same angles between themselves; in other words, the
affine reference systems defined by the origins o and o′ and the spacetime bases
(x0, x1, x2, x3) and (x′0, x

′
1, x

′
2, x

′
3), respectively, are equivalent if and only

if
τ · x0 = τ · x′0
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and
xα · xβ = x′α · x′β (α, β = 1, 2, 3).

5. Prove that two reference systems defined for uniformly accelerated ob-
servers in the form given in 10.4.2 are equivalent if and only if the two accelera-
tion values have the same magnitude, the time units are equal, the corresponding
elements of the space bases have the same length and the same angles between
themselves, and the acceleration values incline in the same way to the basis el-
ements; in other words, if a and a′ are the acceleration values, s and s′ are
the time units, (x1, x2, x3) and (x′1, x′2, x′3) are the space bases, then the
two reference systems are equivalent if and only if

|a| = |a′|, s = s′,

xα · xβ = x′α · x′β ,
xα · a
|xα||a|

=
x′α · a′
|x′α||a′|

(α, β = 1, 2, 3).

6. Prove that two reference systems defined for uniformly rotating observers
in the form given in 10.4.3 are equivalent if and only if the angular velocities
have the same magnitude, the time units are equal, the corresponding elements
of the space bases have the same length and the same angles between themselves
and the oriented kernels of the angular velocities incline in the same way to the
basis elements.

7. Take a global inertial observer and construct a reference system by spherical
(cylindrical) coordinatization of the observer space. Find necessary and sufficient
conditions that two such reference systems be equivalent.

8. In all the treated reference systems time is coordinatized by an affine map.
Construct a reference system based on a global inertial observer in which the
time coordinatization is not affine.

11. Spacetime groups ∗

11.1. The three-dimensional orthogonal groups

11.1.1. (S,L,h) is a three-dimensional oriented Euclidean vector space.
Recall the notations (see V.2.7)

A(h) :=
{

A ∈ S⊗ S∗ | A> = −A
}

≡ S

L
∧ S

L
,

O(h) :=
{

R ∈ S⊗ S∗ | R> = R−1
}

.

A(h) is a three-dimensional subspace in S ⊗ S∗ and O(h) is a three-
dimensional Lie group having A(h) as its Lie algebra (VII.5).
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11.1.2. We know that |detR| = 1 for R ∈ O(h) (see V.2.8). We introduce
the notations

SO(h) :=O(h)+ := {R ∈ O(h) | detR = 1} ,
O(h)− := {R ∈ O(h) | detR = −1} .

The elements of SO(h) are called rotations.
Since the determinant is a continuous function, O(h)+ and O(h)− are dis-

joint.
Evidently, 1S ∈ O(h)+ and −1S ∈ O(h)−; moreover, (−1S) · O(h)+ =

O(h)−.
The determinant is a continuous function, hence both O(h)+ and O(h)−

are closed. Moreover, we know that F 7→ Tr(F> · F ) is an inner product
(real-valued positive definite bilinear form) on S ⊗ S∗ (see V.2.10). Since
Tr(R> ·R) = Tr(1S) = 3 for all R ∈ O(h), O(h) is a bounded set.

Thus we can state, that O(h), O(h)+ and O(h)− are compact (closed and
bounded) sets.

11.1.3. Let R ∈ SO(h). For all x ∈ S we have |R · x| = |x|. As a
consequence, R · x = αx implies α = ±1.

Proposition. For every R ∈ SO(h) there is a nonzero x ∈ S such that
R · x = x; moreover,

aR := {x ∈ S | R · x = x}

is a one-dimensional linear subspace if and only if R 6= 1S.

Proof. It is trivial that aR = S for R = 1S.
IV.3.18 and V.1.5 result in

det(R− 1S) = det(R−R> ·R) = det(1S −R>)detR = −det(R− 1S).

Consequently, det(R − 1S) = 0, R − 1S is not injective, there is a nonzero
x such that (R− 1S) · x = 0.

Let us suppose aR is not one-dimensional, i.e. x1 and x2 are not parallel
vectors such that R · x1 = x1 and R · x2 = x2. Then for every element x in
the plane spanned by x1 and x2 we have R ·x = x. This means that the plane
spanned by x1 and x2 is invariant under R and the restriction of R onto that
plane is the identity. Let y be a nonzero vector orthogonal to the plane spanned
by x1 and x2. Since R preserves orthogonality, R · y must be orthogonal to
that plane, i.e. it is parallel to y : R ·y = ±y. R is orientation preserving, thus
R · y = y must hold. This means that R = 1S.

For R 6= 1S, aR is called the axis of rotation of R.
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11.1.4. For R ∈ SO(h) the symbol a⊥R will stand for the orthogonal
complement of aR :

a⊥R := {x ∈ S | x is orthogonal to aR}.

Evidently, a⊥R = {0} for R = 1S and a⊥R is a plane for R 6= 1S. Moreover, a⊥R
is invariant under R.

The restriction of R 6= 1S onto a⊥R is a rotation in a plane which ‘evidently’
can be characterized by an angle of rotation. This is the content of the following
proposition.

Proposition. If x and y are nonzero vectors in a⊥R then

x ·R · x
|x|2 =

y ·R · y
|y|2 .

Proof. We can exclude the trivial cases R · x = x and R · x = −x for all
x ∈ a⊥R (note that the first case is R = 1S).

It will be convenient to put n := x
|x| , k := y

|y| and to consider R to be a

linear map on S

L
. Let us introduce the notation

SR :=

{

n ∈ S

L
| n is orthogonal to aR, |n| = 1

}

.

The proof consists of several simple steps whose details are left to the reader.
(i) Let n and k be elements of SR orthogonal to each other. Then, excluding

the trivial case,
n ·R · k 6= 0.

Indeed,

1 = detR = (n ·R · n)(k ·R · k)− (n ·R · k)(k ·R · n)

and because of the Cauchy inequality (apart from the trivial case), (n ·R ·n)(k ·
R · k) < 1.
(ii) R ·n 6= R−1 ·n. Indeed, suppose R ·n = R−1 ·n. Then we get from the

previous formula that

1 = (n ·R−1 · n)(k ·R · k)− (n ·R · k)(k ·R−1 · n) =
= (n ·R · n)(k ·R · k)− (n ·R · k)(n ·R · k),

which implies (n ·R · n)(k ·R · k) > 1 contradicting the Cauchy inequality.
(iii) 0 6= R · n−R−1 · n is orthogonal to n, hence it is parallel to k.
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(iv) R · n +R−1 · n is orthogonal to R · n −R−1 · n, hence it is orthogonal
to k as well. Consequently,

n ·R · k + k ·R · n = 0.

(v) R · n = (n ·R · n)n + (k ·R · n)k, and from a similar relation for R · k
we have

0 = (R · n) · (R · k) = (n ·R · n)(n ·R · k) + (k ·R · n)(k ·R · k);

then we infer from (i) and (iii) that n ·R · n = k ·R · k.
(vi) If m ∈ SR then m = αn+ βk, α2 + β2 = 1 and m ·R ·m = n ·R · n.

Now let us return to 0 6= x ∈ S, orthogonal to aR. The Cauchy inequality
gives |x ·R · x| ≤ |x|2; thus

αR := arccos
x ·R · x
|x|2 ∈ [0, π]

is meaningful, which is called the angle of rotation of R.
Observe that
— αR = 0 if and only if R ·x = x for all x orthogonal to aR, i.e. R = 1S,
— αR = π if and only if R · x = −x for all x orthogonal to aR.

11.1.5. Proposition. Let R 6= 1S and αR 6= π. Take an arbitrary nonzero
x ∈ a⊥R. Let y ∈ a⊥R be orthogonal to x, |y| = |x|, and suppose (x,y) and
(x,R · x) are equally oriented bases in a⊥R. Then

R · x = (cosαR)x+ (sinαR)y.

Proof. Since R · x = x·R·x
|x|2 x + y·R·x

|y|2 y, we easily find that cos2 αR +
(

y·R·x
|y|2

)2

= 1. As a consequence of the equal orientation of (x,y) and (x,R·x),
we have y·R·x

|x||y| > 0 which implies that this expression equals sinαR (because

αR is between 0 and π).

11.1.6. Let R 6= 1S and αR 6= π. Then x and R·x are linearly independent
if x is a nonzero vector orthogonal to aR. It is not hard to see that if y is another
nonzero vector orthogonal to aR, then the pairs (x,R · x) and (y,R · y) are
equally oriented bases in a⊥R. As a consequence, (R ·x)∧x and (R ·y)∧y are
positive multiples of each other.
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Since |(R · x) ∧ x|2 = |x|4 − (x ·R · x)2 = |x|4 sin2 αR, we have that for
R 6= 1S, αR 6= π

logR :=
(R · x) ∧ x

|x|2 sinαR

αR ∈ A(h) (0 6= x ∈ a⊥R)

is independent of x. Moreover, put

log(1S) := 0 ∈ A(h).

It is easy to see that
(i) Ker(logR) = aR,
(ii) | logR| = αR,
(iii) if R 6= 1S then for an arbitrary nonzero x ∈ a⊥R, (x, R · x) and
(x, (logR) · x) form equally oriented bases in a⊥R.

In this way, assuming the notations

N := {R ∈ SO(h) | αR 6= π} , P :=
{

A ∈ A(h)
∣

∣ |A| < π
}

we defined a mapping log : N → P; we shall show that log is a bijection whose
inverse is the restriction of the exponential mapping (see VII.3.7).

11.1.7. Proposition. For 0 6= A ∈ A(h) putting α := |A|, Ao := A
|A| , we

have
eA = −Ao

2 cosα+Ao sinα+
(

1S +Ao
2
)

.

Proof. Recall that A3 = −α2A (see V.3.10); thus

eA =

∞
∑

n=0

An

n!
= 1S +A+

A2

2!
+

A3

3!
+

A4

4!
+

A5

5!
+

A6

6!
+

A7

7!
+ .... =

=

(

1S +
A2

α2

)

− A2

α2
+

A2

2!
− α2A2

4!
+
α4A2

6!
− ....

+A− α2A

3!
+
α4A

5!
− α6A

7!
+ ....

which yields the desired result by A = αAo.

Note that for A 6= 0, 1S + A2
o is the orthogonal projection onto the plane

orthogonal to the kernel of A.
As a consequence, if A 6= 0 then
(i) eA · x = x for x ∈ KerA (the axis of rotation of eA is the kernel of A);
(ii) eA · x = (cosα)x+ (sinα)Ao · x for x orthogonal to KerA (the angle of

rotation of eA is α := |A|);
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11.1.8. Proposition. For R ∈ N

elogR = R

and for A ∈ P

log(eA) = A.

Proof. Evidently, for R = 1S and for A = 0 the equalities hold.
If R 6= 1S and x is in aR then, obviously, elogR · x = x = R · x. If x is

orthogonal to the axis of rotation of R, then

elogR · x = (cosαR)x+ sinαR

logR

αR

· x = R · x,

in view of 11.1.6 and 11.1.7.
According to the previous proposition, for A 6= 0, the axis of rotation of

eA is the kernel of A; the angle of rotation of eA is |A|. Thus if x ∈ KerA
then log(eA) · x = 0 = A · x. If x is orthogonal to the kernel of A, then

log(eA) = (eA·x)∧x
|x|2 sin |A| and an easy calculation based on the formula in 11.1.6

yields that log(eA) · x = A · x.

11.1.9. It is trivial that the closure of N is SO(h). It is not hard to see
that exponential mapping A(h) → SO(h) maps the closure of P onto SO(h).
However, the exponential mapping on the closure of P is not injective: if |A| = π
then eA = e−A.

Since the closure of P is connected and the exponential mapping is continuous,
SO(h) is connected as well.

(However, SO(h) is not simply connected: it is homeomorphic to a set which
is obtained from the closure of P by ‘sticking’ together antipodal points of the
boundary of P .)

The one-parameter subgroup of SO(h) corresponding to A ∈ A(h) is R →
SO(h), t 7→ etA. If A 6= 0, then all the elements of the one-parameter subgroup
are rotations around the same axis KerA.

Since the exponential mapping is surjective, every element of SO(h) is in a
one-parameter subgroup.

11.1.10. In physical applications we meet A(h)
T

instead of A(h). If Ω ∈ A(h)
T
,

then we can give a function R : T → SO(h), t 7→ e(t−to)Ω, where to is a fixed
element of T. Then every value of such a function is a rotation around the same
axis; the angle of rotation of R(t) is (t− to)|Ω|. Thus |Ω| is interpreted as the
magnitude of the angular velocity and Ω itself as the angular velocity of the
rotation.
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We know that R is differentiable, Ṙ = Ω ·R, from which we infer that

Ω = Ṙ ·R−1.

In general, consider a differentiable function R : T  SO(h) ⊂ S ⊗ S∗. Its

derivative at t, Ṙ(t), is a linear map from T into S⊗S∗ that takes values in the
tangent space of SO(h) at R(t) which is R(t) ·A(h) = {R(t) ·A | A ∈ A(h)}
(see VII.3.3). In other words, Ṙ(t) ∈ R(t)·A(h)

T
, i.e. R(t)

−1 · Ṙ(t) ∈ A(h)
T
. Then

V.2.11(ii) implies that R(t) ·
(

R(t)
−1 · Ṙ(t)

)

·R(t)
−1

is in A(h)
T

as well;

Ω(t) := Ṙ(t) ·R(t)
−1 ∈ A(h)

T

is called the angular velocity value at t, and the function Ω : T 
A(h)
T

is the
angular velocity.

Evidently, R is the solution of the differential equation

(X : T  SO(h))? Ẋ = Ω ·X.

11.2. Exercises

1. Let us coordinatize SO(h) by the Euler angles as follows.
Let (n1, n2, n3) be a positively oriented orthonormal basis in S

L
. If R · n3

is not parallel to n3, put n := n3×(R·n3)
|n3×(R·n3)| and

ϑR := arccos(n3 ·R · n3),

ψR := sign(n · n2) arccos(n · n1),

ϕR := sign(n ·R · n2) arccos(n ·R · n1)

where signx := x
|x| if 0 6= x ∈ R and sign0 := 1.

Prove that if Ri denotes the one-parameter subgroup of rotations around ni

(i = 1, 2, 3) then
R = R3(ϕR) ·R1(ϑR) ·R3(ψR).

2. Let R : T  SO(h) be a differentiable function and put R−1 : T 

SO(h), t 7→ R(t)−1. Using R ·R−1 = 1S prove that R−1 is also differentiable
and

(

R−1
)·

= −R−1 · Ṙ ·R−1.

3. Prove that for 0 ≤ r ∈ L,
{

x ∈ S
∣

∣ |x| = r
}

is an orbit of SO(h) and all
its orbits are of this kind.
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11.3. The Galilean group

11.3.1. We shall deal with linear maps from M into M, permanently
using the identification Lin(M) ≡ M ⊗ M∗. The restriction of a linear map
L : M → M (L ∈ M⊗M∗) onto S equals L·i where i : S → M (i ∈ M⊗S∗) is
the canonical embedding. The symbol L · i ∈ i ·O(h) means that the restriction
of L onto S is in O(h), i.e. there is an R ∈ O(h) ⊂ S ⊗ S∗ such that
L · i = i ·R.

First we define the Galilean group and then studying it we find its physical
meaning.

Definition.

G := {L ∈ M⊗M∗ | τ ·L = ±τ , L · i ∈ i · O(h)}

is called the Galilean group; its elements are the Galilean transformations.
If L is a Galilean transformation then

arL :=

{

+1 if τ ·L = τ

−1 if τ ·L = −τ

is the arrow of L and

signL :=

{

+1 if L · i ∈ i · O(h)
+

−1 if L · i ∈ i · O(h)
−

is the sign of L.
Let us put

G+→ : = {L ∈ G | signL = arL = 1},
G+← : = {L ∈ G | signL = −arL = 1},
G−→ : = {L ∈ G | signL = −arL = −1},
G−← : = {L ∈ G | signL = arL = −1}.

G+→ is called the proper Galilean group.

(i) The condition τ ·L = ±τ implies that S is invariant under the linear map
L : M → M.
(ii) The condition L · i ∈ i · O(h) means that there is a (necessarily unique)

RL in O(h) such that
L · i = i ·RL.

(iii) The Galilean transformations are linear bijections: if L · x = 0 then
τ · x = 0, i.e. x is in S; the restriction of L onto S is injective, thus x = 0.
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(iv) It is quite trivial that G is indeed a group: the product of its elements as
well as the inverse of its elements are Galilean transformations.

11.3.2. Proposition. The Galilean group is a six-dimensional Lie group
having the Lie algebra

La(G) = {H ∈ M⊗M∗ | τ ·H = 0, H · i ∈ A(h)}.

Proof. According to the previous remark, G is a subgroup of GL(M) which
is sixteen-dimensional.

We have to show that the Galilean group is a six-dimensional smooth sub-
manifold of GL(M).

Observe that if L ∈ G, then

πu ·L · i = RL

for all u ∈ V (1), where RL is given in the previous remark.
S(h) := {S ∈ S⊗ S∗ | S> = S} is a six-dimensional linear subspace and

φu : GL(M) → (T⊗M∗)× S(h), L 7→
(

τ ·L, (πu ·L · i)> · (πu ·L · i)
)

is evidently a smooth map; G is the preimage of {(±τ ,1S)} by φu .
The derivative of φu at L is the linear map

Dφu(L) : M⊗M∗ → (T⊗M∗)× S(h),

H 7→
(

τ ·H, (πu ·H · i)> · (πu ·L · i) + (πu ·L · i)> · (πu ·H · i)
)

which is surjective: (k,T ) ∈ (T ⊗ M∗) × S(h) is the image by Dφu(L) of

u⊗ k + (1/2)(πu ·L · i)>
−1

· T .
Thus, being a six-dimensional submanifold in GL(M), the Galilean group is

a Lie group; its Lie algebra is KerDφu(1M).
If Dφu(1M)(H) = 0, then τ ·H = 0, and πu ·H · i is in A(h). Since the

first condition means that H ∈ S⊗M∗, we have πu ·H · i = H · i. Hence the
kernel of Dφu(1M) is the linear subspace given in our proposition.

11.3.3. The mappings G → {−1, 1}, L 7→ arL and G → {−1, 1}, L 7→
signL are continuous group homomorphisms. As a consequence, the Galilean
group is disconnected. We shall see in 11.4.3 that the proper Galilean group
G+→ is connected. It is quite trivial that if L ∈ G+← then L ·G+→ = G+← and
similar assertions hold for G−→ and G−← as well. Consequently, the Galilean
group has four connected components, the four subsets given in Definition 11.2.1.

From these four components only G+→ —the proper Galilean group—is a
subgroup; nevertheless, the union of an arbitrary component and of the proper
Galilean group is a subgroup as well.
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G→ := G+→ ∪ G−→ is called the orthochronous Galilean group.
If L ∈ G, then L preserves or reverses the ‘orientation’ of timelike vectors

according to whether arL = 1 or arL = −1 :

if arL = 1 then L (T→) = T
→, L (T←) = T

←,

if arL = −1 then L (T→) = T
←, L (T←) = T

→.

Moreover, L preserves or reverses the orientation of S according to whether
signL = 1 or signL = −1.

The orientation of S given in 1.2.4 shows that the elements of G+→ and G−←
preserve the orientation of M, whereas the elements of G+← and G−→ reverse
the orientation.

11.3.4. M is of even dimension, thus −1M is orientation preserving. Evi-
dently, −1M is in G−←; it is called the inversion of spacetime vectors. We have
that G−← = (−1M) · G+→.

We have seen previously that the elements of G+← invert in some sense the
timelike vectors and do not invert the spacelike vectors; the elements of G−→
invert in some sense the spacelike vectors and do not invert the timelike vectors.
However, we cannot select an element of G+← and an element of G−→ that we
could consider the time inversion and the space inversion.

For each u ∈ V (1) we can give a u -timelike inversion and a u -spacelike
inversion as follows.

The u -timelike inversion Tu ∈ G+← inverts vectors parallel to u and leaves
spacelike vectors invariant:

Tu · u := −u and Tu · q := q for q ∈ S.

In general,

Tu · x = −u(τ · x) + πu · x = −2u(τ · x) + x (x ∈ M)

i.e.
Tu = 1M − 2u⊗ τ .

The u -spacelike inversion Pu ∈ G−→ inverts spacelike vectors and leaves
vectors parallel to u invariant:

Pu · u := u and Pu · q := −q for q ∈ S.

In general,
Pu · x = u(τ · x)− πu · x = 2u(τ · x)− x (x ∈ M),

i.e.
Pu = 2u⊗ τ − 1M.
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We easily deduce the following equalities:

Tu
−1 = Tu, Pu

−1 = Pu, −Tu = Pu,

Tu · Pu = Pu · Tu = −1M.

11.3.5. The three-dimensional orthogonal group is not a subgroup of the
Galilean group: O(h) cannot be a subgroup of G because the elements of G
are linear maps defined on M whereas the elements of O(h) are linear maps
defined on S (S⊗ S∗ is not a subset of M⊗M∗).

It is quite obvious that

G→ → O(h), L 7→ RL

(where L · i = i ·RL) is a surjective Lie group homomorphism.
For every u ∈ V (1),

O(h)u := {L ∈ G→ | L · u = u} ,

called the group of u -spacelike orthogonal transformations, is a subgroup of G→;
the restriction of the above Lie group homomorphism to O(h)u is a bijection
between O(h)u and O(h).

Indeed, if L ·u = u and RL = 1S , then L is the identity on the complemen-
tary subspaces u ⊗ T and S, thus L = 1M : the group homomorphism from
O(h)u into O(h) is injective.

If R ∈ O(h) then
Ru := u⊗ τ +R · πu

is a Galilean transformation in O(h)u and πu ·Ru ·i = R (recall that πu ·L·i =
RL for all Galilean transformations L) : the group homomorphism from O(h)u
onto O(h) is surjective.

11.3.6. The kernel of the surjection G→ → O(h), i.e.

V := {L ∈ G→ | RL = 1S} = {L ∈ G→ | L · i = i}

is called the special Galilean group. Observe that V is a subgroup of G+→.
The special Galilean group is a three-dimensional Lie group having the Lie

algebra
La(V) = {H ∈ M⊗M∗ | τ ·H = 0, H · i = 0} .

Proposition. If L ∈ V, then there is a unique vL ∈ S

T
such that

L · x = vL(τ · x) + x (x ∈ M),
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i.e.
L = 1M + vL ⊗ τ .

The correspondence V → S

T
, L 7→ vL is a bijective group homomorphism

regarding the additive structure of S

T
(i.e. vL·K = vL + vK for all L,K ∈ V).

Proof. Let L be an element of V. Let us take an arbitrary u ∈ V (1) and
put vL := L · u − u. We claim that vL does not depend on u. Indeed, if
u′ ∈ V (1) then

(L · u− u)− (L · u′ − u′) = L · (u− u′)− (u− u′) = 0,

because L · (u−u′) = u−u′. Moreover, τ · (L ·u−u) = 0, thus vL is in S

T
.

This means that L · u = u+ vL for all u ∈ V (1).
Then we find that for x ∈ M

L · x = L · (u(τ · x) + πu · x) = (u+ vL)τ · x+ πu · x = vL(τ · x) + x.

This formula assures, too, that L 7→ vL is a group homomorphism.
If vL = 0 then L · u = u for all u ∈ V (1) implying L = 1M; thus

the correspondence from V into S

T
is injective. Evidently, if v is in S

T
then

1M+v⊗τ is a special Galilean transformation: the correspondence is surjective.

In view of our result, the special Galilean group is a three-dimensional com-
mutative group.

11.3.7. (i) If u,u′ ∈ V (1), then the special Galilean transformation

L(u′,u) := 1M + (u′ − u)⊗ τ ,

i.e. the one corresponding to vu′u = u′−u is the unique one with the property

L(u′,u) · u = u′.

Let us recall the splitting of M according to u and u′; then we easily find
that

L(u′,u) = ξu′
−1 · ξu.

(ii) The product of the u′ -timelike inversion and the u -timelike inversion is
a special Galilean transformation:

Tu′ · Tu = (1M − 2u′ ⊗ τ ) · (1M − 2u⊗ τ ) = 1M + 2vu′u ⊗ τ .

We know that Tu
−1 = Tu = −Pu; then we can assert that

Tu′ · Tu
−1 = Pu′ · Pu

−1 = L(u′,u)
2
=

= L(u+ 2vu′u,u) = L(u− 2vuu′ ,u).
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11.3.8. Originally Galilean transformations are defined to be linear maps
from M into M. In the usual way, we can consider them to be linear maps
from M

T
into M

T
as we already did in the preceding paragraphs as well.

V (1) is invariant under orthochronous Galilean transformations. Moreover,
the restriction of an orthochronous Galilean transformation L onto V (1) is an
affine bijection whose underlying linear map—which is the restriction of L onto
S

T
—preserves the Euclidean structure.

Conversely, if F is a Euclidean transformation of V (1) —an affine bijection
whose underlying linear map preserves the Euclidean structure—then M → M,
x 7→ F · (x/τ · x)τ · x is an orthochronous Galilean transformation whose
restriction onto V (1) coincides with F .

Thus we can state that the orthochronous Galilean group is canonically iso-
morphic to the group of Euclidean transformations of V (1).

11.4. The split Galilean group

11.4.1. The Galilean transformations, being elements of M⊗M∗, are split
by velocity values according to 8.1.1. Since τ ·L = (arL)τ and πu ·L · i = RL

for a Galilean transformation L and for u ∈ V (1), we have

ξu ·L · ξu−1 =

(

arL 0

L · u− (arL)u RL

)

.

Writing L · u− (arL)u = (arL) ((arL)L · u− u) , we see that the following
definition describes the split form of Galilean transformations.

Definition. The split Galilean group is

{(

±1 0

v ±R

) ∣

∣

∣

∣

v ∈ S

T
, R ∈ SO(h)

}

.

Its elements are called split Galilean transformations.

The split Galilean transformations can be regarded as linear maps T × S →
T× S; the one in the definition makes the correspondence

(t, q) 7→ (±t, vt±R · q).

The split Galilean group is a six-dimensional Lie group having the Lie algebra

{(

0 0

v A

) ∣

∣

∣

∣

v ∈ S

T
, A ∈ A(h)

}

.
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11.4.2. The splitting ξu according to u establishes a Lie-group isomorphism
between the Galilean group and the split Galilean group. The isomorphisms
corresponding to different u′ and u are different.

The S

T
component in the split form of Galilean transformations, in general,

varies according to the velocity value establishing the splitting.
The following transformation rule shows well how the splitting depends on

the velocity values.
Let u′,u ∈ V (1). Recall the notation

ξu′u := ξu′ · ξu−1 =

(

1 0

−vu′u 1S

)

.

Then

ξu′u ·
(

±1 0

v ±R

)

· ξ−1u′u =

(

±1 0

(v − vu′u)±R · vu′u ±R

)

.

11.4.3. The splittings send the proper Galilean group into

{(

1 0

v R

) ∣

∣

∣

∣

v ∈ S

T
, R ∈ SO(h)

}

which is evidently a connected set. Since the splittings are Lie group isomor-
phisms, G+→ is connected as well.

11.4.4. If L is a special Galilean transformation and vL is the corresponding
element of S

T
, then L has the split form

(

1 0

vL 1S

)

for all u ∈ V (1) : the splitting is independent of the velocity value. In other
words, every u ∈ V (1) makes the same bijection between the special Galilean
group V and the group

{(

1 0

v 1S

) ∣

∣

∣

∣

v ∈ S

T

}

.

Observe that for all u′,u ∈ V (1), the vector transformation law is the split
form of a special Galilean transformation:

ξu′u = ξu′ · ξu−1 = ξu ·L(u,u′) · ξu−1.
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11.4.5. The Lie algebra of the Galilean group, too, consists of elements of
M⊗M∗, thus they are split by velocity values in the same way as the Galilean
transformations; evidently, their split forms will be different.

If H is in the Lie algebra of the Galilean group and u ∈ V (1), then

ξu ·H · ξu−1 =

(

0 0

H · u H · i

)

.

The splitting according to u establishes a Lie algebra isomorphism between
the Lie algebra of the Galilean group and the Lie algebra of the split Galilean
group. The isomorphisms corresponding to different u′ and u are different:

ξu′u ·
(

0 0

v H

)

· ξu′u
−1 =

(

0 0

v +H · vu′u H

)

.

11.5. Exercises

1. Prove that for all 0 6= t ∈ T, {x ∈ M | τ · x = t} is an orbit of the special
Galilean group as well as the proper Galilean group. What are the orbits for
t = 0 ?

2. Beside the trivial linear subspaces {0} and M , S is invariant under all
Galilean transformations and every linear subspace of S is invariant under all
special Galilean transformations.

3. The transpose of a Galilean transformation is a linear bijection M∗ → M∗.
Demonstrate that the transposed Galilean group {L∗ | L ∈ G} leaves T

∗ · τ
invariant; more closely, if L ∈ G and e ∈ T

∗ · τ , then L∗ · e = (arL)e.
Furthermore, if k ∈ M∗, and L∗ · k is parallel to k for all Galilean trans-

formations L, then k is in T
∗ · τ .

4. The subgroup generated by {Tu | u ∈ V (1)} is the special Galilean group.
5. Prove that

ξu · Tu · ξu−1 =

(

−1 0

0 1S

)

, ξu · Pu · ξu−1 =

(

1 0

0 −1S

)

.

Find ξu′ · Tu · ξu′
−1 and ξu′ · Pu · ξu′

−1.
6. The u -splitting of the Galilean group sends the special Galilean group into

the group
{(

1 0

v 1S

) ∣

∣

∣

∣

v ∈ S

T

}

whose Lie algebra is
{(

0 0

v 0

) ∣

∣

∣

∣

v ∈ S

T

}

.
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The u -splitting of special Galilean transformations does not depend on u.

7. The Lie algebra of O(h)u equals

{

H ∈ La(G)
∣

∣ H · u = 0
}

.

8. The u -splitting sends the subgroup O(h)u into the group

{(

1 0

0 R

) ∣

∣

∣

∣

R ∈ O(h)

}

having the Lie algebra

{(

0 0

0 A

) ∣

∣

∣

∣

A ∈ A(h)

}

.

Find the u′ -splitting of O(h)u for u′ 6= u.

9. Recall the notation introduced in 11.3.7 and prove that

— L(u′,u)−1 = L(u,u′),

— L(u′′u′) ·L(u′,u) = L(u′′,u).

10. For all u ∈ V (1) and for all Galilean transformations L we have that

R(L,u) := (arL)L(u, (arL) · u) ·L = (arL)L+ (u− (arL)L · u)⊗ τ

is in O(h)u and R (L,u)|
Su

= RL. In other words, given an arbitrary u ∈
V (1), every Galilean transformation L is the product of a special Galilean
transformation and a u -spacelike orthogonal transformation, multiplied by the
arrow of L :

L = (arL)L((arL(u),u) ·R(L,u).
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11.6. The Noether group

11.6.1. Now we shall deal with affine maps L : M → M; as usual, the linear
map under L is denoted by L.

Definition.

N := {L : M → M | L is affine, L ∈ G}

is called the Noether group; its elements are the Noether transformations.
If L is a Noether transformation, then

arL := arL, signL := signL.

N+→, N+←, N−→ and N−← are the subsets of N consisting of elements
whose underlying linear maps belong to G+→, G+←, G−→ and G−←, respec-
tively.

N+→ is called the proper Noether group.

The Noether group is the affine group over the Galilean group; according to
VII.3.2(ii), we can state the following.

Proposition. The Noether group is a ten-dimensional Lie group; its Lie
algebra consists of the affine maps H : M → M whose underlying linear map is
in the Lie algebra of the Galilean group:

La(N ) = {H ∈ Aff(M,M) | τ ·H = 0, H · i ∈ A(h)} .

The proper Noether group is a connected subgroup of the Noether group. As
regards N+←, etc. we can repeat what was said about the components of the
Galilean group.

N→ := N+→ ∪N−→ is called the orthochronous Noether group.

11.6.2. We can say that the elements of N−← invert spacetime in some
sense but there is no element that we could call the spacetime inversion.

For every o ∈ M we can give the o -centered spacetime inversion in such a
way that first M is vectorized by Oo, then the vectors are inverted (−1M is
applied), finally the vectorization is removed:

Io := Oo
−1 ◦ (−1M) ◦Oo,

i.e.
Io(x) := o− (x− o) (x ∈ M).

Similarly, we can say that in some sense the elements of N−→ contain
spacelike inversion and do not contain timelike inversion; the elements of N+←
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contain timelike inversion and do not contain spacelike inversion. However, the
space inversion and the time inversion do not exist.

For every o ∈ M and u ∈ V (1) we can give the o -centered u -timelike
inversion and the o -centered u -spacelike inversion as follows:

Tu,o(x) := o+ Tu · (x− o), Pu,o(x) := o+ Pu · (x− o) (x ∈ M).

11.6.3. Let L be a Noether transformation. If x and y are simultaneous
then L(x) and L(y) are simultaneous as well:

τ(L(x))− τ(L(y)) = τ ·L · (x− y) = (arL)τ · (x− y) = 0.

Recall that T is identified with the set of hyperplanes of M directed by S.
Thus for a Noether transformation L we can define the mapping

tiL : T → T, t 7→ L[t].

Observe that

(tiL) ◦ τ = τ ◦ L

or, in other words,

(tiL)(t) = τ(L(x)) (x ∈ t),

from which we get immediately that

(tiL)(t)− (tiL)(s) = (arL)(t− s) (t, s ∈ T).

Thus tiL is an affine map over (arL)1T.
According to Exercises VI.2.5.6–7, if arL = 1, then tiL is a translation, i.e.

there is a unique t ∈ T such that (tiL)(t) = t+ t; if arL = −1, then tiL is an
inversion, i.e. there is a unique to ∈ T such that (tiL)(t) = to − (t− to).

11.6.4. Noether transformations are mappings of spacetime. They play a
fundamental role because the proper Noether transformations can be considered
to be the strict automorphisms of the spacetime model, according to Definition
1.6.1.

11.6.5. Let us denote the translation group of T by T n(T) and consider it
as an affine transformation group of T : t ∈ T acts as T → T, t 7→ t + t. In
this respect 0 ∈ T equals the identity map of T. It is quite obvious now that

N→ → T n(T), L 7→ tiL



136 I. Nonrelativistic spacetime model

is a surjective Lie group homomorphism. Its kernel,

Ni := {L ∈ N→ | tiL = 1T} = {L ∈ N→ | τ ◦ L = τ} ,

is called the instantaneous Noether group. It is a nine-dimensional Lie group
having the Lie algebra

La(Ni) = {H ∈ Aff(M,M) | τ ◦H = 0, H · i ∈ A(h)} .

Instantaneous Noether transformations leave every instant invariant.
T n(T) is not a subgroup of N . For every u ∈ V (1),

T n(T)u := {1M + ut | t ∈ T}

is a subgroup of the orthochronous Noether group, called the group of u -
timelike translations. The restriction of the homomorphism L 7→ tiL onto
T n(T)u is a bijection between T n(T)u and T n(T).

In other words, given u ∈ V (1), we can assign to every t ∈ T the Noether
transformation

x 7→ x+ ut

called the u -timelike translation by t.

11.6.6. The Galilean group is not a subgroup of the Noether group. The
mapping N → G, L 7→ L is a surjective Lie group homomorphism whose kernel
is T n(M), the translation group of M,

T n(M) = {Ta | a ∈ M} = {L ∈ N | L = 1M}.

As we know, its Lie algebra is M regarded as the set of constant maps from
M into M (VII.3.3).

For every o ∈ M,
Go := {L ∈ N | L(o) = o} ,

called the group of o -centered Galilean transformations, is a subgroup of the
Noether group and even of the instantaneous Noether group; the restriction of
the homomorphism L 7→ L onto Go is a bijection between Go and G.

In other words, given o ∈ M, we can assign to every Galilean transformation
L the Noether transformation

x 7→ o+L · (x− o),

called the o -centered Galilean transformation by L.
The subgroup of o -centered special Galilean transformations

Vo := {L ∈ No | L ∈ V}
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has a special importance.

11.6.7. The three-dimensional orthogonal group is not a subgroup of the
Noether group. The mapping N→ → O(h), L 7→ RL (where L · i = i ·RL) is
a surjective Lie group homomorphism having the kernel

H := {L ∈ N→ | L · i = i} = {L ∈ N→ | L ∈ V}

is called the special Noether group. Observe that H is a subgroup of N+→.
The special Noether group is a seven-dimensional Lie group having the Lie

algebra

{H ∈ La(N ) | H ∈ La(V)} = {H ∈ Aff(M,M) | τ ·H = 0, H · i = 0} .

For every u ∈ V (1) and o ∈ M,

O(h)u,o := {L ∈ N→ | L(o) = o, L · u = u} ,

called the group of o -centered u -spacelike orthogonal transformations, is a sub-
group of N→ and even of the instantaneous Noether group Ni. The restriction of
the homomorphism N→ → O(h) onto O(h)u,o is a bijection between O(h)u,o

and O(h).
In other words, given (u, o) ∈ V (1) ×M, we can assign to every R ∈ O(h)

the Noether transformation

x 7→ o+ uτ · (x− o) +R · πu · (x− o),

called the o -centered u -spacelike orthogonal transformation by R.

11.6.8. The Neumann group

C := {L ∈ Ni | L · i = i} = H ∩Ni

is an important subgroup of the special Noether group. It is a six-dimensional
Lie group having the Lie algebra

{H ∈ La(Ni) | H ∈ La(V)} = {H ∈ Aff(M,M) | τ ◦H = 0, H · i = 0} .

Proposition. The Neumann group is a commutative normal subgroup of the
Noether group.

Proof. Let K and L be arbitrary Neumann transformations. Since they
are instantaneous Noether transformations, for all world points x we have that
L(x)−x and K(x)−x are in S. As a consequence, L(x)−x = K · (L(x)−x) =
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KL(x)−K(x) and similarly, K(x)−x = LK(x)−L(x) from which we conclude
that KL(x)−LK(x) = 0, i.e. KL = LK, the Neumann group is commutative.

Now we have to show that if L is an arbitrary Neumann transformation
and G is an arbitrary Noether transformation then G−1LG is a Neumann
transformation, too. The range of G · i is in S, hence L ·G · i = G · i and so
G−1 ·L ·G · i = i which ends the proof.

11.7 The vectorial Noether group

11.7.1. Recall that for an arbitrary world point o, the vectorization of M
with origin o, Oo : M → M, x 7→ x− o, is an affine bijection.

With the aid of such a vectorization we can ‘vectorize’ the Noether group
as well: if L is a Noether transformation then Oo ◦ L ◦ Oo

−1 is an affine
transformation of M, represented by the matrix (see VI.2.4(ii) and Exercise
VI.2.5)

(

1 0

L(o)− o L

)

.

The Lie algebra of the Noether group consists of affine maps H : M → M

where M is considered to be a vector space (the sum of such maps is a part
of the Lie algebra structure). Thus the vectorization H ◦ Oo

−1 is an affine
map M → M where the range is considered to be a vector space. Then it is
represented by the matrix (see VI.2.4(iii))

(

0 0

H(o) H

)

.

11.7.2. Definition. The vectorial Noether group is

{(

1 0

a L

) ∣

∣

∣

∣

a ∈ M, L ∈ G
}

.

The vectorial Noether group is a ten-dimensional Lie group, its Lie algebra is
the vectorization of the Lie algebra of the Noether group:

{(

0 0

a H

) ∣

∣

∣

∣

a ∈ M, H ∈ La(G)
}

.

An advantage of this matrix representation is that the commutator of two Lie
algebra elements can be computed by the difference of their products in different
orders.



11. Spacetime groups ∗ 139

11.7.3. A vectorization of the Noether group is a Lie group isomorphism
between the Noether group and the vectorial Noether group. The following
transformation rule shows how the vectorizations depend on the world points
serving as origins of the vectorization. Let o and o′ be two world points; then

To−o′ := Oo′ ◦Oo
−1 =

(

1 0

o− o′ 1M

)

and

To−o′
(

1 0

a L

)

To−o′
−1 =

(

1 0

a+ (L− 1M)(o′ − o) L

)

(a ∈ M, L ∈ G).

As concerns the corresponding Lie algebra isomorphisms, we have

(

0 0

a H

)

To−o′
−1 =

(

0 0

a+H(o′ − o) H

)

(

a ∈ M, H ∈ La(G)
)

.

11.8. The split Noether group

11.8.1. With the aid of the splitting corresponding to u ∈ V (1), we send
the transformations of M into the transformations of T × S. Composing a
vectorization and a splitting, we convert Noether transformations into affine
transformations of T× S.

For o ∈ M and u ∈ V (1) put

ξu,o := ξu ◦Oo : M → T× S, x 7→
(

τ · (x− o), πu · (x− o)
)

.

Embedding the affine transformations of T×S into the linear transformations
of R × (T × S) (see VI.2.4(ii)) and using the customary matrix representation
of such linear maps, we get

ξu,o ◦ L ◦ ξu,o
−1 =





1 0 0

τ ·
(

L(o)− o
)

arL 0

πu ·
(

L(o)− o
)

L · u− (arL)u RL



 .

The Lie algebra elements of the Noether group are converted into affine maps
T × S → T × S where the range is regarded as a vector space. Then we can
represent such maps in a matrix form as well:

ξu ◦H ◦ ξu,o
−1 =





0 0 0

τ ·H(o) 0 0

πu ·H(o) H · u H · i



 .



140 I. Nonrelativistic spacetime model

11.8.2. Definition. The split Noether group is











1 0 0

t ±1 0

q v ±R





∣

∣

∣

∣

∣

∣

t ∈ T, q ∈ S, v ∈ S

T
, R ∈ SO(h)







.

The split Noether group is a ten-dimensional Lie group having the Lie algebra











0 0 0

t 0 0

q v A





∣

∣

∣

∣

∣

∣

t ∈ T, q ∈ S, v ∈ S

T
, A ∈ A(h)







.

Keep in mind that the group multiplication of split Noether transformations
coincides with the usual matrix multiplication and the commutator of Lie algebra
elements is the difference of their two products.

11.8.3. Every u ∈ V (1) and o ∈ M establishes a Lie group isomorphism
between the Noether group and the split Noether group. Evidently, for different
elements of V (1) × M, the isomorphisms are different. The transformation
rule that shows how the isomorphism depends on (u, o) can be obtained by a
combination of the transformation rules 11.7.3 and 11.4.2.

Though the Noether group and the split Noether group are isomorphic (they
have the same Lie group structure), they are not ‘identical’: there is no ‘canon-
ical’ isomorphism between them that we could use to identify them.

The split Noether group is the Noether group of the split nonrelativistic
spacetime model (T × S,T,L, τ ,h). The spacetime model (M,T,L, τ ,h) and
the corresponding split spacetime model are isomorphic, but they cannot be
identified, as we pointed out in 1.5.3.

11.8.4. It is a routine to check that the isomorphism established by an
arbitrary (u, o) ∈ V (1) × M sends the subgroups of the Noether group listed
below on the left-hand side into the subgroups of the split Noether group listed
below on the right-hand side:

T n(S)











1 0 0

0 1 0

q 0 1S





∣

∣

∣

∣

∣

∣

q ∈ S







,

T n(M)











1 0 0

t 1 0

q 0 1S





∣

∣

∣

∣

∣

∣

t ∈ T, q ∈ S







,

C (Neumann
group)











1 0 0

0 1 0

q v 1S





∣

∣

∣

∣

∣

∣

q ∈ S, v ∈ S

T







,
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H (special
Noether group)











1 0 0

t 1 0

q v 1S





∣

∣

∣

∣

∣

∣

t ∈ T, q ∈ S, v ∈ S

T







,

Ni (instantaneous
Noether group)











1 0 0

0 1 0

q v R





∣

∣

∣

∣

∣

∣

q ∈ S, v ∈ S

T
, R ∈ O(h)







.

It is emphasized that the isomorphism established by an arbitrary (.u, o)

makes a correspondence between the listed subgroups; of course, the correspon-
dences due to different (u, o) and (u′, o′) are different.

Moreover, the isomorphism established by (u, o) makes correspondences be-
tween the following subgroups, too:

T n(T)u (u-timelike
translations)











1 0 0

t 1 0

0 0 1S





∣

∣

∣

∣

∣

∣

t ∈ T







,

O(h)u,o (o-centered
u-spacelike orthogonal

transformations)











1 0 0

0 1 0

0 0 R





∣

∣

∣

∣

∣

∣

R ∈ O(h)







,

Go (o-centered
Galilean

transformations)











1 0 0

0 ±1 0

0 v ±R





∣

∣

∣

∣

∣

∣

v ∈ S

T
, R ∈ SO(h)







,

Vo (o-centered special
Galilean transformations)











1 0 0

0 1 0

0 v 1S





∣

∣

∣

∣

∣

∣

v ∈ S

T







,

and now it is emphasized that the isomorphism established by (u′, o′), in general,
does not make a correspondence between the listed subgroups.

11.8.5. Corresponding to the structure of the split Noether group, the
following four subgroups are called its fundamental subgroups:











1 0 0

t 1 0

0 0 1S





∣

∣

∣

∣

∣

∣

t ∈ T







,











1 0 0

0 1 0

q 0 1S





∣

∣

∣

∣

∣

∣

q ∈ S







,











1 0 0

0 1 0

0 v 1S





∣

∣

∣

∣

∣

∣

v ∈ S

T







,











1 0 0

0 1 0

0 0 R





∣

∣

∣

∣

∣

∣

R ∈ O(h)







.

The isomorphism established by (u, o) ∈ V (1) ×M assigns these subgroups
to the subgroups T n(T)u, T n(S), Vo and O(h)u,o, respectively.
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It is worth repeating the actual form of the corresponding Noether transfor-
mations:

T n(T)u : x 7→ x+ ut (t ∈ T),

T n(S) : x 7→ x+ q (q ∈ S),

Vo : x 7→ x+ vτ · (x− o)

(

v ∈ S

T

)

,

O(h)u,o : x 7→ o+ uτ · (x− o) +R · πu(x− o)
(

R ∈ O(h)
)

.

11.8.6. Taking a linear bijection T → R and an orthogonal linear bijection
S → R

3, we can transfer the split Noether group into the following affine
transformation group of R× R

3,











1 0 0

η ±1 0

ξ ν ±ρ





∣

∣

∣

∣

∣

∣

η ∈ R, ξ ∈ R
3, ν ∈ R

3, ρ ∈ SO(3)







,

which we call the arithmetic Noether group. This is the Noether group of the
arithmetic spacetime model (O(3) denotes the orthogonal group of R3 endowed
with the usual inner product).

In conventional treatments one considers the arithmetic spacetime model
(without an explicit definition) and the arithmetic Noether group which is called
there Galilean group. The special form of such transformations yields that one
speaks about the time inversion ( η = 0, −1, ξ = 0, ν = 0, ρ = 0), the time
translations η, 1, ξ = 0, ν = 0, ρ = 0), the space rotations ( η = 0, 1, ξ = 0,
ν = 0, +ρ) etc., whereas we know well that such Noether transformations do
not exist: there are o -centered u -timelike inversions, u -timelike translations
and o -centered u -spacelike rotations etc.

11.9. Exercises

1. Let L be a Noether transformation for which L = −1M. Then there is a
unique o ∈ M such that L is the o -centered spacetime inversion.

2. A Noether transformation L is instantaneous, i.e. is in Ni if and only if
all the hyperplanes t ∈ T are invariant for L.

3. Prove that for all o ∈ M,

Oo ◦ No ◦Oo
−1 =

{(

1 0

0 L

)∣

∣

∣

∣

L ∈ N
}

.
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4. Find ξu,o · Tu,o · ξu,o
−1 and ξu,o · Pu,o · ξu,o

−1.

5. Prove that the subgroup generated by {Tu,o|u ∈ V (1), o ∈ M} equals
{L ∈ N | L · i = i}.

6. For all u ∈ V (1), o ∈ M we have

(tiTu,o)(t) = τ(o)−
(

t− τ(o)
)

= t− 2
(

t− τ(o)
)

(t ∈ T).

7. Prove that the derived Lie algebra of the Noether group, i.e. [La(N ),
La(N )] equals the Lie algebra of the instantaneous Noether group.

8. Let L ∈ T n(M). Then ξu,o ·L · ξu,o
−1 is the same for all u and o if and

only if L ∈ T n(S).
9. Take a u ∈ V (1) and an o ∈ M. If t ∈ T, q ∈ S, v ∈ S

T
, A ∈ A(h),

then the maps M → M

H(x) :=



















(i) ut

(ii) q

(iii) vτ · (x− o)

(iv) A · πu · (x− o)

(x ∈ M)

are elements of the Lie algebra of the Noether group. Prove that

eH(x) =



















(i) x+ ut

(ii) x+ q

(iii) x+ vτ · (x− o)

(iv) o+ uτ · (x− o) + eA · πu · (x− o)

(x ∈ M).

10. Compute the product of two split Noether transformations:





1 0 0

t ±1 0

q v ±R









1 0 0

t′ ±1′ 0

q′ v′ ±′R′



 .

11. Let L be a Noether transformation.

If r is a world line function, then L◦ r ◦ (tiL)−1 is a world line function, too.

If C is a world line, then L[C] is a world line, too; moreover, if C = Ranr,

then L[C] = Ran
(

L ◦ r ◦ (tiL)−1
)

.





II. SPECIAL RELATIVISTIC SPACETIME
MODELS

1. Fundamentals

1.1. Absolute light propagation

1.1.1. In the previous part material points played a fundamental role, light
beams were mentioned only here and there. Now we concentrate upon light
phenomena.

We experience that a ‘pointlike’ light beam—let us call it a light signal—
behaves in some respect similarly to a material point; in particular, it moves
relative to observers. There is a noteworthy difference, however: a light signal
cannot stand in any space.

This means that the history of a light signal, too, is a curve in spacetime. In
the nonrelativistic model such a curve cannot be a world line because a light
signal moves relative to all observers. If not a world line, then it must be
contained in a simultaneous hyperplane which says that a light signal reflected
on a mirror would return to its source exactly when it is emitted, contradicting
to our experience.

As a consequence, absolute simultaneity and the right description of light
phenomena exclude each other, so we have to construct a new spacetime model.

1.1.2. We have the following experience regarding light propagation.

(L1) The path of a free light signal is a straight line in the space of an inertial
observer.

(L2) Every straight line in the space of an inertial observer can be the path
of a light signal.

(L3) In the space of any observer, a light signal is faster than any material
point moving on the same path.

(L4) The propagation of a light signal in the space of an observer can be
arbitrarily approximated by a motion of a material point.

(L5) The round way speed of light signals is the same over all paths.
None of the statements above involves synchronization. The first three ones

are evident. The fourth one means that given a start and a goal, for arbitrary
(small) time interval t there is a material point starting together with a light
signal, arrives at the goal t time later than the light signal.
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The last statement is simple and understandable (both Fizeau and Foucault
measured round-way light speed), nevertheless it deserves some words. In usual
treatments of relativity one accepts the axiom that “the speed of light in vacuum
is the same for all inertial observers in every direction”. This, however, would
make sense only with a synchronization. Nonrelativistic theories work well not
mentioning synchronization (we know why), therefore one does not realize that
similar axioms are not meaningful without a synchronization; moreover, in usual
treatments synchronizations do not appear at all. That is why the light speed
becomes mystic there: if both a light signal and you move towards me on the
same path then the light signal must be slower to you than to me!

1.1.3. (L3) and (L4) imply:

Light signals on the same path are equally fast.

Indeed, if a light signal would be faster than another, then a material point
approximating conveniently first light signal would be faster than the other.

It follows then:

The history of a light signal is independent of its source.

For an illustration let us consider a lamp on a train and a lamp close to the
rail. When they meet (assuming this idealized event) both emit a light signal;
the light signals will propagate together both in the space of the Earth and in
the space of the train and even in the space of an arbitrary observer.

According to property (L5), round-way speed does not depend either on the
space point and on the proper time point of the start-goal or on the direction of
the path. All these admit us to state:

Light propagation in spacetime is absolute, homogeneous and isotropic.

1.1.4. Knowing that the homogeneous and isotropic round-way speed of
light is c := 2.997 . . . · 108m/s , we can measure distances by light signals. Let
a light signal be emitted in a space point and reflected in another space point; if
the proper time interval between starting and returning is t , then the distance
between the two space points is 1

2ct .

This means that a distinguished linear isomorphism exists between the mea-
sure line of time periods and the measure line of distances: T → L , t 7→ 1

2ct
which makes it possible to disregard the measure line of distances i.e. to measure
distances directly by time periods in such a way that

m := 3.336 . . . · 10−9s;

then the round-way speed of light becomes the real number 1.
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This choice makes the formulae of the special relativistic spacetime model
much simpler. Of course, even the Planck constant is considered to be the real
number 1 and then

kg := 8.55 . . . · 1050 1
s
.

1.1.5 According to what has been said in the Introduction, spacetime will be
modelled by an affine space.

Then it can be shown – the proof lies outside the purpose of this book –
that (M1)–(M3), (U) and (S4), and (L1)–(L5) imply that the absolute proper
time progress, absolute light propagation and the Euclidean structure of inertial
spaces are described by a Lorentz form.

1.2. The spacetime model

1.2.1. Definition. A special relativistic spacetime model is a triplet (M,T, g),
where

— M is spacetime, an oriented four-dimensional real affine space (over the
vector space M),

— T is the measure line of time periods and distances,

— g : M×M → T⊗ T is an arrow oriented Lorentz form.

Elements of M are called occurrences or world points. Elements of M are
called world vectors.

1.2.2. If (M,T, g) is a special relativistic spacetime model, then (M,T, g)
is an oriented and arrow-oriented Minkowski vector space. The results and
formulae of Section V.4 will be used all over this part. Remember to distinguish
between x2 := x · x and |x|2 := |x · x|; since T is oriented, the pseudo-length

|x| :=
√

|x|2 is meaningful. Moreover, recall

S :=
{

x ∈ M
∣

∣ x2 > 0
}

,

T :=
{

x ∈ M
∣

∣ x2 < 0
}

,

L :=
{

x ∈ M
∣

∣ x2 = 0, x 6= 0
}

;

the elements of S0 := S ∪ {0}, T and L are called spacelike, timelike and
lightlike, respectively.
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Furthermore, the arrow orientation indicates the arrow classes T
→ and L

→;
for every x ∈ T

→ and y ∈ T
→ ∪ L

→ we have x · y < 0. Then T
← := −T

→

and L← := −L
→ are the other arrow classes and

T = T
→ ∪ T

←, L = L
→ ∪ L

←.

T
→ and L

→ are the future time cone and the future light cone, respectively;
their elements are called future directed. T

← and L← are the corresponding
past cones with past directed elements.

We often illustrate the world vectors in the plane of the page:

TTTTTT TTTTTT

LLLLLL

LLLLLL

LLLLLL

LLLLLL

This illustration is based on the following: represent R × R in the plane in
the usual way by horizontal and vertical axes, called zeroth and first; draw the
sets S, T

→, L
→, etc. corresponding to the Lorentz form

(

(ξ0, ξ1), (η0, η1)
)

7→ −ξ0η0 + ξ1η1

and to the arrow orientation determined by the condition ξ0 > 0; hide the
coordinate axes.

We know that T consists of two disjoint open subsets, the two arrow classes
which can be well seen in the illustration. On the other hand, S is connected, in
spite of the illustration. Keep this slight inaccuracy of the illustration in mind.

1.2.3. Spacetime, too, will be illustrated in the plane of the page. If x is a
world point, x+ (T→ ∪ L

→) and x+ (T← ∪ L←) are called the futurelike and
the pastlike part of M, with respect to x.

If y ∈ x + (T→ ∪ L
→)—or, equivalently, y − x ∈ (T→ ∪ L→)—then we say

y is futurelike with respect to x (x is pastlike with respect to y), or y is later
than x (x is earlier than y).
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TTTTTT TTTTTT

We say that the world points x and y are spacelike separated, timelike
separated, lightlike separated, if y − x is in S, T, L, respectively.

1.3. Structure of world vectors and covectors

1.3.1. The Euclidean structure of our space is deeply fixed in our mind,
therefore we must be careful when dealing with M which has a nonEuclidean
structure; especially when illustrating it in the Euclidean plane of the page. For
instance, keep in mind that the centre line of the cone L

→ makes no sense
(the centre line would be the set of points that have the same distance from
every generatrix of the cone but distance is not meaningful here). The following
considerations help us to take in the situation.

Put

V (1) :=

{

u ∈ M

T

∣

∣

∣

∣

u2 = −1, u⊗ T
+ ⊂ T

→
}

.

We shall see in 2.3.4 that elements of V (1) can be interpreted as absolute
velocity values.

According to our convention, V (1) is illustrated as follows:

TTTTTT
V (1)V (1)V (1)V (1)V (1)V (1)
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Three elements of V (1) appear in the Figure. Observe that it makes no sense
that
— u1 is in the centre line of T

→ (there is no centre line of T
→),

— the angle between u1 and u2 is less than the angle between u1 and u3

(there is no angle between the elements of V (1)),
— u2 is longer than u1 (the elements of V (1) have no length).
The reversed Cauchy inequality (see V.4.7) involves the following important

and frequently used relation:
−u · u′ ≥ 1

for u,u′ ∈ V (1) and equality holds if and only if u = u′.

1.3.2. For u ∈ V (1) put

τu : M → T, x 7→ −u · x,
Su := Kerτu = {x ∈ M|u · x = 0} ,
iu : Su → M, x 7→ x.

Since u is timelike, Su is a three-dimensional linear subspace consisting of
spacelike vectors. According to our convention, Su is represented by a line that
inclines to L

→ with the same angle as u :

V(1)V(1)V(1)V(1)V(1)V(1)LLLLLL

LLLLLL
SSSSSS SSSSSS

We emphasize that ‘inclination to L
→ ’ makes no sense in the structure of

the spacetime model; it makes sense only in the rules of the illustration we have
chosen.

Su and u ⊗ T are complementary subspaces in M, thus every vector x

can be uniquely decomposed into the sum of components in u ⊗ T and in Su,
respectively:

x = u(τu · x) +
(

x− u(τu · x)
)

= u(−u · x) +
(

x+ u(u · x)
)

.



1. Fundamentals 151

The linear map

πu : M → Su, x 7→ x+ u(u · x)

is the projection onto Su along u. It is illustrated as follows:

SSSSSS

The dashed line is to express that V (1) is in fact a subset of M

T
and not of

M.

1.3.3. For all u ∈ V (1), the restriction hu of the Lorentz form g onto
Su ×Su is positive definite. Thus (Su,T,hu) is a three-dimensional Euclidean
vector space.

Accordingly, the pseudo-length of vectors in Su is in fact a length and the
angle between nonzero vectors in Su make sense; of course, similar notions for
vectors in Su

A
can be introduced where A is a measure line. Moreover, all the

results obtained in I.1.2.5 can be applied.
It is trivial that every spacelike vector is contained in some Su :

S0 =
⋃

u∈V(1)

Su.

Consequently, the pseudo-length of a spacelike vector will be said length or
magnitude. However, we call attention to the fact that this length satisfies the
triangle inequality only for two spacelike vectors spanning a spacelike linear
subspace (see Exercise V.4.20.2)

1.3.4. The orientation of M and the arrow orientation of g determine a
unique orientation of Su.

Definition. Let u ∈ V (1). An ordered basis (e1, e2, e3) of Su is called
positively oriented if (ut, e1, e2, e3) is a positively oriented basis of M for some
(hence for all) t ∈ T

+.
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1.3.5. Proposition. Let u ∈ V (1). Then

ξu := (τu,πu) : M → T× Su, x 7→
(

−u · x, x+ u(u · x)
)

is an orientation preserving linear bijection and

ξ−1u (t, q) = ut+ q (t ∈ T, q ∈ Su).

Keep in mind that x = u(−u ·x) +πu ·x results in the following important
formula:

x2 = −(u · x)2 + |πu · x|2 (x ∈ M).

1.3.6. Note the striking similarity between the previous formulae and the for-
mulae of the nonrelativistic spacetime model treated in I.1.2. However, behind
the resemblance to it there is an important difference: in the nonrelativistic case
a single three-dimensional subspace S appears whereas in the special relativistic
case every u ∈ V (1) indicates its own three-dimensional subspace. Correspond-
ingly, instead of a single τ , now there is a τu for all u. The range of ξu is the
same set in the nonrelativistic case, whereas it depends on u in the relativistic
case.

A further very important difference is that M and M∗ are different vector
spaces in the nonrelativistic case, whereas they are ‘nearly the same’ in the
relativistic case. More precisely, we have the identification (see V.1.3).

M

T⊗ T
≡ M∗,

which is established by the Lorentz form g.
Of course, we make the identification

Su

T⊗ T
≡ S∗u,

too.
According to these identifications u⊗u is considered a linear map M → M ,

x 7→ u(u · x) , so we have

πu = 1M + u⊗ u = 1M − u⊗ τu,

and

τu ∈ T⊗M∗ ≡ M

T
, iu ∈ M⊗ S∗u ≡ M⊗ Su

T⊗ T
,

τ ∗u ∈ M∗ ⊗ T ≡ M

T
, i∗u ∈ S∗u ⊗M ≡ Su ⊗M

T⊗ T
,
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πu ∈ Su ⊗M∗ ≡ Su ⊗M

T⊗ T
.

Moreover,
τu · iu = 0, πu · iu = 1Su

and the identifications yield the relations

τu ≡ τ ∗u ≡ −u, i∗u ≡ πu.

The reader is asked to prove the first formula; as concerns the second one, see
the following equalities for x ∈ M, q ∈ Su :

(i∗u · x) · q = x · iu · q = x · q = (πu · x) · q.

1.3.7. For u,u′ ∈ V (1) put

vu′u :=
u′

−u′ · u − u.

We shall see later that this is the relative velocity of u′ with respect to u.
It is an easy task to show that |vu′u|2 = |vuu′ |2 = 1− 1

(u′·u)2
; as a consequence

of the reversed Cauchy inequality, vu′u = 0 if and only if u = u′. Moreover, if
q ∈ Su ∩ Su′ then q · vu′u = 0 which proves the following.

Proposition. Su ∩ Su′ is a two-dimensional linear subspace if and only if
u 6= u′ and in this case vu′u⊗T (vuu′⊗T) is a one-dimensional linear subspace
of Su (Su′), orthogonal to Su ∩ Su′ .

(In other words, Su ∩ Su′ and vu′u ⊗ T (vuu′ ⊗ T) are orthogonal comple-
mentary subspaces in Su (Su′)).

1.3.8. For different u and u′, Su and Su′ are different linear subspaces;
however, we can give a distinguished bijection between them which will play a
fundamental role concerning observer spaces.

Let L(u′,u) be the linear map from Su onto Su′ defined in such a way that it
leaves the elements of Su∩Su′ invariant and maps the orthogonal complements
of this subspace into each other. More precisely,

L(u′,u) · q :=

{

q if q ∈ Su ∩ Su′ ,

−vuu′t if q = vu′ut (t ∈ T).

It is not difficult to see that L(u′,u) is an orientation preserving hu –hu′ -
orthogonal linear bijection between Su and Su′ . We can extend it to a linear
bijection M → M by the requirement

L(u′,u) · u := u′
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(recall that the dot product notation allows us to apply linear maps M → M

to elements of M

T
).

This linear bijection can be given by a simple formula as follows. Recall that
for u,u′ ∈ V (1), u′ ⊗ u ∈ M

T
⊗ M

T
≡ M⊗M

T⊗T ≡ M⊗M∗ ≡ Lin(M,M).

Definition. Let u,u′ ∈ V (1). Then

L(u′,u) := 1M +
(u′ + u)⊗ (u′ + u)

1− u′ · u − 2u′ ⊗ u

is called the Lorentz boost from u to u′.

Proposition. (i) L(u′,u) is an orientation- and arrow-preserving g -orthog-
onal linear map from M into M;
(ii) L(u′,u) · u = u′;
(iii) L(u′,u) maps Su onto Su′ , more closely,
— L(u′,u) · q = q if q ∈ Su ∩ Su′ ,
— L(u′,u) · vu′u = −vuu′ ;

(iv) L(u,u) = g, L(u′,u)−1 = L(u,u′)
and L(u′,u) is the unique linear map for which (i)–(iii) hold.

1.3.9. Since the Lorentz boosts map the corresponding spacelike subspaces
onto each other in a ‘handsome’ manner, we might expect that executing the
Lorentz boost from u to u′ and then the Lorentz boost from u′ to u′′ we
should get the Lorentz boost from u to u′′; however, this occurs only in some
special cases.

Proposition. Let u, u′, u′′ be elements of V (1). Then L(u′′,u′) ·
L(u′,u) = L(u′′,u) if and only if the three elements of V (1) are coplanar.

Proof. Suppose the equality holds. Then for all q ∈ Su ∩ Su′′

q = L(u′′,u′) ·L(u′,u) · q =

=

(

1M +
(u′′ + u′)⊗ (u′′ + u′)

1− u′′ · u′ − 2u′′ ⊗ u′
)

·
(

q +
(u′ + u)u′ · q
1− u′ · u

)

=

= q + (u′ · q)
(

u′′ + u′

1− u′′ · u′ +
u′ + u

1− u′ · u+

+
(u′′ + u′)(u′′ · u′ + u′′ · u+ u′ · u− 1)

(1− u′′ · u′)(1− u′ · u)

)

,

from which we deduce that
— either u′ · q = 0 for all q ∈ Su ∩ Su′′ , implying that u′ is in the two-

dimensional subspace spanned by u and u′′, i.e. the three elements of V (1)
are coplanar,
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— or the last expression in parentheses is zero which implies again that the
three elements of V (1) are coplanar.

Observe that L(u′′,u′) ·L(u′,u) maps Su onto Su′′ ; as a consequence, if it
is a Lorentz boost, it must be equal to L(u′′,u). Thus our result implies that,
in general, the product of Lorentz boosts is not a Lorentz boost.

1.4. The arithmetic spacetime model

1.4.1. Let us take the Minkowski vector space (R1+3,R,G) treated in V.4.19
and endowed with the standard orientation and arrow orientation. Considering
R

1+3 to be an affine space, we easily find that (R1+3,R,G) is a special rela-
tivistic spacetime model which we call the arithmetic special relativistic spacetime
model.

Similarly to the nonrelativistic case, the arithmetic spacetime model has the
peculiar property that the same object, R

1+3 , represents the affine space of
world points and the vector space of world vectors (and even the vector space
of covectors). We follow our nonrelativistic convention that the world points
will be denoted by Greek letters, whereas world vectors (and covectors) will be
denoted by Latin letters.

We find it convenient to write the elements of the affine space R
1+3 in the

form (ξi); the elements of the vector space R
1+3 in the form (xi) = (x0,x),

and the elements of (R1+3)
∗
in the form (ki) = (k0,k).

Recall that the identification (R1+3)
∗ ≡ R

1+3 established by G gives

x0 = −x0, xα = xα (α = 1, 2, 3).

Correspondingly, the dot product of (xi) and (yi) equals

xiyi,

where the Einstein summation convention is applied: a summation is carried out
from 0 to 3 for identical subscripts and superscripts.

1.4.2. In the arithmetic spacetime model

V (1) =
{

(ui) ∈ R
1+3|uiui = −1, u0 > 0

}

.

Here, too, we find a misleading feature of this spacetime model: V (1) seems
to have a distinguished, simplest element, namely (1,0) . π(1,0) is the canonical

projection R
1+3 → {0} × R

3.
For an arbitrary element (ui) of V (1) we can define

vα :=
uα

u0
(α = 1, 2, 3), v := (v1, v2, v3) ∈ R

3;
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then with the usual norm | | on R
3 we have |v| < 1 and

u0 =
1

√

1− |v|2

and

(ui) =
1

√

1− |v|2
(1,v). (∗)

We easily find that v is exactly the relative velocity of (ui) with respect to
the ’basic velocity value’ (1,0) (see 1.3.7).

1.4.3. It is then obvious that

S(ui) =
{

(xi) ∈ R
1+3|x0 = x · v

}

.

Unlike the nonrelativistic case, π(ui) for a general (ui) in V (1) is an uneasy

object because it maps onto a three-dimensional linear subspace in R
1+3 which

is different from {0}×R
3. Thus the values of π(ui) cannot be given directly by

triplets of real numbers. However, as it is known, in textbooks one usually
deals with triplets (and quartets) of real numbers. We can achieve this by
always referring to the space of the ’basic velocity value’ with the aid of the
corresponding Lorentz boost, i.e. instead of π(ui) taking L

(

(1,0), (ui)
)

· π(ui),

whose range is {0} × R
3.

1.4.4. The Lorentz boost from (u′i) to (ui) is given by the matrix

Li
k := δik +

(ui + u′i)(uk + u′k)
1− uju′j

− 2uiu′k.

If (u′i) is the ‘basic velocity value’, then it becomes























u0 u1 u2 u3

u1 1 +
(u1)

2

1 + u0
u1u2

1 + u0
u1u3

1 + u0

u2
u1u2

1 + u0
1 +

(u2)
2

1 + u0
u2u3

1 + u0

u3
u1u3

1 + u0
u2u3

1 + u0
1 +

(u3)
2

1 + u0























.

Using formula (∗) in 1.4.2 and the notation

κ :=
1

√

1− |v|2
,
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we find that

L
(

(1,0), (ui)
)

= κ









1 v1 v2 v3

v1 1
κ + κ

1+κ (v
1)

2 κ
1+κv

1v2 κ
1+κv

1v3

v2 κ
1+κv

1v2 1
κ + κ

1+κ (v
2)

2 κ
1+κv

2v3

v3 κ
1+κv

1v3 κ
1+κv

2v3 1
κ + κ

1+κ (v
3)

2









.

This shows what a complicated form L
(

(1,0), (ui)
)

·π(ui) has; later (see 7.1.4)
we give it in detail.

1.4.5. The previous matrix is the usual ‘Lorentz transformation’. Most
frequently one considers the special case v2 = v3 = 0, v := v1; then κ = 1√

1−v2

and κ2v2

1+κ = κ− 1, thus the previous matrix reduces to

κ







1 v 0 0
v 1 0 0
0 0 1/κ 0
0 0 0 1/κ






.

1.5. Classification of physical quantities

1.5.1. We introduce notions similar to those in the nonrelativistic spacetime
model. Let A be a measure line. Then the elements of

A are called scalars of type A,

A⊗M are called vectors of type A,

M

A
are called vectors of cotype A,

A⊗ (M⊗M) are called tensors of type A,

M⊗M

A
are called tensors of cotype A.

Covectors of type A, etc. are defined similarly with M∗ instead of M.
In particular, the elements of M⊗M and M∗ ⊗M∗ are called tensors and

cotensors, respectively; the elements of M⊗M∗ and M∗⊗M are mixed tensors.
A very important feature of the special relativistic spacetime model is that

covectors can be identified with vectors of cotype T⊗T. As a consequence, e.g.
a covector of type A is identified with a vector of type A

T⊗T .

1.5.2. According to our convention, the dot product between vectors (covec-
tors) of different types makes sense. For instance, for u ∈ V (1) ⊂ M

T
and for
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z ∈ A⊗M we have u · z ∈ T⊗ A, z2 ∈ (A⊗ A)⊗ (T⊗ T),

w ∈ M

A
we have u ·w ∈ T

A
, w2 ∈ T⊗ T

A⊗ A
.

In particular, z2 ∈ R for z ∈ M

T
.

Since (A ⊗ A) ⊗ (T ⊗ T) ≡ (A ⊗ T) ⊗ (A ⊗ T) has a natural orientation, we
can speak of its positive and negative elements. Thus a vector z of type A is
called

spacelike if z2 > 0 or z = 0,

timelike if z2 < 0,

lightlike if z2 = 0, z 6= 0.

It can be easily shown that z is spacelike if and only if z ∈ A ⊗ S0, etc.
Moreover, a measure line A is oriented, hence A

+ makes sense. Consequently,
we say that a timelike (lightlike) vector z of type A is future directed if z ∈
A

+ ⊗ T→ (z ∈ A
+ ⊗ L

→).

1.6. Comparison of spacetime models

1.6.1. Definition. The special relativistic spacetime model (M,T, g) is
isomorphic to the special relativistic spacetime model (M′,T′, g′) if there are
(i) an orientation- and arrow-preserving affine bijection F : M → M′, over the

linear bijection F ,
(ii) an orientation preserving linear bijection Z : T → T

′

such that
g′ ◦ (F × F ) = (Z ⊗Z) ◦ g.

The pair (F,Z) is an isomorphism between the two spacetime models.
If the two models coincide, an isomorphism is called an automorphism. An

automorphism of the form (F,1T) is strict.

Three diagrams illustrate the isomorphism:

M T M×M
g−→ T⊗ T

F




y





yZ F × F




y





yZ ⊗Z.

M′ T
′ M′ ×M′ −→

g′
T
′ ⊗ T

′

The definition is quite natural and simple, needs no comment.

1.6.2. Proposition. The special relativistic spacetime model (M,T, g) is
isomorphic to the arithmetic spacetime model.
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Proof. Take
(i) a positive element s of T,
(ii) a positively oriented g -orthogonal basis (e0, e1, e2, e3), normed to s, of

M, for which e0 is future directed,
(iii) an element o of M.

Then

F : M → R
4, x 7→

(

ek · (x− o)

e2k

∣

∣

∣

∣

k = 0, 1, 2, 3

)

,

Z : T → R, t 7→ t

s

is an isomorphism.

This isomorphism has the inverse

R
4 → M, ξ 7→ o+

3
∑

k=0

ξkek,

R → T, α 7→ αs.

1.6.3. An important consequence of the previous result is that any two special
relativistic spacetime models are isomorphic, i.e. are of the same kind. The
special relativistic spacetime model as a mathematical structure is unique. This
means that there is a unique ‘special relativistic physics’.

Note: the special relativistic spacetime models are of the same kind but, in
general, are not identical. They are isomorphic, but, in general, there is no
‘canonical’ isomorphism between them, we cannot identify them by a distin-
guished isomorphism. The situation is the same as what we encountered for
nonrelativistic spacetime models.

Since all special relativistic spacetime models are isomorphic, we can use an
arbitrary one for investigation and application. However, an actual model can
have additional structures. For instance, in the arithmetic spacetime model,
spacetime is a vector space, V (1) has a distinguished element. This model
tempts us to multiply world points by real numbers (though this has no physical
meaning and that is why it is not meaningful in the abstract spacetime model),
to speak about time and space, consider spacetime as the Cartesian product of
time and space (whereas neither time nor space exists absolutely), etc.

To avoid such confusions, we should keep away from similar specially con-
structed models for theoretical investigations and applications of the special rel-
ativistic spacetime model. However, for solving special problems, for executing
some particular calculations, we can choose a convenient concrete model, like in
the nonrelativistic case.



160 II. Special relativistic spacetime models

1.6.4. Present day physics uses tacitly the arithmetic spacetime model. One
represents time points by real numbers, space points by triplets of real numbers.
To obtain such representations, one chooses a unit for time periods, an initial
time point, a distance unit, an initial space point and an orthogonal spatial basis
whose elements have unit length.

However, all the previous notions in usual circumstances have merely a heuris-
tic sense. The isomorphism established in 1.6.2 will give these notions a math-
ematically precise meaning. We shall see later that s is the time unit (and
the distance unit), e0 characterizes an observer which produces its own time
and space, the spacelike vectors e1, e2, e3 correspond to the spatial basis, o
includes the initial time point and space point in some way.

1.7. The u -split spacetime model

1.7.1. The arithmetic spacetime model is useful for solving particular prob-
lems, for executing practical calculations. Moreover, at present, one usually
expounds theories, too, in the frame of the arithmetic spacetime model, so we
have to translate every notion into the arithmetic language. As in the nonrel-
ativistic case, it is convenient to introduce an ‘intermediate’ spacetime model
between the abstract and the arithmetic ones.

1.7.2. Let (M,T, g) be a special relativistic spacetime model and use the
notations introduced in this chapter. Take a u ∈ V (1) and define the Lorentz
form

gu : (T× Su)× (T× Su) → T⊗ T,
(

(t′, q′), (t, q)
)

7→ −t′t+ q′ · q.

Put

S :=
{

(t, q)
∣

∣ |q| > |t|
}

,

T :=
{

(t, q)
∣

∣ |q| < |t|g
}

,

L :=
{

(t, q)
∣

∣ |q| = |t| 6= 0
}

.

Endow T×Su with the product orientation and gu with the arrow orientation
determined by

T
→ :=

{

(t, q) ∈ T
∣

∣ t > 0
}

.

Then (T× Su,T, gu) is a special relativistic spacetime model, called the u -
split special relativistic spacetime model.

It is quite obvious that for all o ∈ M,

M → T× Su, x 7→ ξu · (x− o),

T → T, t 7→ t



1. Fundamentals 161

is an isomorphism between the two special relativistic spacetime models.

1.7.3. In the u -split model

V (1) =

{

(α,w) ∈ R× Su

T

∣

∣

∣

∣

− α2 + |w|2 = −1, α > 0

}

=

=







1
√

1− |v|2
(1,v)

∣

∣

∣

∣

∣

∣

v ∈ Su

T
, |v| < 1







.

There is a simplest element in it: (1,0).

1.8. Exercises

1. To be later (futurelike) is a transitive relation on M : if y is futurelike
with respect to x and z is futurelike with respect to y then z is futurelike with
respect to x.

2. V (1) is a three-dimensional submanifold of M; its tangent space at u is
Su

T
(see Exc.VI.4.14.3). For every u ∈ V (1),

Su

T
→ V (1), w 7→ u

√

1 + |w|2 +w,

and
{

v ∈ Su

T

∣

∣

∣

∣

|v| < 1

}

→ V (1), v 7→ u+ v
√

1− |v|2

are global parametrizations of V (1) having inverses

u′ 7→ πu · u′ = u′ + (u · u′)u =
vu′u

√

1− |vu′u|2

and

u′ 7→ πu · u′
−u · u′ = vu′u,

respectively.
3. Prove that for all u ∈ V (1)

R×
{

n ∈ Su

T

∣

∣

∣

∣

|n| = 1

}

→ V (1), (α,n) 7→ u+ ntanhα√
1− tanh2α

= ucoshα+nsinhα
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is a smooth map which is a bijection between R
+
0 ×

{

n ∈ Su

T

∣

∣ |n| = 1
}

and
V (1), having the inverse

u′ 7→



arcosh(−u · u′), πu · u′
√

(u · u′)2 − 1



 .

4. Let u ∈ V (1), n ∈ Su

T
, |n| = 1. Take α, β ∈ R and put

u′ := ucoshα+ nsinhα, n′ := L(u′,u) · n = usinhα+ ncoshα

u′′ := u′coshβ + n′sinhβ = ucosh(α+ β) + nsinh(α+ β),

u′′′ := ucoshβ + nsinhβ.

Prove that
L(u′′,u′) = L(u′′′,u).

(Hint: L(u′′,u′) · u = u′′′ and Su ∩ Su′′′ = Su′ ∩ Su′′ .)
5. Use the notations of the preceding exercise and prove that

L(u′′′,u) ·L(u′,u) = L(u′′,u)

i.e.

L(ucoshβ + nsinhβ,u) ·L(ucoshα+ nsinhα,u) =

= L
(

ucosh(α+ β) + nsinh(α+ β), u
)

.

6. Let u ∈ V (1), m,n ∈ Su

T
, |m| = |n| = 1, m ·n = 0. Take an 0 6= α ∈ R

and put

u′ := ucoshα+ nsinhα, u′′ := ucoshα+msinhα.

Then n′ := L(u′,u) · n = usinhα + ncoshα and L(u′′,u) · n = n. Prove
that L(u′′,u′) · n′ is not parallel to n.

7. Let u,u′ ∈ V (1). Then u′ ⊗ T and Su are complementary subspaces.
The projection onto Su along u′ ⊗ T is the linear map

Puu′ := 1M +
u′ ⊗ u

−u′ · u : M → M, x 7→ x+ u′
u · x

−u′ · u .

Prove that
(i) the restriction of Puu′ onto Su′ is a bijection between Su′ and Su;
(ii) the restriction of Puu′ onto Su ∩ Su′ is the identity;

(iii) Puu′ · vuu′ =

√

1− |vuu′ |2vu′u.
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2. World lines

2.1. History of a masspoint: world line

2.1.1. As in the nonrelativistic spacetime model, the history of a masspoint
will be described by a curve in the special relativistic spacetime model as well.
However, it is not obvious here, what kind of curves can be allowed.

Our heuristic considerations regarding the affine structure of spacetime imply
that the history of a free masspoint has to be described by a straight line. We
can easily demonstrate that such a straight line must be directed by a timelike
vector. Indeed, it cannot be lightlike because this would mean that there is a
light signal resting with respect to the masspoint. Suppose that the straight
line is directed by a spacelike vector, choose two different points on the line and
draw the corresponding future light cones: the cones intersect each other. As a
consequence, two light signals emitted successively by the masspoint would meet
which contradicts our experience.

A simple generalization—in accordance with I.2.2—yields that the existence
of a masspoint must be described by a curve whose tangent vectors are timelike.

We call attention to the fact that up to now we have spoken about light signals
and masspoint histories in a heuristic sense. The following definition gives these
notions a precise meaning in the spacetime model.

2.1.2. Definition. 1. A straight line segment in M, directed by a lightlike
vector, is called a light signal.

2. A world line is a connected piecewise twice differentiable curve in M whose
tangent vectors are timelike.
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Proposition. Let C be a world line. Then y − x is timelike for every
x, y ∈ C, x 6= y. In other words,

C \ {x} ⊂ x+ T (x ∈ C).

Proof. Suppose the statement is not true: there is an x ∈ C such that
C \ {x} is not contained in x + T. Let p : R  M be a parametrization of C,
p(0) = x. Then there is a 0 6= α ∈ Domp such that p(α)− p(0) is not timelike.
For the sake of definiteness we can assume α > 0. Then

a := inf {α ∈ Domp| α > 0, p(α)− p(0) 6∈ T} > 0.

Indeed, if this infimum were zero then there would be a sequence αn > 0

(n ∈ N) such that lim
n→∞

αn = 0 and p(αn)−p(0)
αn

6∈ T for all n implying ṗ(0) =

lim
n→∞

p(αn)−p(0)
αn

6∈ T because the set of timelike vectors is open (the complement

of T is closed). Because of the same reason, p(a)−p(0) = lim
n→∞

(

p(αn)−p(0)
)

6∈
T.

Thus p(α) − p(0) is timelike for 0 < α < a and p(a) − p(0) is not timelike.
Since p is continuous, p(a)−p(0) must be in the closure of T, i.e. it is lightlike:
(

p(a)− p(0)
)2

= 0.
Lagrange’s mean value theorem, applied to the function [0, a] → T⊗T, α 7→

(

p(α)−p(0)
)2

ensures the existence of a c ∈]0, a[ such that 2
(

p(c)−p(0)
)

·ṗ(c) =
0. Since ṗ(c) is timelike, this means that p(c)−p(0) is spacelike, a contradiction.

2.1.3. The previous result and the arrow orientation (which gives rise to the
relation ‘later’, see 1.2.3) allow us to define an order—an orientation—on a world
line as follows.

Proposition. Let p : R  M be a parametrization of the world line C.
Then one of the following two possibilities occurs:
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(i) α < β if and only if p(α) is earlier than p(β),

(ii) α < β if and only if p(α) is later than p(β)

for all α, β ∈ Domp.

Proof. ṗ is a continuous function having values in T and defined on an
interval, thus its range is connected which means that the range of ṗ is contained
either in T

→ or in T
←.

(i) Suppose Ran ṗ ⊂ T
→ and select an arbitrary α from the domain of

p. Then {β ∈ Domp | α < β} → T, β 7→ p(β)−p(α)
β−α is a continuous function

defined on an interval, hence its range is contained in T
→ or in T

←. Since

lim
β→α

p(β)−p(α)
β−α = ṗ(α) ∈ T

→ and T
→ is open, we conclude that p(β)−p(α)

β−α ∈ T
→,

which implies that p(β)− p(α) is in T
→, i.e. p(α) is earlier than p(β) for all

α < β.

(ii) Similar considerations yield the desired result if Ran ṗ ⊂ T
←.

Definition. A parametrization p of a world line is called progressive (regres-
sive) if α < β implies that p(α) is earlier (later) than p(β) for all α, β ∈ Domp.

A world line is considered oriented by progressive parametrizations.

The reader easily verifies that the orientation is correctly defined: if p and q
are progressive parametrizations of a world line, then p−1 ◦ q : R  R is strictly
monotone increasing.

Note that the proposition holds and the definition can be applied also in case
of parametrizations that are defined on an oriented one-dimensional affine space.

2.1.4. If x and y are different points of a world line then they are timelike
separated.

Conversely, if x and y are timelike separated world points then there is a
world line C such that x, y ∈ C. Indeed, the straight line passing through x
and y is such a world line. Note the important fact that there are many world
lines containing x and y :
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2.2. Proper time of world lines

2.2.1. The Lorentz form g includes the description of proper time progresses,
too. Let the occurrence y be later than x and recall the pseudolength |y−x| :=
√

−g(y − x, y − x) ; then u := y−x
|y−x| is an absolute velocity value. The inertial

proper time between x and y is τu(y − x) = |y − x| (which can be explained
by 1.3.2. and the similar formulae in the nonrelativistic case).

Take now a ‘world line’ consisting of two consecutive nonparallel straight line
segments (according to our present definition, such a line is not a world line
because it is not differentiable at one point, that is why we put the quotation
mark; we use such broken world lines for our heuristic consideration and later
we permit them by a precise definition, too). Let z be the breaking point, let x
be earlier than z, z earlier than y. Then we measure the time passed between
x and y along the broken world line by the sum of the time passed along the
straight line segments: |z − x|+ |y − z|.

The generalization to a broken world line consisting of several straight line
segments is trivial.

Let now C be an arbitrary world line, x, y ∈ C, x is earlier than y. It is
intuitively clear that we can approximate the time passed between x and y
along C by the time passed along broken lines approximating C.

Take a progressive parametrization p of the world line C. Then an approxi-
mation of the time passed between x and y along C has the form

n
∑

k=1

|p(αk+1)− p(αk)|

which ‘nearly equals’
n
∑

k=1

|ṗ(αk)|(αk+1 − αk).

We recognize an integral approximating sum. This suggests the following
definition (the reader is asked to study Section VI.7).

Definition. Let x and y be timelike separated world points or x = y. If C
is a world line passing through x and y (i.e. x, y ∈ C) then

tC(x, y) :=

y
∫

x

|dC|

is called the time passed between x and y along C.
The time passed between x and y along a straight line is called the inertial

time between x and y and is denoted by t(x, y).
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We emphasize that the integral formula for the time passing along a world
line is a definition and not a statement.

Evidently,

t(x, y) =

{ |y − x| if x is earlier than y,

−|y − x| if y is earlier than x.

2.2.2. The time passed between two world points along different world lines
can be different. The longest time passes along the inertial world line:

Proposition. Let x be a world point earlier than the world point y. If C
is a world line containing x and y then

tC(x, y) ≤ t(x, y)

and equality holds if and only if C is a straight line segment between x and y.

Proof. Let z ∈ C be a world point which is earlier than y and later than x .
Then the reversed triangle inequality (V.4.10) results in t(x, z)+t(z, y) ≤ t(x, y),
where equality holds if and only if z is on the straight line passing through x
and y. As a consequence, the time passed between x and y along a broken
line (defined to be the sum of times passed along the corresponding straight line
segments) is smaller than the inertial time between x and y. The definition of
tC(x, y) as an integral involves that tC(x, y) can be obtained as the infimum of
times passed between x and y along broken lines.

2.2.3. We call attention to the fact that in our customary illustration the
same time period passed along different inertial world lines is represented, in
general, by segments of different lengths.

LLLLLL

LLLLLL
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The same length corresponds to the same time period on two inertial world
lines if and only if the two illustrating straight lines have the same inclination
to the two lines of L

→ :

2.3. World line functions

2.3.1. Definition. Let C be a world line, xo ∈ C. Then the mapping

C → T, x 7→ tC(xo, x)

is called the proper time of C starting from xo.

Since every tangent vector x 6= 0 of the world line C is timelike i.e. |x| 6= 0,
according to Proposition VI.7.5, the inverse of the proper time,

r : T  M

defined by
r
(

tC(xo, x)
)

= x (x ∈ C)

and having the property

tC
(

xo, r(t)
)

= t (t ∈ Domr)

is a progressive parametrization of C, called the proper time parametrization of
C starting from xo. We know that for all t ∈ Domr

ṙ(t) ∈ M

T
, ṙ(t) is future directed timelike,

moreover, Proposition VI.7.5 implies

|ṙ(t)| = 1;
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all these mean that
ṙ(t) ∈ V (1) (t ∈ Domr).

2.3.2. According to the previous considerations, if C is a world line then
there is a parametrization r : T  M of C (i.e. r is defined on an interval, is
twice differentiable, its range is C) such that ṙ(t) ∈ V (1) for all t ∈ Domr.

From the properties of integration on curves we derive that

tC(x, y) =

r−1(y)
∫

r−1(x)

|ṙ(t)|dt = r−1(y)− r−1(x).

As a consequence, if r1 and r2 are parametrizations with the above property
then there is a to ∈ T such that Domr2 = to + Domr1 and r2(t) = r1(t − to)
(t ∈ Domr2).

Indeed, choosing an element xo of C and putting to := r−12 (xo) − r−11 (xo)
we get r−11 (x) = r−12 (x) − to which gives the desired result with the notation
t := r−12 (x).

2.3.3. Our results suggest how to introduce the notion of world line functions
which allows us to admit piecewise differentiability as in the nonrelativistic case.

Definition. A function r : T  M is called a world line function if
(i) Domr is an interval,
(ii) r is piecewise twice continuously differentiable,
(iii) ṙ(t) is in V (1) for all t ∈ Domr where r is differentiable.

A subset C of M is a world line if it is the range of a world line function.
The world line function r and the world line Ranr is global if Domr = T.

2.3.4. If r is a world line function then differentiating the constant mapping
t 7→ ṙ(t) · ṙ(t) = −1 defined on the differentiable pieces of Domr we get that

ṙ(t) · r̈(t) = 0, i.e. r̈(t) ∈ Sṙ(t)

T⊗ T
,

and the same is true for right and left derivatives where r is not differentiable.
The functions ṙ : T  V (1) and r̈ : T 

M

T⊗T can be interpreted as the
absolute velocity and the absolute acceleration of the material point whose history
is described by r.

That is why we call the elements of V (1) absolute velocity values and the
spacelike elements in M

T⊗T absolute acceleration values.
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2.3.5. Recall that V (1) is a three-dimensional smooth submanifold of M

T
.

The elements of
{

v ∈ M

T

∣

∣ 0 < v2 < 1
}

will be called relative velocity values;
later we shall see the motivation of this name.

Note the following important facts.

(i) Absolute velocity values are future directed timelike vectors of cotype T .
They do not form either a vector space or an affine space. The pseudo-length of
every velocity value is 1. There is no zero velocity value. Velocity values have
no angles between themselves.

(ii) Relative velocity values are spacelike vectors of cotype T. They do not
form a vector space. The magnitude of a relative velocity value (see 1.3.3) is a
real number less than 1. A relative velocity can be smaller than another; there is
a zero relative velocity value. If u ∈ V (1) then

{

v ∈ Su

T

∣

∣ |v| < 1
}

is an open
ball in a three-dimensional Euclidean vector space and it consists of relative
velocity values. The angle between such relative velocities makes sense.

(iii) Absolute acceleration values are the spacelike vectors of cotype T ⊗ T.
The magnitude of an acceleration value is meaningful, it is an element of R

T
. An

acceleration value can be smaller than another; there is a zero acceleration value.
If u ∈ V (1), then Su

T⊗T is a three-dimensional Euclidean vector space consisting
of acceleration values. The angle between such acceleration values makes sense.

The absence of magnitudes of absolute velocity values means that ‘quickness’
makes no absolute sense; it is not meaningful that a material object exists more
quickly than another. An absolute velocity value characterizes somehow the
tendency of the history of a material point. Masspoints can move slowly or
quickly relative to each other.

2.4. Classification of world lines

2.4.1. We would like to classify the world lines as we did it in the nonrela-
tivistic case. The notion of an inertial world line is straightforward. However,
uniformly accelerated world lines and twist-free world lines give us some trouble.

If we copied the nonrelativistic definition, i.e. we required that the acceler-
ation of a world line function r be constant, r̈ = a, where a is a spacelike
element of M

T⊗T , then there would be a c ∈ V (1) such that ṙ(t) = c + at

(t ∈ Domr). Since ṙ and r̈ are g -orthogonal, c+at and a are g -orthogonal:

c · a + |a|2t = 0 for all t ∈ Domr which implies a = 0. There would be no
uniformly accelerated world lines except the inertial ones.

The problem lies in the fact that the momentary absolute acceleration values
of a world line belong to the subspace g -orthogonal to the corresponding abso-
lute velocity value; if the velocity value changes then the corresponding subspace
changes as well: changing velocity involves changing acceleration.
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Nevertheless, we do not have to give up the notion of uniform acceleration.
We have established a natural mapping between two subspaces g -orthogonal to
two absolute velocity values: the corresponding Lorentz boost (see 1.3.8). Then
we may require that the world line function r is uniformly accelerated if r̈(s) is
mapped into r̈(t) by the Lorentz boost from ṙ(s) to ṙ(t).

A similar requirement for r̈
|r̈| leads us to twist-free world line functions.

2.4.2. Definition. A twice continuously differentiable world line function r
and the corresponding world line is called
(i) inertial if r̈ = 0,
(ii) uniformly accelerated if L

(

ṙ(t), ṙ(s)
)

· r̈(s) = r̈(t) for all t, s ∈ Domr,

(iii) twist-free if |r̈(t)|L
(

ṙ(s), ṙ(t)
)

· r̈(s) = |r̈(s)|r̈(t) for all t, s ∈ Domr.

It is quite evident that a twice continuously differentiable world line function
r is inertial if and only if there are an xo ∈ M and a uo ∈ V (1) such that

r(t) = xo + uot (t ∈ Domr).

2.4.3. Let r be a twice continuously differentiable world line function and
put

u := ṙ : T  V (1).

If r is uniformly accelerated, then, by definition,

u̇(s)−
(

u(t) + u(s)
)(

u(t) · u̇(s)
)

1− u(t) · u(s) = u̇(t) (t, s ∈ Domr). (∗)

Fix an s ∈ Domr, put uo := u(s) ∈ V (1) and ao := u̇(s) ∈ Suo

T⊗T to obtain
the following first-order differential equation for u :

u̇ = ao +
(u+ uo)(u · ao)

1− u · uo
.

Unfortunately, it is rather complicated.
Another differential equation can be derived, too, by using u(s)·u̇(s) = 0 and

observing that |r̈| = |u̇| =: α is constant (the Lorentz boosts are g -orthogonal
maps). We obtain the equality

u̇(s)− u̇(t) =

(

u(t) + u(s)
)(

u(t)− u(s)
)

· u̇(s)
1− u(t) · u(s)

from (∗); dividing it by s − t and letting s tend to t we get the extremely
simple second-order differential equation

ü = α2u
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whose general solution has the form

u(t) = uocoshαt+
ao

α
sinhαt (t ∈ T), (∗∗)

where uo ∈ V (1), ao ∈ Suo

T⊗T , |ao| = α.

Equality (∗∗) has been derived from (∗). It is not hard to see that t 7→ u(t)
defined by (∗∗) satisfies (∗), i.e. (∗) and (∗∗) are equivalent.

Finally, a simple integration results in the following.

Proposition. function r is uniformly accelerated if and only if there are an

xo ∈ M, a uo ∈ V (1) and an ao ∈ Suo

T⊗T such that

r(t) = xo + uo
sinh |ao|t

|ao|
+ ao

cosh |ao|t− 1

|ao|2
(t ∈ Domr).

2.4.4. If the twice differentiable world line function r is twist-free, then

there are uo ∈ V (1), no ∈ Suo

T
, |no| = 1 such that for u := ṙ the following

differential equation holds:

u̇ = |u̇|
(

no +
(u+ uo)(u · no)

1− u · uo

)

.

The method applied to uniformly accelerated world line functions to derive
another differential equation works here as well. The reader is asked to perform
the calculations to obtain

u|u̇|4 = ü|u̇|2 − u̇(u̇ · ü),

or

u|u̇|2 =

(

1M − u̇⊗ u̇

|u̇|2

)

· ü,

provided that u̇ is nowhere zero.
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2.5. World horizons

2.5.1. The light signals starting from a world point x are in x + L
→,

masspoints existing in x continue their existence in x+T
→ : every phenomenon

occurring in x can influence only the occurrences in x+(T→∪L→), the futurelike
part of spacetime with respect to x.

Conversely, only the occurrences in x+(T←∪L←) can influence an occurrence
in x.

Consider a world line C . If x + (T→ ∪ L
→) does not intersect C , then an

occurrence in x cannot influence the masspoint whose history is described by C;
in other words, the masspoint cannot have information about the occurrence
in x. That is why we call

{

x ∈ M
∣

∣ C ∩
(

x+ (T→ ∪ L
→)
)

= ∅
}

= {x ∈ M | (C− x) ∩ (T→ ∪ L
→) = ∅}

the indifferent region of spacetime with respect to C.
It can be shown that it is a closed set (Exercise 2.7.3) whose boundary is

called the world horizon of the world line C.
Obviously the indifferent region is void if and only if the world horizon is void.

2.5.2. Consider a world line function r. Then a world point x is not
indifferent to the corresponding world line if and only if there is a t ∈ Domr
such that r(t)− x ∈ T

→ ∪ L
→ i.e.

(

r(t)− x
)2 ≤ 0

and
u ·
(

r(t)− x
)

< 0

for an arbitrary u ∈ V (1).

2.5.3. The world horizon of an inertial world line is empty.
Indeed, take the inertial world line xo + uo ⊗ T, an arbitrary world point x

and look for t ∈ T satisfying

(xo + uot− x)2 ≤ 0,

uo · (xo + uot− x) < 0.

Since (xo − x)
2
= |πuo · (xo − x)|2 − |uo · (xo − x)|2, the inequalities can be

written in the form

|πuo · (xo − x)|2 − |t− uo · (xo − x)|2 ≤ 0,

t− uo · (xo − x) > 0;
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they are satisfied for every

t > uo · (xo − x) + |πuo
· (xo − x)|.

2.5.4. The indifferent region of spacetime with respect to the uniformly
accelerated global world line described by

t 7→ xo + uo
sinh |ao|t

|ao|
+ ao

cosh |ao|t− 1

|ao|2
(t ∈ T)

is
{

x ∈ M|
(

|ao|uo + ao

)

· (xo − x) ≥ 1
}

. (∗)

indifferent region

"9$t

Indeed, according to 2.5.2, the world point x is not indifferent if and only if
there is a t for which

x2 − sinh2αt

α2
+

(coshαt− 1)
2

α2
+ 2uo · x

sinhαt

α
+ 2ao · x

coshαt− 1

α2
≤ 0,

uo · x− sinhαt

α
< 0

where
x := xo − x, α := |ao|.

The second inequality holds if t is large enough.
The first inequality can be written in the form

x2 + 2uo · x
sinhαt− coshαt+ 1

α
+ 2(ao · x+ αuo · x− 1)

coshαt− 1

α2
≤ 0.

Since sinhαt−coshαt tends to zero and coshαt tends to plus infinity as t tends
to plus infinity, we see that if (ao ·x+αu ·x−1) < 0 then both inequalities hold
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for t large enough, i.e. an x out of the set (∗) is not indifferent with respect
to the world line.

Take now an x in the set (∗) such that uo · x = 0. Then x is a nonzero
spacelike vector, thus x2 > 0 and we see that the previous inequality does not
hold for any t because coshαt − 1 ≥ 0 : x is indifferent with respect to the
world line.

To end the proof, note that αuo+ao is a lightlike vector, hence x is indifferent
if and only if x+ λ(αuo + ao) is indifferent for some λ ∈ T. Choose λ in such
a way that uo ·

(

xo − x− λ(αuo + ao)
)

= 0.

2.6. Newtonian equation

2.6.1. Recall that now the measure line of masses is T
∗ = R

T
. Since accel-

eration values are elements of M

T⊗T and ‘the product of mass and acceleration

equals the force’, the force values are elements of T
∗ ⊗ M

T⊗T ≡ M

T⊗T⊗T ≡ M
∗

T
;

moreover, we take into account that the momentary acceleration value of a mass-
point is g -orthogonal to the corresponding velocity value. In what follows, from
the dynamical point of view, it is convenient to denote absolute velocity values
by ẋ .

Thus we accept that a force field is a differentiable mapping

f : M×V (1) 
M∗

T

such that
ẋ · f(x, ẋ) = 0

(

(x, ẋ) ∈ Domf
)

.

The history of the material point with mass m under the action of the force
field f is described by the Newtonian equation

mẍ = f(x, ẋ)

i.e. the world line function modelling the history is a solution of this differential
equation.

2.6.2. Some of the most important force fields in special relativity, too,
can be derived from potentials; e.g. the electromagnetic field. However, the
gravitational field cannot be described by a potential; this problem will be
discussed later (Chapter III).

A potential is a twice differentiable mapping

K : M  M∗

(in other words, a potential is a twice differentiable covector field).
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The field strength corresponding to K is D ∧ K : M  M∗ ∧ M∗ (the
antisymmetric or exterior derivative of K, see VI.3.6).

The force field f has a potential (is derived from a potential) if
— there is an open subset O ⊂ M such that Domf = O×V (1),
— there is a potential K defined on O such that

f(x, ẋ) = F (x) · ẋ (x ∈ O, ẋ ∈ V (1))

where F := D ∧K.
It is worth mentioning: F (x) is antisymmetric, hence ẋ · F (x) · ẋ = 0, as it

must be for a force field.

2.6.3. In the nonrelativistic spacetime model a force field can be independent
of either of its variables, in particular, it can be a constant map. In the present
case, on the contrary, a nonzero force field cannot be independent of velocity, in
particular, it cannot be a constant map.

We could try to define a constant force field in such a way that the correspond-
ing Lorentz boosts map its values into each other, i.e. f would be constant if
L(ẋ′, ẋ)·f(x, ẋ) = f(x, ẋ′) for all possible x, ẋ and ẋ′. However, such a nonzero
field cannot exist (Exercise 2.7.5): there is no nonzero special relativistic constant
force field !

2.7. Exercises

1. Prove that the uniformly accelerated world line function given in 2.4.3
satisfies

r(t) = xo + uot+
ao

2
t2 + ordo(t3).

2. Let uo ∈ V (1), ao ∈ Suo

T⊗T and β : T  T a continuously differentiable
function defined on an interval. Demonstrate that the world line function r for
which

ṙ = uo

√

β2 + 1 + aoβ

holds is twist-free.
3. The indifferent region of spacetime with respect to the world line C has

the complement
⋃

z∈C
{z + (T← ∪ L

←)} .

Using L
→ + T

→ = T
→ show that it equals

⋃

z∈C
{z + T

←}
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which, being a union of open sets, is open. Consequently, the indifferent part of
spacetime with respect to C is closed.

4. Let r be a global world line function and put u := ṙ. Prove that the
world horizon of the corresponding world line is empty if one of the following
conditions holds:

(i) there exist lim
t→∞

u(t),

(ii) u is periodic, i.e. there is a to > 0 such that u(t + to) = u(t) for all
t ∈ T.

(Hint: (i) V (1) is closed, hence the limit belongs to it. (ii) Put zo :=
∫ to

0
u(t)dt, uo := zo

|zo| and consider the inertial world line r(to) + uo ⊗ T.)

5. Let s : V (1) → M be a function such that

u · s(u) = 0 and s(u′) := L(u′,u) · s(u)
(

u′,u ∈ V (1)
)

.

Prove that s = 0. (Hint: L(u′′,u′) · L(u′,u) · s(u) = L(u′′,u) · s(u) must
hold; applying Proposition 1.3.9 find appropriate u′′ and u′ for a fixed u in
such a way that the equality fails.)

3. Observers and synchronizations

3.1. The notions of an observer and its space

3.1.1. In most of the textbooks one says that special relativity concerns
only inertial observers, treating of noninertial observers is possible only in the
framework of general relativity. We emphasize that this is not true.

The difference between special relativity and general relativity does not lie in
observers which is evident from our point of view: spacetime models are defined
without the notion of observers; on the contrary, observers are defined by means
of spacetime models.

Noninertial observers are right objects in the special relativistic spacetime
model. Inertial observers and noninertial observers differ only in the level of
mathematical tools they require. Inertial observers remain in the nice and sim-
ple framework of affine spaces while the deep treatment of noninertial observers
needs the same mathematical tools as the treatment of general relativistic space-
time models: the theory of pseudo-Riemannian manifolds.

We can repeat word by word what we said in I.3.1.1 to motivate the following
definition.

Definition. An observer is a smooth map U : M  V (1) whose domain is
connected.

If DomU = M, the observer is global.
The observer is called inertial if it is a constant map.
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V (1) is a subset of M

T
; differentiability (smoothness) of a map from M into

V (1) means differentiability (smoothness) of the map from M into M

T
.

3.1.2. Let U be an observer. Integral curves of the differential equation

(x : T  M)? ẋ = U(x)

are evidently world lines.
The maximal integral curves of this differential equation will be called U -

lines.
As in the nonrelativistic case,

AU := DU · U : M 

M

T⊗ T

is the acceleration field corresponding to U .

3.1.3. Again we can repeat the arguments confirming that the space of an
observer is the set of its maximal integral curves.

Definition. Let U be an observer. Then SU , the set of maximal integral
curves of U , is the space of the observer U or the U -space.

Again a maximal integral curve of U is called a U -line if considered to be
a subset of M and it is called a U -space point if considered to be an element
of SU .

CU(x) will stand for the (unique) U -line passing through x; we say that
CU(x) is the U -space point that x is incident with.

It can be shown that, in general, the U -space can be endowed with a smooth
structure in a natural way, thus limits, differentiability, etc. will make sense.
However, in this book we avoid the general theory of smooth manifolds, that is
why, in general, we do not deal with the structure of observer spaces. Later the
spaces of some special observers, important from the point of view of applications,
will be treated in detail.

Because of the absence of absolute synchronization, here we cannot classify
observers as in I.3.2.1.

3.2. The notions of a synchronization and its time

3.2.1. Now synchronizations play a nontrivial role, in contrast to the nonrel-
ativistic case. Of course, we can repeat the arguments in I.3.3.1 that a synchro-
nization is an equivalence relation having the property that different occurrences
of any world line and light signal cannot be simultaneous.
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Thus, x and y cannot be simultaneous if y − x is timelike or lightlike.

Definition. A synchronization S is a smooth equivalence relation defined
on a connected open subset of spacetime such that every equivalence class is a
three-dimensional submanifold whose every tangent space is transversal to all
timelike and lightlike vectors. The set TS of the equivalence classes is the time
of the synchronization S or the S -time. An everywhere defined synchronization
is called global.

An equivalence class of a synchronization is called a world surface; in partic-
ular, that of S is a S -surface if considered to be a subset of M and is called a
S -time point or S -instant if considered to be an element of TS . According to
the definition, the tangent spaces of S -surfaces must be spacelike.

A S -surface consists of S -simultaneous occurrences. τS(x) will stand for the
(unique) S -surface containing x .

The smoothness of a synchronization S , given on G ⊂ M, means the fol-
lowing: to every x ∈ G there is a unique US(x) ∈ V (1) such that the tan-
gent space of the equivalence class (world surface) at x equals SUS(x); then

US : M  V (1) ⊂ M

T
is required to be smooth.

3.2.2. We can prove, similarly to the corresponding assertion for world lines,
that if F is a world surface and x ∈ F, then F\{x}−x ⊂ S consists of spacelike
vectors.

Consequently, if F is a world surface and C is a world line then C ∩ F is
either void or contains a single element which we shall denote by C ⋆ F.

Definition. Let S be a synchronization, t, s ∈ TS . We say that s is later
than t (t is earlier than s) if there are x ∈ t and y ∈ s such that y is later
than x.

It cannot occur that both of t and s are earlier than the other. Indeed,
let s, t and x, y be as in the definition. Then for all y′ ∈ s, x′ ∈ t we have
y′−x′ = (y′−y)+(y−x)+(x−x′). Because of the properties of world surfaces,
y′ − y and x − x′ are spacelike vectors. Thus, in view of Exercise V.4.22.2, if
y − x ∈ T

→ (t is earlier than s) then y′ − x′ 6∈ T
← (s is not earlier than t).

We easily find that ‘later’ is an ordering (a reflexive, antisymmetric and
transitive relation) on TS . However, it need not be total: there can be t and s
in TS such that neither of them is later than the other:
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./-instonts

We say that the synchronization S is well posed if the relation ‘later’ on TS
is a total ordering.

It can be shown that every world point xo in the domain of S has a neigh-
bourhood such that the restriction of S onto this neighbourhood is well posed.
If Co is the US -line passing through xo, then {x ∈ M|Co ∩ τS(x) 6= ∅} is such
a neighbourhood.

3.2.3. Definition. A reference frame is a pair (S,U) where S is a synchro-
nization and U is an observer having a common domain.

A reference frame (S,U) splits a part of spacetime (its domain) into S -time
and U -space:

ξS,U : M  TS × SU , x 7→
(

τS(x), CU(x)
)

.

3.2.4. It is worth mentioning that a synchronization determines an observer
uniquely but the contrary does not hold. For an observer U , in general, there
are no world surfaces whose tangent spaces at every x is SU(x) (see 6.7.6.).

3.3. Global inertial observers and their spaces

3.3.1. Let us consider a global inertial observer; we shall refer to it by its
constant absolute velocity value u .

The observer space Su is the set of straight lines directed by u; more closely,

Cu(x) = x+ u⊗ T := {x+ ut | t ∈ T}

which turns to be an affine space over Su , similarly to I.4.2.
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Proposition. Su, the space of the inertial observer u, endowed with the
subtraction

q′ − q := πu · (x′ − x) (x′ ∈ q′, x ∈ q)

is an affine space over Su.

Proof. For the proof we have to show only that the subtraction is well defined:
if y′ ∈ q′ and y ∈ q , too, then πu · (x′−x) = πu · (y′− y) , which is evident.

Recall that the restriction of the Lorentz form to Su , denoted by hu , is
positive definite: (Su,T,hu) is a Euclidean vector space. Thus we can say that
the space of a global inertial observer is a three-dimensional oriented Euclidean
affine space.

3.3.2. In the nonrelativistic model the spaces of different inertial observers
are different affine spaces over the same vector space, whereas here the spaces of
different inertial observers are different affine spaces over different vector spaces.
This very important fact gets lost in the usual treatments where every inertial
spaces are represented in the same way by triplets of numbers.

3.4. Inertial reference frames

3.4.1.

Definition. A synchronization is called affine if its world surfaces are parallel
affine hyperlanes in M .

We have immediately:
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Proposition. A synchronization S is affine if and only there is a us ∈ V (1)
such that the S -surfaces are hyperplanes directed by Sus

.

Such a synchronization is called the synchronization due to us or us -synchro-
nization and Tus

will denote the corresponding time (the set of hyperplanes
directed by Sus

).

3.4.2. Observers and synchronizations, in general, are complicated objects
in the relativistic spacetime model. Exceptions are inertial observers and affine
synchronizations.

Definition. An inertial reference frame consists of an affine synchronization
and a global inertial observer.

Let u be a global inertial observer and let us take a global us -synchronization;
the corresponding inertial reference frame will be denoted by (us,u) .

In this reference frame the observer measure time periods between us -instants
by the proper time passed in the u -space points.

Let t and s be two us -instants, and let y and x be occurrences in t and s ,
respectively. If t is the time period measured by u between s and t then
ut+ (x− y) ∈ Sus

i.e. us · (ut+ (x− y)) = 0 . Then we have

Proposition Tus
endowed with the subtraction

(t− s)u :=
−us · (y − x)

−us · u
(

t, s ∈ Tus
, y ∈ t, x ∈ s

)

is an affine space over T.

Proof. For the proof we have to show only that the subtraction is well
defined i.e. does not depend on the choice of the occurrences in t and s which
is evident.
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3.5. Standard inertial frames

3.5.1.

Definition. A standard inertial frame is an inertial reference frame in which
the synchronization and the observer are given by the same absolute velocity
value.

We shall refer to a standard inertial frame by the corresponding absolute
velocity value. Note that the same letter u can denote an observer, a syn-
chronization and a standard inertial frame; the actual role of u will always be
specified, thus, hopefully, we avoid misunderstandings.

3.5.2. In practice, synchronization is established nowadays by radio signals
(i.e. light signals). A chronometer ticks in the studio and at a determined tick
– let us call it 12 o’clock – emits a radio signal. Hearing the signal, we set our
clock. Of course, in principle, we do not set the clock to 12 because ‘some time
has elapsed between emission and reception’. The elapsed time is calculated
from the distance covered by the radio signal and from the velocity of light.
But this is a vicious circle: the velocity of light makes sense only with a given
synchronization. The right setting is that we establish a synchronization in which
one-way light speed equals the round-way speed.

It will be found that such a synchronization cannot be correct on the Earth,
being a uniformly rotating observer (see Exercise 6.9.11.). In the following we
investigate how this method works for an inertial observer.

3.5.3. Let us consider a global inertial observer u . A light signal is emitted
in a u -space point q and, reflected in some other u -space point, it returns. Let
the occurrences of emission, reflection and return be xe , y and xr , respectively.
Then there is an occurrence x and a time period t such that xe = x − ut ,
xr = x + ut . Thus, it takes 2t for the light signal to travel back and forth;
the one-way speed equals the two-way speed if x and y are defined to be
simultaneous.
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Then y − (x− ut) and y − (x+ ut) are lightlike vectors:

(

y − (x− ut)
)2

= 0,
(

y − (x+ ut)
)2

= 0,

(y − x)
2
+ 2(y − x) · ut− t2 = 0, (y − x)

2 − 2(y − x) · ut− t2 = 0,

which give
y − x ∈ Su; in other words, y ∈ x+ Su.

We have obtained the affine synchronization due to u . Thus we have:

Proposition. The one-way speed of light equals the round-way speed only
in standard inertial frames.

3.5.4. Note that the vector defined between the u -space points q′ and q
in 3.3.1. is the vector between arbitrary u -simultaneous occurrences of q′ and
q . Indeed, if x′ ∈ q′ and x ∈ q such that x′−x ∈ Su then πu ·(x′−x) = x′−x .

3.6. Standard splitting of spacetime

3.6.1. Let us take a standard inertial frame u .
This inertial frame assigns to every world point x the u -time point τu(x),

the set of world points u -simultaneous with x :

τu(x) = x+ Su,

as well as the u -space point Cu(x) that x is incident with:

Cu(x) = x+ u⊗ T.

It is worth listing the following relations regarding the affine structures of Tu

and of Su as well as the mappings τu : M → Tu and Cu : M → Su :
(i) (y + Su)− (x+ Su) = −u · (y − x) (x, y ∈ M),
(ii) (x+ x+ Su) = (x+ Su)− u · x (x ∈ M, x ∈ M),
(iii) x+ Su = y + Su if and only if y − x is g -orthogonal to u,
and
(iv) (x′ + u⊗ T)− (x+ u⊗ T) = πu · (x′ − x) (x′, x ∈ M),
(v) (x+ x) + u⊗ T = (x+ u⊗ T) + πu · x (x ∈ M, x ∈ M),
(vi) x+ u⊗ T = x′ + u⊗ T if and only if x′ − x is parallel to u;
moreover,
(vii) (y + Su) ∩ (x+ u⊗ T) =

{

x+ u
(

−u · (y − x)
)}

(x, y ∈ M)
or, in another form,

(y + Su) ⋆ (x+ u⊗ T) = x+ u
(

−u · (y − x)
)
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3.6.2. It is trivial by the previous formulae (i) and (iv) that

τu : M → Tu, x 7→ x+ Su

is an affine map over τu = −u and

Cu : M → Su, x 7→ x+ u⊗ T

is an affine map over πu.

Definition.

ξu := (τu, Cu) : M → Tu × Su, x 7→ (x+ Su, x+ u⊗ T)

is the splitting of spacetime according to the standard inertial frame u .

Proposition. The splitting ξu is an orientation preserving affine bijection
over the linear map ξu = (τu,πu) (cf. 1.3.5) and

ξ−1u (t, q) = q ⋆ t (t ∈ Tu, q ∈ Su).

3.6.3. We can simplify a number of formulae and calculations by choosing a
u -time point to and a u -space point qo and vectorizing u -time and U -space:

Tu → T, t 7→ t− to,

Su → Su, q 7→ q − qo.

Choosing to and qo is equivalent to choosing a ‘spacetime reference origin’
o ∈ M: {o} ∈ qo ∩ to, τu(o) = to, Cu(o) = qo.

The pair (u, o) is called a standard inertial frame with reference origin. We
can establish the vectorized splitting of spacetime due to (u, o) :

ξu,o : M → T× Su, x 7→
(

τu(x)− τu(o), Cu(x)− Cu(o)
)

=

=
(

−u · (x− o), πu · (x− o)
)

.

Thus, if Oo denotes the vectorization of M with origin o then

ξu,o = ξu ◦Oo.

3.7. Exercise

Choose the zero in R
1+3 to be a reference origin for the standard reference

frame of the ‘basic observer’ (1,0) in the arithmetic spacetime model. Then the
vectorized splitting of spacetime is the identity map of R

1+3.
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4. Kinematics

4.1. Motions relative to a standard inertial frame

4.1.1. Consider a standard inertial frame u .
Take a world line function r.
Then the function τu ◦ r : T  Tu assigns u -time points to proper time

points of r. This function is piecewise twice differentiable and its derivative

(τu ◦ r)· = τu · ṙ = −u · ṙ

is everywhere positive (see 1.3.1). Consequently, τu ◦ r is strictly monotone
increasing, has a monotone increasing inverse

zu := (τu ◦ r)−1 : Tu  T

which gives the proper time points of r corresponding to u -time points; more-
over, its derivative comes from the inverse of the derivative of τu ◦ r :

żu(t) =
1

−u · ṙ(zu(t))
(t ∈ Domzu).

4.1.2. The history of a material point is described by a world line function r.
A standard inertial frame u perceives this history as a motion described by a
function ru assigning to u -time points the u -space points where the material
point is at that u -time point.

To establish this function, select a u -time point t; find the corresponding
proper time point zu(t) and the spacetime position r(zu(t)) of the material
point; look for the u -space point Cu

(

r(zu(t))
)

that the world point in question
is incident with.

Definition.

ru : Tu  Su, t 7→ Cu

(

r(zu(t))
)

= r(zu(t)) + u⊗ T

is called the motion relative to u, or the u -motion, corresponding to the world
line function r.

4.1.3. The question arises whether the history, i.e. the world line function,
can be regained from the motion. Later a positive answer will be given (Sec-
tion 4.4).

4.1.4. Some formulae and calculations become simpler if we use a vectoriza-
tion of u -time and u -space, i.e. we introduce a reference origin o (see 3.4.3.).
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Then τu ◦ r − τu(o) = −u · (r − o) : T  T is differentiable, its derivative
equals the derivative of τu◦r, hence it is strictly monotone increasing, its inverse

zu,o :=
(

−u · (r − o)
)−1

: T  T

is monotone increasing as well and

żu,o(t) =
1

−u · ṙ(zu,o(t))
(t ∈ Domzu,o).

The motion relative to (u, o) is

ru,o : T  Su, t 7→ ru(t)− Cu(o) = πu ·
(

r(zu,o(t))− o
)

.

4.2. Relative velocities

4.2.1. Proposition. Let u be a standard inertial frame and let r be a
differentiable world line function; then ru is differentiable and

ṙu =

(

ṙ

−u · ṙ − u

)

◦ zu.

Proof. Recalling that Cu : M → Su is an affine map over πu, we obtain

ṙu(t) =
d

dt
Cu

(

r
(

zu(t)
))

= πu · ṙ
(

zu(t)
)

żu(t);

then taking into account the formula in 4.1.1 for the derivative of zu, we easily
find the desired equality.

It is evident that, choosing a reference origin o, we have

ṙu,o =

(

ṙ

−u · ṙ − u

)

◦ zu,o.

4.2.2. Since ru describes the motion, relative to the standard inertial frame
u, of a material point, ṙu is the relative velocity function of the material point.
This suggests the following definition.

Definition. Let u and u′ be elements of V (1). Then

vu′u :=
u′

−u · u′ − u
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is called the standard relative velocity of u′ with respect to u.

Proposition. For all u,u′ ∈ V (1)
(i) vu′u is in Su

T
,

(ii) vu′u = −vuu′ if and only if u = u′,
(iii) |vu′u|2 = |vuu′ |2 = 1− 1

(u·u′)2
< 1.

Proof. (i) is trivial, (iii) is demonstrated by a simple calculation.
To show (ii) suppose

u′

−u · u′ − u =
u

−u′ · u − u′;

multiply the equality by u to have

0 =
−1

−u′ · u − u′ · u, (u′ · u)2 = 1.

According to the reversed Cauchy inequality (see 1.3.1) this is equivalent to
u = u′.

Earlier we obtained that Su and Su′ are different if and only if u 6= u′ and
in this case vu′u ⊗ T (vuu′ ⊗ T) is a one-dimensional linear subspace in Su

(Su′), orthogonal to Su ∩ Su′ (see 1.3.7) which offers an alternative proof of
(ii).

4.2.3. Let us take now two standard inertial frames with constant velocity
values u and u′. Then vu′u and vuu′ are the relative velocities of the observers
with respect to each other. Then (iii) of the previous proposition implies that
vu′u = 0 if and only if u = u′. Moreover, (ii) says that in contradistinction to
the nonrelativistic case and to our habitual ‘evidence’, the relative velocity of u′

with respect to u is not the opposite of the relative velocity of u with respect to
u′, except the trivial case u = u′.

It is worth emphasizing this fact because in most of the textbooks one takes it
for granted that vu′u and −vuu′ are equal: ‘if an observer moves with velocity
v relative to another then the second observer moves with velocity −v relative
to the first one’. This comes from the fact that vectors are given there by
components with respect to convenient bases and then the components of vu′u

and vuu′ become opposite to each other.
The reason of nonequality of vu′u and −vuu′ is that the spaces of different

inertial observers are affine spaces over different vector spaces.
However, we have a nice relation between the two vector spaces in question:

the Lorentz boost from u to u′ maps Su onto Su′ in a natural way and maps
vu′u into −vuu′ .

Having the equality
L(u′,u) · vu′u = −vuu′
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(see 1.3.8), we already know how to choose bases in Su and in Su′ to get the
mentioned usual relation between the components of relative velocities: take an
arbitrary ordered basis (e1, e2, e3) in Su and the basis

(

e′i := L(u′,u) · ei| i =
1, 2, 3

)

in Su′ . Now

if vu′u =

3
∑

i=1

viei, then vuu′ =

3
∑

i=1

(−vi)e′i.

4.2.4. We often shall use the equalities

−u · u′ = 1
√

1− |vu′u|2

and

u′ =
u+ vu′u

√

1− |vu′u|2

deriving from 4.2.2 (iii) and (i) and from the definition of vu′u.

4.2.5. The relative velocities in the nonrelativistic spacetime model form
a Euclidean vector space. Here the relative velocities with respect to a fixed
u ∈ V (1) form the unit open ball in the Euclidean vector space Su

T
:

Bu :=

{

v ∈ Su

T

∣

∣

∣

∣

|v|2 < 1

}

.

The set of all relative velocities is
⋃

u∈V(1)

Bu, a complicated subset of M

T
,

which does not admit a vector space structure.

4.3. Addition of relative velocities

4.3.1. As a consequence of the structure of relative velocites, ‘addition of
relative velocities’ is not a vector addition, i.e. if u, u′, u′′ are different
elements of V (1) then—in contradistinction to the nonrelativistic case—we have

vu′′u 6= vu′′u′ + vu′u.

The left-hand side is an element of Su

T
; the right-hand side is the sum of

elements in S
u′

T
and in Su

T
which indicates that they cannot be, in general,

equal.
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We might think that the convenient Lorentz boost helps us, i.e. we get an
equality if vu′′u′ is replaced with L(u,u′) · vu′′u′ ; however,

vu′′u 6= L(u,u′) · vu′′u′ + vu′u

because the length of the vector on the right-hand side can be greater than 1 .

4.3.2. Nevertheless, the relative velocity on the left hand side of the above
inequality is a linear combination of the relative velocities on the right hand side.
For the sake of brevity, let us introduce the notations

v′′ := vu′′u, v′ := L(u,u′) · vu′′u′ , v := vu′u,

α := −u′ · u =
1

√

1− |v|2
, β := −u′′ · u′ = 1

√

1− |v′|2
,

γ := −u′′ · u =
1

√

1− |v′′|2
= αβ(1 + v · v′).

Then we obtain by straightforward calculations that

v′′ =
β

γ
v +

α(β + γ)

γ(1 + α)
v′.

4.3.3. If v′ is parallel to v , we get the most frequently cited Einstein formula

v′′ =
v + v′

1 + |v| |v′| .

4.4. History regained from motion

4.4.1. Given a motion relative to a standard inertial frame u, i.e. a piecewise
twice differentiable function m : Tu  Su, can we determine the corresponding
world line function r such that m = ru?

Since ru = Cu ◦ r ◦ zu and τu ◦ r is the inverse of zu, we have

(1Tu
, ru) = (τu ◦ r ◦ zu, Cu ◦ r ◦ zu) = ξu ◦ r ◦ zu.

Consequently, given the motion m,

r := ξ−1u ◦ (1Tu
,m) ◦ z−1u
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will be the corresponding world line function.
Similarly, if the vectorized motion m : T  Su is known, then

r := ξ−1u,o ◦ (1T,m) ◦ z−1u,o

is the required world line function which can be given by a simple formula:

t 7→ o+m
(

z−1u,o(t)
)

+ uzu,o(t).

4.4.2. The previous formulae are not satisfactory yet because zu and zu,o

are defined by u and (u, o) together with the world line function r to be found;
we have to determine them—or their inverse—from u, (u, o) and the motion
m or m.

Equalities in 4.1.1 and 4.1.4 result in

(

z−1u

)·
=

1
√

1− |ṁ|2
,

(

z−1u,o

)·
=

1
√

1− |ṁ|2
.

ṁ and ṁ are given functions, hence z−1u and z−1u,o can be obtained by a
simple integration.

4.4.3. Let us consider the ‘basic reference frame’ (1,0) with reference origin
(0,0) in the arithmetic spacetime model (see Exercise 3.5). A motion is given
by a function m : R  R

3. Let h : R  R be a primitive function of 1√
1−|ṁ|2

.

Then R  R×R
3, t 7→

(

h(t),m(h(t))
)

is the world line function regained from
the motion m.

4.5. Relative accelerations

Let r be a world line function and let u be a standard inertial frame. Then
ru is twice differentiable and a differentiation of the equality in 4.2.1 yields

r̈u =

(

1

(u · ṙ)2
(

1M +
ṙ ⊗ u

−u · ṙ

)

· r̈
)

◦ zu.

If a reference origin o is chosen as well, r̈u,o is given by a similar formula,
with zu,o instead of zu.

We see that, in contradistinction to the nonrelativistic case, the relative
acceleration does not equal the absolute one. Of course, the relative acceleration

takes values in Su

T⊗T , the absolute acceleration takes values in
Sṙ(t)

T⊗T .
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4.6. Some particular motions

4.6.1. Take the inertial world line function

r(t) = xo + uot (t ∈ T) (∗).

Consider a standard inertial frame u.
Then

żu =
1

−u · uo

(see 4.1.1) from which we get immediately

zu(t) =
t− to
−u · uo

for some to ∈ Tu Consequently (see 3.4.1(v)),

ru(t) =

(

xo + uo
t− to
−u · uo

)

+ u⊗ T =
(

xo + u⊗ T
)

+
πu · uo

−u · uo
(t− to) =

= qxo
+ vuou(t− to) (t ∈ Tu),

where qxo
:= xo + u⊗ T is the u -space point that xo is incident with.

This is a uniform and rectilinear motion.
Conversely, suppose that we are given a uniform and rectilinear motion rela-

tive to the inertial frame, i.e. there are a q ∈ Su, a to ∈ Tu and a v ∈ Su

T
such

that
ru(t) = q + v(t− to) (t ∈ Tu).

Then letting xo denote the unique world point in the intersection of q and
to and putting uo := u+v√

1−|v|2
, the world line function of form (∗) gives rise to

the given motion.

4.6.2. Take the uniformly accelerated world line function

r(t) = xo + uo
sinhαt

α
+ ao

coshαt− 1

α2
(t ∈ T)

where α := |ao|; then

ṙ(t) = uocoshαt+ ao
sinhαt

α
.

Consider a standard inertial frame u. The formulae will be more tractable
by choosing a reference origin o. Then

z−1u,o(t) = −u · (r(t)− o) =

= −u · (xo − o)− u · uo
sinhαt

α
− u · ao

coshαt− 1

α2
(t ∈ T).
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Let us consider the special case u · ao = 0; then

zu,o(t) =
arsinhα t−to

−u·uo

α
(t ∈ T),

where to := −u · (xo − o). Thus

ru,o(t) = πu ·



xo − o+ uo
t− to

−u · uo
+ ao

√

1 + α2 (t−to)2
(u·uo)

2 − 1

α2



 =

= qo + vuou(t− to) + bo

√

1 + β2(t− to)2 − 1

β2
(t ∈ T),

where

qo := πu · (xo − o), bo := ao

(

1− |vuou|2
)

, β2 := α2
(

1− |vuou|2
)

.

4.7. Standard speed of light

4.7.1. We wish to determine the motion of a light signal with respect to a
standard inertial frame. The procedure will be similar to that in Sections 4.1
and 4.2.

We introduce the notation

V (0) :=

{

w ∈ M

T

∣

∣

∣

∣

w2 = 0, w ⊗ T
+ ⊂ L

→
}

.

The elements of V (0) are future directed lightlike vectors of cotype T.
Though the notation is similar to V (1), observe a significant difference: if two
elements in V (1) are parallel then they are equal; on the other hand, if w is in
V (0) then αw, too, is in V (0) for all α ∈ R

+.

Let u be a standard inertial frame. Let us consider a light signal F, i.e. a
straight line directed by a vector in V (0). The motion of the light signal with
respect to the observer is described by

fu : Tu → Su, t 7→ (F ⋆ t) + u⊗ T

where F ⋆ t denotes the unique element in the intersection of the straight line F
and the hyperplane t.
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If t, s ∈ Tu , then t − s = −u · (F ⋆ t − F ⋆ s) by the definition of the affine
structure of Tu (see 3.4.2); then we easily find that

F ⋆ t− F ⋆ s = w
t− s

−u ·w ,

hence

fu(t)− fu(s) = πu · (F ⋆ t− F ⋆ s) =

(

w

−u ·w − u

)

(t− s).

Thus the light signal moves uniformly on a straight line relative to the ob-
server.

4.7.2. Definition. Let w ∈ V (0) and u ∈ V (1). Then

vwu :=
w

−u ·w − u

is the standard relative velocity of w with respect to u.

Proposition. vwu is an element of Su

T
and

|vwu| = 1.

Observe that given an arbitrary u , the lightlike vectors w and αw have the
same relative velocities with respect to u.

We do not define the relative velocity of u with respect to w.
According to the previous proposition, the magnitude of the standard relative

velocity is the same number, namely 1, for every light signal and every inertial
observer.
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Thus we obtained explicitly that the given synchronization procedure of in-
ertial observers by light signals does result in the one-way speed of light being
equal the two-way speed.

4.7.3. Recall that relative velocity values have magnitude but two relative
velocity values need not have an angle between themselves; however, relative
velocities with respect to the same element of V (1) do form an angle.

Now we look for the relation between certain angles formed by relative velocity
values. The physical situation is similar to that in I.6.2.3. A car is going on a
straight road and it is raining. The raindrops hit the road and the car at different
angles relative to the direction of the road. What is the relation between the two
angles? Now we can treat another question, too, considering instead of raindrops
light beams (continuous sequences of light signals) arriving from the sun.

Let u and u′ be different elements of V (1) (representing the absolute
velocity values of the road and of the car, respectively). If w is an element
of V (1)∪V (0) (representing the absolute velocity value of the raindrops or the
absolute direction of the light beam), w 6= u, w 6= u′, then

θ(w) := arccos
vwu · vu′u

|vwu| |vu′u|
, θ′(w) := arccos

vwu′ · (−vuu′)

|vwu′ | |vuu′ |

are the angles formed by the relative velocity values in question. A simple
calculation verifies that

cos θ(w) =

|v
wu′ |
|vwu| cos θ

′(w) + |vu′u|
|vwu|

1 + |vwu′ | |vuu′ | cos θ′(w)
.

If w ∈ V (0) then |vwu| = |vwu′ | = 1 and

cos θ(w) =
cos θ′(w) + |vuu′ |
1 + |vuu′ | cos θ′(w)

.

This formula is known as the aberration of light : two different inertial ob-
servers see the same light beam under different angles with respect to their
relative velocities; the angles are related by the above formula.

4.8. Motions relative to a nonstandard inertial reference frame

4.8.1. Consider an inertial reference frame (us,u) . Take an inertial world
line C directed by u′ ∈ V (1). The corresponding history of a material point is
described by the reference frame as a motion Tus

→ Su .
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Let t, s be Tus
-instants. The material point at s and at t meets the u -

space points q and p ; let x and y be the occurrences of meetings, respectively.
Thus, the velocity of this motion is

vu′(us,u) =
p− q

(t− s)u
=

π · (y − x)

−us · (y − x)
(−us · u) =

π · u′
−us · u′

(−us · u) =

= vu′u

(−u · u′)(−us · u)
−us · u′

where, of course, vu′u is the standard velocity of u′ with respect to u .
The motion of an inertial material point with respect an arbitrary inertial

reference frame is rectilinear and uniform.

4.8.2. The same formula holds for a light signal directed by w :

vw(us,u) = vwu

(−u ·w)(−us · u)
−us ·w

.

To make our result more apparent, we write

us =
u+ vsns
√

1− v2s
, w = u+ nw

where ns and nw are unit vectors of cotype T in the u -space, indicating the
‘direction of the synchronization’ and the direction of the path of the light signal,
and vs is a read number describing how much the inertial reference frame (us,u)
deviates from a the standard one. Then we have

vw(us,u) = vwu

1− vsns · nw
√

1− v2s
.

The one-way light speed is different in different directions (except the standard
case vs = 0); the least value is 1

1+vs

, the greatest one is 1
1−vs

.

4.9. Exercises

1. Treat the motion, relative to inertial reference frames, corresponding to an
arbitrary world line function r .

2. Estimate the one-way light speed from Budapest to London and from
London to Budapest (distance: 1450 km) if the synchronization is established
in such a way that the standard 12 o’clock in London and the standard 12,0005
o’clock in Budapest are simultaneous.
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5. Some comparisons between different spaces and times

5.1. Physically equal vectors in different spaces

5.1.1. It is an important fact that the spaces of different global inertial
observers are affine spaces over different vector spaces. Thus it has no meaning,
in general, that a straight line segment (a vector) in the space of an inertial
observer coincides with a straight line segment (with a vector) in the space of
another inertial observer.

Let us consider two different global inertial observers with constant velocity
values u and u′, respectively. Their spaces are affine spaces over Su and Su′ ,
respectively. We know that Su ∩Su′ is a two-dimensional subspace, orthogonal
to vu′u and to vuu′ .

If a vector between two points in the u -space lies in Su ∩ Su′ then we can
find two points in the u′ -space having the same vector connecting them. We
have troubles only with vector outside this two-dimensional subspace.

To relate other vectors, too, we start from the rational agreement that ‘if
you move with respect to me in some direction in my space then I move with
respect to you in the opposite direction in your space’. This suggests that the
mathematically different vectors λvu′u in Su and −λvuu′ in Su′ could be
considered the ‘same’ from a physical point of view for all λ ∈ T. More generally,
every vector in Su has the form

λvu′u + q (λ ∈ T, q ∈ Su ∩ Su′)

and every vector in Su′ has the form

λ′vuu′ + q′ (λ′ ∈ T, q′ ∈ Su ∩ Su′).

The observers agree that two such vectors are considered to be the ‘same’ if
and only if

λ′ = −λ, q′ = q.

We have a nice tool to express this agreement: the Lorentz boost.

Definition. The vectors q′ in Su′ and q in Su are called physically equal
if and only if

L(u′,u) · q = q′.

We emphasize that the equality of vectors in different observer spaces makes
no sense in general; we agreed to define it conveniently.

5.1.2. To be physically equal in different observer spaces, according to our
convention, is a symmetric relation, but is not a transitive relation.

Indeed, if q′ = L(u′,u) · q then q = L(u,u′) · q′ : the relation is symmetric.
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However, if u, u′ and u′′ are not coplanar, then there are q, q′ and q′′ in
such a way that

q′ = L(u′,u) · q, q′′ = L(u′′,u′) · q′,
q′′ is not parallel to L(u′′,u) · q

(Exercise 1.9.6); q′ is physically equal to q, q′′ is physically equal to q′, but
q′′ is not physically equal to q : the relation is not transitive.

In particular, ‘if a straight line in your space is parallel to a straight line in
my space and a line in his space is parallel to your line then his line need not be
parallel to mine’.

This is a rather embarrassing situation but there is no escape. The truth of
the common sense that the standard relative velocity of an observer with respect
to another is physically equivalent to the opposite of the other standard relative
velocity and the transitivity of parallelism exclude each other.

5.2. How to perceive spaces of other reference frames?

5.2.1. In 5.1.1 an agreement is settled what equality—in particular, parallel-
ism—of vectors in different observer spaces means.

Now the question arises how a straight line segment in the space of an inertial
observer is perceived by another observer. The question and the answer are
formulated correctly as follows (cf. I.7.1.2). It is most important that the
perception does not depend only on the observer: the synchronization is involved,
too.

Let uo and u be standard inertial frames. Let Ho be a subset (a geomet-
rical figure) in the uo -space (this is independent of any synchronization). The
corresponding figure perceived by the reference frame u at the u -instant t—
called the trace of Ho at t in Su—is the set of u -space points that coincide at
t with the points of Ho :

{q ⋆ t+ u⊗ T | q ∈ Ho}
where q ⋆ t denotes the unique world point in the intersection of the line q and
the hyperplane t.

Introducing the map

Pt : Suo → Su, q 7→ q ⋆ t+ u⊗ T

we see that the trace of Ho at t equals Pt[Ho]. It is quite easy to see (recall the
definition of subtraction in the observer spaces) that

Pt(q2)− Pt(q1) = q2 ⋆ t− q1 ⋆ t = q2 − q1 + uo
u · (q2 − q1)

−uo · u
=

= Puuo · (q2 − q1),
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where Puuo is the projection onto Su along uo ⊗ T (see Exercise 1.9.7).

!t-e z

clz*, t

Since the restriction of Puuo
onto Suo

, denoted by Auuo
, is a linear bijection

between Suo
and Su, Pt is an affine bijection over Auuo

.

5.2.2. We can easily find that

Auuo
· q = q if q ∈ Su ∩ Suo

i.e. if q is orthogonal to vuuo
,

Auuo
· vuuo

= −
√

1− |vuuo |2vuou.

The linear bijection Auuo resembles the restriction onto Suo of the Lorentz
boost L(u,uo); an essential difference is that it maps vuuo

into −vuou mul-
tiplied by a real number less than 1. Consequently, Auuo

is not an orthogonal
map; it does not preserve either lengths or angles which is illustrated as follows:

SSSSSS SSSSSS

TTTTTT

SSSSSS SSSSSS

TTTTTT

5.2.3. Every figure in the uo -space is of the form qo +Ho, where qo ∈ Suo

and Ho ⊂ Suo ; then Pt[qo + Ho] = Pt(qo) + Auuo [Ho]. Consequently, the
perceived figure and the original one are not congruent, in general.

If Lo is a straight line segment in the uo -space, then its trace is a straight
line segment, too. However, the perceived segment and the original one are not
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parallel, in general: if Lo is directed by the vector eo, Lo = qo + Reo, then
Pt[Lo] is directed by Auuo

· eo.
Auuo

· eo is parallel to eo, by definition, if there is a real number λ such
that

Auuo
· eo = λL(u,uo) · eo

which occurs if and only if eo is in Su ∩ Suo or in vuuo ⊗ T.
Thus a straight line segment Lo in the uo -space is perceived by u to be

parallel to Lo if and only if Lo is
— either orthogonal to vuuo

— or parallel to vuuo
.

5.2.4. Let L1 and L2 be crossing straight lines in the uo -space. Then u

perceives at every u -instant that they are crossing straight lines. However, the
angle formed by L1 and L2 and the angle formed by the perceived straight lines
differ, in general.

Let L1 and L2 be directed by e1 and e2, respectively. If θo denotes the
angle formed by L1 and L2 then

cos θo =
e1 · e2
|e1| |e2|

.

For the angle θ perceived by u we have

cos θ =
(Auuo · e1) · (Auuo · e2)
|Auuo

· e1| |Auuo
· e2|

=
cos θo − α1α2

√

1− α2
1

√

1− α2
2

,

where
α1 :=

u · e1
−(uo · u)|e1|

= vuuo ·
e1

|e1|
,

α2 :=
u · e2

−(uo · u)|e2|
= vuuo ·

e2

|e2|
.

Thus θ and θo are equal if and only if α1 = α2 = 0, i.e. if and only if both
e1 and e2 are orthogonal to the relative velocity vuuo .

5.3. Lorentz contraction

5.3.1. A straight line segment orthogonal to the relative velocity vuuo
in the

uo -space is perceived by u as a straight line segment parallel to the original one
and having the same length.

A straight line segment parallel to the relative velocity vuuo
in the uo -space

is perceived by u as a shorter straight line segment parallel to the original one.
This is the famous Lorentz contraction which will be detailed as follows.
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A straight line segment in the uo -space can be represented by one of its
extremities and the vector between its extremities. Since parallel segments are
perceived in a similar way, we can consider only the vector eo ∈ Suo

between
the extremities.

The perception of eo by u yields e := Auuo ·eo. A simple calculation shows
that

|e|2 = |eo|2 −
(u · eo)2

(u · uo)
2 = |eo|2 − (vuuo · eo)2.

The perceived length, in general, is smaller than the proper one.

More closely, the perceived length equals the original one if and only if the
segment is orthogonal to the relative velocity; otherwise the perceived length is
smaller than the original one. The perceived length is the smallest if the segment
is parallel to the relative velocity:

|e| = |eo|
√

1− |vuuo |2 if eo is parallel to vuuo .

5.3.2. One often says that the travelling length is smaller than the proper
(or rest) length: ‘a moving rod is contracted, becomes shorter’.

Then one continues: let us imagine two rods having the same proper length
and resting in the spaces of different observers; both observers will perceive the
other rod to be shorter than its own one.

A number of paradoxes can arise from this situation: ‘I say that your rod is
shorter then mine, you say that my rod is shorter than yours; which of us is
right?’

The paradox stems from the fact that usually one does not speak about
synchronizations. And the answer is: both of us are right if both of us apply our
different standard synchronizations. It is most important that the trace, as it
is defined, depends on a synchronization. The observer u is not obliged to use
its own standard synchronization; if it uses the uo -synchronization then there
is no contraction.

We emphasize that the Lorentz contraction formula does not state any real
physical contraction at all.

5.3.3. Suppose you do not believe that the contraction is illusory and you
want determine experimentally which of us is right. The experiment seems
extremely simple: you catch my rod (which is moving relative to you) and having
stopped it you put it close to your one and then you will see which of them is
shorter.

We consider an ideal case: you seize the moving rod all at once so that it
stops instantaneously.
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Let us translate the situation into our mathematical language. My rod is
described by a line segment in the uo -space:

Lo = qo + [0, 1]eo

and eo is taken to be parallel to vuuo
.

Then the rod has the length (the proper length) do := |eo| with respect to

uo and the length (the travelling length) d :=

√

1− |vuuo
|2do perceived by u.

At a u -instant t the history of each point of the rod will be changed into an
inertial history with the velocity value u; then you get

L = {q ⋆ t+ u⊗ T | q ∈ Lo} = q + [0, 1]e,

where
q := qo ⋆ t+ u⊗ T, e := A(u,uo) · eo.

The segment (the seized rod) L is in the u -space and has the length |e| = d,
the length of Lo perceived by u.

5.3.4. You can relax: you showed that my rod is ‘really’ shorter than yours.
But then you think that I can execute a similar experiment to show that your
rod is ‘really’ shorter than mine. Again the same disturbing situation.

To solve the seeming contradiction, note that in your experiment your rod
continues to exist without any effect on it, while my rod is affected by your
seizure, and in my experiment your rod is affected. The seizure means a physical
change in the rod which causes contraction.

Let us analyze the problem more thoroughly.
(i) The rod resting in the uo -space moves relative to the standard inertial

frame u which perceives that the length of the rod is d. At a u -instant t the
observer u seizes the rod, stops it, and discovers that this rod has the same
length d. According to u, the rod did not change length during the seizure, in
other words, the observer u sees the rod as rigid and this is well understandable
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from its point of view because the rod is stopped at an instant with respect to
u, i.e. every point of the rod stops simultaneously with respect to the standard
synchronization of u.

(ii) The rod rests in the uo -space. As u seizes the rod, the observer uo

sees that the rod begins to move but not instantaneously with respect to uo :
the points of the rod begin the movement at different uo -instants! First the
backward extremity (from the point of view of the relative velocity of u with
respect to uo) starts and then successively the other points, at last the forward
extremity. Evidently, uo sees the rod is not rigid, it contracts during the time
interval of seizure.

(iii) The rod experiences that it moves relative to u which begins to stop it in
such a way that first the forward extremity (from the point of view of the relative
velocity of the rod (i.e. of uo) with respect to u) stops and then successively the
other points and at last the backward extremity. The rod experiences contraction
during the procedure of seizure.

We have examined three standpoints. Two of them concern inertial frames
and the third concerns a noninertial one.

5.3.5. The ideal case that every point of the rod changes its velocity abruptly
at a u -instant can be replaced by the more realistic one that every point of the
rod changes its velocity from uo to u during a u -time interval, as the following
Figure shows.

5.3.6. We emphasize again that ‘stopping instantaneously’ in the previous
explanation refers to a u -instant.

The reader is asked to analyze the problem that the rod is seized by u

instantaneously with respect to a uo -instant (i.e. every point of the rod is
stopped by u simultaneously with respect to the standard synchronization of
uo).
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5.4. The tunnel paradox

5.4.1. Consider a train and a tunnel such that the proper length of the train
is greater than the proper length of the tunnel. Let the travelling train enter the
tunnel.

The observer resting with respect to the tunnel perceives Lorentz contraction
on the train, thus it sees that, if the velocity of the train is high enough, the
train is entirely in the tunnel during a time interval.

On the contrary, the observer resting with respect to the train perceives
Lorentz contraction on the tunnel, thus it experiences that the train is never
entirely in the tunnel.

Which of them is right? We know that both. However, it seems to be a very
strange situation because the observer resting with respect to the tunnel says
that ‘when the train is entirely inside the tunnel, I close both gates of the tunnel,
thus I confine the train in the tunnel, I am right and the observer in the train is
wrong’.

5.4.2. On the basis of our previous examination we can remove the paradox
easily.

In the assertion above ‘when’ means that the gates become closed simultane-
ously with respect to the tunnel.

From the point of view of the train the gates will not be closed simultaneously:
first the forward gate closes and later the backward gate. When the forward gate
closes, the forepart of the train is in the tunnel (the back part is still outside),
when the backward gate closes, the back part of the train is in the tunnel (the
forepart is already outside).

‘I confined the train in the tunnel’ means that the closed gates hinder the
train from leaving the tunnel. But how do they do this? The train is moving;
it must be stopped to be confined definitely in the tunnel: some apparatus in
the tunnel brakes the train or the train hits against the front gate which is so
strongly closed that it stops the train. In any case, as we have seen, stopping
means a real contraction of the train, consequently, it finds room in the tunnel;
however, then the train ceases to be inertial in all its existence, that is why the
assertion ‘I am never entirely in the tunnel’ (true for an inertial train) will be
false.

5.5. No measuring rods

5.5.1. A physical observer makes measurements in his space: measures
the distance between two points, the length of a line, etc. In practice such
measurements are based on measuring rods: one takes a rod, carries it to
the figure to be measured, puts it consecutively on convenient places . . . One
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supposes that during all this procedure the rod is absolutely rigid: it remains a
straight line segment and its length does not change.

This assumption is justified nonrelativistically. But we have seen previously
that the rod when seized to be carried elsewhere changes its shape depending on
how it is moved: in the special relativistic spacetime model the absolute rigid
rod is not a meaningful notion.

5.5.2. Spacetime measurements in the nonrelativistic case are based on
chronometers (showing the absolute time) and measuring rods (that are ab-
solutely rigid).

Spacetime measurements in the special relativistic case are based on chrono-
meteres (showing their proper times) and light signals.

5.6. Time dilation

5.6.1. Recall that given an absolute velocity value u , u -time is an affine
space over T. Since T is oriented, later and earlier makes sense between u -
instants: t is earlier than s (s is later than t) if s− t is positive.

A unique u -instant τu(x) is assigned to every world point x. Consequently,
we can decide which of two arbitrary world points is later according to u.

The u -time interval between the world points x and y is

tu(x, y) := τu(y)− τu(x) = −u · (y − x).

The world point y is later than the world point x (x is earlier than y)
according to u if the u -time interval between x and y is positive.

Neither of x and y is later according to u if and only if they are simultaneous
according to u.

If y is futurelike with respect to x (i.e. if they are lightlike or timelike
separated) then y is later than x according to all inertial observers.

5.6.2. Fix two different world points x and y on an inertial world line with
absuolute velocity u′ . Then tu′(x, y) = |y − x| is the inertial time between x
and y , and y − x = u′tu′(x, y).

Consequently, we have the following formula for the u -time interval between
x and y :

tu(x, y) = −(u · u′)tu′(x, y) =
tu′(x, y)

√

1− |vuu′ |2
.

tu(x, y) = tu′(x, y) if and only if u = u′ . In any other cases tu(x, y) is
greater than t′u(x, y).
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5.6.3. Let us illustrate our result as follows.
Let us consider an inertial (pointlike) chronometer. Let x and y be the occur-

rences between which the chronometer measures one hour. An inertial observer,
moving relative to the chronometer, and using its own standard synchronization
perceives more than one hour between the occurrences. This is the famous time
dilation.

The chronometer and the observer move with respect to each other. In usual
formulations one considers that the observer is at rest and the chronometer is
moving and one says that ‘a moving clock works more slowly than a clock at
rest’.

Then one continues: let us imagine two clocks resting in the spaces of different
observers; both of them will perceive the other clock working more slowly.

A number of paradoxes can arise from this situation: ‘I say that your clock
works more slowly, you say that my clock works more slowly; which of us is
right?’

The paradox comes from the fact that usually one does not take the dif-
ferent synchronizations entering in the problem into account. The observer
u is not obliged to use its own standard synchronization; if it uses the uo -
synchronization, then there is no time dilation.

We emphasize that the time dilation formula does not state any real physical
dilation of time at all.

5.7. The twin paradox

5.7.1. Let us consider two twins, Alice and Bob. Both are launched in
separate missiles. Alice says that Bob is moving relative to her, hence his time
passes more slowly and she observes that when she is forty then he is only twenty.
On the other hand, Bob says that Alice is moving relative to him and he observes
that when he is forty then she is only twenty. Which of them is right?

Keeping in mind that only illusory and no physical time dilations are in
question, we can be convinced that both are right. How can it be possible?

The paradox is based on our everyday concept of absolute time, i.e. that
‘when’ has an absolute meaning. However, the first ‘when’ means simultaneity
with respect to Alice and the second ‘when’ means simultaneity with respect to
Bob; we know well that these simultaneities are different.

5.7.2. Suppose the twins do not believe that time dilation is illusory and
they want an experimental test: let them meet and then a simple inspection will
determine which of them is older.

However, the time dilation formula concerns inertial frames. It is excusable
that both missiles are considered to be inertial. But if they remain inertial then
the twins never meet. If the twins meet, then at least one of them ceases to be
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inertial. Anyhow, the mutually equivalent situation of the twins breaks. It will
not be true that both are right saying ‘when I am forty then my twin is only
twenty’.

AliceAliceAliceAliceAliceAlice

BobBobBobBobBobBob

Let the twins meet. Both existed somehow between the two occurrences, the
departure and the arrival, and their proper times passed during their existence.
The times elapsed depend on their existence and need not be equal. It can hap-
pen that Alice is older than Bob; e.g. if Alice remains inertial (the inertial time
between two world points is always greater than a time passed on a noninertial
world line, see 2.2.3). This difference of proper times is an absolute fact and has
nothing to do with the illusory time dilation.

It is important to distinguish between illusory time dilation concerning two
standard inertial frames and actually different times passed along two world lines
between two world points.

5.8. Experiments concerning time

5.8.1. Cosmic rays produce unstable particles called muons in the ionosphere.
These particles have a well-defined average lifetime T . Some of those muons
reach the Earth. Detecting the magnitude v of their velocity in the space of
the Earth with respect to the standard synchronization and knowing the height
d of the place where they are created, we can calculate the time of their travel
(uniform and rectilinear motion seems a good approximation). It turns out that
the time of travel d/v exceeds the lifetime T of muons. Thus it seems to the
Earth that the moving muons live more than their lifetime.

The muon in question exists inertially thus it ‘feels’ the inertial time to of its
travel which is less than its lifetime; the Earth (considered as a standard inertial
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frame) perceives a longer time (time dilation):

d

v
=

to√
1− v2

> T > to.

It is interesting that someone can argue in another way, too. The muon
perceives the distance d

√
1− v2 between its birth place and the Earth (Lorentz

contraction), hence it travels for to = d
√
1−v2

v .

5.8.2. Let us suppose that, simultaneously with the muon in the ionosphere
(muon I), a muon is produced and remains resting on the Earth (muon E).
According to what has been said, muon E decays before muon I arrives at the
earth: muon E ‘sees’ that time passes more slowly for muon I.

Of course, muon I ‘sees’ as well that time passes more slowly for muon E. Then
one could suspect a contradiction (paradox): according to muon I, muon E would
be alive at the end of the travel of muon I.

There is no contradiction: simultaneously in the present context means si-
multaneously according to the earth, i.e. to muon E, and muon I is produced
simultaneously according to muon E. Then, according to muon I, the other muon
is born earlier; consequently, muon I, though sees time passing more slowly for
muon E, will observe that the life of muon E ends before muon I meets the earth.

simultoneity
occording to muon E

birth of rnuon I

birth of
muon E

simuttoneity
occording to
muon I

5.8.3. Experiments with unstable particles revolved in an accelerator show
the physical fact that different times can pass between two world points along
different world lines, as it will be explained.

Suppose two muons are produced ’at the same time and at the same place’
i.e. a single world point corresponds to their birth. One one of them (muon R)
remains resting beside the accelerator, the other (muon A) is constrained to
revolve in the accelerator. The muons meet several times. Then muon R decays,
but muon A continues to revolve and meets again the void place of muon R; we
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see (resting with muon R) as if muon A had a longer life time. Nevertheless,
both muons have the same proper lifetime T.

The world line of muon R is inertial while muon A has a noninertial world line;
the two world lines intersect each other several times. Different times tR and
tA pass along the different world lines of the muons between their two successive
meetings. Inertial time is always greater than a noninertial: tA < tR. That is
why there can be a natural number n such that ntA < T < ntR, i.e. muon R
does not last until the n -th meeting but muon A survives it.

decoy of
muori A

decoy of
muon R

birth of
tl'€ rnuons

5.9. Exercises

1. Prove that the addition formula 4.3.2 of relative velocities remains valid
for u,u′ ∈ V (1), u′′ ∈ V (0).

2. Take the motion treated in 4.6.2. Demonstrate that

lim
t→∞

ṙu,o(t) = vuuo
+

bo

β
, lim

t→∞
|ṙu,o(t)| = 1.

3. Consider the uniformly accelerated world line treated in 4.6.2. Try to
describe the corresponding motion relative to an inertial observer with constant
velocity value u which is not g -orthogonal to ao.

4. Let x and y be different world points simultaneous with respect to an
affine synchronization (x : a plane lands in London at 12:00; y : a train leaves
Paris at 12:00). Then there is an affine synchronization according to which x
is later than y and there is an affine synchronization according to which x is
earlier than y .

5. We have a clock that can measure a proper time period of 10−8s. At which
relative velocity magnitude can we perceive a time dilation in a minute? (Keep
in mind that 1 ≡ 2.9979 . . . · 108m/s.)

6. Let u ∈ V (1), v ∈ Su

T
, |v| < 1. Let to ∈ T

+. Consider the world line
function r that passes through the world point xo and

ṙ(t) = u+v sin(t/to)√
1−|v|2 sin2(t/to)

(t ∈ T);(i)

ṙ(t) = u

√

1 + |v|2 sin2(t/to) + v sin(t/to) (t ∈ T).(ii)
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Prove that the inertial world line xo+u⊗T and the world line Ranr intersect
each other in xo + 2πnto for all integers n.

Evidently, to is the time passed along Ranr between two consecutive inter-
sections. Estimate the time passed between two consecutive intersections along
the inertial world line.

6. Some special noninertial observers ∗

6.1. General reference frames

6.1.1. As said, in general, the treatment of noninertial observers in the
relativistic spacetime model requires the theory of pseudo-Riemannian manifolds.

Fortunately, to describe some special and important aspects of noninertial
special relativistic observers, we can avoid the theory of manifolds; nevertheless,
we shall meet some complications.

First of all, together with observers, we always must deal with synchroniza-
tions, too. The first question is how a convenient synchronization can be assigned
to an observer. The answer is immediate for an inertial observer: by light signals.
Is a similar synchronization procedure satisfactory for a noninertial observer?

Let us take two space points q and q′ of a noninertial observer U . A light
signal starting at the world point x− incident with q meets q′ at y; the reflected
light signal meets q at x+. Then the world point x incident with q would be
considered simultaneous with y if the proper time passed between x− and x
equals the proper time passed between x and x+.

Unfortunately, the synchronization defined by light signals starting from q′

does not necessarily coincide with the synchronization defined by light signals
starting from q (see Exercise 6.9.12).
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Let us accept that synchronization defined by light signals works well ‘in-
finitesimally’. This means that the U -line passing through the world point x,
in a neighbourhood of x, can be approximated by a straight line directed by
U(x). Thus we can say that in a neighbourhood of x the world points approx-
imately simultaneous with x according to U are the elements of x + SU(x).
The smaller the neighbourhood, the better the approximation we get. A clear
reasoning leads us then to the idea that world points simultaneous with each
other according to U would constitute a hypersurface whose tangent space at
every x equals SU(x). Such a definition of synchronization does not depend on
the U -space point (U -line) from which light signals start. However, it may
happen that there is no such hypersurface at all (see 6.7.6)! And even if such
hypersurfaces exist, it may happen that the proper times passed between two
such hypersurfaces along different U -lines are different (see 6.6.5), thus the syn-
chronization is not satisfactory in all respects.

Definition. An observer U is regular if there is a (necessary unique) syn-
chronization SU such that the tangent space of τSU

(x) at x equals SU(x) .

6.1.2. In general, there is no natural synchronization with respect to a non-
inertial observer; consequently, there is no natural time of such an observer.
Nevertheless, of course, a noninertial observer can choose some sort of artificial
synchronization (e.g. chooses one of its space points and makes the synchroniza-
tion by light signals relative to this space point; on the Earth one makes such a
synchronization relative to Greenwich).

6.2. Distances in observer spaces

6.2.1. How distances are measured in an observer space? Let U be an
observer and suppose a synchronization S is given on the domain of U . We
would like to determine the distance between two U -space points q and q′ at
an S -instant t.

First we make the following heuristic considerations. Let us put x := q⋆t and
suppose q′ is ‘close’ to q . According to the ‘infinitesimal’ synchronization which
is reasonable from the point of view of the observer, y′ := q′ ⋆ (x+SU(x)) is the
world point on q′ that is approximately simultaneous with x in a natural way.
Then d := |y′ − x| is the approximate value of the distance to be determined.

The world point x′ := q′ ⋆ t is simultaneous with x according to S. Since

y′ ≈ x′ + U(x′) U(x)·(x′−x)
−U(x)·U(x′) ≈ x′ + U(x)

(

U(x) · (x′ − x)
)

, we see that d ≈
|πU(x) · (x′ − x)|.
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We have got a formula for ‘infinitesimal’ distances from which we can define
the length of a curve in a natural way by an integration. The distance between
two observer space points will be defined to be the least length of curves con-
necting the space points.

Before going further, the reader is asked to study Section VI.7.

6.2.2. Definition. Let U be an observer. A subset L of the observer
space SU is called a curve if there is a synchronization S on DomU such that
Lt := {q ⋆ t| q ∈ L, q ∩ t 6= ∅} is either void or a curve in M for all t ∈ TS .

Note that in fact Lt is contained in the hypersurface t.
We say that the curve L connects the U -space points q1 and q2 if Lt

connects q1 ⋆ t and q2 ⋆ t for all t ∈ TS , provided that q1 ∩ t and q2 ∩ t are
not void.

6.2.3. Definition. Let L be a curve in SU . Then

ℓt(L) := ℓU(Lt) :=

∫

Lt

|πU(·)dLt|

is called the length of L at the S -time point t.
The distance between the U -space points q and q′ at the S -time point t is

dt(q, q
′) := inf{ℓt(L)| L is a curve connecting q and q′ }.

It is worth describing explicitly that if pt is a parametrization of Lt then

ℓt(L) =

∫

Dompt

|πU(pt(a)) · ṗt(a)|da =

=

∫

Dompt

√

|ṗt(a)|2 +
(

U(pt(a)) · ṗt(a)
)2
da.

Note the special case when U is regular and the U -synchronization is taken;
then πU(x) ·x = x if x ∈ t and x is a tangent vector of t at x. Consequently,

ℓt(L) =

∫

Lt

|dLt| =
∫

Dompt

|ṗt(a)|da for a regular observer.
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In particular, if U is inertial and U -time is used then, for all t, dt(q, q
′)

equals the distance |q′ − q| defined earlier.
Keep in mind the following important remark: suppose the S -instant t is a

hyperplane; then there is a unique uo ∈ V (1) such that t is directed by Suo .
The distance between the U -space points at t does not equal, in general, the
distance perceived by the standard inertial frame uo. Recall, e.g. the case that
U is an inertial observer with the velocity value u (see Section 5.3).

6.2.4. Definition. The observer U is called rigid if there is a synchroniza-
tion S on DomU in such a way that if
— L is an arbitrary curve in SU ,
— t, t′ ∈ TS and q ∩ t 6= ∅, q ∩ t′ 6= ∅ for all q ∈ L,

then ℓt(L) = ℓt′(L).

Note that rigidity of observers is a highly complicated notion in the special
relativistic spacetime model, in contradistinction to the nonrelativistic case.

6.2.5. The following assertions can be proved by means of the tools of smooth
manifolds.

(i) Our definition of a curve in SU involves a synchronization; nevertheless,
it does not depend on synchronization: if there is a synchronization with the
required conditions then these conditions are satisfied for all other synchroniza-
tions as well.

(ii) The distance between two U -space points at an S -instant is defined by
an infimum; this infimum is in fact a minimum, i.e. for each S -instant t there
is a curve connecting the points whose length at t equals the distance between
the U -space points at t.

(iii) Our definition of rigidity involves a synchronization; nevertheless, it does
not depend on synchronization: if there is a synchronization with respect to
which the observer is rigid, then the observer is rigid with respect to all other
synchronization as well.

6.3. A method of finding the observer space

6.3.1. To find the space of an observer, i.e. the U -lines, we have to find the
solutions of the differential equation

(x : T  M)? ẋ = U(x).

A frequently applicable method is to transform the differential equation by

ξuo,o : M → T× Suo
, x 7→

(

−uo · (x− o), πuo
· (x− o)

)
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according to VI.6.3, where uo is a suitably chosen element of V (1).
The transformed differential equation will have the form

(

(t, q) : T  T×Suo

)

? (t, q)
·
=
(

−uo ·U(o+uot+q),πuo ·U(o+uot+q)
)

,

i.e.

(t : T  T)?

(q : T  Suo)?

ṫ = −uo · U(o+ uot+ q),

q̇ = πuo
· U(o+ uot+ q).

Let s 7→ t(s) and s 7→ q(s) denote the solutions of these differential equa-
tions with the initial conditions t(0) = 0, q(0) = qo, where qo is an arbitrary
element in Suo such that o+ qo is in the domain of U . Then

s 7→ o+ uot(s) + q(s)

is the world line function giving the U -line passing through o+ qo.
It is worth using more precise notations: let x be an element of (o+ Suo

) ∩
(DomU); then s 7→ tx(s) and s 7→ qx(s) will denote the solutions of the
differential equations with the initial conditions tx(0) = 0, qx(0) = x−o. Then

T  M, s 7→ rx(s) = o+ uotx(s) + qx(s)

is the world line function giving the U -space point that x is incident with.

6.3.2. Consider the uo -synchronization. Then, according to 4.1.1, s 7→ tx(s)
gives uo -time as a function of the proper time of the U -line passing through
x; in other words, tx(s) is the uo -time passed between to := o + Suo

and
tx(s) := rx(s) + Suo

: tx(s) = tx(s)− to.
This function is strictly monotone increasing; its inverse, denoted by T  T,

t 7→ sx(t), gives the proper time between the uo -instants to and to + t passed
in the U -space point that x is incident with.

6.4. Uniformly accelerated observer I

6.4.1. In the special relativistic spacetime model the definition of a uniformly
accelerated observer is not so straightforward as in the nonrelativistic case. We
know that here the acceleration of a uniformly accelerated world line function is
not constant, thus a uniformly accelerated observer will not be an observer with
constant acceleration field. Anyhow, we wish to find an observer whose lines are
uniformly accelerated.

Omitting the thorny way of searching, let us take an observer satisfying the
requirements and study its properties.
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Let o ∈ M, uo ∈ V (1) and 0 6= ao ∈ Suo

T⊗T and define the global observer

U(x) := uo

√

1 + |ao|2
(

uo · (x− o)
)2 − ao

(

uo · (x− o)
)

(x ∈ M).

Note that uo = U(o).
The observer has the acceleration field

AU(x) = ao

√

1 + |ao|2
(

uo · (x− o)
)2 − uo|ao|2

(

uo · (x− o)
)

(x ∈ M),

thus ao = AU(o).
It is trivial that

U(x+ q) = U(x), AU(x+ q) = AU(x) (x ∈ M, q ∈ Suo
),

i.e. U and AU are constant on the hyperplanes directed by Suo .
As a consequence, the translation of a U -line by a vector in Suo

is a U -line,
too.

6.4.2. Transforming the differential equation of the observer according to 6.3,
we get

ṫ =

√

1 + |ao|2t2,
q̇ = aot.

The first equation, with the initial value t(0) = 0, has the solution

t(s) =
sinh |ao|s

|ao|
(s ∈ T).

Then the second equation becomes very simple and we find its solutions in
the form

q(s) = ao
cosh |ao|s− 1

|ao|2
+ qo (s ∈ T).

Hence we obtain that the U -line passing through x ∈ o + Suo
is given by

the world line function

rx(s) = x+ uo
sinh |ao|s

|ao|
+ ao

cosh |ao|s− 1

|ao|2
(s ∈ T).

It is not hard to see that every U -line meets the hyperplane o+ Suo
, hence

every U -line can be given by such a world line function: all U -lines are
uniformly accelerated.
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6.4.3. Because U and AU are constant on the hyperplanes directed by Suo ,
all U -lines have the same velocity and the same acceleration on the hyperplanes
directed by Suo

.
Using the notations of 6.4, we see that

sx(t) =
arsinh |ao|t

|ao|
=: s(t) (t ∈ T)

for all x in o + Suo
. Thus, given two uo -instants, the same time passes along

all U -lines between them.
Because of these properties of U -lines it seems suitable to associate with U

the uo -synchronization to form a reference frame.r

Uo-instonts

6.4.4. Let us examine whether this observer is regular.
Evidently, o+ Suo is a world surface g -orthogonal to U .
Introduce the notation

h(x) :=

:= ao · (x− o)−
√

1 + |ao|2
(

uo · (x− o)
)2

+ artanh

√

1 + |ao|2
(

uo · (x− o)
)2

for x ∈ M, x 6∈ o+ Suo and put for λ ∈ R

tλ :=











{x ∈ M | h(x) = lnλ, −uo · (x− o) > 0} if λ > 0

o+ Suo if λ = 0

{x ∈ M| h(x) = ln(−λ), −uo · (x− o) < 0} if λ < 0.

Evidently, h is a differentiable function outside o+ Suo
and

Dh(x) = ao +
uo

√

1 + |ao|2
(

uo · (x− o)
)2

−uo · (x− o)
=

U(x)

−uo · (x− o)
.
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As a consequence, for all λ ∈ R, tλ is a three-dimensional submanifold whose
tangent space at x equals KerDh(x) = SU(x). This means that tλ -s are U -
surfaces, U is regular and

TU = {tλ | λ ∈ R}.

I

U -surfoces

\>

\
U -lines

6.4.5. If q1 and q2 are U -lines, then q2 ⋆ t− q1 ⋆ t is the same for all uo -
instants t. In other words, the vector and the distance perceived by the standard
inertial frame uo between two U -space points is the same for all uo -instants.
We can say that uo perceives U to be rigid and rotation-free. Is U rigid and
rotation-free?

We have not defined when an observer is rotation-free, thus we can answer
only the question regarding rigidity as defined in 6.3.4.

This observer U is not rigid. Let us take a uo -instant t. For all x ∈ t we
have −uo · (x− o) = t− to (where to := o+ Suo

), thus

U(x) = ao(t− to) + uo

√

1 + |ao|2(t− to)2 =: ut (x ∈ t, t ∈ Tuo)

(U is constant on the uo -instants).
The formula in 6.4.3 gives us the proper time s(t) passed in every U -space

point between the uo -instants to and t := to + t :

t =
sinh |ao|s(t)

|ao|
.

Let Lo be a curve in o+ Suo ; then the set of U -space points that meet Lo,
L := {q ∈ SU | q ∩ Lo 6= ∅} is a curve in the observer space. Indeed, if po is a
parametrization of Lo, then

pt := po + uot+
ao

|ao|2
(
√

1 + |ao|2t2 − 1

)
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is a parametrization of Lt (see 6.3.2) for t = to + t ∈ Tuo .
Then

ṗt = ṗo

and
U
(

pt(a)
)

· ṗt(a) = −ao · ṗo(a)t (a ∈ Dompo);

consequently,

|ṗt|2 +
(

(U ◦ pt) · ṗt
)2

= |ṗo|2 +
(

ao · ṗo
)2
t2,

which shows that the length of curves depends on the uo -time points: the
observer is not rigid.

6.4.6. The length of curves in U -space, consequently the distance between
U -space points, in general, decreases prior to to and increases after to, as uo -
time passes. This is well understandable from a heuristic point of view. Though
we defined Lorentz contraction between two inertial observers, we can say e.g.
that after to the space points of U move faster and faster with respect to uo,
thus their distances seem more and more contracted with respect to the standard
inertial grame uo; that is, their distances must increase continually in order that
the distances perceivedd by uo be constant.

6.5. Uniformly accelerated observer II

6.5.1. Let o ∈ M, uo ∈ V (1) and 0 6= ao ∈ Suo

T⊗T , put

B(x) :=
(

ao · (x− o)
)

uo −
(

uo · (x− o)
)

ao

for x ∈ M and define the nonglobal observer by

DomU := {x ∈ M | B(x) is future directed timelike}

U(x) :=
B(x)

|B(x)| (x ∈ DomU).

Note that B(x) is future directed timelike if and only if

0 >
(

B(x)
)2

= −
(

ao · (x− o)
)2

+
(

uo · (x− o)
)2|ao|2,

0 > uo ·B(x) = −ao · (x− o).

Then we find that a world point x for which x−o lies in the plane generated
by uo and ao is in the domain of U if and only if x − o is spacelike and
ao · (x− o) > 0.
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6.5.2. If q is a world vector g -orthogonal to both uo and ao then

DomU + q = DomU

and

U(x+ q) = U(x) (x ∈ DomU , q ∈ Suo
, ao · q = 0).

The observer has the acceleration field

AU(x) =

(

ao · (x− o)
)

ao − |ao|2
(

uo · (x− o)
)

uo

|B(x)|2
(x ∈ DomU).

Then we easily find that
U(x) = uo if and only if x− o is in Suo

,
AU(x) 6= ao for all x ∈ DomU ,
AU(x) = ao

ao·(x−o) if and only if x− o is in Suo .

6.5.3. Let us introduce the notation

no :=
ao

|ao|
.

If λ ∈ R then

uλ :=
uo + (tanhλ)no
√

1− (tanhλ)
2

= uocoshλ+ nosinhλ

is in V (1) and we easily find that

U(x) = uλ (x ∈ DomU , x− o ∈ Suλ
).

Thus tλ :=
(

o+Suλ

)

∩ (DomU) is a U -surface. To every x ∈ DomU there
is such a U -surface containing x, given by

λx := artanh

(−uo · (x− o)

no · (x− o)

)

.

This means that U is regular, and

TU := {tλ | λ ∈ R}.
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6.5.4. To find the U -lines we use the method outlined in 6.3.
Transforming the differential equation ẋ = U(x) by ξuo,o we get

ṫ =
no · q

√

(no · q)2 − t2
, (∗)

q̇ =
not

√

(no · q)2 − t2
. (∗∗)

Equation (∗∗) implies no · q̇ = t√
(no·q)2−t2

which, together with equation

(∗), results in
(no · q)(no · q̇) = tṫ

implying

(no · q)2 − t2 = const =:
1

α2
.

Then differentiating equation (∗) we obtain

ẗ = α2t

from which—taking the initial values t(0) = 0, ṫ(0) = 1—we infer

t(s) =
sinhαs

α
.

As a consequence, equation (∗∗) takes an extremely simple form, and we find
its solutions easily:

q(s) = no
coshαs− 1

α
+ qo.

Hence we obtain that the U -line passing through x ∈
(

o+ Suo

)

∩ (DomU)
is given by the world line function

rx(s) = x+ uo
sinh |ax|s

|ax|
+ ax

cosh |ax|s− 1

|ax|2
(s ∈ T)

where

ax :=
ao

ao · (x− o)
=

no

no · (x− o)
.

It is not hard to see that every U -line meets the hyperplane o+ Suo
, hence

every U -line can be given by such a world line function; all U -lines are uni-
formly accelerated.
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- su rf oces

U -lines

6.5.5. The present observer U serves as an example to show that the observer
is regular, but different times pass in different U -space points (along different
U -lines) between two U -instants.

Let us consider the U -line passing through x ∈ o + Suo , described by the
world line function rx given previously; a simple calculation yields that rx(s)
is in the U -surface tλ if and only if s = λ

|ax| . In other words,

sx(λ) :=
λ

|ax|
=
(

no · (x− o)
)

λ

which clearly depends on x, is the time passed between the U -time points t0
and tλ in the U -space point that x is incident with.

6.5.6. Now we shall show that this observer is rigid.
Let Lo be a curve in o+ Suo

; then the set of U -space points that meet Lo,
L := {q ∈ SU | q ∩ Lo 6= ∅} is a curve in the observer space. Indeed, if po is a
parametrization of Lo, then, according to the previous result on proper times,

ptλ := po +
(

no · (po − o)
)(

uosinhλ+ no(coshλ− 1)
)

is a parametrization of Ltλ for all tλ ∈ TU .
Then

ṗtλ = ṗo + (no · ṗo)
(

uosinhλ+ no(coshλ− 1)
)

and

|ṗtλ | = |ṗo| (tλ ∈ TU).

Since U is regular and U -time is considered, U(ptλ(a)) · ṗtλ(a) = 0 for
all λ ∈ R and a ∈ Dompo = Domptλ , this means that ℓtλ(L) = ℓo(L) for all
tλ ∈ TU . It is not hard to see that every curve in the observer space can be
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obtained from a curve in o + Suo by the previous method; consequently, the
observer is rigid.

6.5.7. Two uniformly accelerated observers have been treated. Neither of
them possesses all the good properties of the uniformly accelerated observer in
the nonrelativistic spacetime model. It is an open question whether we can find
a special relativistic observer U such that
(i) all U -lines are uniformly accelerated,
(ii) U and AU are constant on each instant (world surface) of a synchroniza-

tion,
(iii) U is rigid.

The observer in 6.4 does not satisfy (iii); the observer in 6.5 does not satisfy
(ii).

6.6. Uniformly rotating observer I

6.6.1. In defining the uniformly rotating observer we encounter problems
similar to those in the previous section and, in the same manner, we find
two possibilities but neither of them possesses all the good properties of the
nonrelativistic uniformly rotating observer.

Let o ∈ M, uo ∈ V (1) and let Ω : Suo → Suo

T
be a nonzero antisymmetric

linear map and define the global observer

U(x) := Ω · πuo
· (x− o) + uo

√

1 + |Ω · πuo
· (x− o)|2 (x ∈ M).

Note that

uo = U(o),

and

U(x+ q) = U(x) (x ∈ M, q ∈ KerΩ).

The observer has the acceleration field

AU(x) = Ω · Ω · πuo
· (x− o) (x ∈ M).

6.6.2. To find the U -lines we apply the well-proved method: transforming
the differential equation ẋ = U(x) by ξuo,o we get

ṫ =

√

1 + |Ω · q|2,
q̇ = Ω · q.
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The second equation can be solved immediately:

q(s) = esΩ · qo (s ∈ T).

Then the first equation becomes ṫ =

√

1 + |Ω · qo|2 having the solution—with

the initial value t(0) = 0—

t(s) = s

√

1 + |Ω · qo|2 (s ∈ T).

Thus the U -line passing through x ∈ o+ Suo
(the U -space point that x is

incident with) is given by the world line function

rx(s) = o+ uos

√

1 + |Ω · (x− o)|2 + esΩ · (x− o) (s ∈ T).

It is not hard to see that every U -line meets the hyperplane o + Suo
, thus

every U -line is of this form.

6.6.3. Note that the U -line passing through o+ e, where e is in KerΩ, is
a straight line directed by uo; then the set of U -space points

{o+ e+ uo ⊗ T | e ∈ KerΩ}

can be interpreted as the axis of rotation.
If x is in o+ Suo , then x−o can be decomposed into a sum ex + qx where

ex is in KerΩ and qx is orthogonal to KerΩ. Then the U -line above can be
written in the form

rx(s) = o+ ex + uos

√

1 + ω2|qx|2 + esΩ · qx, (∗)

where ω is the magnitude of Ω (see Exercise V.3.21.1).
Hence all the U -lines are composed of an inertial line (with a proper time

‘accelerated’ relative to the proper time of the points of the axis) and a uniform
rotation.

Let us consider the uo -synchronization..
Put to := o+ Suo

. Then

sx(t) =
t

√

1 + |Ω · (x− o)|2
=

t
√

1 + |Ω · qx|2

time passes between the uo -instants to and to + t in the U -space point that
x is incident with.
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The distance perceived by the standard inertial frame uo at the uo -instant
to + t between the U -space point that x is incident with and o+ ex + uo ⊗ T

(the axis of rotation) equals

|rx(sx(t))− (o+ ex + uot)| = |qx|,

which is independent of t.

6.6.4. Because of the term s 7→ esΩ · (x − o) in (∗) we can state that the
time period T of rotation is the same for all U -space points (out of the axis of
rotation), concerning their proper times: T = 2π

ω .

On the other hand, concerning uo -time, the time period of rotation of a
U -space point having the uo -distance d > 0 from the axis of rotation equals
To(d) := 2π

ω

√
1 + ω2d2; it increases from 2π

ω to infinity as d increases from
zero to infinity.

The following Figure illustrates the situation. Two U -line segments are
represented; the proper time passed along both segments equals 2π

ω .

o+uo8I

Another figure shows the plane in the uo -space, orthogonal to KerΩ, and
illustrates the angles of rotation of U -space points during a uo -time interval
2π
ω .
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6.6.5. This observer is not rigid.
Let Lo be a curve in o+ Suo ; then the set of U -space points that meet Lo,

L := {q ∈ SU | q ∩ Lo 6= ∅} is a curve in the observer space. Indeed, if po is a
parametrization of Lo, then

pt(a) := o+ uot+ exp





tΩ
√

1 + |Ω · (po(a)− o)|2



 ·
(

po(a)− o
)

(a ∈ Dompo)

is a parametrization of Lt for t = to + t ∈ Tuo . Then

ṗt= exp





tΩ
√

1 + |Ω · (po − o)|2



 ·







t(Ω · po) · (Ω · ṗo)
(

1 + |Ω · (po − o)|2
)3/2

· Ω · (po − o) + ṗo






.

We easily find that

U ◦ pt = exp





tΩ
√

1 + |Ω · (po − o)|2



 · Ω · (po − o) + uo

√

1 + |Ω · (po − o)|2.

Then, using
(eαΩ · q1) · (eαΩ · q2) = q1 · q2
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for all q1, q2 ∈ Suo and α ∈ R, the reader can demonstrate without difficulty

that |ṗt|2 +
(

(U ◦ pt) · ṗt
)2

depends on t : the observer is not rigid.

6.6.6. This observer is not regular. It is easy to show that there is no world
surface g -orthogonal to U and passing through o.

Suppose such a world surface F exists. Then F has Suo as its tangent space
at o.

For all q ∈ Suo
,

f(a) := o+ aq (a ∈ R)

is a function such that f(0) = o and

(U ◦ f) · ḟ(a) = a2
(

Ω · q + uo

√

1 + a2|Ω · q|2
)

· q = 0.

The curve (in fact a straight line) Ranf passes through o ∈ F and all of its
tangent vectors are g -orthogonal to the corresponding values of U which would
imply that Ranf ⊂ F. Since q is arbitrary in Suo

, this means that o+Suo
= F;

in particular, every tangent space of F equals Suo
. However, if x ∈ o+Suo

= F
and x − o is not in KerΩ then U(x) 6= uo; thus the tangent space of F at x
is not g -orthogonal to U(x) : a contradiction.

6.7. Uniformly rotating observer II

6.7.1. Let o ∈ M, uo ∈ V (1) and Ω : Suo → Suo

T
be a nonzero antisym-

metric linear map and define the nonglobal observer

DomU :=
{

x ∈ M| |Ω · πuo
· (x− o)|2 < 1

}

,

U(x) :=
uo +Ω · πuo

· (x− o)
√

1− |Ω · πuo
· (x− o)|2

(x ∈ DomU).

If q is in KerΩ, then

DomU + q = DomU

and
U(x+ q) = U(x) (x ∈ DomU , q ∈ KerΩ).

The observer has the acceleration field

AU(x) =
Ω · Ω · πuo · (x− o)

1− |Ω · πuo · (x− o)|2
(x ∈ DomU).
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6.7.2. To find the U -lines, we again use the known transformation and we
obtain

ṫ =
1

√

1− |Ω · q|2
,

q̇ =
Ω · q

√

1− |Ω · q|2
.

Now we apply a new trick: ‘dividing’ the second equation by the first one we
get a very simple differential equation which has the following correct meaning.
Consider the initial conditions

t(0) = 0, q(0) = x− o,

where x ∈
(

o+Suo

)

∩(DomU). The formula for the derivative of inverse function
results in—with the notations of 6.4—

dsx(t)

dt
=

√

1− |Ω · q(sx(t))|2. (∗)

Then introducing the function t 7→ q(t) := q(sx(t)) we get the differential
equation

dq(t)

dt
= q̇(sx(t))

dsx(t))

dt
= Ω · q(t)

which has the solution
q(t) = etΩ · (x− o) (t ∈ T).

Consequently |Ω · q(sx(t))| = |Ω · (x− o)|, thus equation (∗) becomes trivial
having the solution—with the initial condition sx(0) = 0—

sx(t) = t

√

1− |Ω · (x− o)|2.
Finally we obtain

tx(s) =
s

√

1− |Ω · (x− o)|2
,

qx(s) = exp





s
√

1− |Ω · (x− o)|2



 · (x− o)

from which we regain the world line function giving the U -line passing through
x ∈ o+ Suo :

rx(s) = o+ uo
s

√

1− |Ω · (x− o)|2
+ exp





sΩ
√

1− |Ω · (x− o)|2



 · (x− o)

(s ∈ T).
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It is not hard to see that every U -line meets the hyperplane o + Suo , thus
every U -line is of this form.

6.7.3. Note that the U -line passing through o+ e, where e is in KerΩ, is
a straight line directed by uo; then the set of U -space points

{o+ e+ uo ⊗ T | e ∈ KerΩ}

is interpreted as the axis of rotation.
If x is in o+Suo , then x−o can be decomposed into a sum ex + qx, where

ex is in KerΩ and qx is orthogonal to KerΩ. Then the above given world line
function can be written in the form

rx(s) = o+ ex + uo
s

√

1− ω2|qx|2
+ exp





sΩ
√

1− ω2|qx|2



 · qx, (∗∗)

where ω is the magnitude of Ω.
Hence all the U -lines are composed of an inertial line (with a proper time

‘accelerated’ relative to the proper time of the points of the axis) and a uniform
rotation.

Let us consider the uo -synchronization. Put to := o+ Suo
. Then

sx(t) = t

√

1− |Ω · (x− o)|2

is the time passed between the uo -instants to and to + t in the U -space point
that x is incident with.

The distance perceived by the standard inertial frame uo at the uo -instant
to + t between the U -space point that x is incident with and o+ ex + uo ⊗ T

(the axis of rotation) equals

∣

∣rx(sx(t))− (o+ ex + uot)
∣

∣ = |qx|

which is independent of t.

6.7.4. Because of the term s 7→ etx(s)Ω · (x − o) in (∗∗) we can state that
the time period To of rotation is the same for all U -space points (out of the
axis of rotation), concerning the uo -time: To = 2π

ω .
On the other hand, concerning the proper times of U -space points, the time

period of rotation of a U -space point having the uo -distance 0 < d < 1
ω from

the axis of rotation equals T (d) := 2π
ω

√
1− ω2d2; it decreases from 2π

ω to zero

as d increases from zero to 1
ω .
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The following figure illustrates the situation. Two U -line segments are rep-
resented; the proper time passed along both segments equals 2π

ω .

TTTTTT

6.7.5. This observer is rigid.
Let Lo be a curve in o+ Suo

; then the set of U -space points that meet Lo,
L := {q ∈ SU | q ∩ Lo 6= ∅} is a curve in the observer space. Indeed, if po is a
parametrization of Lo then

pt := o+ uot+ etΩ · (po − o)

is a parametrization of Lt for t = to + t ∈ Tuo
. Then

ṗt = etΩ · ṗo

and we easily find that

U ◦ pt =
uo +Ω · etΩ · (po − o)
√

1− |Ω · (po − o)|2
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and

(U ◦ pt) · ṗt =
(

Ω · (po − o)
)

· ṗo
√

1− |Ω · (po − o)|2
.

Consequently,

|ṗt|2 +
(

(U ◦ pt) · ṗt
)2

= |ṗo|2 +
(

ṗo · Ω · (po − o)
)2

1− |Ω · (po − o)|2

is independent of t : the observer is rigid.

6.7.6. This observer furnishes a good instance that the laws of Euclidean
geometry do not hold necessarily in the space of a rigid noninertial observer.

Since the observer is rigid, all the lengths in U -space can be calculated by
curves in

(

o+ Suo

)

∩ (DomU) which can be reduced to curves in

Suo
∩(DomU − o) =

= KerΩ + {q ∈ Suo
| q is orthogonal to KerΩ, |q| < 1

ω
} =: SΩ.

If Lo is a curve in
(

o+ Suo

)

∩ (DomU) then L := Lo − o is a curve in SΩ;
if po is a parametrization of Lo then p := po − o is a parametrization of L.

SΩ is a subset of the Euclidean vector space Suo
in which distances and curve

lengths have a well-defined meaning; however, now curves in SΩ will represent
curves in U -space and their lengths will be calculated in this sense. Thus, to
avoid misunderstanding, we shall say U -length and U -distance, indicating it
in notations, too.

A curve L in SΩ has the U -length

ℓU(L) =

∫

Domp

√

√

√

√|ṗ(a)|2 +
(

ṗ(a) · Ω · p(a)
)2

1− |Ω · p(a)|2
da. (∗ ∗ ∗)

Take arbitrary elements x and y in SΩ. Then we easily find for the straight
line segment connecting x and y, ]x,y[:= {x+ a(y − x) | 0 < a < 1} that

ℓU(]x,y[) ≥ |y − x|
and equality holds if and only if x · Ω · y = 0 which is equivalent to the fact

that the straight line passing through x and y meets the kernel of Ω.
Suppose the straight line passing through x and y meets KerΩ and L is a

broken line connecting x and y; then the previous inequality implies

ℓU(L) ≥ |y − x| = ℓU(]x,y[).
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As a consequence, the inequality above will be valid for an arbitrary L

connecting x and y because ℓ(L) is obtained as the supremum of U -lengths
of broken lines approximating the curve L. Since the U -distance dU(x,y)
between x and y is the infimum of curve lengths connecting x and y we see
that

dU(x,y) = |y − x|
if the straight line passing through x and y intersects KerΩ.

Let d be an element of T, 0 < d < 1
ω , and put

Cd := {q ∈ SΩ| q is orthogonal to KerΩ, |q| = d}.

Evidently, if q ∈ Cd then −q ∈ Cd as well. Moreover, according to our
previous result, the U -distance between q and −q equals |q − (−q)| = 2d.

This means that Cd represents a circle of radius d in the observer space. Let
us calculate the circumference of this circle.

Choosing the parametrization

p : ]− π, π] → Cd, a 7→ exp

(

a
Ω

ω

)

· qo

where qo is an arbitrarily fixed element of Cd, we find

ṗ =
Ω

ω
· p, |ṗ|2 = d2,

|Ω · p|2 = ω2d2,
(

ṗ · Ω · p
)2

= ω2d4.

Applying formula (∗ ∗ ∗) we obtain

ℓU(Cd) =
2πd√

1− ω2d2
.

The circumference of the circle of radius d is longer than 2πd.

6.8. Exercises

1. Take an inertial observer u and an affine synchronization due to uo 6= u .
Demonstrate that the distances in U -space calculated at Tuo -instants according
to definition 6.3.3 equal the distances defined earlier in U -space.

2. Take a synchronization S whose time-points are subsets of (not necessarily
parallel) affine subsspaces. Supposs that the observer U (a velocity field) is
constant on the S -time points. Then for every S -time point there is a ut ∈ V (1)
such that U(x) = ut for all x in t. Suppose t is directed by S. Then

|πut
· (q1 + q2)| ≤ |πut

· q1|+ |πut
· q2|
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for all q1, q2 ∈ S. As a consequence, straight lines realize the distance between
the points of t, thus

dt(q1, q2) = |πut
(q2 ⋆ t− q1 ⋆ t)| (q1, q2 ∈ SU).

3. Let U be the uniformly accelerated observer treated in 6.5. Then

vU(x)uo
=

ao

(

(−uo · (x− o)
)

)
√

1 + |ao|2
(

uo · (x− o)
)2

(x ∈ M).

4. Let U be as before. Verify that every U -line is obtained from a chosen
one by a translation with a vector in Suo

. In other words, SU endowed with
the subtraction

q′ − q := x′ − x (x′ ∈ q, x ∈ q, x′ − x ∈ Suo
)

is an affine space over Suo
.

5. Let U be the uniformly accelerated observer treated in 6.6. Then the U -
line passing through x ∈ o+Suo intersects tλ if and only if ao · (x−o) < ln |λ|.

6. Show that

DomU = {o+ αuo + βao + q| β > 0, β2|ao|2 > α2, uo · q = 0, ao · q = 0}

for the uniformly accelerated observer treated in 6.6.
7. Let U be as before. Then

vU(x)uo
=

ao

(

−uo · (x− o)
)

ao · (x− o)
(x ∈ DomU).

8. Show that the distance perceived by the standard inertial frame uo

between the space points of the uniformly accelerated observer treated in 6.6. is
not constant in uo -time. Give an explanation similar to that in 6.5.6.

9. Verify that

DomU = o+ uo ⊗ T+KerΩ +

{

q ∈ Suo
| q is orthogonal to KerΩ, |q| < 1

ω

}

for the uniformly rotating observer treated in 6.8.
10. Demonstrate that

vU(x)uo
=

Ω · πuo
· (x− o)

√

1 + |Ω · πuo
· (x− o)|2

(x ∈ M)



6. Some special noninertial observers ∗ 233

and
vU(x)uo

= Ω · πuo
· (x− o) (x ∈ DomU)

where U is the uniformly rotating observer treated in 6.7. and 6.8, respectively.
11. The uniformly rotating observer treated in 6.8. is not regular.
12. Let o be a world point and consider the observer

U(x) :=
x− o

|x− o| (x ∈ o+ T
→).

Prove that
SU =

{

o+ u⊗ T
+
∣

∣ u ∈ V (1)
}

.

U is regular and
{

V (1)t
∣

∣ t ∈ T
+
}

is the set of U -surfaces (U -instants).
Show that if this observer defined synchronization like an inertial observer

(light signals and mirrors, see 3.2.) then simultaneity would depend on the U -
space point of the light source.

13. Let o ∈ M, uo ∈ V (1), γ ∈ T
∗ and define the observer

DomU := {x ∈ M| γ2|πuo · (x− o)|2 < 1},

U(x) :=
uo + γπuo · (x− o)

√

1− γ2|πuo
· (x− o)|2

(x ∈ DomU).

Applying the method given in 6.4. find that the U -line passing through
x ∈

(

o+ Suo

)

∩ (DomU) is given by the world line function

rx(s) = o+ uotx(s) + eγtx(s)(x− o)

where s 7→ tx(s) is the solution of the differential equation

(t : T  T)? ṫ =
1

√

1− γ2|x− o|2e2γt

with the initial condition t(0) = 0.
14. Let o ∈ M, uo ∈ V (1), γ ∈ T

∗ and define the observer

U(x) := uo

√

1 + γ2|πuo · (x− o)|2 + γπuo(x− o) (x ∈ M).

Applying the method given in 6.4 find that the U -line passing through
x ∈ o+ Suo

is given by the world line function

rx(s) = o+ uotx(s) + eγs(x− o)
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where s 7→ tx(s) is the function for which tx(0) = 0 holds and has the derivative

s 7→
√

1 + γ2|x− o|2e2γs.
15. Compare the observers of the previous two exercises with the nonrela-

tivistic observer in Exercise I.5.4.9.

7. Vector splittings

7.1. Splitting of vectors

7.1.1. For u ∈ V (1) we have already defined

τu : M → T, x 7→ −u · x

and
πu : M → Su, x 7→ x− (τu · x)u = x+ (u · x)u

i.e. with the usual identifications,

τu = −u, πu = 1M + u⊗ u

(see 1.3.2) and the linear bijection ξu := (τu,πu) : M → T × Su having the
inverse

(t, q) 7→ ut+ q

(see 1.3.5).

Definition. τu ·x = −u ·x and πu ·x are called the u -timelike component
and the u -spacelike component of the vector x. (−u · x,πu · x) is the u -split
form of x. ξu = (τu,πu) is the splitting of M corresponding to u, or the
u -splitting of M.

Note that
x · y = −(u · x)(u · y) + (πu · x) · (πu · y),

in particular,
x2 = −(u · x)2 + |πu · x|2

for all x,y ∈ M. In other words,

if ξu · x = (t, q) then x2 = −t2 + |q|2.

7.1.2. If A is a measure line, A ⊗ M
(

M

A

)

is split into (A ⊗ T) × (A ⊗
Su)

(

T

A
× Su

A

)

by ξu; thus the u -timelike component and the u -spacelike
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component of a vector of type A (cotype A) are in A⊗ T
(

T

A

)

and in A⊗ Su
(

Su

A

)

, respectively.

In particular, ξu splits M

T
into R× Su

T
and for all u′ ∈ V (1)

ξu · u′ =
(

−u · u′, u′ + (u · u′)u
)

=
1

√

1− |vu′u|2
(1,vu′u).

7.1.3. In contradistinction to the nonrelativistic case, here not only the u -
spacelike component but also the u -timelike component of vectors depend on
u. The transformation rule that shows how the u -components of a vector vary
with u, is much more complicated here than in the nonrelativistic case.

Proposition. Let u,u′ ∈ V (1). Then for all (t, q) ∈ T× Su we have

(

ξu′ · ξ−1u

)

· (t, q) =
(

(−u′ · u)t− u′ · q, (u+ (u′ · u)u′)t+ q + (u′ · q)u′
)

=





1
√

1− |vu′u|2
(t− vu′u · q),

1
√

1− |vu′u|2



vuu′t−
vuu′ + vu′u

√

1− |vu′u|2

|vu′u|2
(vu′u · q)



+ q



 .

Proof. The first equality is quite simple. The second one is derived with the

aid of the formulae in 4.3.2 and the relation u′ · q = −(u′ · u)
(

u′

−u′·u − u
)

· q
which is true because u · q = 0.

Note that both vu′u and vuu′ appear in that formula.

7.1.4. The previous formula is not a good transformation rule: we want to
compare the u′ -components of a vector with its u -components (t, q). However,
the u′ -components and the u -components are in different spaces: (t, q) is in
T× Su and

(

ξu′ · ξ−1u

)

· (t, q) is in T× Su′ , they cannot be compared directly.
To obtain a convenient formula, we have to relate Su′ and Su; we have agreed
that such a relation is established by the corresponding Lorentz boost. Thus,
leaving invariant the first component, we shall transform the second component
of
(

ξu′ · ξ−1u

)

· (t, q) by L(u,u′).

Definition. Let u,u′ ∈ V (1). Then

ξu′u :=
(

1T ×L(u,u′)|
S

u′

)

· (ξu′ · ξ−1u )
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is called the vector transformation rule from u -splitting into u′ -splitting.

Proposition. For all (t, q) ∈ T× Su we have

ξu′u · (t, q) =





1
√

1− |vu′u|2
(t− vu′u · q),

1
√

1− |vu′u|2



−vu′u



t−
1−

√

1− |vu′u|2

|vu′u|2
(vu′u · q)







+ q



 .

In connection with this formula we mention the following frequently useful
relation:

1−
√

1− |vu′u|2

|vu′u|2
=

1

1 +

√

1− |vu′u|2
.

7.1.5. The previous formula is a bit fearsome. We can make it more apparent
decomposing q into a sum of vectors parallel and orthogonal to vu′u :

(t, q) = (t, q‖) + (0, q⊥)

where q‖ is parallel to vu′u, i.e. there is a λ ∈ T such that q‖ = λvu′u and
q⊥ is orthogonal to vu′u, i.e. vu′u · q⊥ = 0.

Then we easily find that

ξu′u · (0, q⊥) = (0, q⊥),

ξu′u · (t, q‖) =
1

√

1− |vu′u|2
(

t− vu′u · q‖, −vu′ut+ q‖
)

.

7.1.6. The last formula—in a slightly different form—appears in the literature
as the formula of Lorentz transformation. To get the usual form we put v :=
vu′u; let (t, q) denote the u -components of a vector and let (t′, q′) denote
its u′ -components mapped by the Lorentz boost L(u,u′) into T × Su; then
supposing q is parallel to v we have

t′ =
1

√

1− |v|2
(t− v · q), q′ =

1
√

1− |v|2
(−vt+ q).

This (or its equivalent in the arithmetic spacetime model) is the usual ‘Lorentz
transformation’ formula.
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We emphasize that q′ is not the u′ -spacelike component of the vector having
the u -components (t, q); it is the Lorentz-boosted u′ -spacelike component.

Lorentz transformations (see Section 9) are transformations of vectors, i.e.
mappings from M into M; the transformation rule is a mapping from T× Su

into T × Su. Transformation rules and Lorentz transformations are different
mathematical objects. Of course, there is some connection between them. We
easily find that

ξu′u = ξu ·L(u,u′) · ξ−1u

where L(u,u′) is the Lorentz boost from u′ into u.
In the split spacetime model M and T × Su coincide: the special structure

of the split spacetime model (and the arithmetic spacetime model) involves the
possibility of confusing transformation rules with Lorentz transformations.

7.1.7. Using a matrix form of the linear maps T×Su → T×Su (see IV.3.7)
we can write

ξu′u = κ(vu′u)

(

1 −vu′u

−vu′u D(vu′u)

)

,

where

κ(v) :=
1

√

1− |v|2
,

D(v) :=
1

κ(v)

(

1Su
+

κ(v)
2

κ(v) + 1
v ⊗ v

)

for v ∈ Su

T
, |v| < 1.

7.2. Splitting of covectors

7.2.1. For u ∈ V (1), M∗ is split by the transpose of the inverse of ξu :

ηu :=
(

ξ−1u

)∗
: M∗ → (T× Su)

∗ ≡ T
∗ × S∗u.

Then for all k ∈ M∗, (t, q) ∈ Su we have

(ηu · k) · (t, q) = k · ξ−1u · (t, q) = k · (ut+ q) = (k · u)t+ k · q.

Of course, instead of k in k · q we can write k|
Su

= i∗u · k = k · iu ∈ S∗u.
Then we can state that

ηu · k = (k · u, k · iu) = (u · k, i∗u · k) (k ∈ M∗).
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This form is suitable for a comparison with the nonrelativistic case. However,
we can get a form more convenient from the point of view of applications.
Applying the usual identifications we have i∗u = πu (see 1.3.6), thus

ηu · k = (u · k, πu · k) (k ∈ M∗).

Recall the identification M∗ ≡ M

T⊗T which implies that k can be split as a
vector of cotype T⊗ T, too:

ξu · k = (−u · k,πu · k) (k ∈ M∗).

The two splittings are nearly the same. In the literature (in a somewhat
different setting) the split form of k ∈ M∗ by ηu and ξu are called the covariant
and the contravariant components of k, respectively.

Of course, in view of M ≡ T⊗ T⊗M∗, also the elements of M can be split
by ηu : a vector, too, has covariant and contravariant components.

Introducing the notation

ju : T× Su → T× Su, (t, q) 7→ (−t, q)

we have (with the usual identifications)

ηu = ju · ξu.

Note that η−1u = ξ−1u · ju, i.e.

η−1u · (e,p) = −eu+ p (e ∈ T
∗, p ∈ S∗u).

7.2.2. The covector transformation rule is defined to be

ηu′u :=
(

1T ×L(u,u′)|
Su

)

· ηu′ · η−1u .

It can be easily deduced from the vector transformation rule that, apart from
a negative sign, they are the same. Indeed,

(

1T ×L(u,u′)|
S

u′

)

ju′ = ju ·
(

1T ×L(u,u′)|
S

u′

)

,

thus
ηu′u = ju · ξu′u · ju.

Consequently, if (e,p) ∈ T
∗ × S∗u and p is parallel to vu′u then

ηu′u · (e,p) = 1
√

1− |vu′u|2
(

e+ vu′u · p, vu′ue+ p
)

.
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7.2.3. It is worth mentioning that S∗u can be considered to be a linear
subspace of M∗, since S∗u ≡ Su

T⊗T ⊂ M

T⊗T ≡ M∗ and

S∗u = {k ∈ M∗ | k · u = 0},

in other words, S∗u is the annihilator of u⊗ T.
In the nonrelativistic case S∗ is not a linear subspace of M∗. For all u ∈ V (1)

there is a linear subspace S∗ ·πu of M∗, the annihilator of u⊗T, but it is not
the dual of any linear subspace in M.

Observe that the special relativistic vector transformation rule which is nearly
the same as the covector transformation rule resembles a combination of the
nonrelativistic vector and covector transformation rules.

We emphasize that in the special relativistic case there is no absolute spacelike
vector and there is no absolute timelike covector, in contradistinction to the
nonrelativistic case.

7.3. Splitting of vector fields

7.3.1. In applications vector fields M  M and covector fields M  M∗

appear frequently. Evidently, a covector field can be considered a vector field
of cotype T ⊗ T. Their splitting according to standard inertial frames can be
treated analogously to the nonrelativistic case (see I.8.5).

The half u -split form of the covector field K according to the standard
inertial frame u is

(−Vu,Au) := ηu ·K : M  T
∗ × S∗u, x 7→=

(

u ·K(x), πu ·K(x)
)

.

The completely u -split form of K is

ηu ·K ◦ ξ−1u : T× Su  T
∗ × S∗, (t, q) 7→

(

u ·K(q ⋆ t), πu ·K(q ⋆ t)
)

where q ⋆ t := ξ−1u (t, q) .

7.3.2. Potentials are covector fields. We can introduce the scalar potential
and the vector potential according to an observer by the previous split forms.
Regarding the transformation rule concerning scalar potentials and vector po-
tentials we can repeat essentially what we said in I.8.5.3; of course, the transfor-
mation rule will be significantly more complicated.

An important difference between the nonrelativistic spacetime model and the
special relativistic one is that here there are no absolute scalar potentials because
there are no absolute timelike covectors. This forecasts that the description of
gravitation in the relativistic case will differ significantly from its description in
the nonrelativistic case where absolute scalar potentials are used.
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7.3.3. In contradistinction to the nonrelativistic case, force fields are split
differently according to different observers.

Let us take a force field f : M × V (1) 
M

∗

T
. Because of the property

f(x, ẋ) · ẋ = 0 for all (x, ẋ) ∈ Domf , the u -spacelike component and the
u -timelike component of f are not independent. Using the formula in 7.1.1 we
get

0 = f(x, ẋ) · ẋ = −
(

u · f(x, ẋ)
)

(u · ẋ) +
(

πu · f(x, ẋ)
)

· (πu · ẋ),

which yields

−u · f(x, ẋ) =
(

πu · f(x, ẋ)
)

· vẋu.

7.3.4. Splittings of vector fields according to rigid observers in the nonrel-
ativistic case can be treated in the mathematical framework of affine spaces.
However, splittings according to general observers require the theory of mani-
folds.

In the special relativistic case splittings according to noninertial observers can
be treated only in the framework of manifolds and they do not appear here.

7.4. Exercises

1. Show that πu · x = (u ∧ x) · u for all u ∈ V (1), x ∈ M.

2. Take the arithmetic spacetime model. Give the completely split form of
the vector field

(ξ0, ξ) 7→
(

ξ1 + ξ2, cos(ξ0 − ξ3), 0, 0
)

according to the global inertial observer with the velocity value 1√
1−v2

(1, v, 0, 0).

8. Tensor splittings

8.1. Splitting of tensors

8.1.1. The various tensors—elements of M⊗M, M⊗M∗, etc.—are split ac-
cording to u ∈ V (1) by the maps ξu⊗ξu, ξu⊗ηu, etc. as in the nonrelativistic
case. However, now it suffices to deal with ξu ⊗ ξu because the identification
M∗ ≡ M

T⊗T and ηu = ju · ξu (see 7.2.1) allow us to derive the other splittings
from this one.

With the usual identifications we have

ξu⊗ξu : M⊗M → (T×Su)⊗(T×Su) ≡ (T⊗T)×(T⊗Su)×(Su⊗T)×(Su⊗Su),
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and for T ∈ M⊗M :

(ξu ⊗ ξu) · T = ξu · T · ξ∗u = ξu · T · η−1u =

(

u · T · u −u · T · π∗u
−πu · T · u πu · T · π∗u

)

=

=

(

u · T · u −u · T − u(u · T · u)
−T · u− u(u · T · u) T + u⊗ (u · T ) + (T · u)⊗ u+ u⊗ u(u · T · u)

)

,

for L ∈ M⊗M∗ :

(ξu ⊗ ηu) ·L = ξu ·L · η∗u = ξu ·L · ξ−1u =

(

−u ·L · u −u ·L · π∗u
πu ·L · u πu ·L · π∗u

)

,

for P ∈ M∗ ⊗M :

(ηu ⊗ ξu) · P = ηu · P · ξ∗u = ηu · P · η−1u =

(

−u · P · u u · P · π∗u
−πu · P · u πu · P · π∗u

)

,

for F ∈ M∗ ⊗M∗ :

(ηu ⊗ ηu) · F = ηu · F · η∗u = ηu · F · ξ−1u =

(

u · F · u u · F · π∗u
πu · F · u πu · F · π∗u

)

.

8.1.2. The splittings corresponding to different velocity values u and u′ are
different. The tensor transformation rule that shows how the splittings depend
on velocity values is rather complicated, much more complicated than in the
nonrelativistic case. We shall study it only for antisymmetric tensors.

8.2. Splitting of antisymmetric tensors

8.2.1. If T is an antisymmetric tensor, i.e. T ∈ M∧M, then u ·T ·u = 0,
u · T · π∗u = −(πu · T · u)∗ and πu · T · π∗u ∈ Su ∧ Su which means (of course)
that the u -split form of T is antisymmetric as well. Thus u -splitting maps the
elements of M ∧M into elements of form

(

0 −a

a A

)

≡
(

a,A
)

where a ∈ Su ⊗ T ≡ T⊗ Su, A ∈ Su ∧ Su.
The corresponding formula in 8.1.1 gives for T ∈ M ∧M

ξu · T · ξ∗u =
(

−T · u, T + (T · u) ∧ u
)

.
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Definition. −T ·u and T +(T ·u)∧u are called the u -timelike component
and the u -spacelike component of the antisymmetric tensor T .

8.2.2. The following transformation rule shows how splittings depend on
velocity values.

Proposition. Let u,u′ ∈ V (1). Then

ξu′u ·
(

a,A
)

· ξ∗u′u =

=





1
√

1− |vu′u|2



a+ vu′u

1−
√

1− |vu′u|2

|vu′u|2
(vu′u · a) +A · vu′u



 ,

1
√

1− |vu′u|2



−a−A · vu′u

1−
√

1− |vu′u|2

|vu′u|2



 ∧ vu′u +A



 .

Proof. Using the matrix forms we have

ξu′u ·
(

a,A
)

· ξ∗u′u =

= κ(vu′u)
2

(

1 −vu′u

−vu′u D(vu′u)

)(

0 −a

a A

)(

1 −vu′u

−vu′u D(vu′u)

)

,

from which we can get the desired formula.

8.2.3. The previous fearsome formula becomes nicer if we write
(

a,A
)

as
the sum of components parallel and orthogonal to the relative velocity:

a = a‖ + a⊥, A = A‖ +A⊥

where a‖ is parallel to vu′u, a⊥ is orthogonal to vu′u, and the kernel of A‖
is parallel to vu′u, i.e. A‖ · vu′u = 0 and the kernel of A⊥ is orthogonal to

vu′u, i.e. (A⊥ · vu′u) ∧ vu′u = −|vu′u|2A⊥ (see Exercise V.3.21.1). Then we
easily find

ξu′u ·
(

a‖,A‖
)

· ξ∗u′u =
(

a‖,A‖
)

,

ξu′u ·
(

a⊥,A⊥
)

· ξ∗u′u =
1

√

1− |vu′u|2
(

a⊥ +A⊥ · vu′u, −a⊥ ∧ vu′u +A⊥
)

.

8.2.4. The splitting and the transformation rule of antisymmetric cotensors
i.e. elements of M∗ ∧M∗ are the same, apart from a negative sign. The details
are left to the reader.
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It is interesting that here, in contradistinction to the nonrelativistic case,
M ∧ M∗ makes sense because of the identification M∗ ≡ M

T⊗T . The mixed
tensor H ∈ M ∧M∗ has the u -split form

ξu ·H · ξ−1u =

(

0 H · u
H · u H + (H · u) ∧ u

)

which, as a matrix, is not antisymmetric. It need not be antisymmetric, because
the symmmetric or antisymmetric properties of matrices refer to these proper-
ties of linear maps regarding duals without any identifications (see IV.1.5 and
V.4.19).

8.3. Splitting of tensor fields

8.3.1. The splitting of various tensor fields according to inertial observers
can be treated analogously to the nonrelativistic case.

The antisymmetric cotensor field F has the half split form according to the
standard inertial frame u

(

Eu,Bu

)

:= ηu · F · η∗u : M  (S∗u ⊗ T
∗)× (S∗u ∧ S∗u),

x 7→
(

F (x) · u, F (x) +
(

F (x) · u
)

∧ u
)

and the completely split form

ηu · F · η∗u ◦ ξ−1u : Tu × Su  (S∗ ⊗ T
∗)× (S∗ ∧ S∗),

(t, q) 7→
(

Eu(q ⋆ t),Bu(q ⋆ t)
)

.

8.3.2. The electromagnetic field is described by an antisymmetric cotensor
field F which is the exterior derivative of a potential K, F = D ∧ K. The
electric field and the magnetic field relative to the inertial observer U are the
corresponding components of the completely split form of F .

The relation between the completely split form (−V c
u,A

c
u) of K and the

completely split form
(

Ec
u,B

c
u

)

of F is exactly the same as in the nonrelativistic
case:

Ec
u = −∂0Ac

u −∇V c
u, Bc

u = ∇∧Ac
u.

Since the force field defined by the potential K equals

f(x, ẋ) = F (x) · ẋ
(

x ∈ DomK, ẋ ∈ V (1)
)

,

where F := D ∧ K, we can state again that a masspoint in the world point
x having the velocity value u′ ‘feels’ only the u′ -timelike component of the
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field; a masspoint always ‘feels’ the electric field according to its instantaneous
velocity value.

Because of the more complicated transformation rule in the special relativistic
case the Lorentz force is expressed by the U -electric field and the U -magnetic
field more complicatedly than in the nonrelativistic case.

8.4. Exercises

1. Let x ∈ M, T ∈ M ⊗ M and L ∈ M ⊗ M∗. Give the u -split form of
T · x and L · x using the u -split form of x, T and L.

2. Let T and L as before. Give the u -split form of T ·L and L · T using
the u -split form of T and L.

3. Recall the nondegenarate bilinear form (see V.4.15)

(M ∧M∗)× (M ∧M∗) → R, (F ,H) 7→ F •H := −1

2
TrF ·H.

Express F ·H using the u -timelike and the u -spacelike components of F

and H.

9. Reference systems

9.1. The notion of a reference system

9.1.1. We can repeat word by word what we said in I. 7.1.1 with the single
exception that instead of (absolute) time now we have to consider an (artificial)
time derived from a synchronization.

Recall that a reference frame (S,U) i.e. a synchronization S together with
an observer U establishes the splitting ξS,U = (τS , CU) : M  TS × SU .

Definition. A reference system is a quartet (S,U , TS , SU) where
(i) S is a synchronization,
(ii) U is an observer,
(iii) TS : TS  R is a strictly monotone increasing mapping,
(iv) SU : SU  R

3 is a mapping
such that (TS×SU)◦ξS,U = (TS ◦τS , SU ◦CU) : M  R×R

3 is an orientation
preserving coordinatization.

We call TS and SU the coordinatization of S -time and U -space, respec-
tively, in spite of the fact that we introduced the notion of coordinatization only
for affine spaces and, in general, neither TS nor SU is an affine space. (We men-
tion that in any case TS and SU can be endowed with a smooth structure and in
the framework of smooth structures TS and SU do become a coordinatization.)
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Note that condition (iii) involves that TS is defined on a subset of TS where
the ordering ‘later’ is total; consequently, the coordinatization of spacetime is
defined on a subset of DomU where the synchronization is well posed.

9.1.2. Definition. Let us consider a coordinatization K : M  R× R
3 .

As usual, we number the coordinates of R× R
3 from zero to three. Accord-

ingly, we find convenient to use the notation K = (κ0,κ) : M  R×R
3 for the

coordinatizations of spacetime. Then the equality

Dκ(x) · ∂0K−1
(

K(x)
)

= 0

well-known and used in the nonrelativistic case will hold now as well, since its
deduction rests only on the affine structure of M.

We say that a coordinatization K is referencelike if there is a reference system
(S,U , TS , SU) such that K = (TS × SU) ◦ ξS,U . In that case

κ0 = TS ◦ τS , κ = SU ◦ CU .

9.1.3. Proposition. A coordinatization K = (κ0,κ) : M  R × R
3

corresponds to a reference system if and only if
(i) K is orientation preserving,
(ii) ∂0K

−1(K(x)
)

is a future directed timelike vector,

(iii) −
(

Dκ0
)

(x) is a future directed timelike vector
for all x ∈ DomK.

Then

U(x) =
∂0K

−1(K(x)
)

∣

∣∂0K−1
(

K(x)
)∣

∣

(x ∈ DomK), (1)

is the corresponding observer and the corresponding synchronization S is deter-
mined as follows:

x is simultaneous with y if and only if κ0(x) = κ0(y) (2)

moreover,

TS(t) = κ0(x) (t ∈ TS , x ∈ t), (3)

SU(q) = κ(x) (q ∈ SU , x ∈ q). (4)

Proof. If K = (TS × SU) ◦ ξS,U then (i) is trivial.
κ0 is constant on the S -instants. In other words, S -instants—more pre-

cisely their part in DomK—have the form
{

x ∈ DomK
∣

∣ κ0(x) = α
}

. Then
{

x ∈ M
∣

∣

(

Dκ0
)

(x) · x = 0
}

is the tangent space of the corresponding world
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surface passing through x. Since this tangent space is spacelike,
(

Dκ0
)

(x) must
be timelike. If y − x ∈ T

→, then the properties of τS and TS imply that
κ0(y) − κ0(x) > 0; then

(

Dκ0
)

(x) · (y − x) + ordo(y − x) > 0 results in that
(

Dκ0
)

(x) · x > 0 for all x ∈ T
→, proving (iii).

As concerns (ii), note that a world line function r satisfies ṙ(s) = U
(

r(s)
)

and takes values in the domain of K if and only if K
(

r(s)
)

=
(

κ0
(

r(s)
)

, ξ
)

i.e.

r(s) = K−1
(

κ0
(

r(s)
)

, ξ
)

for a ξ ∈ R
3 and for all s ∈ Domr. As a consequence,

we have

U
(

r(s)
)

=
d

ds
K−1

(

κ0
(

r(s)
)

, ξ
)

= ∂0K
−1(κ0

(

r(s)
)

, ξ
)

·
(

Dκ0
)(

r(s)
)

· ṙ(s)

which, together with condition (iii), implies that U(x) is a positive multiple of
∂0K

−1(K(x)
)

for all x ∈ DomK, proving (ii) and equality (1).

Suppose now that K = (κ0,κ) is a coordinatization that fulfils conditions
(ii)–(iii).

Then condition (ii) implies that U defined by equality (1) is an observer.
According to (iii), the simultaneity S is well defined by (2) (i.e. the sub-

sets of form
{

x ∈ DomK
∣

∣ κ0(x) = α
}

are world surfaces and S is smooth).
Consequently, TS is well defined by formula (3) and it is strictly monotone
increasing.

If r is a world line such that ṙ(s) = U
(

r(s)
)

then

d

ds

(

κ(r(s)
)

= Dκ
(

r(s)
)

· U
(

r(t)
)

= Dκ
(

r(s)
)

· ∂0K
−1(K

(

r(s)
))

∣

∣∂0K−1
(

K
(

r(s)
))∣

∣

= 0

which means that κ ◦ r is a constant mapping, in other words, κ is constant on
the U -lines; hence SU is well defined by formula (4).

Finally, it is evident that K = (TS × SU) ◦ ξS,U .

9.2. Lorentzian reference systems

9.2.1. Now we are interested in what kind of affine coordinatization of
spacetime can correspond to a reference system.

Let us take an affine coordinatization K : M → R
4. Then there are

— an o ∈ M,
— an ordered basis (x0,x1,x2,x3) of M

such that

K(x) =
(

ki · (x− o)
∣

∣ i = 0, 1, 2, 3
)

(x ∈ M),

K−1(ξ) =
3
∑

i=0

ξixi (ξ ∈ R
4),
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where (k0,k1,k2,k3) is the dual of the basis in question.

Proposition. The affine coordinatization K corresponds to a reference
system if and only if
(i) (x0,x1,x2,x3) is a positively oriented basis,
(ii) x0 is a future directed timelike vector,
(iii) x1,x2,x3 are spacelike vectors spanning a spacelike linear subspace of M.

Then the corresponding observer is global and inertial, having the constant
value

u :=
x0

|x0|
,

and the synchronization is given by the hyperplanes directed by the spacelike
subspace spanned by x1, x2, x3 .

Proof. We show that the present conditions (i)–(iii) correspond to the
conditions listed in Proposition 9.1.3.

(i) The coordinatization is orientation preserving if and only if the corre-
sponding basis is positively oriented;
(ii) ∂0K

−1(K(x)
)

= x0;

(iii) −
(

Dκ0
)

(x) = −k0 for all x ∈ M. Since k0 · xα = 0 (α = 1, 2, 3),

−k0 is timelike if and only if xα -s span a spacelike linear subspace; then, since
k0 · x0 = 1 > 0 and since x0 is future directed timelike, −k0 must be future
directed.

According to our result—putting s := |x0| —, we write an affine reference
system in the form (u, o, s,x1,x2,x3) .

9.2.2. Definition. Let G denote the Lorentz form on R
4 treated in V.4.19

and recall that a linear map L : M → R
4 is called g−G -orthogonal if there is

an s ∈ T such that G(L · x ·L · y) = g(x,y)
s2 for all x,y ∈ M.

A coordinatization K is called Lorentzian if
— K is affine,
— K : M → R

4 is g −G -orthogonal.
A reference system is Lorentzian if the corresponding coordinatization is

Lorentzian.

From the previous result we get immediately the following:

Proposition. A coordinatization K is Lorentzian if and only if there are
(i) an o ∈ M,
(ii) a positively oriented g -orthogonal basis (e0, e1, e2, e3), normed to an s,

of M such that e0 is future directed timelike,
and

K(x) =

(

ei · (x− o)

e2i

∣

∣

∣

∣

i = 0, 1, 2, 3

)

(x ∈ M).
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According to our result, a Lorentzian reference system will be given in the
form (u, o, s, e1, e2, e3) and we shall use the following names: u is its velocity
value, o is its origin, s is its spacetime unit, (e1, e2, e3) is its space basis,.
Moreover, putting e0 := su , we call (e0, e1, e2, e3) its spacetime basis .

9.2.3. Let K be a Lorentzian coordinatization and use the previous nota-
tions.

We see from 1.6 that the Lorentzian coordinatization establishes an isomor-
phism between the spacetime model (M,T, g) and the arithmetic spacetime
model. More precisely, the coordinatization K and the mapping T → R, t 7→ t

s

constitute an isomorphism.
This isomorphism transforms vectors, covectors and tensors, cotensors etc.

into vectors, covectors etc. of the arithmetic spacetime model.
In particular,

K : M → R
4, x 7→

(

ei · x
e2i

∣

∣

∣

∣

i = 0, 1, 2, 3

)

is the coordinatization of vectors and

(

K−1
)∗

: M∗ → R
4, k 7→

(

k · ei | i = 0, 1, 2, 3
)

,

is the coordinatization of covectors.
We can generalize the coordinatization for vectors (covectors) of type or cotype

A, i.e. for elements in M ⊗ A or M

A

(

M∗ ⊗ A, M
∗

A

)

, too, where A is a

measure line. For instance, elements of M

T
or M

T⊗T are coordinatized by the

basis
(

ei

s

∣

∣ i = 0, 1, 2, 3
)

and by the basis
(

ei

s2

∣

∣ i = 0, 1, 2, 3
)

, respectively:

M

T
→ R

4, w 7→ s

(

ei ·w
e2i

∣

∣

∣

∣

i = 0, 1, 2, 3

)

,

M

T⊗ T
→ R

4, p 7→ s2
(

ei · p
e2i

∣

∣

∣

∣

i = 0, 1, 2, 3

)

.

9.2.4. As concerns subscripts and superscripts, we refer to V.4.19.

9.3. Equivalent reference systems

9.3.1. We can repeat, according to the sense, what we said in I.10.5.1.
Recall the notion of automorphisms of the spacetime model (see 1.6.1). An

automorphism is a transformation that leaves invariant (preserves) the structure
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of the spacetime model. Strict automorphisms do not change time periods and
distances.

It is quite natural that two objects transformed into each other by a strict
automorphism of the spacetime model are considered equivalent (i.e. the same
from a physical point of view).

Recalling that O(g) denotes the set of g -orthogonal linear maps in M (see
V.2.7) let us introduce the notation

P+→ :=

{L : M → M | L is affine, L ∈ O(g), L is orientation and arrow preserving}

and let us call the elements of P+→ proper Poincaré transformations. We shall
study these transformations in the next paragraph. For the moment it suffices
to know the quite evident fact that (L,1T) is a strict automorphism if and only
if L is a proper Poincaré transformation.

9.3.2. Definition. The coordinatizations K and K ′ are called equivalent
if there is a proper Poincaré transformation L such that

K ′ ◦ L = K.

Two reference systems are equivalent if the corresponding coordinatizations
are equivalent.

Proposition. The reference systems (S,U , TS , EU) and (S ′,U ′, TS′ , EU′)
are equivalent if and only if
(i) L · U = U ′ ◦ L,
(ii)

(

T−1S′ ◦ TS
)

◦ τS = τS′ ◦ L
(iii)

(

E−1
U′ ◦ EU

)

◦ CU = C
U′ ◦ L

Proof. Let K and K ′ denote the corresponding coordinatizations. It is
quite trivial that if the relations above hold, then K and K ′ are equivalent.

If the relations above hold, for (i) we can argue as in I.10.5.3, using (L · x)2 =
x2 for all x ∈ M. As concerns (ii) and (iii), we can copy the reasoning of (iii)
in I.10.5.3.

9.3.3. Now we shall see that our definition of equivalence of reference systems
is in accordance with the intuitive notion expounded in I.10.5.1.

Proposition. Two Lorentzian reference systems are equivalent if and only if
they have the same unit of time (and distance).

Proof. Let the Lorentzian coordinatizations K and K ′ be defined by the
origins o and o′ and the spacetime bases (e0, e1, e2, e3) and (e′0, e

′
1, e
′
2, e
′
3),

respectively.
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Then L := K ′−1 ◦K : M → M is the affine bijection determined by

L(o) = o′, L · ei = e′i (i = 0, 1, 2, 3).

Evidently, L is orientation preserving. Moreover, L ∈ O(g) if and only if
|e0| = |e′0| and it is arrow-preserving if and only if e0 and e′0 have the same
arrow.

9.4. Curve lengths calculated in coordinates

9.4.1. In 6.3.3 we dealt with lengths of curves in the space of an observer
U at instants of a synchronization S. It is an interesting question how to
calculate these lengths in coordinates corresponding to a coordinatization K =
(TS × EU) ◦ ξS,U .

We shall use the notation P := K−1 (P is the parametrization corresponding
to the coordinatization K).

Let L and Lt be as in 6.3.3 and let ξ0 be the coordinate of t ∈ TS , i.e.
ξ0 = τS(t).

A parametrization pt of Lt has the coordinatized form

a 7→ K(pt(a)) =:
(

ξ0, (pα(a)| α = 1, 2, 3)
)

=:
(

ξ0,p(a)
)

from which we deduce

pt = P (ξ0,p),

ṗt = ∂αP (ξ
0, p)ṗα (Einstein summation).

Furthermore, we know (see 9.1.3)

U(P ) =
∂0P

|∂0P |
.

Consequently,

|πU(pt) · ṗt|
2
= |ṗt|2 + |U(pt) · ṗt|2 =

=

(

∂αP · ∂βP +
(∂0P · ∂αP )(∂0P · ∂βP )

|∂0P |2

)

(ξ0,p)ṗαṗβ .

Let us put
gik := ∂iP · ∂kP (i, k = 0, 1, 2, 3).

Taking into account that g00 is negative, we see that

hαβ := gαβ − g0αg0β

g00
(α, β = 1, 2, 3)
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is the ’metric tensor’ in the U -space, i.e. a curve in the U -space parametrized
by p at an S -instant coordinatized by ξ0 has length

∫

√

hαβ

(

ξ0,p(a)
)

ṗα(a)ṗβ(a)da.

9.4.2. Note that gik is a function from R
4 into T⊗ T.

We know that
(

∂iP (ξ)| i = 0, 1, 2, 3
)

is a basis in M (the local basis at

P (ξ) (see VI.5.6)). Thus, according to V.4.21,
(

gik(ξ)| i, k = 0, 1, 2, 3
)

is the
coordinatized form of g corresponding to this basis. More precisely, we get those
formulae choosing an s ∈ T

+ and putting

gik(ξ) :=
gik(ξ)

s2
.

9.5. Exercises

1. Let K be a coordinatization corresponding to a reference system whose
observer is U . Demonstrate that the coordinatized form of U according to K is
the constant mapping (1,0). (By definition, (DK ·U)◦K−1 is the coordinatized
form of U according to K, see VI.5).

2. Take the uniformly accelerated observer U treated in 6.5. Define a
Lorentzian reference system with arbitrary spacetime unit s , origin o and with
a spacetime basis such that e0 := sU(o), e1 := s ao

|ao| , e2 and e3 are arbitrary.

Demonstrate that U will have the coordinatized form

(

ξ0, ξ1, ξ2, ξ3
)

7→
(
√

1 + (αξ0)
2
, αξ0, 0, 0

)

where α is the number for which |ao| = α 1
s

holds.

The U -line passing through o+
3
∑

i=0

ξiei becomes

{(

1

α
sinhαs, ξ1 +

1

α
(coshαs− 1), ξ2, ξ3

) ∣

∣

∣

∣

s ∈ R

}

.

3. Take the uniformly accelerated observer U treated in 6.6. Define a
Lorentzian reference system with arbitrary spacetime unit s , origin o and with
a spacetime basis such that e0 := sU(o), e1 := s ao

|ao| , e2 and e3 are arbitrary.

Demonstrate that U will have the coordinatized form
{

(ξ0, ξ1, ξ2, ξ3) ∈ R
4
∣

∣ ξ1 >
∣

∣ξ0
∣

∣

}

→ R
4,

(

ξ0, ξ1, ξ2, ξ3
)

7→ 1
√

−
(

ξ0
)2

+
(

ξ1
)2

(

ξ1, ξ0, 0, 0
)

.
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The U -line passing through o+
3
∑

i=0

ξiei becomes

{(

1

ξ1
sinhξ1s, ξ1 +

1

ξ1
(coshξ1s− 1), ξ2, ξ3

) ∣

∣

∣

∣

s ∈ R

}

.

4. Take the uniformly rotating observer U treated in 6.7. Define a Lorentzian
reference system with arbitrary spacetime unit s , origin o and with a spacetime
basis such that e0 := sU(o), e3 positively oriented in KerΩ, |e3| = s, e1 and
e2 arbitrary. Demonstrate that U will have the coordinatized form

(

ξ0, ξ1, ξ2, ξ3
)

7→
(

√

1 + ω2
(

(ξ1)
2
+ (ξ2)

2)
, −ωξ2, ωξ1, 0

)

where ω is the number for which |Ω| = ω 1
s

holds.

The U -line passing through o+
3
∑

i=0

ξiei becomes

{(

s

√

1 + ω2
(

(ξ1)
2
+ (ξ2)

2)
, ξ1 cosωs− ξ2 sinωs, ξ1 sinωs+ ξ2 cosωs, ξ3

) ∣

∣

∣

∣

s ∈ R

}

.

5. Take the uniformly rotating observer U treated in 6.8. Define a Lorentzian
reference system with arbitrary spacetime unit s , origin o and with a spacetime
basis such that e0 := sU(o), e3 positively oriented in KerΩ, |e3| = s, e1 and
e2 arbitrary. Demonstrate that U will have the coordinatized form

{

(

ξ0, ξ1, ξ2, ξ3
)

∈ R
4
∣

∣

∣ ω2
(

(ξ1)
2
+ (ξ2)

2
)

< 1
}

→ R
4,

(

ξ0, ξ1, ξ2, ξ3
)

7→ 1
√

1− ω2
(

(ξ1)
2
+ (ξ2)

2)

(

1,−ωξ2, ωξ1, 0
)

where ω is the number for which |Ω| = ω 1
s

holds.

The U -line passing through o+
3
∑

i=0

ξiei becomes

{ (

t(s), ξ1 cosωt(s)− ξ2 sinωt(s), ξ1 sinωt(s) + ξ2 cosωt(s), ξ3
) ∣

∣ s ∈ R
}

,

where
t(s) :=

s
√

1− ω2
(

(ξ1)
2
+ (ξ2)

2)
.
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6. Find necessary and sufficient conditions that two affine reference systems
be equivalent.

7. Take the uniformly accelerated observer treated in 6.5, consider uo -
synchronization and find a convenient reference system for them.

8. A reference system defined for a uniformly accelerated observer cannot be
equivalent to a reference system defined for a uniformly rotating observer.

10. Spacetime groups ∗

10.1. The Lorentz group

10.1.1. We shall deal with linear maps from M into M, permanently using
the identification Lin(M) ≡ M⊗M∗.

Recall the notion of g -adjoints, g -orthogonal maps, g -antisymmetric maps
(V.1.5, V.2.7).

Definition.

L :=
{

L ∈ M⊗M∗| L> ·L = 1M

}

= O(g)

is called the Lorentz group; its elements are the Lorentz transformations.
If L is a Lorentz transformation then

arL :=

{

+1 if L is arrow-preserving

−1 if L is arrow-reversing

is the arrow of L and

signL :=

{

+1 if L|
Su

is orientation preserving

−1 if L|
Su

is orientation-reversing

is the sign of L where u is an arbitrary element of V (1).
Let us put

L+→ := {L ∈ L | signL = arL = 1},
L+← := {L ∈ L | signL = −arL = 1},
L−→ := {L ∈ L | signL = −arL = −1},
L−← := {L ∈ L | signL = arL = −1}.

L+→ is called the proper Lorentz group.

10.1.2. (i) From VII.5 we infer that the Lorentz group is a six-dimensional
Lie group having the Lie algebra
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La(L) = A(g) =
{

H ∈ M⊗M∗| H> = −H
}

.

(ii) S, T and L, the set of spacelike vectors, the set of timelike vectors and
the set of lightlike vectors are invariant under Lorentz transformations. The
arrow of a Lorentz transformation L is +1 if and only if T

→, the set of future
directed timelike vectors, is invariant for L.

(iii) The sign of Lorentz transformations is correctly defined. Indeed, if
u ∈ V (1) then L maps Su onto S(arL)L·u; these two linear subspaces are
oriented according to 1.3.4. It is not hard to see that if the restriction of L onto
Su is orientation preserving for some u then it is orientation preserving for all
u.

(iv) The mappings L → {−1, 1}, L 7→ arL and L → {−1, 1}, L 7→ signL
are continuous group homomorphisms. As a consequence, the Lorentz group
is disconnected. We shall see in 10.2.4 that the proper Lorentz group L+→ is
connected. It is quite trivial that if L ∈ L+← then L ·L+→ = L+← and similar
assertions hold for L−→ and L−← as well. Consequently, the Lorentz group
has four connected components, the four subsets given in Definition 10.1.1.

From these four components only L+→—the proper Lorentz group—is a
subgroup; nevertheless, the union of an arbitrary component and of the proper
Lorentz group is a subgroup as well.

L→ := L+→ ∪ L−→ is called the orthochronous Lorentz group.

(v) The arrow of L is +1 if and only if T
→, the set of future directed

timelike vectors is invariant for L :

if arL = 1 then L[T→] = T
→, L[T←] = T

←,

if arL = −1 then L[T→] = T
←, L[T←] = T

→.

Moreover, the elements of L+→ and L−← preserve the orientation of M,
whereas the elements of L+← and L−→ reverse the orientation.

10.1.3. M is of even dimensions, thus −1M is orientation-preserving. Evi-
dently, −1M is in L−←; it is called the inversion of spacetime vectors. We have
that L−← = (−1M) · L+→.

We have seen previously that the elements of L+← invert in some sense the
timelike vectors and do not invert the spacelike vectors; the elements of L−→
invert in some sense the spacelike vectors and do not invert the timelike vectors.
However, we cannot select an element of L+← and an element of L−→ that we
could consider to be the time inversion and the space inversion, respectively.

For each u ∈ V (1) we can give a u -timelike inversion and a u -spacelike
inversion as follows.
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The u -timelike inversion Tu ∈ L+← inverts the vectors parallel to u and
leaves invariant the spacelike vectors g -orthogonal to u :

Tu · u := −u and Tu · q := q for q ∈ Su.

In general,
Tu · x = u(u · x) + πu · x = 2u(u · x) + x (x ∈ M),

i.e.
Tu = 1M + 2u⊗ u.

The u -spacelike inversion Pu ∈ L−→ inverts the spacelike vectors g -
orthogonal to u and leaves invariant the vectors parallel to u :

Pu · u := u and Pu · q := −q for q ∈ Su.

In general,

Pu · x = −u(u · x)− πu · x = −2u(u · x)− x (x ∈ M),

i.e.
Pu = −1M − 2u⊗ u.

We easily deduce the following equalities:

T−1u = Tu, P−1u = Pu,

−Tu = Pu,

Tu · Pu = Pu · Tu = −1M.

10.1.4. For u ∈ V (1) let us consider the Euclidean vector space (Su,T,hu)
where hu is the restriction of g onto Su × Su. The hu -orthogonal group,
O(hu), called also the group of u -spacelike orthogonal transformations, can be
identified with a subgroup of the Lorentz group:

O(hu) ≡ {L ∈ L→| L · u = u} .

The Lorentz group is an analogue of the Galilean group and we have already
seen a number of their common properties. However, as concerns their relation
to three-dimensional orthogonal groups, they differ significantly.

In the nonrelativistic case there is a single three-dimensional orthogonal group
in question, O(h), and it can be injected into the Galilean group in different ways
according to different velocity values. Moreover, L 7→ L|

S
is a surjective group

homomorphism from the Galilean group onto the three-dimensional orthogonal
group.
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In the relativistic case there are a lot of three-dimensional orthogonal groups,
being subgroups of the Lorentz group; one corresponds to each velocity value.
Note that, for all u, L 7→ L|

Su
is not a surjective group homomorphism from

L onto O(hu); indeed, Su is invariant for L if and only if L · u = (arL)u.
As a consequence, there is not either a ’special Lorentz group’ or a ’u -

special Lorentz group’ which would be the kernel of the group homomorphism
L 7→ L|

Su
.

10.1.5. The problem is that, in general, Su is not invariant for a Lorentz
transformation L; more closely, L maps Su onto S(arL)L·u for all u ∈ V (1).
Let us try to rule out this uneasiness with the aid of the corresponding Lorentz
boost L(u, (arL)L ·u) which maps S(arL)L·u onto Su in a ’handsome’ way. A
simple calculation yields the following result.

Proposition. For all Lorentz transformations L and for all u ∈ V (1),

R(L,u) := (arL)L(u, (arL)L · u) ·L =

=(arL)L+

(

u+ (arL)L · u
)

⊗
(

(arL)L)−1 · u+ u
)

1− u · (arL)L · u − 2u⊗ u

is an element of O(hu).

This suggests the idea that an orthochronous Lorentz transformation L

should be considered ‘special’ if R(L,u)|
Su

= 1Su
; then L(u, (arL)L ·u) ·L =

1M and consequently L is a Lorentz boost.
Thus Lorentz boosts can be regarded as counterparts of special Galilean

transformations. That is why we call them special Lorentz transformations as
well. However, it is very important that the special Lorentz transformations
(Lorentz boosts) do not form a subgroup (see 1.3.9).

Note that our result can be formulated as follows: given an arbitrary u ∈
V (1), every Lorentz transformation L can be decomposed into the product of
a special Lorentz transformation and a u -spacelike orthogonal transformation,
multiplied by the arrow of L :

L = (arL)L
(

(arL)L · u,u
)

·R(L,u).

10.1.6. It is worth mentioning that the product of the u′ -timelike (u′ -
spacelike) inversion and the u -timelike (u -spacelike) inversion is a special
Lorentz transformation. Since

T−1u = Tu = −Pu = 1M + 2u⊗ u,

we find—because of −u − 2(u · u′)u′ = u − 2v
uu′√

1−|v
uu′ |2

—that Tu′ · T−1u =

Pu′ · P−1u is the Lorentz boost from u to u− 2v
uu′√

1−|v
uu′ |2

.
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10.1.7. (i) Take an u ∈ V (1) and a 0 6= H ∈ A(g) for which H · u = 0

holds. Then H3 = −|H|2H (V.4.18(i)) and we can repeat the proof of I.11.1.8
to have

eH =

(

1M +
H2

|H|2

)

+
H2

|H|2
cos |H|+ H

|H| sin |H|

which is an element of O(hu).
(ii) Take an u ∈ V (1) and a 0 6= H ∈ A(g) whose kernel lies in Su. Then

H3 = |H|2H (V.4.18(ii)) and we can prove as in I.11.1.8 that

eH =

(

1M − H2

|H|2

)

+
H2

|H|2
cosh |H|+ H

|H| sinh |H|.

We can demonstrate this is a Lorentz boost. Recall that there is an n ∈ Su

T
,

|n| = 1 such that H = αu∧n, where α := |H|. Then H2 = α2(n⊗n−u⊗u)
and executing some calculations we obtain:

Proposition. Let u ∈ V (1), n ∈ Su

T
, |n| = 1, and α ∈ R. Then

exp
(

α(u ∧ n)
)

= L(ucoshα+ nsinhα, u).

10.1.8. Originally the Lorentz transformations are defined to be linear maps
from M into M. In the usual way, we can consider them to be linear maps from
M

T
into M

T
as we already did in the preceding paragraphs as well.

V (1) is invariant under orthochronous Lorentz transformations. However,
contrary to the nonrelativistic case, here V (1) is not an affine subspace, hence
we cannot say anything similar to those in I.11.3.8.

This, too, indicates that the structure of the Lorentz group is more compli-
cated than the structure of the Galilean group.

10.2. The u -split Lorentz group

10.2.1. The Lorentz transformations, being elements of M ⊗M∗, are split
by velocity values according to 8.1. These splittings are significantly more
complicated than the splittings of Galilean transformations.

Let us start with the splittings of Lorentz boosts. The map ξu′u defined in
7.1.4 is such a splitting:

ξu′u = ξu ·L(u,u′) · ξ−1u

(

u,u′ ∈ V (1)
)

.

For a u ∈ V (1), it is convenient to introduce the notations

Bu :=

{

v ∈ Su

T

∣

∣

∣

∣

|v| < 1

}
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and

κ(v) :=
1

√

1− |v|2
, D(v) :=

1

κ(v)

(

1Su
+

κ(v)
2

κ(v) + 1
v ⊗ v

)

for v ∈ Bu. It is worth mentioning the relation

κ(v)2

κ(v) + 1
=
κ(v)− 1

|v|2
.

Applying the usual matrix forms we have

ξu′u = κ(vu′u)

(

1 −vu′u

−vu′u D(vu′u)

)

.

A simple calculation yields that

ξu ·L(u′,u) · ξ−1u = ξ−1u′u = κ(vu′u)

(

1 vu′u

vu′u D(vu′u)

)

.

10.2.2. Now taking an arbitrary Lorentz transformation L and a u ∈ V (1),
we make the following manipulation:

ξu ·L · ξ−1u =
(

ξu ·L(u, (arL)L · u)−1 · ξ−1u

)

·
(

ξu ·L(u, (arL)L · u) ·L · ξ−1u

)

.

The first factor on the right-hand side equals ξ−1(arL)L·u,u. As concerns the

second factor, we find that
(

ξu ·L(u, (arL)L · u) ·L · ξ−1u

)

(t, q) =
(

ξu ·L(u, (arL)L · u) ·L
)

(ut+ q) =

= ξu ·
(

(arL)ut+R(L,u) · q
)

=
(

(arL)t,R(L,u) · q
)

for all (t, q) ∈ T× Su, i.e. the second factor has the matrix form
(

arL 0

0 R(L,u)

)

.

As a consequence, we see that the following definition describes the u -split
form of Lorentz transformations.

Definition. The u -split Lorentz group is
{

κ(v)

(

1 v

v D(v)

)(

±1 0

0 ±R

) ∣

∣

∣

∣

v ∈ Bu, R ∈ SO(hu)

}

.

Its elements are called u -split Lorentz transformations.

The u -split Lorentz transformations can be regarded as linear maps T×Su →
T× Su; the one in the definition makes the correspondence

(t, q) 7→ κ(v)
(

±t± v ·R · q, ±vt±D(v) ·R · q
)

.
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The u -split Lorentz group is a six-dimensional Lie group having the Lie
algebra

{(

0 v

v A

)∣

∣

∣

∣

v ∈ Su

T
, A ∈ A(hu)

}

.

10.2.3. The splitting according to u establishes a Lie-group isomorphism
between the Lorentz group and the u -split Lorentz group. The isomorphisms
corresponding to different u′ and u are different.

The difference of splittings can be seen by the usual transformation rule which
is rather complicated; since here we need not it, we do not give the details.

10.2.4. The u -splitting sends the proper Lorentz group onto
{

κ(v)

(

1 v

v D(v)

)(

1 0

0 R

)∣

∣

∣

∣

v ∈ Bu, R ∈ SO(hu)

}

which is evidently a connected set. Since the u -splitting is a Lie group isomor-
phisms, L+→ is connected as well.

10.2.5. We easily verify that
{

κ(v)

(

1 v

v D(v)

)∣

∣

∣

∣

v ∈ Bu

}

is not a subgroup of the u -split Lorentz group; this reflects the well-known fact
that the Lorentz boosts do not form a subgroup.

10.2.6. The Lie algebra of the Lorentz group, too, consists of elements of
M⊗M∗, thus they are split by velocity values in the same way as the Lorentz
transformations; evidently, their split form will be different.

If H is in the Lie algebra of the Lorentz group—i.e. H is a g -antisymmetric
tensor—and u ∈ V (1), then

ξu ·H · ξ−1u =

(

0 H · u
H · u H − u ∧H · u

)

.

The splitting according to u establishes a Lie algebra isomorphism between
the Lie algebra of the Lorentz group and the Lie algebra of the u -split Lorentz
group. The isomorphisms corresponding to different u′ and u are different.

10.3. Exercises

1. The Lorentz group is not transitive, i.e. for all x ∈ M, {L · x | L ∈ L} 6=
M. What are the orbits of the Lorentz group?

2. The subgroup generated by the Lorentz boosts equals the proper Lorentz
group.
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3. Prove that the Lie algebra of O(hu) equals {H ∈ A(g) | H · u = 0} which
can be identified with A(hu).

4. What is the subgroup generated by {Tu|u ∈ V (1)}?
5. Prove that

ξu · Tu′ · ξ−1u = ξu,u′′ ·
(

−1 0

0 1Su

)

,

ξu · Pu′ ◦ ξ−1u = ξu,u′′ ·
(

1 0

0 −1Su

)

where u′′ := u− 2κ (vuu′)vuu′ .

10.4. The Poincaré group

10.4.1. Now we shall deal with affine maps L : M → M; as usual, the linear
map under L is denoted by L.

Definition.

P := {L : M → M | L is affine, L ∈ L}

is called the Poincaré group; its elements are the Poincaré transformations.
If L is a Poincaré transformation then

arL := arL, signL := signL.

P+→, P+←, P−→ and P−← are the subsets of P consisting of elements
whose underlying linear maps belong to L+→, L+←, L−→ and L−←, respec-
tively.

P+→ is called the proper Poincaré group.

According to VII.3.2(ii) we can state the following.

Proposition. The Poincaré group is a ten-dimensional Lie group; its Lie
algebra consists of the affine maps H : M → M whose underlying linear map is
in the Lie algebra of the Lorentz group:

La(P) = {H ∈ Aff(M,M) | H ∈ A(g)}.

The proper Poincaré group is a connected subgroup of the Poincaré group.
As regards P+←, etc. we can repeat what we said about the components of the
Lorentz group.

P→ := P+→ ∪ P−→ is called the orthochronous Poincaré group.
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10.4.2. We can say that the elements of P−← invert spacetime in some sense
but there is no element that we could call the spacetime inversion.

For every o ∈ M we can give the o -centered spacetime inversion in the well-
known way (cf. I.11.6.2):

Io(x) := o− (x− o) (x ∈ M).

Similarly, we can say that in some sense the elements of P−→ contain space-
like inversion and do not contain timelike inversion; the elements of P+← contain
timelike inversion and do not contain spacelike inversion. However, the space in-
version and the time inversion do not exist.

For every o ∈ M and u ∈ V (1) we can give the o -centered u -timelike
inversion and the o -centered u -spacelike inversion as follows:

Tu,o(x) := o+ Tu · (x− o),

Pu,o(x) := o+ Pu · (x− o) (x ∈ M).

10.4.3. The Poincaré transformations are mappings of spacetime. They
play a fundamental role because the proper Poincaré transformations can be
considered to be the strict automorphisms of the spacetime model. The following
statement is quite trivial.

Proposition. (F,1T) is a strict automorphism of the special relativistic
space time model (M,T, g) if and only if F is a proper Poincaré transformation.

10.4.4. The Lorentz group is not a subgroup of the Poincaré group. The
mapping P → L, L 7→ L is a surjective Lie group homomorphism whose kernel
is T n(M), the translation group of M,

T n(M) = {Ta | a ∈ M} = {L ∈ P | L = 1M}.

As we know, its Lie algebra is M regarded as the set of constant maps from
M into M (VII.3.3).

For every o ∈ M,
Lo := {L ∈ P | L(o) = o},

called the group of o -centered Lorentz transformations, is a subgroup of the
Poincaré group; the restriction of the homomorphism L 7→ L onto Lo is a
bijection between Lo and L.

In other words, given o ∈ M, we can assign to every Lorentz transformation
L the Poincaré transformation

x 7→ o+L · (x− o),

called the o -centered Lorentz transformation by L.
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10.4.5. For every u ∈ V (1) we can define the subgroup of u -timelike
translations

T n(T)u := {Tut | t ∈ T} ⊂ T n(M)

and the subgroup of u -spacelike translations

T n(Su) := {Tq | q ∈ Su} ⊂ T n(M)

10.4.6. For every u ∈ V (1) and o ∈ M,

O(hu)o := {L ∈ P→ | L(o) = o, L · u = u},
called the group of o -centered u -spacelike orthogonal transformations, is a sub-
group of P→.

In other words, given (u, o) ∈ V (1)×M, we can assign to every R ∈ O(hu)
the Poincaré transformation

x 7→ o− u
(

u · (x− o)
)

+R · πu · (x− o),

called the o -centered u -spacelike orthogonal transformation by R.

10.5. The vectorial Poincaré group

10.5.1. Recall that for an arbitrary world point o, the vectorization of M
with origin o, Oo : M → M, x 7→ x− o is an affine bijection.

With the aid of such a vectorization we can ’vectorize’ the Poincaré group
as well: if L is a Poincaré transformation then Oo ◦ L ◦ O−1o is an affine
transformation of M, represented by the matrix (see VI.2.4(ii) and Exercise
V I.2.5.2)

(

1 0

L(o)− o L

)

.

The Lie algebra of the Poincaré group consists of affine maps H : M → M

where M is considered to be a vector space (the sum of such maps is a part
of the Lie algebra structure). Thus the vectorization H ◦ O−1o is an affine map
M → M where the range is regarded as a vector space. Then it is represented
by the matrix (see VI.2.4(iii))

(

0 0

H(o) H

)

.

10.5.2. Definition. The vectorial Poincaré group is
{(

1 0

a L

)∣

∣

∣

∣

a ∈ M, L ∈ L
}

.
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The vectorial Poincaré group is a ten-dimensional Lie group, its Lie algebra
is the vectorization of the Lie algebra of the Poincaré group:

{(

0 0

a H

)∣

∣

∣

∣

a ∈ M, H ∈ La(L)
}

.

An advantage of this block matrix representation is that the commutator of
two Lie algebra elements can be computed as the difference of their two products.

10.5.3. A vectorization of the Poincaré group is a Lie group isomorphism
between the Poincaré group and the vectorial Poincaré group. The following
transformation rule shows how the vectorizations depend on the world points
serving as origins of the vectorization. Let o and o′ be two world points; then

Oo′ ◦O−1o = To−o′ =

(

1 0
(o− o′) 1M

)

and

To−o′ ·
(

1 0
a L

)

· T−1o−o′ =

(

1 0
a+ (L− 1M) · (o′ − o) L

)

(a ∈ M, L ∈ L).

As concerns the corresponding Lie algebra isomorphisms, we have

(

0 0

a H

)

· T−1o−o′ =

(

0 0

a+H · (o′ − o) H

)

(a ∈ M, H ∈ La(N )).

10.6. The u -split Poincaré group

10.6.1. With the aid of the splitting corresponding to u ∈ V (1), we send
the transformations of M into the transformations of T × Su. Composing a
vectorization and a splitting, we convert Poincaré transformations into affine
transformations of T× Su.

Embedding the affine transformations of T × Su into the linear transforma-
tions of R× (T×Su) (see VI.2.4(ii)) and using the customary matrix represen-
tation of such linear maps, we introduce the following notion.

Definition. The u -split Poincaré group is











1 0 0

t κ(v) κ(v)v
q κ(v)v κ(v)D(v)









1 0 0

0 ±1 0

0 0 ±R





∣

∣

∣

∣

∣

∣

t ∈ T, q ∈ Su,
v ∈ Bu, R ∈ SO(hu)







.
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The u -split Poincaré group is a ten-dimensional Lie group having the Lie
algebra











0 0 0

t 0 v

q v A





∣

∣

∣

∣

∣

∣

t ∈ T, q ∈ Su, v ∈ Su

T
, A ∈ A(hu)







.

Keep in mind that the group multiplication of u -split Poincaré transforma-
tions coincides with the usual matrix multiplication and the commutator of Lie
algebra elements is the difference of their two products.

For u ∈ V (1) and o ∈ M put

ξu,o := ξu ◦Oo : M → T× Su.

Then L 7→ ξu,o ◦ L ◦ ξ−1u,o is a Lie group isomorphism between the Poincaré
group and the u -split Poincaré group. Evidently, for different elements of
V (1) ×M, the isomorphisms are different. The transformation rule that shows
how the isomorphism depends on (u, o) is rather complicated.

Though the Poincaré group and the u -split Poincaré group are isomorphic
(they have the same Lie group structure), they are not ’identical’ : there is no
’canonical’ isomorphism between them that we could use to identify them.

The u -split Poincaré group is the Poincaré group of the u -split special
relativistic spacetime model (T × Su, T, gu) (see 1.7). The spacetime model
(M,T, g) and the corresponding u -split spacetime model are isomorphic, but
they cannot be identified as we pointed out in 1.6.3. Due to the additional
structures of the u -split spacetime model, the u -split Poincaré group has a
number of additional structures that the Poincaré group has not.

10.6.2. The u -split Poincaré group has the following subgroups:











1 0 0

t 1 0

0 0 1Su





∣

∣

∣

∣

∣

∣

t ∈ T







,











1 0 0

0 1 0

q 0 1Su





∣

∣

∣

∣

∣

∣

q ∈ Su







,











1 0 0

0 1 0

0 0 R





∣

∣

∣

∣

∣

∣

R ∈ O(hu)







.

In contradistinction to the nonrelativistic case,











1 0 0

0 κ(v) κ(v)v
0 κ(v)v κ(v)D(v)





∣

∣

∣

∣

∣

∣

v ∈ Bu







is not a subgroup of the u -split Poincaré group.
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The listed u -split Poincaré transformations correspond
(

by the isomorphism

established by (u, o) ∈ V (1)×M
)

to the following Poincaré transformations:

x 7→ x+ ut (t ∈ T),

x 7→ x+ q (q ∈ Su),

x 7→ o− u
(

u · (x− o)
)

+R · πu · (x− o)
(

R ∈ O(hu)
)

,

x 7→ o+L
(

κ(v)(u+ v), u
)

· πu · (x− o) (v ∈ Bu).

10.6.3. Taking a linear bijection T → R and an orthogonal linear bijection
Su → R

3, we can transfer the u -split Poincaré group into an affine transforma-
tion group of R×R

3, called the arithmetic Poincaré group which is the Poincaré
group of the arithmetic spacetime model.

The arithmetic Poincaré transformations can be given in the same form as
the u -split Poincaré transformations: R, R

3, O(3) and the open unit ball in
R

3 are to be substituted for T, Su, O(hu) and Bu, respectively.
In conventional treatments one always considers the arithmetic Poincaré group

and one speaks about the time translation subgroup, the space translation sub-
group, the space rotation subgroup, the time inversion etc. which in applications
can result in misunderstandings.

Since time and space do not exist and only observer time and observer space
make sense, the Poincaré group has no such subgroups; it contains u -timelike
translations, u -spacelike translations, o -centered u -spacelike rotations etc.

10.7. Exercises

1. Let L be a Poincaré transformation for which L = −1M. Then there is a
unique o ∈ M such that L is the o -centered spacetime inversion.

2. Prove that for all o ∈ M,

Oo ◦ Lo ◦O−1o =

{(

1 0

0 L

)∣

∣

∣

∣

L ∈ L
}

.

3. Find ξu,o · Tu,o · ξ−1u,o and ξu,o · Pu,o · ξ−1u,o.
4. Prove that the subgroup generated by {Tu,o|u ∈ V (1), o ∈ M} equals

P+→ ∪ P+←.
5. Prove that the derived Lie algebra of the Poincaré group equals the Lie

algebra of the Poincaré group, i.e. [La(P),La(P)] = La(P).
6. Let L be a Poincaré transformation. Consider the real number arL to be

a linear map T → T, t 7→ (arL)t.

If r is a world line function then L ◦ r ◦ (arL)−1 is a world line function, too.
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If C is a world line then L[C] is a world line, too; moreover, if C = Ranr

then L[C] = Ran
(

L ◦ r ◦ (arL)−1
)

.

11. Relation between the two types of spacetime models

11.1. One often asserts that nonrelativistic physics is the limit of special
relativistic physics as the light speed tends to infinity.

Can we give such an exact statement concerning our spacetime models? The
answer is no.

We have two different mathematical structures. There is no natural way of
introducing a convergence notion even on a class of mathematical structures of
the same kind (e.g. on the class of groups and to say that a sequence of groups
converges to a given one) and it is quite impossible to introduce a convergence
notion on a class consisting of structures of different kinds (e.g. to say that a
sequence of groups converges to an algebra).

There is no reasonable limit procedure in which a sequence of special rela-
tivistic spacetime models converges to a nonrelativistic spacetime model.

11.2. The following considerations show the real meaning of the usual state-
ments.

Let us fix a special relativistic standard inertial frame with velocity value u.
Let us rename T to L, calling it the measure line of distances. Let us

introduce for time periods a new measure line, denoted by T. Let us choose
a positive element c of L

T
; it makes the correspondence T → L, t 7→ ct.

If u′ ∈ V (1) then vu′u ∈ Su

L
and v := cvu′u ∈ Su

T
will be considered the

relative velocity with respect to the observer. Evidently, |v| < c, thus c is the
light speed in the new system of measure lines.

Substituting v
c for vu′u and ct for t in the formula 7.1.4 and letting c tend

to infinity—which has an exact meaning because elements of finite dimensional
vector spaces are involved in that formula—we get the corresponding nonrela-
tivistic transformation rule in I.8.2.4.

Similar statements hold for other formulae that concern relative velocities; e.g.
for the addition formula of relative velocities, for the formula of light aberration
etc.

However, such a statement, in general, will not be valid for formulae that do
not concern relative velocities: e.g. the uniformly accelerated observer treated
in 6.6 has no limit as c tends to infinity.



III. FUNDAMENTAL NOTIONS OF
GENERAL RELATIVISTIC SPACETIME

MODELS

1. As we have already mentioned, the nonrelativistic spacetime model is
suitable for describing ‘sluggish’ mechanical phenomena. To describe ‘brisk’
mechanical phenomena and electromagnetic phenomena we have to use the
special relativistic spacetime model. Of course, the special relativistic spacetime
model is good for ‘sluggish’ mechanical phenomena, too, but their relativistic
description is much more complicated than the nonrelativistic one and gives
practically the same results.

To avoid misunderstandings, we emphasize that the mechanical effects of elec-
tromagnetic phenomena (e.g. the history of charged masspoints in a given elec-
tromagnetic field) can be well described nonrelativistically as well, provided that
the mechanical phenomena remain ‘sluggish’ (the relative velocities of masspoints
remain much smaller than the light speed). The nonrelativistic spacetime model
is not suitable for the description of the electromagnetic phenomena in vacuum:
how charges produce electromagnetic field, how an electromagnetic radiation
propagates etc.

Gravitational actions are well described in the nonrelativistic spacetime model
by absolute scalar potentials. Such potentials do not exist in the special rela-
tivistic spacetime model. Other potentials or force fields do not give convenient
(experimentally verified) models of gravitational actions.

The problem that faces us is that gravitational actions in ‘brisk’ mechanical
phenomena and electromagnetic phenomena cannot be described and, of course,
gravitational phenomena (how do masses produce gravitational fields) cannot be
treated in the framework of the special relativistic spacetime model.

There is only one way out: if we want to describe gravitational phenomena
as well, then we have to construct a new spacetime model. However, it is not
straightforward at all, how we shall do this.

2. Recall what we said about our experience regarding the structure of
our space and time: in our space we find straight lines represented by light
signals or stretched threads. We know, however, that a thread stretched in the
gravitational field of the earth is not straight, it bends; if the thread is short
enough and the stretching is strong enough then the curvature of the thread is
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negligible. However, for longer threads—imagine a thread (wire) across a river—
the curvature can be significant.

It seems, that a light signal is better for realizing a straight line. Indeed,
in terrestrial distances we do not experience that a light signal is not straight.
However, the distances on the earth are small for a light signal. It may happen
that light signals turn out to be curved in cosmic distances. Of course, to prove
or disprove this possibility we meet great difficulties. A minor problem is that
cosmic distances are hardly manageable.

To state that a line is straight or not we have to know what the straight lines
are. Straight lines in terrestrial distances are defined in the most convenient way
by the trajectories of light signals. Have we a better way to define straight lines
in cosmic size? Can we define straight lines in this way? Can we define straight
lines at all?

We have to recognize that it makes no sense that a single line in itself is straight
or is not straight. We have to relate the trajectories of more light signals and
to test whether they satisfy the conditions we expect the set of straight lines
have. For instance, if two different light signals meet in more than one point,
the trajectories of the signals cannot be straight lines. Unfortunately, it is rather
difficult to execute such examinations in cosmic size.

Nevertheless, we have experimental evidence that shows that gravitation influ-
ences the propagation of light. The angle between two light beams arriving from
two stars have been measured in different circumstances: first the light beams
travel ‘freely’, far from gravitational action; second, they travel near the Sun i.e.
under a strong gravitational action. The angles are significantly different.

Light travels along different trajectories in two circumstances. Evidently, the
trajectories cannot be straight lines in both cases.

sto r stor sto r stor

eorth eorth

The affine structure of spacetime in the special relativistic model has been
based on the straight propagation of light. Thus if we want to construct a



III. Fundamental notions of general relativistic spacetime models 269

spacetime model suitable for the treatment of gravitational phenomena, we have
to reject the affine structure.

We have to get accustomed to the strange fact: in general, the notion of
a straight line makes no sense. It is worth repeating why. Every notion in
our mathematical model must have a physical background. A straight line
would be realized by a light beam: we have no better possibility. However,
in strong gravitational fields (in cosmic size) the set of light beams maybe
does not satisfy the usual conditions imposed on the set of straight lines. One
usually says that gravitation ‘curves’ spacetime. The properties of a curved
spacetime can be illustrated as follows: it may happen that two light beams
starting simultaneously from the same source in different directions meet again
somewhere (this is a ‘spacelike curvature’) or that two light beams starting from
the same source in the same direction in different instants meet again somewhere
(this is a ‘timelike curvature’).

3. According to the idea of Einstein, spacetime models must reflect gravita-
tional actions, a spacetime model is to be a model of a gravitational action; the
absence of gravitation is modelled by the special relativistic spacetime model.

The theory of gravitation, a deep and large theory, lies out of the scope of this
book. That is why only the framework of general relativistic spacetime models
will be outlined.

In constructing a general relativistic spacetime model, we do not adhere to
the affine structure and we require only that spacetime is a four-dimensional
smooth manifold M.

A four-dimensional smooth manifold M is an abstract mathematical structure
similar to a four-dimensional smooth submanifold in an affine space; it has the
following fundamental properties: every x ∈ M has a neighbourhood which can
be parametrized by p : R

4
 M; if p and q are parametrizations then q−1◦p is

smooth. Then to each point x of M a four-dimensional vector space Tx(M), the
tangent space at x, is assigned; every differentiable curve passing through x has
its tangent vector in Tx(M). A neighbourhood of zero of Tx(M) approximates
a neighbourhood of x in M. Smooth submanifolds of an affine space (thus affine
spaces themselves) are smooth manifolds.

The gravitational constant makes it possible to use real numbers for measuring
spacetime distances in such a way that the gravitational constant is 1 .

Our experience that gravitational action in small size does not contradict the
notion of a straight line suggests that a general relativistic spacetime model in
small size can be ‘similar’ to a special relativistic spacetime model. That is why
we accept that there is a Lorentz form gx : Tx(M)×Tx(M) → R is given for all
x ∈ M in such a way that x 7→ gx is smooth in a conveniently defined sense. The
assignment x 7→ gx is called a Lorentz field and is denoted by g. Moreover, we
assume that every gx is endowed with an arrow orientation which, too, depends
on x in a conveniently defined smooth way.
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Definition. A general relativistic spacetime model is a pair (M, g) where

— M is a four-dimensional smooth manifold (called spacetimeor world),

— g is an arrow-oriented Lorentz field on M.

Evidently, a special relativistic spacetime model – with T = R – is a general
relativistic spacetime model: M is an affine space (then every tangent space
equals M) and gx is the same for all x ∈ M.

4. Take a general relativistic spacetime model (M, g). Then Sx, Tx and
Lx, the set of spacelike tangent vectors etc. in Tx(M) are defined by gx for all
world points x and they have the following meaning:

— a world line (the history of a masspoint) is a curve in M whose tangent
vectors are timelike (i.e. the tangent vector of a world line C at x is in Tx);

— a light signal is a curve in M whose tangent vectors are lightlike.

Let us give an illustration of a general relativistic spacetime model. Let the
plane of the page represent the spacetime M, and at the same time, every tangent
space is represented by the plane of the page as well. Then we draw the future
light cone to every world point.

Illustrating the nonrelativistic and the special relativistic spacetime models
we have got accustomed to the fact that the Euclidean structure of the plane
has to be neglected: the angles and distances in the plane of the page do not
reflect, in general, objects of the spacetime model. Now we have to neglect the
affine structure of the plane as well: the straight lines of the plane, in general,
do not correspond to objects of the spacetime.

We call attention to the fact that in our illustration the spacetime manifold
and its tangent spaces which are different sets, are represented by the same
plane. The straight lines representing light cones in the previous figure are lines
in tangent spaces, they do not lie in the spacetime manifold.
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The following figures show a world line and a light signal in the general
relativistic spacetime model.

5. As we have said, a general relativistic spacetime model is to be a model of
a gravitational action. The theory of gravitation has the task to expound how a
gravitational action is modelled by a spacetime model. We know that a special
relativistic spacetime model corresponds to the lack of gravitation.

There are different special relativistic spacetime models; however, all of them
correspond to the same physical situation: the lack of gravitation. This is
reflected in the fact that all special relativistic spacetime models are isomorphic.

It may happen that two general relativistic spacetime models correspond to
the same gravitational action; we expect that they must be isomorphic. Now we
give the notion of isomorphism.

Definition. The general relativistic spacetime model (M, g) is isomorphic to
(M′, g′) if there is a diffeomorphism F : M → M′ sucht that

g′F (x) ◦
(

DF (x)×DF (x)
)

= gx (x ∈ M).

The phrase F is diffeomorphism means that F is a bijection and both F
and F−1 are smooth. The derivative of F at x, DF (x), is a linear map from
Tx(M) into TF (x)(M

′).

6. As examples we give a certain kind of general relativistic spacetime models
where the spacetime manifold is a submanifold of an affine space, hence we can
use the well-known mathematical tools treated in this book.

Take a special relativistic spacetime model (M,R, g), select an open subset
MA of M; MA is an open submanifold of M and Tx(M

A) = M for all x ∈ M.
Give a smooth map A : MA → GL(M) (i.e. A(x) is a linear bijection M → M

for all x ∈ M). For all x ∈ MA we define the Lorentz form gA
x by

gA
x (x,y) := g

(

A(x) · x, A(x) · y
)

(x,y ∈ M).

The Lorentz form gA is endowed with an arrow orientation as follows: let
T→ be the future directed timelike cone of g; then the future directed timelike
cone of gA

x is defined to be A(x)−1[T→].
Then (MA, gA) is a general relativistic spacetime model.





PART TWO

MATHEMATICAL TOOLS





IV. TENSORIAL OPERATIONS

In this section K denotes the field of complex numbers or the field of real
numbers, and all vector spaces are given over K.

Tensors and operations with tensors are essential mathematical tools in
physics; the simplest physical notions—e.g. meter/secundum—require tensorial
operations. Those being familiar with tensors will find no difficulty in reading
this book.

0. Identifications

Identifications make easy to handle tensors.
Let X and Y be vector spaces over the same field. If there is a linear

injection i : X → Y which we find natural (‘canonical’) from some point of
view, we identify x and i(x) for all x ∈ X, i.e. we omit i from the notations
considering X to be a linear subspace of Y. Then we write

X ⊂→ Y, x ≡ i(x),

and if i is a bijection,

X ≡ Y, x ≡ i(x).

In practice, instead of x ≡ i(x) an appropriate formula appears that allows
us to consider i to be natural.

Of course, ‘natural’ and ‘canonical’ are not mathematical notions and it
depends on us whether we accept or reject an identification. There are commonly
accepted identifications and there are some cases in which some people find a
given identification convenient and others do not.

Later, using a lot of identifications, the reader will have the opportunity to
see their importance.

1. Duality

1.1. Let V and U be vector spaces. Then Lin(V,U) denotes the vector
space of linear maps V → U; Lin(V) := Lin(V,V).
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The value of L ∈ Lin(V,U) at v ∈ V is denoted by L · v.
The composition of linear maps is denoted by a dot as well: for L ∈

Lin(V,U), K ∈ Lin(U,W) we write K ·L.
V∗ := Lin(V,K) is the dual of V. The elements of V∗ are often called

linear functionals or covectors.
The dual separates the elements of the vector space which means that if

v ∈ V, and p · v = 0 for all p ∈ V∗, then v = 0 or, equivalently, if v1 and v2

are different elements of V, then there is a p ∈ V∗ such that p · v1 6= p · v2.
If {vi | i ∈ I} is a basis of V then there is a set

{

pi
∣

∣ i ∈ I
}

in V∗, called
the dual of the basis, such that

pi · vj =

{

1 if i = j

0 if i 6= j
(i, j ∈ I).

If V is finite dimensional, then the dual of a basis is a basis in V∗, hence
dim(V∗) = dimV.

Let N denote the (finite) dimension of V. If {v1, . . . ,vN} is a basis of V

and {p1, · · · ,pN} is its dual, then for all v ∈ V and p ∈ V∗ we have

v =

N
∑

i=1

(pi · v)vi,

p =

N
∑

i=1

(p · vi)p
i.

1.2. To every element v of V we can associate a linear map i(v) : V∗→ K,
p 7→ p · v, i.e. an element of V∗∗. The correspondence V → V∗∗, v 7→ i(v) is
a linear injection which seems so natural and simple that we find it convenient
to identify v and i(v) for all v ∈ V :

V ⊂→ V∗∗, v ≡ i(v),

i.e.
v · p ≡ p · v (v ∈ V, p ∈ V∗).

If V is finite dimensional then this correspondence is a linear bijection be-
tween V and V∗∗, i.e. the whole dual of V∗ can be identified with V :

V ≡ V∗∗, v · p ≡ p · v.

1.3. The Cartesian product V×U of the vector spaces V and U is a vector
space with the pointwise addition and pointwise multiplication by numbers:

(v1,u1) + (v2,u2) : = (v1 + v2,u1 + u2),

α(v,u) : = (αv, αu)

for v1,v2 ∈ V, u1,u2 ∈ U and α ∈ K.
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We have the identification

V∗ ×U∗ ≡ (V ×U)∗, (p, q) · (v,u) ≡ p · v + q · u.

((p, q) ∈ V∗ ×U∗, (v,u) ∈ V ×U) .

1.4. The transpose of L ∈ Lin(V,U) is the linear map

L∗ : U∗ → V∗, f 7→ f ◦L,

i.e.
(L∗ · f) · v = f · (L · v)

or, with the identification introduced in 1.2,

v ·L∗ · f = f ·L · v (f ∈ U∗, v ∈ V).

If L,K ∈ Lin(V,U), α ∈ K, then

(L+K)∗ = L∗ +K∗,

(αL)∗ =αL∗.

If L ∈ Lin(V,U), K ∈ Lin(U,W), then

(K ·L)∗ = L∗ ·K∗.

If V and U are finite dimensional, then
— L is injective if and only if L∗ is surjective,
— L is surjective if and only if L∗ is injective.
Moreover, in this case—because of the identification V∗∗ ≡ V, U∗∗ ≡ U—

we have
L∗∗ = L.

If L is bijective, then
(L−1)

∗
= (L∗)−1.

1.5. Let V be a finite dimensional vector space and L ∈ Lin(V,V∗). Then
L∗ is a linear map from V∗∗ into V∗, i.e. because of the identification V∗∗ ≡ V

we have L∗ ∈ Lin(V,V∗).
The linear map L : V → V∗ is called symmetric or antisymmetric if L = L∗

or L = −L∗, respectively.
In general, the symmetric and antisymmetric parts of L ∈ Lin(V,V∗) are

L+L∗

2
and

L−L∗

2
,

respectively.
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Similar definitions work well for linear maps V∗ → V.
On the other hand, the notions of symmetricity, symmetric part etc. make no

sense for linear maps V → V and V∗ → V∗.

1.6. K
N , the set of ordered N -tuples of numbers, is a well-known vector

space. It is known as well that the linear maps from K
N into K

M are identified
with the matrices of M rows and N columns, in other words, Lin(KN ,KM ) ≡
K

M×N . As a consequence, we have the identification
(

K
N
)∗

= Lin(KN ,K) ≡ K
1×N = K

N

p · x ≡
N
∑

i=1

pix
i (p,x ∈ K

N ).

We adhered to the trick used in physical applications according to which
(

K
N
)∗

is identified with K
N in such a way that they are distinguished in

notations as follows.
The components of the elements of K

N are indexed by superscripts:

x = (x1, . . . , xN ) ∈ K
N ,

and the components of the elements of
(

K
N
)∗ ≡ K

N are indexed by subscripts:

p = (p1, . . . , pN ) ∈
(

K
N
)∗
.

The identification in question, called the standard identification, means that
to every (x1, . . . , xN ) ∈ K

N we assign (x1, . . . , xN ) ∈
(

K
N
)∗

in such a way that

xi = xi for all i = 1, . . . , N.
Moreover, for the sake of simplicity, we often shall not write that the indices

run from 1 to N (or to M), denoting the elements in the form (xi) and (xi),
respectively.

The fundamental rule is that a summation can be carried out only for indices
in opposite positions: up and down. Accordingly, the matrix entries are indexed
corresponding to the domain and range of the matrix as a linear map:

(

Li
k

)

: KN → K
M ,

(Lik) : K
N →

(

K
M
)∗
,

(

Li
k
)

:
(

K
N
)∗ →

(

K
M
)∗
,

(

Lik
)

:
(

K
N
)∗ → K

M .

This trick works well until actual vectors are not involved; this notation does
not show for instance whether the ordered pair of numbers (1, 2) is an element

of R
2 or

(

R
2
)∗
, and whether the matrix

(

1 0
2 1

)
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maps from R
2 into R

2 or from R
2 into

(

R
2
)∗

etc.
The set of vectors χ1 := (1, 0, . . . , 0), χ2 := (0, 1, ..., 0), . . . , χN :=

(0, 0, . . . , 1) is called the standard basis of K
N . In the mentioned identification

(

K
N
)∗ ≡ K

N the dual of the standard basis is the standard basis itself.
According to this identification the transpose of a matrix as a linear map is

the usual matrix transpose.
The above notation shows well that symmetricity, symmetric part etc. make

sense only for matrices (Lik) and
(

Lik
)

.

1.7. The symbol Bilin(U×V,K) stands for the vector space of bilinear maps
U×V → K, often called bilinear forms.

We have that
i : Lin(V,U) → Bilin(U∗ ×V,K)

defined by
(

i(L)
)

(f ,v) := f ·L · v
(

L ∈ Lin(V,U) , f ∈ U∗ , v ∈ V
)

is a linear injection which we use for the identification

Lin(V,U) ⊂→ Bilin(U∗ ×V,K), f ·L · v ≡ L(f ,v).

If the vector spaces U and V have finite dimension then i is a bijection,
hence ≡ stands instead of ⊂→ .

The reader is asked to examine this identification in the case of matrices i.e.
for Lin(KN ,KM ).

1.8. A bilinear form h : V×V → K is called symmetric or antisymmetric if
h(v,u) = h(u,v) or h(v,u) = −h(u,v), respectively, for all v,u ∈ V.

Similar definitions are accepted for bilinear forms V∗ ×V∗ → K.
Observe that for finite dimensional V the notions introduced here and in 1.5

coincide in the identification Lin(V,V∗) ≡ Bilin(V∗ ×V∗,K).

2. Coordinatization

2.1. Let V be an N -dimensional vector space over K.
An element (v1, . . . ,vN ) of VN is called an ordered basis of V if the set

{v1, . . . ,vN} is a basis of V.
An ordered basis of V induces a linear bijection K : V → K

N defined
by K · vi := χi (i = 1, . . . , N) where (χ1, . . .χN ) is the ordered standard
basis of K

N . K is called the coordinatization of V corresponding to the given
ordered basis. The inverse of the coordinatization, P := K−1, is called the
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parametrization of V corresponding to the given ordered basis. It is quite
evident that

P · (xi) =
N
∑

i=1

xivi

(

(xi) ∈ K
N
)

.

Thus, in view of 1.1 we have

K · v =
(

pi · v| i = 1, . . . , N
)

(v ∈ V)

where (p1, . . . ,pN ) is the ordered dual basis of (v1, . . . ,vN ).
Obviously, every linear bijection K : V → K

N is a coordinatization in the
above sense: the one corresponding to the ordered basis (v1, . . . ,vN ) where
vi := K−1 · χi (i = 1, . . . , N).

2.2. A coordinatization of V determines a coordinatization of V∗, that is
induced by the corresponding ordered dual basis. Using the previous notations
and denoting the coordinatization in question by C : V∗ → (KN )

∗
we have

C · p = (p · vi| i = 1, . . . , N) (p ∈ V∗).

It is not hard to see that

C =
(

K−1
)∗

= P ∗.

2.3. In the coordinatization K, a linear map L : V → V is represented by
the matrix

K ·L ·K−1 = K ·L · P =
(

pi ·L · vk| i, k = 1, . . . , N
)

.

To deduce this equality argue as follows:

N
∑

k=1

(

K ·L ·K−1
)i

kx
k =

(

K ·L ·K−1 · x
)i

=

= pi ·L ·
N
∑

k=1

xkvk =

N
∑

k=1

(pi ·L · vk)x
k.

The linear map T : V → V∗ is represented by the matrix
(

K−1
)∗
T ·K−1 = P ∗ · T · P = (vi · T · vk| i, k = 1, . . . , N) .

It is left to the reader to find the matrix of linear maps V∗ → V and
V∗ → V∗.

3. Tensor products

3.1. We start with an abstract definition of tensor products that may seem
strange; the properties of tensor products following from this definition will
clarify its real meaning.
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Definition. Let V and U be vector spaces (over the same field K). A
tensor product of U and V is a pair (Z,h), where

(i ) Z is a vector space,
(ii ) h : U×V → Z is a bilinear map having the property that
— if W is a vector space and c : U×V → W is a bilinear map,
— then there exists a unique linear map L : Z → W such that

c = L ◦ h.

Proposition. The pair (Z,h) satisfying (i) and (ii) is a tensor product of
U and V if and only if

1) Z is spanned (Z is the linear subspace generated) by Ranh,
2) if v1, . . . .,vn are linearly independent elements of V and u1, . . . .,un are

elements of U then
n
∑

i=1

h(ui,vi) = 0 implies u1 = · · · = un = 0.

Proof. Exclude the trivial cases V = 0 or U = 0.
Suppose 1) is fulfilled. Then every element of Z is of the form
r
∑

k=1

αkh(uk,vk). Since αh(u,v) = h(αu,v), we conclude that the elements

of Z can be written in the form
r
∑

k=1

h(uk,vk).

Suppose 2) is fulfilled, too. Take a bilinear map c : U×V → W and define
the map L : Z → W by

L ·
(

r
∑

k=1

h(uk,vk)

)

:=

r
∑

k=1

c(uk,vk).

If L is well-defined, then it is linear, L ◦ h = c, and it is unique with this
property. To demonstrate that L is well-defined, we have to show that

r
∑

k=1

h(uk,vk) =

s
∑

j=1

h(xj ,yj) implies

r
∑

k=1

c(uk,vk) =

s
∑

j=1

c(xj ,yj),

which is eqivalent to

m
∑

i=1

h(ui,vi) = 0 implies
m
∑

i=1

c(ui,vi) = 0.

Let us choose a largest set of linearly independent vectors from {v1, . . . ,vm};
without loss of generality, we can suppose it is {v1, . . . ,vn} (where, of course,

n ≤ m). If v =
n
∑

i=1

αivi then h(u,v) =
n
∑

i=1

h(αiu,vi) and a similar formula



282 IV. Tensorial operations

holds for c(u,v) as well. Consequently, a rearrangement of the terms in the
previous formulae yields that L is well-defined if

n
∑

i=1

h(ui,vi) = 0 implies

n
∑

i=1

c(ui,vi) = 0

whenever v1, . . . .,vn are linearly independent which follows from condition 2).
We have proved that conditions 1) and 2) are sufficient for a tensor product.
Since L ◦ h = c can define L only on the linear subspace spanned by the

range of h, condition 1) is necessary for the uniqueness of L.
If condition 2) is not satisfied then we can find a bilinear map r such that

L ◦ h 6= r for all linear maps L. Indeed, let the vectors v1, . . . ,vn be linearly

independent,
n
∑

i=1

h(ui,vi) = 0, and at least one of the ui -s is not zero. Without

loss of generality we can assume that u1, . . . ,um (where m ≤ n) are linearly
independent and all the other ui -s are their linear combinations. Complete
{v1, . . . ,vn} to a basis in V and {u1, . . . ,um} to a basis in U. Define the
bilinear map r : U×V → K in such a way that r(u1,v1) := 1 and r(u,v) := 0
for all other basis elements u and v. Then for all linear maps L : Z → K we

have L ·
(

n
∑

i=1

h(ui,vi)

)

= 0 6= 1 =
n
∑

i=1

r(ui,vi).

3.2. In the next item the existence of tensor products will be proved. Observe
that in the case W = Z, c = h, the identity map of Z fulfils h = 1Z ◦ h;
according to the definition of the tensor product this is the only possibility, i.e.
if L ∈ Lin(Z) and h = L ◦ h then L = 1Z.

As a consequence, if (Z′,h′) is another tensor product of U and V then
there is a unique linear bijection L : Z → Z′ such that h′ = L ◦ h. This means
that the tensor products of U and V are ‘canonically isomorphic’ or ‘essentially
the same’, hence we speak of the tensor product and applying a customary abuse
of language we call the corresponding vector space the tensor product (Z in the
definition) denoting it by U⊗V, and writing

U×V → U⊗V, (u,v) 7→ u⊗ v

for the corresponding bilinear map (h in the definition); u ⊗ v is called the
tensor product of u and v.

An actual given tensor product is called a realization of the tensor product
and the following symbols are used: U ⊗ V ⊂→ W or U ⊗ V ≡ W denote
that the tensor product of U and V is realized as a subspace of W or as the
whole vector space W, respectively.

It is worth repeating the results of the previous paragraph in the new nota-
tions.
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Every element of U ⊗ V can be written in the form
n
∑

i=1

ui ⊗ vi where

v1, . . . .vn are linearly independent vectors in V. Moreover, if the sum is zero,
then u1 = · · · = un = 0. In particular, if u 6= 0 and v 6= 0 then u⊗ v 6= 0.

3.3. For u ∈ U and v ∈ V we define the linear map

u⊗ v : V∗ → U, p 7→ (p · v)u.

Proposition. U × V → Lin(V∗,U), (u,v) 7→ u ⊗ v is a bilinear map
satisfying condition 2) of Proposition 3.1. As a consequence, the linear map
u ⊗ v is the tensor product of u and v (that is why we used in advance this
notation) and U⊗V is realized as a linear subspace of Lin(V∗,U) spanned by
such elements.

Proof. It is trivial that (u,v) 7→ u⊗ v is bilinear.

Suppose that v1, . . . .,vn are linearly independent vectors in V and
n
∑

i=1

ui ⊗
vi = 0. Then for arbitrary p ∈ V∗ and f ∈ U∗ we have

0 = f ·
((

n
∑

i=1

ui ⊗ vi

)

· p
)

=

n
∑

i=1

(f · ui)(p · vi) = p ·
(

n
∑

i=1

(f · ui)vi

)

.

Since V∗ separates the elements of V, this means that
n
∑

i=1

(f · ui)vi = 0.

Because of the linear independence of vi -s this involves f · ui = 0 for all
i = 1, . . . , n. Since U∗ separates the elements of U, it follows that u1 = u2 =
· · · = un = 0.

3.4. Proposition. If {vi | i ∈ I} is a basis in V and {uj | j ∈ J} is a basis
in U then {uj ⊗ vi | j ∈ J, i ∈ I} is a basis in U⊗V.

According to Propositions 3.3 and 1.7 we have

U⊗V ⊂→ Lin(V∗,U) ⊂→ Bilin(U∗ ×V∗,K).

If U and V are finite dimensional then

dim(U⊗V) = (dimU)(dimV).

Moreover, in this case dim(U ⊗ V) = dim (Lin(V∗,U)) , hence the present
proposition on the bases implies that for finite dimensional vector spaces

U⊗V ≡ Lin(V∗,U) ≡ Bilin(U∗ ×V∗,K)
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and because of V∗∗ ≡ V, U∗∗ ≡ U,

U⊗V∗ ≡ Lin(V,U) ≡ Bilin(U∗ ×V,K),

U∗ ⊗V ≡ Lin(V∗,U∗) ≡ Bilin(U×V∗,K),

U∗ ⊗V∗ ≡ Lin(V,U∗) ≡ Bilin(U×V,K).

3.5. We have the following identifications.

(i) K⊗V ≡ V, α⊗ v ≡ αv,

(U×V)⊗W ≡ (U⊗W)× (V ⊗W, )(ii)

(u,v)⊗w ≡ (u⊗w,v ⊗w),

W ⊗ (U×V) ≡ (W ⊗U)× (W ⊗V),

w ⊗ (u,v) ≡ (w ⊗ u,w ⊗ v),

(iii) If U and V are finite dimensional then

U∗ ⊗V∗ ≡ (U⊗V)
∗
, (f ⊗ p) : (u⊗ v) ≡ (f · u)(p · v),

(f ∈ U∗, p ∈ V∗, u ∈ U, v ∈ V)

where we found convenient to write the symbol : for the bilinear map of duality;
we shall give an explanation later.

3.6. In mathematical books the tensor product is often said to be commu-
tative which means that we have a unique linear bijection U ⊗ V → V ⊗ U,
u⊗ v 7→ v⊗u admitting an identification. However, we do not find convenient
to use this identification because of two reasons:

1) if U = V, u,v ∈ V and u 6= v then, in general, u⊗ v 6= v ⊗ u;
2) u ⊗ v ∈ U ⊗ V ⊂→ Lin(V∗,U), v ⊗ u ∈ V ⊗ U ⊂→ Lin(U∗,V) ⊂

Lin(U∗,V∗∗); it is not hard to see that the transpose of u⊗ v equals v ⊗ u :

(u⊗ v)
∗
= v ⊗ u.

Hence the unique linear bijection between U⊗V and V⊗U that sends u⊗ v

into v ⊗ u is the transposing map. We do not want, in general, to identify a
linear map with its transpose (e.g. a matrix with its transpose).

However, if one of the vector spaces is one-dimensional, we accept the men-
tioned identification, i.e.

A⊗V ≡ V ⊗ A, a⊗ v ≡ v ⊗ a if dimA = 1.

Moreover, in this case we agree to omit the symbol ⊗ :

av := a⊗ v (a ∈ A, v ∈ V, dimA = 1).
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Note that if dimA = 1 then every element of A⊗V has the form av.
Though, in general, A ⊗ V 6= V, it makes sense (if dimA = 1) that an

element z of A ⊗ V is parallel to an element v of V : if there is an a ∈ A

such that z = av.

3.7. It is well known that a linear map L : V1 × V2 → U1 × U2 can be
represented in a matrix form:

L =

(

L11 L12

L21 L22

)

where Lik ∈ Lin(Vi,Uk) (i, k = 1, 2) and

L · (v1,v2) = (L11 · v1 +L12 · v2, L21 · v1 + L22 · v2) .

This corresponds to the finite dimensional identifications (see in particular
3.5(ii))

Lin(V1 ×V2,U1 ×U2) ≡
≡(U1 ×U2)⊗ (V1 ×V2)

∗ ≡ (U1 ×U2)⊗ (V∗1 ×V∗2) ≡
≡(U1 ⊗V∗1)× (U1 ⊗V∗2)× (U2 ⊗V∗1)× (U2 ⊗V∗2) ≡
≡Lin(V1,U1)× Lin(V2,U1)× Lin(V1,U2)× Lin(V2,U2).

Accordingly, we find convenient to write

(u1,u2)⊗ (p1,p2) ≡
(

u1 ⊗ p1 u1 ⊗ p2

u2 ⊗ p1 u2 ⊗ p2

)

for (u1,u2) ∈ (U1,U2) and (p1,p2) ∈ V∗1 ×V∗2.
Of course, a similar formula holds for other tensor products, e.g. for the

elements of (U1 ×U2)⊗ (V1 ×V2) :

(u1,u2)⊗ (v1,v2) ≡
(

u1 ⊗ v1 u1 ⊗ v2

u2 ⊗ v1 u2 ⊗ v2

)

.

It is not hard to see then (cf. 3.6) that

(

u1 ⊗ v1 u1 ⊗ v2

u2 ⊗ v1 u2 ⊗ v2

)∗
=

(

v1 ⊗ u1 v1 ⊗ u2

v2 ⊗ u1 v2 ⊗ u2

)

.

3.8. If A is a one-dimensional vector space then Lin(A) is identified with
K : the number α corresponds to the linear map a 7→ αa. As a consequence,
we have the following identification, too:

A⊗ A
∗ ≡ Lin(A) ≡ K, aξ ≡ ξ · a(≡ a · ξ)
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(remember: aξ := a ⊗ ξ). Indeed, by definition, aξ : A → A, b 7→ (ξ · b)a. If
a = 0 then aξ = 0 = ξ · a. If a 6= 0 then there is a unique b

a
∈ K for all

h ∈ A such that b = b
a
a. Thus (ξ · b)a = (ξ · b

a
a)a = (ξ · a) b

a
a = (ξ · a)b and

we see that aξ (= a⊗ ξ) equals the multiplication by ξ · a.
For one-dimensional vector spaces we prefer the symbol of (tensor) product

to the dot for expressing the bilinear map of duality i.e. the symbol aξ to a ·ξ.

3.9. Since V ×V∗ → K, (v,p) 7→ p · v is a bilinear map, the definition of
tensor products ensures the existence of a unique linear map

Tr : V ⊗V∗ → K such that Tr(v ⊗ p) = p · v.

If V is finite dimensional then V ⊗ V∗ ≡ Lin(V), hence TrL, called the
trace of L, is defined for all linear maps L : V → V.

Since for u,v ∈ V and p, q ∈ V∗ we have (u⊗ p) · (v ⊗ q) = (p · v)u⊗ q,
we easily deduce that for all L,K ∈ Lin(V) (if dimV <∞)

Tr(L ·K) = Tr(K ·L).

If {vi | i = 1, . . . , N} is a basis in V and
{

pi
∣

∣ i = 1, . . . , N
}

is its dual then
for all v ∈ V and p ∈ V∗

p · v =

N
∑

i=1

(pi · v)(p · vi) =

N
∑

i=1

pi · (v ⊗ p) · vi,

which gives

TrL =

N
∑

i=1

pi ·L · vi (L ∈ Lin(V)).

Note that the trace of linear maps V → V∗ and V∗ → V makes no sense;
on the other hand, we have (for finite dimensional V)

Tr : Lin(V∗) ≡ V∗ ⊗V → K, p⊗ v 7→ p · v

and we easily see by (v ⊗ p)∗ = p⊗ v that

Tr(L∗) = TrL (L ∈ Lin(V)).

Moreover, if Z is a finite dimensional vector space, we define

Tr : Lin(V,Z⊗V) ≡ Z⊗V ⊗V∗ → Z, z ⊗ v ⊗ p 7→ (p · v)z.

3.10. Let V be finite dimensional. Then, according to 3.5(iii) and V∗∗ ≡ V,
we have V∗ ⊗V ≡ (V ⊗V∗)∗, (p′ ⊗ v′) : (v ⊗ p) ≡ (p′ · v)(v′ · p).
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It is not hard to see that in other words this reads

Lin(V∗) ≡ (Lin(V))
∗
, B : L ≡ Tr(B∗L),

where L ∈ Lin(V), B ∈ Lin(V∗) and so B∗ ∈ Lin(V).
Since a single dot means the composition of linear maps, we denoted the

bilinear map of duality by the symbol : to avoid misunderstandings.

3.11. In accordance with our results we have

K
M ⊗K

N ≡ Lin
(

(KN )
∗
,KM

)

.

By definition, for y = (yi) ∈ K
M and x = (xk) ∈ K

N ,

y ⊗ x : (KN )
∗ → K

M , p 7→ (p · x)y,

from which we deduce that

(y ⊗ x)ik = yixk (i = 1, . . . ,M, k = 1, . . . , N).

Moreover, K
N ⊗

(

K
N
)∗ ≡ Lin(KN ,KN ), (x⊗ p)ik = xipk, and so

Tr
(

Li
k| i, k = 1, . . . , N

)

=

N
∑

i=1

Li
i.

Our convention that a summation can be carried out only for a pair of indices
in opposite positions shows well that the trace of matrices

(

Lik
)

and (Lik)
makes no sense.

It can be proved without difficulty that

(

Bj
i

)

:
(

Lk
l
)

=
N
∑

i,k=1

Bk
iLk

i.

3.12. Let L ∈ Lin(U,X) and K ∈ Lin(V,Y). Then U × V → X ⊗ Y,
(u,v) 7→ Lu ⊗ Kv is a bilinear map, hence there exists a unique linear map
L⊗K : U⊗V → X⊗Y such that

(L⊗K) · (u⊗ v) = Lu⊗Kv (u ∈ U, v ∈ V).

It is a simple task to show that (L,K) 7→ L ⊗ K satisfies condition (ii) in
3.1, hence L⊗K is the tensor product of L and K, in other words,

Lin(U,X)⊗ Lin(V,Y) ⊂→ Lin(U⊗V,X⊗Y).
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If the vector spaces are finite dimensional then ≡ stands instead of ⊂→ .
It is not hard to show that

(L⊗K) · (B ⊗A) = (L ·B)⊗ (K ·A)

and if both L and K are bijections then L⊗K is a bijection and

(L⊗K)
−1

= L−1 ⊗K−1.

3.13. For natural numbers n ≥ 2 the definition of n -fold tensor products
of vector spaces is similar to definition in 3.1, only n -fold linear maps should
be taken instead of bilinear ones. We can state the existence and essential

uniqueness of n -fold tensor products similarly. We use the notation
n
⊗
k=1

Vk and

n
⊗
k=1

vk for the n -fold tensor product of vector spaces Vk and vectors vk ∈ Vk

(k = 1, . . . ., n).
We have the identifications

(

m
⊗
k=1

Vk

)

⊗
(

n
⊗

k=m+1
Vk

)

≡
n
⊗
k=1

Vk,

(

m
⊗
k=1

vk

)

⊗
(

n
⊗

k=m+1
vk

)

≡
n
⊗
k=1

vk.

If the vector spaces are finite dimensional then
n
⊗
k=1

Vk is identified with the

vector space Linn(
n
×
k=1

Vk
∗,K) of n -linear maps

n
×
k=1

Vk
∗ → K, called n -linear

forms, such that
(

n
⊗
k=1

vk

)

(p1, . . . ,pn) ≡
n
∏

k=1

(pk · vk).

3.14. For natural numbers n ≥ 2, the n -fold tensor product of n copies of

the vector space V is denoted by
n
⊗ V; for convenience we put

1
⊗ V := V,

0
⊗ V := K. Then we have for all natural numbers n and m

( n
⊗ V

)

⊗
( m
⊗ V

)

≡
n+m
⊗ V.

We define the n -fold symmetric and antisymmetric tensor products of ele-
ments of V as follows:

n∨
k=1

vk : =
∑

π∈Permn

n
⊗
k=1

vπ(k),

n∧
k=1

vk : =
∑

π∈Permn

(signπ)
n
⊗
k=1

vπ(k),
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where Permn denotes the set of permutations of {1, . . . ., n} and signπ is the
sign of the permutation π : signπ = 1 if π is even and signπ = −1 if π is odd.

For instance,

v1 ∨ v2 = v1 ⊗ v2 + v2 ⊗ v1, v1 ∧ v2 = v1 ⊗ v2 − v2 ⊗ v1.

The linear subspaces of
n
⊗ V spanned by the symmetric and antisymmetric

tensor products are denoted by
n∨ V and

n∧ V, respectively.
We mention that

1

n!

n∨
k=1

vk and
1

n!

n∧
k=1

vk

are called the symmetric and antisymmetric part of
n
⊗
k=1

vk, respectively. It is

worth mentioning that the intersection of
n∧ V and

n∨ V is the zero subspace;
moreover, for n = 2 the subspace of antisymmetric tensor products and that of
symmetric tensor products span V ⊗V.

3.15. Let V be finite dimensional, dimV = N. Then V∗∗ ≡ V, and we
have the following identifications:

n
⊗ V ≡ {n-linear forms on V∗},

n
⊗ V∗ ≡ {n-linear forms on V},

n∨ V ≡ { symmetric n-linear forms on V∗},
n∨ V∗ ≡ { symmetric n-linear forms on V},
n∧ V ≡ { antisymmetric n-linear forms on V∗},
n∧ V∗ ≡ { antisymmetric n-linear forms on V}.

It is worth mentioning that

(

n
⊗
k=1

vk

)

(p1, . . . ,pn) =

(

n
⊗
k=1

pk

)

(v1, . . . ,vn) =
n
∏

k=1

(pk · vk),

(

n∨
k=1

vk

)

(p1, . . . ,pn) =

(

n∨
k=1

pk

)

(v1, . . . ,vn)

=
∑

π∈Permn

n
∏

k=1

(pπ(k) · vk),

(

n∧
k=1

vk

)

(p1, . . . ,pn) =

(

n∧
k=1

pk

)

(v1, . . . ,vn) =

=
∑

π∈Permn

signπ
n
∏

k=1

(pπ(k) · vk),
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for all v1, . . . ,vn ∈ V and p1, . . . ,pn ∈ V∗.
If {vi | i = 1, . . . , N} is a basis in V then

{

n
⊗
k=1

vik | 1 ≤ ik ≤ N, k = 1, . . . , n

}

,

{

n∨
k=1

vik | 1 ≤ i1 ≤ i2 ≤ · · · ≤ in ≤ N

}

,

{

n∧
k=1

vik | 1 ≤ i1 < i2 < · · · < in ≤ N

}

are bases in
n
⊗ V,

n∨ V and
n∧ V, respectively. Accordingly,

dim
( n
⊗ V

)

= Nn, dim
(

n∨ V
)

=

(

N + n− 1

n

)

,

dim
(

n∧ V
)

=

{

(

N
n

)

if n ≤ N

0 if n > N

Similar statements are true for V∗ instead of V.

3.16. The reader is asked to demonstrate that for n = 2 the notions
of symmetricity, symmetric part, etc. coincide with those introduced earlier.
Moreover, using the formulae in 3.7 we have

(u1,u2) ∧ (v1,v2) =

(

u1 ∧ v1 u1 ⊗ v2 − v1 ⊗ u2

u2 ⊗ v1 − v2 ⊗ u1 u2 ∧ v2

)

for v1,u1 ∈ V1, v2,u2 ∈ V2, and a similar equality holds for symmetric tensor
products, too.

3.17. We have the following identifications:

n
⊗ V∗ ≡

( n
⊗ V

)∗
,

(

n
⊗
k=1

pk

)

·
(

n
⊗
k=1

vk

)

≡
(

n
⊗
k=1

pk

)

(v1, . . . ,vn),

n∨ V∗ ≡
(

n∨ V
)∗
,

(

n∨
k=1

pk

)

·
(

n∨
k=1

vk

)

≡
(

n∨
k=1

pk

)

(v1, . . . ,vn),

n∧ V∗ ≡
(

n∧ V
)∗
,

(

n∧
k=1

pk

)

·
(

n∧
k=1

vk

)

≡
(

n∧
k=1

pk

)

(v1, . . . ,vn).

3.18. Let V be an N -dimensional vector space. If d is an n -linear

(symmetric, antisymmetric) form on V (i.e. d is an element of
n
⊗ V∗) and

L ∈ Lin(V), then

d ◦
( n
× L

)

: Vn → K, (v1, . . . ,vn) 7→ d(L · v1, . . . ,L · vn)
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is also an n -linear (symmetric, antisymmetric) form.

Since
N∧ V∗, the vector space of antisymmetric N -linear forms is one-

dimensional, for L ∈ Lin(V) there is a number (an element of K) detL, called
the determinant of L, such that

c ◦
(

N
× L

)

= (detL)c

for all c ∈ N∧ V∗.

Proposition. For all v1,v2, . . . ,vN in V we have

N∧
k=1

L · vk = (detL)
N∧

k=1
vk.

Proof.
N∧

k=1
L ·vk is an antisymmetric N -linear form on V∗; 3.15 yields that

for all p1, . . . ,pN ∈ V∗

(

N∧
k=1

L · vk

)

(p1, . . . ,pN ) =

(

N∧
k=1

pk

)

(L · v1, . . . ,L · vN ) =

= (detL)

(

N∧
k=1

pk

)

(v1, . . . ,vN ) = (detL)

(

N∧
k=1

vk

)

(p1, . . . ,pN ).

As a consequence, we have for L,K ∈ Lin(V) that

det(L ·K) = (detL)(detK) = det(K ·L).

3.19. Let (v1, . . . ,vN ) be an ordered basis of V and let
(p1, . . . ,pN ) be the corresponding dual basis in V∗.

We know that

(

N∧
i=1

pi

)

(v1, . . . ,vN ) = 1, thus if L ∈ Lin(V) then

detL = (detL)

(

N∧
i=1

pi

)

(v1, . . . ,vN ) =

(

N∧
i=1

pi

)

(L · v1, . . . ,L · vN ) =

=
∑

π∈PermN

signπ

N
∏

i=1

(pπ(i) ·L · vi).

The last formula is the determinant of the matrix representing L in the
coordinatization corresponding to the given ordered basis. Thus for all coordi-
natizations K of V we have

detL = det(K ·L ·K−1).
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3.20. Proposition. Let V and U be finite dimensional vector spaces.
Suppose A,B ∈ Lin(V,U) and B is a bijection. Then

det(A ·B−1) = det(B−1 ·A).

Proof. Observe that if U = V then this equality follows from that given at
the end of 3.18. However, if U 6= V, the determinant of A and B−1 make no
sense.

V and U have the same dimension N since B is a bijection between them.
Let K and L be coordinatizations of V and U, respectively. Then

det(A · B−1) = det(L ·A ·B−1 ·L−1).

Since L ·A ·B−1 ·L−1 = L ·A ·K−1 ·K ·B−1 ·L−1 and both L ·A ·K−1
and K · B−1 · L−1 are linear maps K

N → K
N , hence their determinant is

meaningful, we can apply the formula given at the end of 3.18 to get

det(L ·A·B−1 ·L−1) = det
(

(L ·A ·K−1) · (K ·B−1 ·L−1)
)

=

= det
(

(K ·B−1 ·L−1) · (L ·A ·K−1)
)

= det(K ·B−1 ·A ·K−1)
= det(B−1 ·A).

Our result has the following corollary: if L ∈ Lin(V) and B : V → U is a
linear bijection then

det(B ·L ·B−1) = detL.

3.21. For L ∈ Lin(V) we define

0
⊗ L := 1K,

n
⊗ L :

n
⊗ V →

n
⊗ V,

n
⊗
k=1

vk 7→
n
⊗
k=1

L · vk.

It is trivial that
n∧ V and

n∨ V are invariant for
n
⊗ L; the restrictions of

n
⊗ L onto these linear subspaces will be denoted by

n∧ L and
n∨ L, respec-

tively.

3.22. Exercises

1. Let {v1, . . . ,vN} be a basis of V and {p1, . . . ,pN} its dual. Then

N
∑

i=1

vi ⊗ pi ≡ 1V,
N
∑

i=1

pi ⊗ vi ≡ 1V∗ ,
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where the symbols on the right-hand sides stand for the identity of V and of
V∗, respectively.

2. The linear subspaces S and T of V are complementary if S ∩ T = {0}
and the linear subspace spanned by S ∪ T equals V; then for every v there
are uniquely determined elements vS ∈ S and vT ∈ T such that v = vS + vT.
The linear map V → V, v 7→ vS is called the projection onto S along T.

Let v ∈ V, p ∈ V∗.
(i) If p · v 6= 0 then v⊗p

p·v is the projection onto Kv (the linear subspace

spanned by v) along Kerp.
(ii) If α ∈ K such that αp · v 6= 1 then 1V −αv⊗ p is a linear bijection and

(1V − αv ⊗ p)
−1

= 1V +
α

1− αp · vv ⊗ p.

3. Demonstrate that

L · (v ⊗ p) = (L · v)⊗ p, (v ⊗ p) ·L = v ⊗L∗ · p

for v ∈ V, p ∈ V∗ and L ∈ Lin(V).
4. Prove that

(

n∧
k=1

pk

)

(v1, . . . ,vn) = det
(

pk · vi| k, i = 1, . . . , n
)

for p1, . . . ,pn ∈ V ∗ and v1, . . . ,vn ∈ V.
5. Prove that if V is a vector space over K then K

N ⊗V ≡ VN , ξ ⊗ v ≡
(ξ1v, . . . ., ξNv).

4. Tensor quotients

4.1. Let U,V and Z be vector spaces (over the same field). A map
q : V × (U \ {0}) → Z is called linear quotient if
(i) v 7→ q(v,u) is linear for all u ∈ U \ {0},
(ii) q(v, αu) = 1

αq(v,u) for all v ∈ V and u ∈ U \ {0}, α ∈ K \ {0}.
Definition. Let V and A be vector spaces, dimA = 1. A tensor quotient

of V by A is a pair (Z,q) where
(i) Z is a vector space,
(ii) q : V × (A \ {0}) → Z is a linear quotient map having the property that
– if W is a vector space and r : V × (A \ {0}) → W is a linear quotient

map
—then there exists a unique linear map L : Z → W such that

r = L ◦ q.
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Proposition. The pair (Z,q) is a tensor quotient of V by A if and only if
1) Z = Ranq,
2) if v ∈ V, a ∈ A \ {0} and q(v,a) = 0 then v = 0.

Proof. Since A is one-dimensional, for a, b ∈ A, a 6= 0 let b
a

denote the

number for which b
a
a = b. Observe that if b 6= 0 then a

b
is the inverse of b

a
.

Condition 2) in the proposition is equivalent to the following one: if v,u ∈ V

and a, b ∈ A \ {0} then q(v,a) = q(u, b) implies v = a
b
u. Conversely, it is

trivial, that if r is a linear quotient map and v = a
b
u then r(v,a) = r(u, b).

Moreover, r(v,a) + r(u, b) = r
(

b
a
v + u, b

)

.
Suppose 1) is fulfilled. Then every element of Z has the form q(v,a). If 2)

is valid as well and r is a linear quotient map then the formula

L · (q(v,a)) := r(v,a)

defines a unique linear map L.
If 1) is not fulfilled, the uniqueness of linear maps L for which r = L ◦ q

holds fails. If 2) is not valid one can easily construct a linear quotient map for
which no linear map exists with the desired composition property.

4.2. We shall see in the next item that tensor quotients exist. In the same
way as in the case of tensor products, we can see that the tensor quotients of
V by A are canonically isomorphic, that is why we speak of the tensor product
and applying a customary abuse of language we call the corresponding vector
space the tensor quotient (Z in the definition) denoting it by V

A
and writing

V × (A \ {0}) → V

A
, (v,a) 7→ v

a

for the corresponding linear quotient map (q in the definition); v
a

is called the
tensor quotient of v by a.

We use the term realization and the symbol ≡ in the same sense as in the
case of tensor products.

It is worth repeating the preceding results in the new notation: every element
of V

A
is of the form v

a
and v

a
= 0 if and only if v = 0.

4.3. For v ∈ V and a ∈ A \ {0} we define the linear map

v

a
: A → V, b 7→ b

a
v

where b
a

is the number for which b
a
a = b holds.

Proposition. V × A \ {0} → Lin(A,V) is a linear quotient map which
satisfies conditions (i) and (ii) of proposition 4.1. As a consequence, v

a
is the
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tensor quotient of v by a (that is why we used in advance this notation) and
V

A
≡ Lin(A,V).

We have Lin(A) ≡ K where α ∈ K is identified with the linear map a 7→ αa.
Thus, according to the previous result, A

A
≡ K and b

a
is the number for which

b
a
a = b holds, hence our notation in 4.1 used in the present proposition as well,

is in accordance with the generally accepted notation for tensor quotients.

4.4. Since for all a ∈ A \ {0} the map V → V

A
, v 7→ v

a
is a linear

bijection, if {vi | i ∈ I} is a basis in V then
{

vi

a

∣

∣ i ∈ I
}

is a basis in V

A
, and

dim V

A
= dimV.

4.5. Let V,U,A and B be vector spaces, dimA = dimB = 1. We have the
following identifications (recall 3.4, 3.5 and 3.8):

(i)
K

A
≡ Lin(A,K) = A

∗,
α

a
· b ≡ α

b

a
;

(ii)
V

K
≡ Lin(K,V)) ≡ V,

v

α
≡ 1

α
v;

(iii)
V

A
≡ Lin(A,V) ≡ V ⊗ A

∗,
v

a
≡ v ⊗ 1

a
;

(iv)
V∗

A∗
≡
(

V

A

)∗
,

p

ξ
· v
a

≡ p · v
ξa

;

(v)

(

V

A

)

B
≡ V

A⊗ B
,

(

v
a

)

h
≡ v

ab
;

(vi)
V

A
⊗ U

B
≡ V ⊗U

A⊗ B
≡ V

A⊗ B
⊗U ≡ etc.

v

a
⊗ u

b
≡ v ⊗ u

ab
≡ v

ab
⊗ u ≡ etc.

In particular,

A⊗ V

A
≡ A⊗V

A
≡ V,

B

A⊗ B
≡ K

A
.

(vii)
V ×U

A
≡ V

A
× U

A
,

(v,u)

a
≡
(v

a
,
u

a

)

.
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Note that according to (v) and (vi) the rules of tensorial multiplication and
division coincide with those well known for numbers.

4.6. Let V,U,A and B be vector spaces, dimA = dimB = 1. If L ∈
Lin(V,U) and 0 6= F ∈ Lin(A,B) then V × (A \ {0}) → U

B
, (v,a) 7→ L·v

F ·a is

linear quotient, hence there exists a unique linear map L
F
: V

A
→ U

B
such that

L

F
· v
a

=
L · v
F · a (v ∈ V , a ∈ A \ {0}).

It is not hard to see that L
F

is really the quotient of L by F , in other words,

Lin(V,U)

Lin(A,B)
≡ Lin

(

V

A
,
U

B

)

.

5. Tensorial operations and orientation

In this section V denotes an N -dimensional real vector space and A denotes
a one-dimensional real vector space.

5.1. Recall that an element (v1, . . . ,vN ) of VN is called an ordered basis of
V if the set {v1, . . . ,vN} is a basis in V.

Definition. Two ordered bases (v1, . . . ,vN ) and (v′1, . . . ,v
′
N ) of V are

called equally oriented if the linear map defined by vi 7→ v′i (i = 1, . . . , N) has
positive determinant. An equivalence class of equally oriented bases is called an
orientation of V. V is oriented if an orientation of V is given; the bases in the
chosen equivalence class are called positively oriented, the other ones are called
negatively oriented. (More precisely, an oriented vector space is a pair (V, o)
where V is a vector space and o is one of the equivalence classes of bases.)

A linear bijection between oriented vector spaces is orientation preserving or
orientation-reversing if it sends positively oriented bases into positively oriented
ones or into negatively oriented ones, respectively.

It is worth mentioning that there are two equivalence classes of equally ori-
ented bases.

Observe that the two bases in the definition are equally oriented if and only

if
N∧
i=1

v′i is a positive multiple of
N∧
i=1

vi (see Proposition 3.18).

If V is oriented, we orient V∗ by the dual of positively oriented bases of V.
If U and V are oriented vector spaces, U×V is oriented by joining positively

oriented bases; more closely, if (u1, . . . ,uM ) and (v1, . . . ,vN ) are positively ori-
ented bases in U and in V, respectively, then

(

(u1,0), . . . , (uM ,0) , (0,v1), . . . ,

(0,vN )
)

is defined to be a positively oriented basis in U×V.
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The reader is asked to verify that the orientation of the dual and the Cartesian
products is well-defined.

5.2. Two bases a and a′ of the one-dimensional vector space A are equally

oriented if and only if a′ is a positive multiple of a, in other words, a′

a
is a

positive number.
If (v1, . . . ,vN ) and (v′1, . . . ,v

′
N ) are equally oriented ordered bases of V, a

and a′ are equally oriented bases of A, then (av1, . . . ,avN ) and (a′v′1, . . . ,
a′v′N ) are equally oriented bases of A⊗V. Indeed, according to our convention

A ⊗V ≡ V ⊗ A, we have
N∧
i=1

(a′v′i) ≡ (a′)N
N∧
i=1

v′i which is evidently a positive

multiple of aN
N∧
i=1

vi.

As a consequence, an orientation of V and an orientation of A determine a
unique orientation of A⊗V; we consider A⊗V to be oriented by this orientation.

We can argue similarly to show that an orientation of V and an orientation
of A determine a unique orientation of V

A
; we take this orientation of the tensor

quotient.

5.3. A nonzero element a of the oriented one-dimensional vector space A

is called positive, in symbols 0 < a, if the corresponding basis is positively
oriented.

Moreover, we write a ≤ b if 0 ≤ b − a. It is easily shown that in this way
we defined a total ordering on A for which
(i) if a ≤ b and c ≤ d then a+ c ≤ b+ d,
(ii) if a ≤ b and α ∈ R

+ then αa ≤ αb.
We introduce the notations

A
+ := {a ∈ A | 0 < a}, A

+
0
:= A

+ ∪ {0}.

Furthermore, the absolute value of a ∈ A is

| a| :=











a if a ∈ A
+

0 if a = 0

−a if a /∈ A
+.

5.4. Even if A is not oriented, A⊗ A has a ‘canonical’ orientation in which
the elements of the form a⊗ a are positive. If A is oriented, the orientation of
A⊗ A induced by the orientation of A coincide with the canonical one. Then

A
+
0
→ (A⊗ A)

+
0
, a 7→ a⊗ a (∗)

is a bijection. Indeed, a⊗a = 0 if and only if a = 0. The elements of (A⊗A)+

has the form a ⊗ b where a, b ∈ A
+; since h = λa for some positive number
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λ, we have a⊗ b =
(√

λa
)

⊗
(√

λa
)

, i.e. the above mapping is surjective. If

0 6= a⊗a = b⊗b then a⊗a = λ2a⊗a which implies that λ2 = 1, thus λ = 1,
a = b : the mapping in question is injective.

In spite of our earlier agreement, in deducing the present result, we preferred
not to omit the symbol of tensorial multiplication. However, in applications of
the present result we keep our agreement; in particular, we write

a2 := aa (:= a⊗ a).

The inverse of the mapping ∗ is denoted by the symbol
√

and is called
the square root mapping.

Note that √
a2 = | a| (a ∈ A).



V. PSEUDO-EUCLIDEAN VECTOR SPACES

1. Pseudo-Euclidean vector spaces

1.1. Definition. A pseudo-Euclidean vector space is a triplet (V,B, b)
where
(i) V is a nonzero finite dimensional real vector space,
(ii) B is a one-dimensional real vector space,
(iii) b : V ×V → B⊗ B is a nondegenerate symmetric bilinear map.

Remarks. (i) Nondegenerate means that if b(x,y) = 0 for all x ∈ V then
y = 0.

(ii) b(x,y) is often called the b -product of x,y ∈ V. The elements x and
y of V are called b -orthogonal if their b -product is zero.

(iii) In mathematical literature one usually considers the case B = R, i.e.
when—because of R⊗ R ≡ R—the pseudo-Euclidean form b takes real values.
Physical applications require the possibility B 6= R.

1.2. Definition. A basis {ei | i = 1, . . . , N} of V is called b -orthogonal if
b(ei, ek) = 0 for i 6= k.

An b -orthogonal basis {ei | i = 1, . . . , N} is normed to a ∈ B if either
b(ei, ei) = a2 or b(ei, ei) = −a2 for all i. If B = R, an b -orthogonal basis
normed to 1 is called b -orthonormal.

Since B⊗B has a canonical orientation, it makes sense that b(x,y) is negative
or positive for x,y ∈ V.

We can argue like in the case of real-valued bilinear forms to have the following.

Proposition. b -orthogonal bases in V exist and there is a non-negative
integer neg(b) such that for every b -orthogonal basis {ei | i = 1, . . . , N}

b(ei, ei) < 0 for neg(b) indices i,

b(ei, ei) > 0 for N − neg(b) indices i.

An b -orthogonal basis can always be normed to an arbitrary 0 6= a ∈ B.
Further on we deal with b -orthogonal bases normed to an element of B and
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such a basis will be numbered so that b takes negative values on the first neg(b)
elements, i.e.

b(ei, ei) = α(i)a2,

α(i) =

{ −1 if i = 1, . . . , neg(b)

1 if i = neg(b) + 1, . . . , N.

We say that b is positive definite if b(x,x) > 0 for all nonzero x. b is
positive definite if and only if neg(b) = 0.

1.3. An important property of pseudo-Euclidean vector spaces is that a
natural correspondence exists between V∗ and V

B⊗B . Note that every element of
V

B⊗B is of the form y
ab

where y ∈ V and a, b ∈ B \ {0}. Take such an element

of V

B⊗B . Then

V → R, x 7→ b(y,x)

ab

is a linear map, i.e. an element of V∗, which we write in the form b(y,·)
ab

.

Proposition. V

B⊗B → V∗, y
ab

7→ b(y,·)
ab

is a linear bijection.

Proof. It is linear and injective because b is bilinear and nondegenerate, and
surjective because the two vector spaces in question have the same dimension.

We find this linear bijection so natural that we use it for identifying the vector
spaces:

V

B⊗ B
≡ V∗,

y

ab
≡ b(y, ·)

ab
.

1.4. (i) In the above identification the dual of an b -orthogonal basis
{ei | i = 1, . . . , N} becomes

{

ei

b(ei, ei)

∣

∣

∣

∣

i = 1, . . . ., N

}

which equals
{

α(i)ei
a2

∣

∣

∣

∣

i = 1, . . . , N

}

if the b -orthogonal basis is normed to a.
As a consequence, for all x ∈ V (see IV.1.1),

x =

N
∑

i=1

b(ei,x)

b(ei, ei)
ei,

and x = 0 if and only if b(ei,x) = 0 for all i = 1, . . . , N.
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(ii) If V is oriented then both V∗ and V

B⊗B are oriented. The above iden-

tification is orientation preserving if neg(b) is even and is orientation-reversing
if neg(b) is odd.

1.5. Let us take a linear map F : V → V. As we know, its transpose is
a linear map F ∗ : V∗ → V∗; according to the previous identification we can
consider it to be a linear map F ∗ : V

B⊗B → V

B⊗B . Consequently, we can define
the b -adjoint of F ,

F> : V → V, y 7→ (ab)
(

F ∗ · y

ab

)

.

Observe that this is equivalent to

F> · y
ab

= F ∗ · y

ab
(y ∈ V, a, b ∈ B \ {0}).

According to the definition of the transpose we have

y

ab
· F · x =

(

F ∗ · y

ab

)

· x =
F> · y
ab

· x,

which means
b(y,F · x)

ab
=

b(F> · y,x)
ab

,

i.e. b(y,F · x) = b(F> · y,x) = b(x,F> · y) (x,y ∈ V).

The definition of b -adjoints involves that the formulae in IV. 1.4 remain valid
for b -adjoints as well: if F ,G ∈ Lin(V), α ∈ R, then

(F +G)
>
= F> +G>,

(αF )
>
= αF>,

(F ·G)> = G> · F>.

Moreover,
detF> = detF .

1.6. Let (V,B, b) and (V′,B,′ b′) be pseudo-Euclidean vector spaces. A
linear map L : V → V′ is called b -b′ -orthogonal if there is a linear bijection
Z : B → B

′ such that b′ ◦ (L×L) = (Z ⊗Z) ◦ b i.e.

b′(L · x,L · y) = (Z ⊗Z)b(x,y) (x,y ∈ V).

Note that according to our identification, Z is an element of B
′

B
.

It is quite trivial that there is a b -b′ -orthogonal linear map between the
pseudo-Euclidean vector spaces if and only if dimV = dimV′ and neg(b) =
neg(b′).
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In particular, if {ei | i = 1, . . . , N} is an b -orthogonal basis, normed to a,
of V, and {e′i | i = 1, . . . , N} is an b′ -orthogonal basis, normed to a′, of V′

then
L · ei := e′i (i = 1, . . . , N)

determine an b -b′ -orthogonal map for which Z = a′

a
.

1.7. Let n and N be natural numbers, N ≥ 1, n ≤ N. The map

Hn : R
N × R

N → R, (x,y) 7→ −
n
∑

i=1

xiyi +
N
∑

i=n+1

xiyi =
N
∑

i=1

α(i)xiyi

(where α(i) := −1 for i = 1, . . . , n and α(i) := 1 for i = n + 1, . . . , N) is a
nondegenerate symmetric bilinear map, i.e. (RN ,R,Hn) is a pseudo-Euclidean
vector space and neg(Hn) = n.

The standard basis of R
N is Hn -orthonormal.

According to 1.3, we have the identification
(

R
N
)∗ ≡ R

N , but we must pay
attention to the fact that if n 6= 0 it differs from the standard one mentioned in
IV.1.6.

The standard identification is a linear bijection S : RN → (RN )
∗
, and the

present identification is another one: Jn : R
N → (RN )

∗
, x 7→ Hn(x, ·). We

easily see that

(xi| i = 1, . . . ., N) := Jn ·
(

xi| i = 1, . . . , N
)

=
(

α(i)xi| i = 1, . . . , N
)

.

The standard identification coincides with J0, the one corresponding to H0.
According to the identification induced by Hn, the dual of the standard basis

{χi | i = 1, . . . , N} is {α(i)χi| i = 1, . . . , N}.
It is useful to regard Hn as the diagonal matrix in which the first n elements

in the diagonal are −1 and the others equal 1.
For the Hn -adjoint of the linear map (matrix) F we have x ·Hn ·F> · y =

(F ·x) ·Hn · y = x ·F ∗ ·Hn · y for all x,y ∈ R
N , where F ∗ denotes the usual

transpose of the matrix F ; thus F ∗ ·Hn = Hn · F> or

F> = Hn · F ∗ ·Hn.

1.8. Exercises

1. Let e1, . . . , en be pairwise b -orthogonal vectors in the pseudo-Euclidean
vector space (V,B, b) such that b(ei, ei) 6= 0 for all i = 1, . . . , n. Prove that
the following statements are equivalent:

n = dimV (i.e. the vectors form a basis),(i)

if b(ei,x) = 0 for all i = 1, . . . , n then x = 0,(ii)

x =

n
∑

i=1

b(ei,x)

b(ei, ei)
ei for all x ∈ V,(iii)
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b(x,y) =

n
∑

i=1

b(ei,x)⊗ b(ei,y)

b(ei, ei)
for all x,y ∈ V ,(iv)

b(x,x) =
n
∑

i=1

b(ei,x)⊗ b(ei,x)

b(ei, ei)
for all x ∈ V.(v)

2. Demonstrate that the set {e1, . . . , en} of pairwise b -orthogonal vectors
can be completed to an b -orthogonal basis if and only if b(ei, ei) 6= 0 for all
i = 1, . . . ., n.

2. Tensors of pseudo-Euclidean vector spaces

2.1. Let V and A be finite dimensional vector spaces, dimA = 1. Suppose
F : V → V is a linear map. Then we can define the linear maps

F A : A⊗V → A⊗V, av 7→ a⊗ (F · v),

FA :
V

A
→ V

A
,

v

a
7→ F · v

a

(F A = 1A ⊗ F , FA = F
1A

, see IV.3.12 and IV.4.6).
According to the usual identifications

Lin(A⊗V) ≡(A⊗V)⊗ (A⊗V)
∗ ≡ A⊗V ⊗ A

∗ ⊗V∗ ≡
≡A⊗ A

∗ ⊗V ⊗V∗ ≡ R⊗V ⊗V∗ ≡ V ⊗V∗ ≡
≡Lin(V),

we have F A ≡ F and similarly FA ≡ F . Therefore we shall write F instead of
F A and FA :

for s ∈A⊗V we have F · s ∈ A⊗V,

for n ∈V

A
we have F · n ∈ V

A
.

2.2. Let us formulate the previous convention in another way. V ⊗ A ≡
Lin(A∗,V), hence we have the composition F · s of F ∈ Lin(V) ≡ V ⊗ V∗

and s ∈ Lin(A∗,V) ≡ V ⊗ A.
More generally, if U and W are finite dimensional vector spaces, the dot

product of an element from U⊗V∗ and an element from V⊗W is defined to
be an element in U⊗W; this dot product can be regarded as the composition
of the corresponding linear maps and is characterized by

(u⊗ p) · (v ⊗w) = (p · v)u⊗w.

The scheme is worth repeating:

U⊗V∗ dot V ⊗W results in U⊗W.
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Evidently, we can have U = K

A
or W = K

A
, thus similar formulae are valid

for tensor quotients as well.

2.3. What we have said in the previous paragraph concerns any vector spaces.
In the following (V,B, b) denotes a pseudo-Euclidean vector space.
The identification described in 1.3 and the corresponding formula suggests us

a new notation: ‘removing’ the denominator from both sides we arrive at the
definition

x · y := b(x,y),

i.e. in the sequel we omit b, denoting the b -product of vectors by a simple dot.
The dot product of two elements of V is an element of B⊗ B. Then we can

extend the previous dot product formalism as follows:

U⊗V dot V ⊗W results in (B⊗ B)⊗U⊗W,

(u⊗ v′) · (v ⊗w) := (v′ · v)u⊗w.

2.4. The b -adjoint of F ∈ Lin(V) is characterized in the new notation of
dot products as follows:

y · F · x = (F> · y) · x = x · F>y (y,x ∈ V).

2.5. According to our convention we have

n · x is in B for n ∈ V

B
and x ∈ V,

n ·m is in R for n,m ∈ V

B
.

If {ei | i = 1, ..., N} is an b -orthogonal basis, normed to a ∈ B, in V, then
{

ni :=
ei

a

∣

∣ i = 1, ..., N
}

is an b -orthonormal basis of V

B
:

ni · nk = α(i)δik (i, k = 1, ..., N).

It is more convenient to use this basis instead of the original one; for all x ∈ V

we have

x =

N
∑

i=1

α(i)(ni · x)ni.
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2.6. (i) We have the identifications
(

V

B

)∗ ≡ V
∗

B∗ ≡ V

B⊗B⊗B∗ ≡ V

B
; the element

n of V

B
is identified with the linear functional V

B
→ R, m 7→ n ·m.

(ii) In view of the identifications Lin(V) ≡ V⊗V∗ ≡ V⊗ V

B⊗B ≡ V

B
⊗ V

B
, or

in view of our dot product convention, for n,m ∈ V

B
,

m⊗ n : V → V, x 7→ (n · x)m

is a linear map, and every element of Lin(V) is the sum of such linear maps.

Evidently,

(m⊗ n) · (m′ ⊗ n′) = (n ·m′)m⊗ n′

and

(m⊗ n)
>
= n⊗m.

2.7. Definition. For the pseudo-Euclidean vector space (V,B, b) we put

O(b) : =
{

L ∈ Lin(V)
∣

∣ L> = L−1
}

,

A(b) : =
{

A ∈ Lin(V)
∣

∣ A> = −A
}

,

and the elements of O(b) and A(b) are called b -orthogonal and b -antisymmet-
ric, respectively.

Proposition. (i) For L ∈ Lin(V) the following three statements are equiv-
alent:

— L is in O(b),

— (L · y) · (L · x) = y · x for all y,x ∈ V,

— (L · x) · (L · x) = x · x for all x ∈ V.

(ii) For A ∈ Lin(V) the following three statements are equivalent:

— A is in A(b),

— y ·A · x = −(A · y) · x = −x ·A · y for all y,x ∈ V,

— x ·A · x = 0 for all x ∈ V.

2.8. Proposition.

(i) |detL| = 1 for L ∈ O(b);

(ii) TrA = 0 for A ∈ A(b).

Proof. It is convenient to regard now the linear maps in question as linear
maps V

B
→ V

B
, according to our identifications described in 2.1. It is not hard

to see that this does not influence determinants and traces.
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(i) Let {n1, . . . ,nN} be a b -orthonormal basis in V

B
. According to IV.3.15

and to the identification
(

V

B

)∗ ≡ V

B
we have

0 6=
(

N∧
k=1

nk

)

(n1, ...,nN ) =

(

N∧
k=1

L · nk

)

(L · n1, . . . ,L · nN ) =

= (detL)

(

N∧
k=1

L · nk

)

(n1, . . . ,nN ) =

= (detL)
2

(

N∧
k=1

nk

)

(n1, . . . ,nN ).

(ii) We know that the dual of the preceding basis is {α(i)ni | i = 1, . . . , N},
thus in view of IV.3.9,

TrA =

N
∑

i=1

α(i)ni ·A · ni = 0.

2.9. A linear map S : V → V is called b -symmetric if S> = S or,
equivalently, x · S · y = y · S · x for all x,y ∈ V. The set of b -symmetric
linear maps is denoted by S(b).

A(b) and S(b) are complementary subspaces of Lin(V) ≡ V⊗V∗, i.e. their
intersection is the zero subspace and they span the whole space V⊗V∗. Indeed,
only the zero linear map is both symmetric and antisymmetric, and for any linear
map F : V → V we have that

S :=
F + F>

2
, A :=

F − F>

2
are b -symmetric and b -antisymmetric, respectively, and F = S +A.

Taking the identification V⊗V∗ ≡ V

B
⊗V

B
we can easily see that V

B
∨V

B
⊂ S(b)

and V

B
∧ V

B
⊂ A(b); since these subspaces are complementary, too, equalities

hold necessarily:

V ∨V∗ :=
V

B
∨ V

B
= S(b), V ∧V∗ :=

V

B
∧ V

B
= A(b).

As a consequence,

dim S(b) =
N(N + 1)

2
, dimA(b) =

N(N − 1)

2
.

Recall that for m,n ∈ V

B
we have

m ∨ n = m⊗ n+ n⊗m, m ∧ n = m⊗ n− n⊗m.

2.10. Proposition.

(V ⊗V∗)× (V ⊗V∗) → R, (F ,G) 7→ F : G := Tr(F> ·G)

is a nondegenerate symmetric bilinear form, which is positive definite if and only
if b is positive definite.
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Proof. It is trivially bilinear and symmetric because of the properties of Tr
and b -adjoints.

Suppose that Tr(F> ·G) = 0 for all F ∈ V ⊗V∗, i.e.

0 =

N
∑

i=1

α(i)ni · F> ·G · ni

for all b -orthonormal bases {n1, . . . ,nN} of V

B
. Then taking F := nj ⊗ nk

for all j, k = 1, . . . , N, and using (nj ⊗ nk)
>

= nk ⊗ nj we conclude that
nj ·G · nk = 0 for all j, k which results in G = 0.

Since

Tr(F> · F ) =

N
∑

i=1

α(i)(F · ni) · (F · ni),

we see that if b is positive definite then Tr(F> · F ) > 0; if b is not positive
definite then we can easily construct an F such that F : F < 0.

Remark. (i) Compare the present bilinear form with that of the duality
treated in IV.3.10; take into account the identification V ⊗ V∗ ≡ V ⊗ V

B⊗B ≡
V

B⊗B ⊗V ≡ V∗ ⊗V.

(ii) The bilinear form is not positive definite, in general, either on the
linear subspace of b -symmetric linear maps or on the linear subspace of b -
antisymmetric linear maps.

(iii) For k1,k2,n1,n2 ∈ V

B
we have

(k1 ⊗ n1) : (k2 ⊗ n2) = (k1 · k2)(n1 · n2),

(k1 ∨ n1) : (k2 ∨ n2) = 2
(

(k1 · k2)(n1 · n2) + (k1 · n2)(k2 · n1)
)

,

(k1 ∧ n1) : (k2 ∧ n2) = 2
(

(k1 · k2)(n1 · n2)− (k1 · n2)(k2 · n1)
)

,

which shows that sometimes it is convenient to use the half of this bilinear form
for b -symmetric and b -antisymmetric linear maps:

F •G :=
1

2
F : G =

1

2
Tr(F> ·G) =

1

2
Tr(F ·G)

(

F ,G ∈ S(b)
)

,

F •G :=
1

2
F : G =

1

2
Tr(F> ·G) = −1

2
Tr(F ·G)

(

F ,G ∈ A(b)
)

.

2.11. Proposition. Let L be an b -orthogonal map. Then for all F ,G ∈
Lin(V)

(i) (L · F ·L−1) : (L ·G ·L−1) = F : G;
(ii) if F is b -symmetric or b -antisymmetric then L ·F ·L−1 is b -symmetric

or b -antisymmetric, respectively.
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2.12. Proposition. If (n1, . . . ,nN ) and (n′1, . . . ,n
′
N ) are equally oriented

b -orthonormal bases in V

B
then

N∧
i=1

ni =
N∧
i=1

n′i.

Proof. Evidently, L · ni := n′i (i = 1, . . . , N) determines an b -orthogonal
map L whose determinant is positive since the bases are equally oriented. Then
proposition in IV.3.18 gives the desired result.

Suppose V and B are oriented; then V

B
is oriented as well and the Levi-Civita

tensor of (V,B, b),

ǫ :=
N∧
i=1

ni =
N∧
i=1

ei

a
∈ N∧

i=1

(

V

B

)

≡
N∧ V

N
⊗ B

,

is well-defined,where (n1, . . . ,nN) is a positively oriented orthonormal basis in V

B
,

and (e1, . . . , eN) is a positively oriented orthogonal basis inV, normed to a ∈ B
+.

2.13. Exercises

1. According to the theory of tensor quotients, the Levi-Civita tensor can be
considered to be a linear map

ǫ :
N
⊗ B → N∧ V,

N
⊗
i=1

ai 7→
(

N
⊗
i=1

ai

)

⊗ ǫ .

Prove that

(

N
⊗
i=1

ai

)

⊗ ǫ =
N∧
i=1

ei where (e1, . . . , eN ) is a positively oriented

b -orthogonal basis such that |ei · ei| = |a2
i | (i = 1, .., N).

2. The previous linear map is a bijection whose inverse is 1
ǫ ∈

N

⊗ B
N

∧ V

, regarded

as a linear map
N∧ V →

N
⊗ B,

N∧
i=1

xi 7→
N

∧
i=1

xi

ǫ .

Prove that

N

∧
i=1

xi

ǫ =
∑

π∈PermN

signπ
N
∏

i=1

(nπ(i) · xi) =: ǫ (x1, . . . ,xN ).

3. Euclidean vector spaces

3.1. A pseudo-Euclidean vector space (V,B, b) is called Euclidean if b is
positive definite or, equivalently, neg(b) = 0.

For a clear distinction, in the following (S,L,h) denotes a Euclidean vector
space.
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The notations introduced for pseudo-Euclidean vector spaces will be used, e.g.

x · y := h(x,y) (x,y ∈ S);

note that if x,y ∈ S and k,n ∈ S

L
then

x · y ∈ L⊗ L, n · x ∈ L, k · n ∈ R.

Moreover, we put
|x|2 := h(x,x) (x ∈ S).

Lastly, we say orthogonal, adjoint etc. instead of h -orthogonal, h -adjoint
etc.

3.2. Recall that a canonical order is given in L ⊗ L (IV.5.4) and so in
(L ⊗ L) ⊗ (L ⊗ L) as well. Thus the absolute value of elements in L ⊗ L and
the square root of elements in (L⊗ L)⊗ (L⊗ L) make sense.

Proposition (Cauchy–Schwartz inequality). For all x,y ∈ S we have

|x · y| ≤
√

|x|2|y|2

and equality holds if and only if x and y are parallel.

Proof. Exclude the trivial cases x = 0 or y = 0. Then the positive
definiteness of h yields

0 ≤
∣

∣

∣

∣

x− y · x
y · yy

∣

∣

∣

∣

2

= |x|2 − 2
y · x
y · y (x · y) +

(

y · x
y · y

)2

|y|2 = |x|2 − (y · x)(x · y)
|y|2

where equality holds if and only if x = y·x
y·yy.

In general, the right-hand side of the Cauchy inequality cannot be written in
a simpler form because |x| and |y| make no sense, unless L is oriented.

3.3. Suppose now that L is oriented as well. Then we can define the
magnitude or length of x ∈ S as a non-negative element of L :

|x| :=
√

|x|2.

The following fundamental relations hold:
(i) |x| = 0 if and only if x = 0,
(ii) |αx| = |α||x|,
(iii) |x+ y| ≤ |x|+ |y|
for all x,y ∈ S and α ∈ R. The third relation is called the triangle inequality
and is proved by the Cauchy–Schwartz inequality.
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Moreover, the Cauchy–Schwartz inequality allows us to define the angle
formed by x 6= 0 and y 6= 0 :

arg(x,y) := arccos
x · y
|x||y| .

3.4. The identification
S

L⊗ L
≡ S∗

(see 1.3) is a fundamental property of the Euclidean vector space (S,L,h).
The dual of an orthogonal basis e1, . . . , eN , normed to m ∈ L, in this

identification becomes
{

e1

m2 , . . . ,
eN

m2

}

.

Accordingly, ni :=
ei

m
(i = 1, . . . , N) form an orthonormal basis in S

L
which

coincides with its dual basis in the identification S

L
≡
(

S

L

)∗
:

ni · nk = δik (i, k = 1, . . . , N).

For all x ∈ S we have

x =
N
∑

i=1

(ni · x)ni.

In the following S

L
will be used frequently, so we find it convenient to introduce

a shorter notation:

N :=
S

L
.

3.5. If S is a linear subspace of S then

S⊥ := {x ∈ S | x · y = 0 for all y ∈ S}
is called the orthocomplement of S. It can be shown that S⊥ is a linear subspace,
complementary to S, i.e. their intersection is the zero subspace and they span
the whole S.

Every vector x ∈ S can be uniquely decomposed into a sum of two vectors,
one in S and the other in S⊥, called the orthogonal projections of x in S and
in S⊥, respectively.

Let n be a unit vector in N, i.e. |n|2 := n · n = 1. Then

n⊗ L := {nd | d ∈ L}
is a one-dimensional subspace of S. Furthermore, its orthocomplement,

{x ∈ S | n · x = 0} = (n⊗ L)
⊥

is an (N −1) -dimensional subspace. The corresponding projections of x ∈ S in

n⊗ L and in (n⊗ L)
⊥

are

(n · x)n and x− (n · x)n,
respectively.
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3.6. Proposition. For F ∈ Lin(S) we have KerF> = (RanF )
⊥
.

Proof. x is in KerF>, i.e. F> · x = 0 if and only if y · F> · x = 0 for all
y ∈ S, which is equivalent to x · F · y = 0 for all y ∈ S, thus x is in KerF>

if and only if it is orthogonal to the range of F .

3.7. We know that a linear map L : S → S is orthogonal, i.e. y · x =
(L · y) · (L · x) for all x,y ∈ S if and only if |L · x|2 = |x|2 for all x ∈ S (see
2.7). Because of the Euclidean structure we need not assume the linearity of L,
according to the following result.

Proposition. Let L : S → S be a map such that L(y) ·L(x) = y ·x for all
x,y ∈ S. Then L is necessarily linear.

Proof. First of all note that if {e1, . . . , eN} is an orthogonal basis in S then
{L · e1, . . . ,L · eN} is an orthogonal basis as well. As a consequence, RanL
spans S.

If L(y) = L(x) then |y|2 = |x|2 = y · x and so |y − x|2 = 0, hence L is
injective.

Writing x′ := L(x), y′ := L(y) and then omitting the prime, we find that
L−1(y) ·L−1(x) = y · x for all x,y ∈ RanL and L−1(y) · x = y ·L(x) for all
x ∈ S, y ∈ RanL.

Consequently, for all y ∈ RanL and x1,x2 ∈ S we have

y ·L(x1 + x2) = L−1(y) · (x1 + x2) = L−1(y) · x1 +L−1(y) · x2 =

= y ·L(x1) + y ·L(x2) = y · (L(x1) +L(x2)) ;

since y is arbitrary in RanL which spans S, this means that

L(x1 + x2) = L(x1) +L(x2) (x1,x2 ∈ S).

A similar argument shows that

L(αx) = αL(x) (α ∈ R,x ∈ S).

This has the simple but important consequence that if L : S → S is a map
such that |L(y)−L(x)|2 = |y − x|2 for all x,y ∈ S and L(0) = 0 then L is
necessarily linear. The proof is left to the reader as an exercise.

3.8. In the following, assuming that

dimS = 3,

we shall examine the structure of the antisymmetric linear maps of S. As we
know, (see 2.9) A(h) ≡ S

L
∧ S

L
= N ∧ N is a three-dimensional vector space
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endowed (see 2.10) with a real-valued positive definite symmetric bilinear form—
an inner product—:

A •B =
1

2
Tr(A> ·B) = −1

2
Tr(A ·B).

The magnitude of the antisymmetric linear map A is the real number

|A| :=
√
A •A.

Recall that for k1,k2,n1,n2 ∈ N we have

(k1 ∧ k2) • (n1 ∧ n2) = (k1 · k2)(n1 · n2)− (k1 · n2)(k2 · n1),

in particular, if k1 = k2 =: k, n1 = n2 =: n,

|k ∧ n|2 = |k|2|n|2 − (k · n)2.

3.9. If A ∈ N ∧N then A> = −A, thus proposition 3.6 yields that KerA
is the orthogonal complement of RanA.

Proposition. If 0 6= A ∈ N ∧ N then RanA is two-dimensional, conse-
quently, KerA is one-dimensional.

Proof. Since A 6= 0, there is a 0 6= x ∈ RanA. Then x 6∈ KerA, thus
0 6= A · x ∈ RanA. x and A · x are orthogonal to each other because A is
antisymmetric. Consequently, the subspace spanned by x and A · x is two-
dimensional in the range of A : RanA is at least two-dimensional, KerA is
at most one-dimensional. Suppose KerA = {0}. Take a 0 6= y, orthogonal to
both x and A ·x. S is three-dimensional, A ·y is orthogonal to y, so it lies in
the subspace generated by x and A · x, i.e. A · y = αx+ βA · x. Multiplying
by x and using x ·A · x = 0, x ·A · y = −y ·A · x = 0, we get α = 0. As a
consequence, A · (y−βx) = 0, the vector y−βx is in KerA, thus y−βx = 0,
y = βx, a contradiction.

3.10. Let us take a nonzero A ∈ N ∧ N. There is an orthonormal basis
{n1,n2,n3} in N such that n3 ⊗L = KerA. {n1 ∧n2,n3 ∧n1,n2 ∧n3} is a
basis in N ∧N, thus there are real numbers α1, α2, α3 such that

A = α3(n1 ∧ n2) + α2(n3 ∧ n1) + α1(n2 ∧ n3).

Since A · n3 = 0, we easily find that α2 = α1 = 0 and, consequently,
|α3| = |A|. Renaming n1 and n2 and taking their antisymmetric tensor product
in a convenient order we arrive at the following result.
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Proposition. If 0 6= A ∈ N ∧ N and n is an arbitrary unit vector in N,
orthogonal to the kernel of A, then there is a unit vector k, orthogonal to the
kernel of A and to n such that

A = |A|k ∧ n.

As a consequence, we have

A3 = −|A|2A.

Moreover, for nonzero A and B in N ∧ N the following statements are
equivalent:
— A is a multiple of B,
— KerA = KerB,
— RanA = RanB.

3.11. If A,B ∈ N ∧N, their commutator

[A,B] := A ·B −B ·A

is in N ∧ N, too. Moreover, the properties of the trace imply that for all
C ∈ N ∧N

[A,B] •C = [C,A] •B = [B,C] •A.

Proposition.

|[A,B]|2 = |A|2|B|2 − (A •B)
2
.

Proof. If A and B are parallel (in particular, if one of them is zero) then
the equality holds trivially. If A and B are not parallel, dividing the equality
by |A|2|B|2 we reduce the problem to the case |A| = |B| = 1. The ranges of
A and B are different two-dimensional subspaces, hence their intersection is a
one-dimensional subspace (because S is three-dimensional). Let n be a unit
vector in N such that n ⊗ L = RanA ∩ RanB. Then there are unit vectors
k and r in N, orthogonal to n, such that A = k ∧ n, B = r ∧ n. Simple
calculations yield

[A,B] = r ∧ k, |[A,B]|2 = 1− (k · r)2

which gives the desired result in view of 3.8.

3.12. According to the formula cited at the beginning of the previous para-
graph, [A,B] is orthogonal to both A and B. Consequently, if A and B are
orthogonal, |A| = |B| = 1 then A,B and [A,B] form an orthonormal basis in
N ∧N.
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Proposition. For all A,B,C ∈ N ∧N we have

[[A,B],C] = (A •C)B − (B •C)A.

Proof. If A and B are parallel, both sides are zero. If A and B are not
parallel (in particular, neither of them is zero) then B = αA + B

′ where α is
a number and B

′ 6= 0 is orthogonal to A. αA results in zero on both sides,
hence it is sufficient to consider an arbitrary A, a B orthogonal to A, and
three linearly independent elements in the role of C; they will be A, B and
[A,B].

For C = [A,B] the equality is trivial, both sides are zero.

For C = A, the right-hand side equals |A|2B; [[A,B],A] on the left-hand
side is orthogonal to both [A,B] and A, hence it is parallel to B : there is a
number α such that [[A,B],A] = αB. Take the inner product of both sides by

B, apply the formula at the beginning of 3.11 to have |[A,B]|2 = α|B|2 which

implies α = |A|2 according to the previous result.
A similar argument is applied to C = B.

3.13. Let us continue to consider the Euclidean vector space (S,L,h),
dimS = 3, and suppose that S and L are oriented. Then N = S

L
is oriented

as well (see IV.5.2). According to 2.12, there is a well-defined ǫ in
3∧ N such

that

ǫ =
3∧

i=1
ni

for an arbitrary positively oriented orthonormal basis (n1,n2,n3) of N. ǫ is
called the Levi-Civita tensor of (S,L,h).

The Levi-Civita tensor establishes a linear bijection

j : N ∧N → N, k ∧ n 7→ ǫ (·,k,n).
Let us examine more closely what this is. The dual of N is identified with

N, thus ǫ can be considered to be a trilinear map

N3 → R, (k1,k2,k3) 7→
∑

π∈Perm3

signπ

3
∏

i=1

nπ(i) · ki

(see IV.3.15). Thus, for given k and n, ǫ (·,k,n) is the linear map N → R,
r 7→ ǫ (r,k,n), i.e. it is an element of N∗ ≡ N.

In other words, j(k ∧ n) is the element of N determined by

r · j(k ∧ n) = ǫ (r,k,n)

for all r ∈ N.
The Levi-Civita tensor is antisymmetric, hence j(k∧n) is orthogonal to both

k and n.
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If (n1,n2,n3) is a positively oriented orthonormal basis in N, then

j(n1 ∧ n2) = n3, j(n2 ∧ n3) = n1, j(n3 ∧ n1) = n2.

Proposition. For all A ∈ N ∧N we have
(i) A · j(A) = 0,
(ii) |j(A)| = |A|,
(iii) if A 6= 0 then (j(A),n,A · n) is a positively oriented orthogonal
basis in N for arbitrary non zero n, orthogonal to KerA.

Proof. There is a positively oriented orthonormal basis (n1,n2,n3) such
that A = |A|n1 ∧ n2 (and so A · n3 = 0); then j(A) = −|A|n3 from which
(i) and (ii) follow immediately. Moreover, we can choose n1 := n

|n| where n is

an arbitrary nonzero vector orthogonal to KerA.

The kernel of a nonzero A is one-dimensional; according to (i), j(A) spans
the kernel of A. The one-dimensional vector space KerA will be oriented by
j(A).

Since j is linear, (ii) is equivalent to j(A) · j(B) = A •B for all A and B

which can also be proved directly using that A = |A|k ∧ n, B = |B|r ∧ n.

3.14. Definition. The map

N×N → N, (k,n) 7→ k × n := j(k ∧ n)

is called the vectorial product.

It is evident from the properties of j that the vectorial product is an anti-
symmetric bilinear mapping, k × n = 0 if and only if k and n are parallel,
k × n is orthogonal to both k and n,

|k × n|2 = |k|2|n|2 − (k · n)2.

If k and n are not parallel then k, n and k×n form a positively oriented
basis in N; moreover, if (n1,n2,n3) is a positively oriented orthonormal basis
in N then

n1 × n2 = n3, n2 × n3 = n1, n3 × n1 = n2.

Proposition.

(i) −j([A,B]) = j(A)× j(B) (A,B ∈ N ∧N)
or, equivalently,

j(A) ∧ j(B) = [A,B];
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(ii) −A · n = j(A)× n (A ∈ N ∧N, n ∈ N)
which implies

A · j(B) = j([A,B]) (A,B ∈ N ∧N).

Proof. There is an orthonormal basis {n1,n2,n3} in N such that A =
|A|n1 ∧ n2.

(i) n1∧n2, n2∧n3 and n3∧n1 form a basis in N∧N, thus it is sufficient
to consider them in the role of B; then a simple calculation yields the desired
result. bek(ii) Take n1, n2 and n3 in the role of n.

As a consequence of our results we have

(k × n) · r = (n× r) · k = (r × k) · n = ǫ (r,k,n)

and
(k × n)× r = (k · r)n− (n · r)k

for all k,n, r ∈ N.

3.15. The Levi-Civita tensor establishes another linear bijection as well:

jo :
3∧ N → R,

3∧
i=1

ki 7→ ǫ (k1,k2,k3).

It is quite trivial that jo
−1(α) = αǫ for all α ∈ R.

3.16. An orthogonal map R : S → S (also regarded as an orthogonal map
N → N, see 2.1) sends orthogonal bases into orthogonal ones, preserves and
changes orientation according to whether detR = 1 or detR = −1. In view of
IV.3.18,

ǫ ◦
(

3
× R

)

= (detR)ǫ .

Then one proves without difficulty that

j(R · k ∧R · n) = (detR)R · j(k ∧ n) (k,n ∈ N).

Since R · k ∧R ·n = R · (k ∧n) ·R−1, the previous result can be written in
the form

j(R ·A ·R−1) = (detR)R · j(A) (A ∈ N ∧N).

Moreover,

jo

(

3∧
i=1

R · ki

)

= (detR) jo

(

3∧
i=1

ki

)

.

3.17. In the usual way, the linear bijection j can be lifted to a linear bijection

S ∧ S → S⊗ L, defined by x ∧ y 7→ j
( x

m
∧ y

m

)

m2

where m is an arbitrary nonzero element of L.
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Similarly, the linear bijection jo can be lifted to a linear bijection

3∧ S →
3
⊗ L,

3∧
i=1

xi 7→ jo

(

3∧
i=1

xi

m

)

m3.

We have utilized here that S = N⊗ L. Evidently, similar formulae are valid
for N⊗ A where A is an arbitrary one-dimensional vector space.

3.18. Let us consider the Euclidean vector space (R3,R,H) where

H(x,y) =

3
∑

i=1

xiyi =: x · y

(i.e. H = H0 in the notation of 1.7).

The identification R
3 ≡

(

R
3
)∗

is the usual one: the functional corresponding
to x and represented by the usual matrix multiplication rule coincides with
x. In customary notations x considered to be a vector has the components
(x1, x2, x3) and x considered to be a covector has the components (x1, x2, x3);
the previous statement says that xi = xi, i = 1, 2, 3.

That is why in this case one usually writes only subscripts.
The adjoint of a 3× 3 matrix (as a linear map R

3 → R
3) coincides with the

transpose of the matrix.
R

3 and R are endowed with the usual orientations: the naturally ordered
standard bases are taken to be positively oriented.

The Levi-Civita tensor is given by a matrix of three indices:

ǫ = (ǫijk | i, j, k = 1, 2, 3) ,

ǫ (x,y, z) =
3
∑

i,j,k=1

ǫijkxiyjzk,

ǫ ijk =











1 if ijk is an even permutation of 123

−1 if ijk is an odd permutation of 123

0 otherwise

Then it is an easy task to show that

j (Ljk | j, k = 1, 2, 3) =



−1

2

3
∑

j,k=1

ǫijkLjk | i = 1, 2, 3



 ,

j−1 (xk | k = 1, 2, 3) =

(

−
3
∑

k=1

ǫijkxk | i, j = 1, 2, 3

)

,
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in other notation,

j−1(x1, x2, x3) =





0 −x3 x2
x3 0 −x1

−x2 x1 0



 .

Moreover,

x× y =





3
∑

j,k=1

ǫ ijkxjyk | i = 1, 2, 3



 .

3.19. Consider the Euclidean vector space (S,L,h), dimS = 3.
A linear coordinatization K of S is called orthogonal if it corresponds to an

ordered orthogonal basis (e1, e2, e3) normed to an m ∈ L.
Since the dual of the basis is

(

ei

m2 | i = 1, 2, 3
)

(see 3.4), we have

K · x =
(ei · x

m2
| i = 1, 2, 3

)

=:
(

x1, x2, x3
)

.

Consider the identification S ≡ L⊗L⊗S∗ ≡
(

S

L⊗L

)∗
; then x, as an element

of the dual of S

L⊗L , has the coordinates

(

x · ei

m2
| i = 1, 2, 3

)

=: (x1, x2, x3) .

We see, in accordance with the previous paragraph, that xi = xi (i = 1, 2, 3)
and we can use only subscripts.

Then all the operations regarding the Euclidean structure can be represented
by the corresponding operations in (R3,R,H), e.g.

—the h -product of elements x,y of S is computed by the inner product of
their coordinates in R

3 :

if K · x = (x1, x2, x3) and K · y = (y1, y2, y3)

i.e. x =

3
∑

i=1

xiei, y =

3
∑

i=1

yiei

then x · y =

(

3
∑

i=1

xiyi

)

m2;
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— the matrix in the coordinatization of an adjoint map will be the transpose
of the matrix representing the linear map in question:

if K ·L ·K−1 = (Lik | i, k = 1, 2, 3)

then K ·L> ·K−1 = (Lki | i, k = 1, 2, 3) ;

—if both S and L are oriented and the basis establishing the coordinatization
is positively oriented then the vectorial product can be computed by the vectorial
product of coordinates:

K · (x× y) =





3
∑

j,k=1

ǫ ijkxjyk | i = 1, 2, 3



 .

These statements fail, in general, for a nonorthogonal coordinatization.

3.20. Let (v1,v2,v3) be an arbitrary ordered basis in S, chose a positive
element m of L and put

hik :=
vi · vk

m2

(

:=
h(vi,vk)

m2

)

∈ R (i, k = 1, 2, 3).

The dual of the basis can be represented by vectors r1, r2, r3 in S

L⊗L —
usually called the reciprocal system of the given basis—in such a way that

ri · vk = δik (i, k = 1, 2, 3).

It is not hard to see that

r1 :=
ǫ (·,v2,v3)

∆
, etc.

where ∆ := ǫ (v1,v2,v3).
Put

hik := (ri · rk)m2 ∈ R (i, k = 1, 2, 3).

Let us take the coordinatization K of S defined by the basis (v1,v2,v3).
Now we must distinguish between subscripts and superscripts. We agree to write
the elements of R3 in the form

(

xi
)

and the elements of
(

R
3
)∗

in the form (xi) .
Then

K · x =
(

ri · x
)

=:
(

xi
)

.

Consider the identification S ≡ L⊗L⊗S∗ ≡
(

S

L⊗L

)∗
; then

(

vi

m2 | i = 1, 2, 3
)

is an ordered basis in S

L⊗L and x, as an element of the dual of S

L⊗L , has the
coordinates

(

x · vi

m2

)

=: (xi) .
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Writing x =
3
∑

i=1

xkvk =
3
∑

k=1

xkr
km2 we find that

xi =

3
∑

k=1

hikx
k, xk =

3
∑

i=1

hkixi,

i.e., in general, xi 6= xi.
Now if

K · x =
(

xi
)

and K · y =
(

yi
)

i.e. x =

3
∑

i=1

xivi, y =

3
∑

i=1

yivi

then

x · y =





3
∑

i,k=1

hikx
iyk



m2 =

(

3
∑

k=1

xky
k

)

m2 =

(

3
∑

i=1

xiyi

)

m2.

3.21. Exercises

In the following we keep assuming that dimS = 3.

1. Let A be a nonzero element of A(h). If x is a nonzero vector in S,
orthogonal to KerA, then

(i) A2 · x = −|A|2x,
(ii) |A · x| = |A||x|,
(iii) A = (A·x)∧x

|x|2 .

2. Show that Ker(A2) = KerA for A ∈ N ∧N ≡ A(h).
3. Prove that

ǫijkǫrst = δirδjsδkt + δisδjtδkr + δitδjrδks(i)

− δitδjsδkr − δisδjrδkt − δirδjtδks,
3
∑

k=1

ǫijkǫrsk = δirδjs − δisδjr,(ii)

3
∑

j,k=1

ǫijkǫrjk = 2δir.(iii)
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4. Let A and B be one-dimensional vector spaces. Define the vectorial
product

(N⊗ A)× (N⊗ B) → N⊗ A⊗ B.

4. Minkowskian vector spaces

4.1. A pseudo-Euclidean vector space (V,B, b) is called Minkowskian if
dimV > 1 and neg(b) = 1.

For a clear distinction, in the following (M,T, g) denotes a Minkowskian
vector space, and

dimM = 1 +N

where N ≥ 1.
We call attention to the fact that g is usually called a Lorentz metric; since

g does not define a metric (distances and angles, see later) we prefer to call it a
Lorentz form.

The notations introduced for pseudo-Euclidean vector spaces will be used, e.g.

x · y := g(x,y) (x,y) ∈ M);

note that if x,y ∈ M and u,v ∈ M

T
then

x · y ∈ T⊗ T, u · x ∈ T, u · v ∈ R.

Moreover, we put
x2 := x · x (x ∈ M).

In contradistinction to Euclidean spaces, here we keep saying g -orthogonal,
g -adjoint etc.

The elements of a g -orthogonal basis will be numbered from 0 to N, in such
a way that for {e0, e1, . . . , eN} we have e0

2 < 0, ei
2 > 0 if i = 1, . . . , N.

4.2. Recall that there is a canonical orientation on T ⊗ T, hence it makes
sense that an element of T ⊗ T is positive or negative. Let us introduce the
notations

S : =
{

x ∈ M
∣

∣ x2 > 0
}

, S0 := S ∪ {0},
T : =

{

x ∈ M
∣

∣ x2 < 0
}

, T0 := T ∪ {0},
L : =

{

x ∈ M
∣

∣ x2 = 0,x 6= 0
}

L0 := L ∪ {0}.

The elements of S0, T and L are called spacelike, timelike and lightlike vectors,
respectively.
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Neither of S0, T0 and L0 is a linear subspace.
The bilinear map g is continuous (see VI.3.1). Thus S and T are open

subsets, L0 is a closed subset.

4.3. Take a nonzero element x of M. The Lorentz form g is nondegenerate,
hence the linear map M → T ⊗ T, y 7→ x · y is a surjection, i.e. it has an
N -dimensional kernel. In other words,

Hx := {y ∈ M | x · y = 0}

is an N -dimensional linear subspace of M. Let gx be the restriction of g onto
Hx ×Hx; it is an T⊗ T -valued symmetric bilinear map.

(i) Suppose x ∈ S or x ∈ T. Then x is not in Hx. Rx and Hx are com-
plementary subspaces. As a consequence, gx is nondegenerate, i.e. (Hx,T, gx)
is an N -dimensional pseudo-Euclidean vector space. Thus there is a gx -
orthogonal basis in Hx; such a basis, supplemented by x, will be a g -orthogonal
basis in M.

—if x is in S then x2 > 0, so one and only one element of a gx -orthogonal
basis belongs to T, the other ones belong to S. Consequently, (Hx,T, gx) is
an N -dimensional Minkowskian vector space.

—if x is in T then x2 < 0, so all the elements of a gx -orthogonal basis
belong to S. Consequently, Hx ⊂ S0 and (Hx,T, gx) is an N -dimensional
Euclidean vector space.
(ii) Suppose x ∈ L. Then x itself is in Hx, in other words, Rx is contained

in Hx. One cannot give naturally a subspace complementary to Hx. Moreover,
gx is degenerate.

Let e0 be an element of T; let s be an element of T such that e20 = −s2.
As we have seen, He0

is contained in S0, so e0 · x 6= 0, and e1 := e0·e0

e0·x x− e0

belongs to S, e0 · e1 = 0 and e1
2 = s2. {e0, e1} can be completed to a

g -orthogonal basis {e0, e1, . . . , eN}, normed to s, of M. The vector x is a
linear combination of e0 and e1, thus {e2, . . . , eN} is contained in Hx and
{x, e2, . . . , eN} is a basis of Hx.

This has the immediate consequence that every element of Hx which is not
parallel to x belongs to S0.

4.4. It follows from 4.3(i) that if x ∈ T then x · y 6= 0 for all y ∈ T and
for all y ∈ L.

Moreover, the results in the preceding paragraph imply that
—there are N -dimensional linear subspaces in S0,
—there are at most one-dimensional linear subspaces in T0 and L0 ,
—there is a one-to-one correspondence between N -dimensional linear sub-

spaces in S0 and one-dimensional linear subspaces in T0 in such a way that
the subspaces in correspondence are g -orthogonal to each other.
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4.5. The identification
M

T⊗ T
≡ M∗

(see 1.3) is a fundamental property of the Minkowskian vector space (M,T, g).
The dual of a g -orthogonal basis {e0, e1, . . . , eN}, normed to s ∈ T, in this

identification becomes
{

−e0

s2 ,
e1

s2 , . . . ,
eN

s2

}

.

Accordingly, ni :=
ei

s
(i = 0, 1, . . . , N) form a g -orthonormal basis in M

T
:

n0 · n0 = −1, ni · nk = δik (i, k = 1, . . . , N).

The corresponding dual basis in the identification M

T
≡
(

M

T

)∗
is {−n0,n1, . . . ,

nN}.
For all x ∈ M we have

x = −(n0 · x)n0 +

N
∑

i=1

(ni · x)ni.

4.6. The following relation will be a starting point of important results. If
x,y ∈ T ∪ L, x is not parallel to y, z ∈ T, then

2(x · y)(y · z)(z · x) < (x · z)2y2 + (y · z)2x2 ≤ 0.

This is implied by the simple fact that a := y·z
x·zx− y is g -orthogonal to z,

thus a is in S : a2 > 0.

4.7. Since T ⊗ T is canonically oriented (see IV.5.4), the absolute value of
its elements makes sense.

Proposition (reversed Cauchy inequality). If x,y ∈ T then

|x · y| ≥
√

|x2||y2| > 0

and equality holds if and only if x and y are parallel.

Proof. Put z := x in the previous formula, and recall that we have the
square root mapping from (T⊗ T)⊗ (T⊗ T) into T⊗ T.

In general, the right-hand side of this equality cannot be written in a simpler
form because |x| and |y| make no sense, unless T is oriented.

4.8. Definition. The elements x and y of T have the same arrow if
x · y < 0.

Proposition. Having the same arrow is an equivalence relation on T and
there are two equivalence classes (called arrow classes).
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Proof. The relation having the same arrow is evidently reflexive and sym-
metric. Suppose now that x and y as well as y and z have the same arrow.
Then 4.6 implies that x and z have the same arrow as well, hence the relation
is transitive.

Let x be an element of T. It is obvious that x and −x have not the same
arrow: there are at least two arrow classes. On the other hand, since x · y 6= 0

for all y ∈ T, y and x or −y and x have the same arrow: there are at most
two arrow classes.

4.9. Proposition. The arrow classes of T are convex cones, i.e. if x and
y have the same arrow then αx+ βy is in their arrow class for all α, β ∈ R

+.

Proof. It is quite evident that (αx+ βy)
2
< 0 and (αx+ βy) ·x < 0, thus

αx+ βy is in T, moreover, αx+ βy and x have the same arrow.

The arrow classes are open subsets of M because the arrow class of x ∈ T

is {y ∈ T | x · y < 0}.

4.10. Suppose now that T is oriented. Then we can take the square root of
non-negative elements of T⊗ T, so we define the pseudo-length of vectors:

|x| :=
√

|x2| (x ∈ M).

The length of vectors in Euclidean vector spaces has the fundamental prop-
erties listed in 3.3. Now we find that
(i) |x| = 0 if x = 0 but |x| = 0 does not imply x = 0;
(ii) |αx| = |α||x| for all α ∈ R;
(iii) there is no definite relation between |x+ y| and |x|+ |y| :

—if S ⊂ S0 is a linear subspace then
(

S,T, g|
S×S

)

is a Euclidean

vector space, consequently, for x,y ∈ S the triangle inequality |x+y| ≤ |x|+|y|
holds,

—for vectors in T a reverse relation can hold, as follows.

Proposition (reversed triangle inequality). If the elements x and y of T

have the same arrow then

|x+ y| ≥ |x|+ |y|

and equality holds if and only if x and y are parallel.

Proof. According to the previous statement x + y belongs to T, thus we
can apply the reversed Cauchy inequality:

|x+ y|2 = −(x+ y)2 = |x|2 − 2(x · y) + |y|2 ≥
≥|x|2 + 2

√

|x|2|y|2 + |y|2 = (|x|+ |y|)2.
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The triangle inequality and ‘nonzero vector has nonzero length’ are indispens-
able properties of a length; that is why we use the name pseudo-length.

4.11. Definition. The elements x and y of L have the same arrow if
x · y ≤ 0.

Proposition. Having the same arrow is an equivalence relation on L and
there are two equivalence classes (called arrow classes).

Proof. Argue as in 4.8.

4.12. Now we relate the arrow classes of L to those of T. It is evident that
the elements x and y of L have the same arrow if and only if αx+ βy are in
T and have the same arrow for all α, β ∈ R

+.

Proposition. (i) Let x,y ∈ L, z ∈ T. Then x and y have the same arrow
if and only if x ·z and y ·z have the same sign (in the ordered one-dimensional
vector space T⊗ T).

(ii) Let x ∈ L, y, z ∈ T. Then y and z have the same arrow if and only if
x · y and x · z have the same sign.

Proof. Apply the inequality in 4.6.

As a consequence, the arrow classes of T and those of L determine each other
uniquely. We say that the elements x of L and y of T have the same arrow
if x · y < 0. According to the previous proposition, if we select an arrow class
T
→ from T then there is an arrow class L

→ in L such that all the elements of
T
→ and L

→ have the same arrow:

L
→ = {y ∈ L| x · y < 0, x ∈ T

→}.

It can be shown that L
→ ∪ {0} is the boundary of T

→.

4.13. We say that (M,T, g) is arrow-oriented or an arrow orientation is
associated with g if we select one of the arrow classes of T. More precisely, an
arrow-oriented Minkowskian vector space is (M,T, g,T→) where (M,T, g) is a
Minkowskian vector space and T

→ is one of the arrow classes of T.

A linear isomorphism between arrow-oriented Minkowskian vector spaces is
called arrow-preserving or arrow-reversing if it maps the chosen arrow classes
into each other or into the opposite ones, respectively.

4.14. In the following we assume that M and T are oriented and g is
arrow-oriented; moreover

dimM = 4.
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We introduce the notation

V (1) :=

{

u ∈ M

T
| u2 = −1, u⊗ T

+ ⊂ T
→
}

.

If u ∈ V (1) then

u⊗ T := {ut | t ∈ T} ⊂ T0,

Su := {x ∈ M | u · x = 0} ⊂ S0

are complementary subspaces. The corresponding projections of x ∈ M in u⊗T

and in Su are
−(u · x)u and x+ (u · x)u.

Let hu denote the restriction of g onto Su×Su; then (Su,T,hu) is a three-
dimensional Euclidean vector space.

4.15. We shall examine the structure of g -antisymmetric linear maps of M.
As we know (see 2.9) A(g) ≡ M

T
∧M

T
is a six-dimensional vector space endowed

(see 2.10) with a real-valued nondegenerate symmetric bilinear form:

H •G :=
1

2
Tr(H> ·G) = −1

2
Tr(H ·G).

In particular, for k1,k2,n1,n2 ∈ M

T
we have

(k1 ∧ k2) • (n1 ∧ n2) = (k1 · n1)(k2 · n2)− (k1 · n2)(k2 · n1).

If {n0,n1,n2,n3} is a g -orthonormal basis of M

T
then

n0 ∧ n1, n0 ∧ n2, n0 ∧ n3,

n1 ∧ n2, n2 ∧ n3, n3 ∧ n1

constitute a basis in M

T
∧M

T
(see IV.3.15). We can takeu :=n0∈V (1); then every

g -antisymmetric map can be written in the form
3
∑

i=1

αiu ∧ni +
3
∑

i=1

∑

k<i

αkink ∧
ni. The vectors n1,n2,n3 span the three-dimensional Euclidean vector space
Su

T
(more precisely,

(

Su

T
,R, ·

)

), hence according to the results of the previous
chapter there are a real number β and unit vectors k and n, g -orthogonal

to each other and to u such that
3
∑

i=1

∑

k<i

αkink ∧ ni = βk ∧ n. Furthermore,

3
∑

i=1

αiu ∧ ni = u ∧
3
∑

i=1

αini; thus we arrive at the following result.
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Proposition. Let H be an element of M

T
∧ M

T
. Then for all u ∈ V (1) there

are α, β ∈ R, r,k,n ∈ Su

T
, r2 = k2 = n2 = 1, k · n = 0 such that

H = αu ∧ r + βk ∧ n.

Observe that then

H •H = −α2 + β2.

4.16. Proposition. Take an H ∈ M

T
∧ M

T
in the form given by the previous

proposition. Then KerH = {0} if and only if α 6= 0, β 6= 0 and r is linearly
independent from k and n.

Proof. If r is linearly independent from k and n then u, r, k, n are
linearly independent vectors. Furthermore, if neither of α and β is zero then
for all x ∈ M

H · x = α(r · x)u− α(u · x)r + β(n · x)k − β(k · x)n = 0

implies r · x = u · x = n · x = k · x = 0; as a consequence, x = 0. This means
that KerH = {0}.

If α = 0 then H · u = 0; if β = 0 then H ·m = 0 for m ∈ M

T
, u ·m = 0,

r · m = 0. If α 6= 0 and β 6= 0 but r is a linear combination of k and n

then H · m = 0 for m ∈ M

T
, u · m = k · m = n · m = 0. This means that

KerH 6= {0}.
Since if k′ and n′ are g -orthogonal unit vectors in the plane spanned by k

and n (do not forget that Su

T
is a Euclidean vector space) then k′∧n′ = ±k∧n,

we can choose n = r if KerH 6= {0}; then for all u ∈ V (1) there are α, β ∈ R

and k,n ∈ Su

T
, k2 = n2 = 1, k · n = 0 such that

H = (αu+ βk) ∧ n.

4.17. Proposition. Suppose H ∈ M

T
∧ M

T
, KerH 6= {0} and put |H| :=

√

|H •H|. Then
(i) H •H > 0 if and only if there are a u ∈ V (1), k,n ∈ Su

T
, k2 = n2 = 1,

k · n = 0 such that

H = |H|k ∧ n.

(H is the antisymmetric tensor product of two g -orthogonal spacelike vectors.)

(ii) H •H < 0 if and only if there are a u ∈ V (1), an n ∈ Su

T
, n2 = 1 such

that

H = |H|u ∧ n.
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(H is the antisymmetric tensor product of a timelike vector and a spacelike
vector, g -orthogonal to each other.)
(iii) H •H = 0, H 6= 0 if and only if there are w,n ∈ M

T
, w 6= 0, w2 = 0,

n2 = 1, w · n = 0 such that
H = w ∧ n.

(H is the antisymmetric tensor product of a lightlike vector and a spacelike
vector, g -orthogonal to each other.)

Proof. Let us write the formula of the preceding paragraph in the form
H = (αu′ + βk′) ∧ n′; then H •H = −α2 + β2.

Put u : =
βu′ + αk′

−α2 + β2
, k :=

αu′ + βk′

−α2 + β2
, n := n′.(i)

Put u : =
αu′ + βk′

α2 − β2
, n := n′.(ii)

Put w : = αu′ + βk′, n := n′.(iii)

4.18. (i) We see that KerH 6= {0} and H • H > 0 is equivalent to the
statement that there is a u ∈ V (1) such that H · u = 0.

Note that then H3 = −|H|2H.

(ii) On the contrary, if KerH 6= {0} and H •H < 0 then H3 = |H|2H.

4.19. According to our convention introduced in 4.1, let us number the
coordinates of elements of R1+3 from 0 to 3 and let us consider the Minkowskian
vector space (R1+3,R,G) where

G(x,y) = −x0y0 +
3
∑

i=1

xiyi =: x · y

(i.e. G = H1 in the notation of 1.7).

Now the identification R
1+3 ≡

(

R
1+3
)∗

induced by G is described in usual

notations as follows. x ∈ R
1+3 regarded as a vector has the components

(x0, x1, x2, x3); x regarded as a covector has the components (x0, x1, x2, x3),
and the values of the linear functional x are computed by the usual matrix
multiplication:

x · y =

3
∑

i=0

xiy
i.

Then we have
x0 = −x0, xi = xi (i = 1, 2, 3).
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As usual, we apply the symbols (xi) and (xi) for the vectors and covectors
and we accept the Einstein summation rule: a summation from 0 to 3 is to be
carried out for equal subscripts and superscripts.

Introducing

Gik := Gik :=











−1 if i = k = 0

1 if i = k ∈ {1, 2, 3}
0 if i 6= k

we can write that

xi = Gikxk, xi = Gikx
k (summation!).

Observe that Gik = G(χi,χk) where {χ0,χ1,χ2,χ3} is the standard basis of
R

1+3.
According to the identification induced by G, the dual of the standard basis

{χ0,χ1,χ2,χ3} is {−χ0,χ1,χ2,χ3}.
It is useful to regard G as the diagonal matrix in which the first ( ‘zeroth’)

element in the diagonal is −1 and the other ones equal 1.
For the G -adjoint L> of the linear map (matrix) L we have

L> = G ·L∗ ·G

where L∗ is the transpose of L (see 1.7).
A linear map L : R1+3 → R

1+3 is given by its matrix
(

Li
k

)

,

a linear map P : (R1+3)
∗ → (R1+3)

∗
is given by its matrix

(

Pi
k
)

etc. see
IV.1.6.

For the transpose of L : R1+3 → R
1+3

(L∗)i
k = Lk

i,

holds, thus for the G -adjoint we have

(L>)ik = GimLn
mGnk (summation!).

Consequently, a G -antisymmetric linear map has the form







0 α1 α2 α3

α1 0 −β3 β2
α2 β3 0 −β1
α3 −β2 β1 0







If (xi) is in T, i.e. xi · xi < 0 then x0 6= 0. It is not hard to see that (xi)
and (yi) have the same arrow if and only if x0 and y0 have the same sign. As a
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consequence, an arrow class is characterized by the sign of the zeroth component
of its element. One usually takes the arrow orientation in such a way that

T
→ :=

{

(xi) ∈ R
1+3

∣

∣ xixi < 0 , x0 > 0
}

.

4.20. Consider the four-dimensional Minkowskian vector space (M,T, g). A
linear coordinatization K of M is called g -orthogonal if it corresponds to an or-
dered g -orthogonal basis (e0, e1, e2, e3) normed to an s ∈ T. According to the
identification M∗ ≡ M

T⊗T , the basis in question has the dual
(

−e0

s2 ,
e1

s2 ,
e2

s2 ,
e3

s2

)

;
thus we have

K · x =
(

−e0 · x
s2

,
e1 · x
s2

,
e2 · x
s2

,
e3 · x
s2

)

=:
(

xi
)

(x ∈ M).

Consider the identification M ≡ T ⊗ T ⊗ M∗ ≡
(

M

T⊗T

)∗
; then x, as an

element of the dual of M

T⊗T , has the coordinates

(

x · ei
s2

| i = 0, 1, 2, 3
)

=: (xi) .

We see, in accordance with the previous paragraph, that x0 = −x0 and
xi = xi (i = 1, 2, 3).

Then all the operations regarding the Minkowskian structure can be repre-
sented by the corresponding operations in (R1+3,R,G), e.g.

—the g -product of elements x,y of M is computed by the G -product of
their coordinates in R

1+3 :

if K · x =
(

xi
)

and K · y =
(

yi
)

i.e. x =

3
∑

0=1

xiei, y =

3
∑

0=1

yiei

then x · y =

(

−x0y0 +
3
∑

i=1

xiyi

)

s2;

—the matrix in the coordinatization of a g -adjoint map will be the G -adjoint
of the matrix representing the linear map in question:

if K ·L ·K−1 =
(

Li
k | i, k = 1, 2, 3

)

then K ·L> ·K−1 =
(

Lk
i | i, k = 1, 2, 3

)

.
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4.21. Let (v0,v1,v2,v3) be an arbitrary ordered basis in M, choose a
positive element s of T and put

Gik :=
vi · vk

s2

(

:=
g(vi,vk)

s2

)

∈ R (i, k = 0, 1, 2, 3).

The dual of the basis can be represented by vectors r0, r1, r2, r3 in M

T⊗T
—usually called the reciprocal system of the given basis—in such a way that

ri · vk = δik (i, k = 0, 1, 2, 3).

It is not hard to see that

r0 :=
ǫ (·,v1,v2,v3)

∆
etc.

where ǫ is the Levi-Civita tensor (see V.2.12) and := ǫ (v0,v1,v2,v3).
Put

Gik := (ri · rk)s2 ∈ R (i, k = 0, 1, 2, 3).

Let us take the coordinatization K of M defined by the basis (v0,v1,v2,v3).
Then

K · x =
(

ri · x
)

=:
(

xi
)

.

Consider the identification M ≡ T ⊗ T ⊗ M∗ ≡
(

M

T⊗T

)∗
; then

(

vi

s2 |i =

0, 1, 2, 3
)

is an ordered basis in M

T⊗T , and x, as an element of the dual of M

T⊗T ,
has the coordinates

(

x · vi

s2

)

=: (xi) .

Writing x =
3
∑

i=0

xkvk =
3
∑

k=0

xkr
ks2 we find that

xi = Gikx
k, xk = Gkixi (summation!).

Now if

K · x =
(

xi
)

and K · y =
(

yi
)

i.e.

x =
3
∑

i=0

xivi, y =
3
∑

i=0

yivi

then

x · y =
(

Gikx
iyk
)

s2 =
(

xky
k
)

s2 =
(

xiyi
)

s2.
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4.22. Exercises

1. Let T
→ and L

→ be the arrow classes corresponding to each other accord-
ing to 4.12. Prove that

T
→ + L

→ = T
→,

L
→ + L

→ = T
→ ∪ L

→.

2. If x is in T
→ and y is in S then x + y is not in T

←. (Hint: suppose
−(x+ y) ∈ T

→ and use T
→ + T

→ = T
→.)

3. If H is a linear subspace in S0 then
(

H,T, g|
H×H

)

is a Euclidean vector
space. Consequently, the length of vectors and the angle between vectors in H

makes sense. Since every x ∈ S0 belongs to some linear subspace in S0 (e.g. to
the linear subspace generated by x), the length of every element in S0 makes
sense. On the other hand, if x,y ∈ S0, the linear subspace generated by x

and y need not be contained in S0; as a consequence, the angle between two
elements of S0 may not be meaningful.

Take a g -orthogonal basis {e0, e1, . . . , eN}, normed to s ∈ T. Then e1 and
x := 2e1 + e0 are vectors in S that do not satisfy the Cauchy inequality and
the triangle inequality.

4. Suppose dimM = 4, M and T are oriented. Then the Levi-Civita tensor

of (M,T, g) can be defined by ǫ :=
3∧

i=0

ei

s
where (e0, e1, e2, e3) is a positively

oriented ordered basis, normed to s ∈ T.
Prove that

M

T
→ 3∧ M

T
, n 7→ ǫ (·, ·, ·,n)

and

J :
M

T
∧ M

T
→ M

T
∧ M

T
, k ∧ n 7→ ǫ (·, ·,k,n)

are linear bijections. Moreover,

J(J(H)) = −H, H • J(G) = J(G) •G,

thus J(H) • J(G) = −H •G for all H,G ∈ M

T
∧ M

T
.

5. Give the actual form of the previous bijections in the case (R1+3,R,G).
6. Let ǫ be the Levi-Civita tensor of the Minkowskian vector space (M,T, g),

dimM = 4. If u ∈ V (1) then ǫ (u, ·, ·, ·) is the Levi-Civita tensor of the three-
dimensional Euclidean vector space (Su,T,hu) where hu is the restriction of
g onto Su × Su.



VI. AFFINE SPACES

1. Fundamentals

1.1. Definition. An affine space is a triplet (V,V,−) where
(i) V is a nonvoid set,
(ii) V is a vector space,
(iii) − is a map from V×V into V, denoted by

(x, y) 7→ x− y,
having the properties

1) for every o ∈ V the map Oo : V → V, x 7→ x− o is bijective,
2) (x− y) + (y − z) + (z − x) = 0 for all x, y, z ∈ V.

Oo is often called the vectorization of V with origin o.
As usual, we shall denote an affine space by a single letter; we say that V is

an affine space over the vector space V and we call the map − subtraction.
The dimension of an affine space V is, by definition, the dimension of the

underlying vector space V. V is oriented if V is oriented (in this case V is
necessarily a finite-dimensional real vector space).

Proposition. Let V be an affine space. Then
(i) x− y = 0 if and only if x = y (x, y ∈ V),
(ii) x− y = −(y − x) (x, y ∈ V),
(iii) for a natural number n ≥ 3 and x1, x2, . . . , xn ∈ V,

(x1 − x2) + (x2 − x3) + . . . .+ (xn − x1) = 0.

Proof. (i) Put z := x, y := x in 2) of the above definition to have x−x = 0.
Property 1) says then that x− y 6= 0 for x 6= y.
(ii) Put z := x in 2) and use the previous result.
(iii) Starting with 2) we can prove by induction.

As a consequence, we can rearrange the parentheses as follows:

(x− y) + (u− v) = (x− v) + (u− y) (x, y, u, v ∈ V). (1)

1.2. Observe that the sign − in (ii) of the previous proposition denotes two
different objects. Inside the parantheses it means the subtraction in the affine
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space, outside it means the subtraction in the underlying vector space. This
ambiguity does not cause confusion if we are careful. We even find it convenient
to increase a bit the ambiguity.

For given y ∈ V, the inverse of the map Oy is denoted by

V → V, x 7→ y + x. (2)

Hence, by definition,

y + (x− y) = x (x, y ∈ V), (3)

and a simple reasoning shows that

(x+ x) + y = x+ (x+ y) (x ∈ V,x,y ∈ V). (4)

Here the symbol + on the left-hand side stands twice for the operation intro-
duced by (2), on the right-hand side first it denotes this operation and then the
addition of vectors.

Keep in mind the followings:

(i) the sum and the difference of two vectors, the multiple of a vector are
meaningful, they are vectors;

(ii) the difference of two elements of the affine space is meaningful, it is a
vector (sums and multiples make no sense);

(iii) the sum of an affine space element and of a vector is meaningful, it is an
element of the affine space.

According to (1)–(4), we can apply the usual rules of addition and subtraction
paying always attention to that the operations be meaningful; for instance, the
rearrangement (y + x)− y in (3) makes no sense.

1.3. Linear combinations of affine space elements cannot be defined in general,
for multiples and sums make no sense. However, a good trick allows us to define
convex combinations.

Proposition. Let x1, . . . , xn be elements of the affine space V and let

α1, . . . , αn be non-negative real numbers such that
n
∑

k=1

αk = 1. Then there is a

unique xo ∈ V for which

n
∑

k=1

αk(xk − xo) = 0. (∗)
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Proof. Let x be an arbitrary element of V; then a simple calculation based

on xk − xo = (xk − x) + (x− xo) shows that xo := x+
n
∑

k=1

αk(xk − x) satisfies

equality (∗). Suppose yo is another element with this property. Then

0 =
n
∑

k=1

αk(xk − xo)−
n
∑

k=1

αk(xk − yo) =

n
∑

k=1

αk ((xk − xo)− (xk − yo)) =

=

n
∑

k=1

αk(yo − xo) = yo − xo.

Remove formally the parentheses in (∗) to arrive at the following definition.

Definition. The element xo in the previous proposition is called the con-
vex combination of the elements x1, . . . , xn with coefficients α1, . . . , αn and is
denoted by

n
∑

k=1

αkxk.

Correspondingly we can define convex subsets and the convex hull of subsets
in affine spaces as they are defined in vector spaces.

If β1, . . . , βn are non-negative real numbers, β :=
n
∑

k=1

βk > 0, then we

can take the convex combination of x1, . . . , xn with the coefficients αk := βk

β

(k = 1, . . . , n) which will be denoted by

n
∑

k=1

βkxk

n
∑

k=1

βk

.

1.4. (i) A vector space V, endowed with the vectorial subtraction, is an
affine space over itself.
(ii) If M is a nontrivial linear subspace of the vector space V and x ∈ V,

x /∈M then x+M := {x+y | y ∈ M} endowed with the vectorial subtraction
is an affine space but is not a vector space regarding the vectorial operations in V.
(iii) If I is an arbitrary nonvoid set and Vi is an affine space over Vi (i ∈ I)

then ×
i∈I

Vi, endowed with the subtraction

(xi)i∈I − (yi)i∈I := (xi − yi)i∈I

is an affine space over ×
i∈I

Vi.
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1.5. Definition. A nonvoid subset S of an affine space V is called an affine
subspace if there is a linear subspace S of V such that {x− y | x, y ∈ S} = S.

S is called directed by S and the dimension of S is that of S.
One-dimensional and two-dimensional affine subspaces of a real affine space

are called straight lines and planes, respectively. Hyperplanes are affine sub-
spaces having the dimension of V but one, in a finite dimensional affine space V.

Two affine subspaces are said to be parallel if they are directed by the same
linear subspace.

An affine subspace S directed by S, endowed with the subtraction inherited
from V, is an affine space over S.

If S is a linear subspace of V and x ∈ V then x + S := {x+ s | s ∈ S} is
the unique affine subspace containing x and directed by S.

Points of V are zero-dimensional affine subspaces.

1.6. A pseudo-Euclidean (Euclidean, Minkowskian) affine space is a triplet
(V,B, b) where V is an affine space over the vector space V and (V,B, b) is a
pseudo-Euclidean (Euclidean, Minkowskian) vector space.

1.7. Exercises

1. Prove that the following definition of affine spaces is equivalent to that
given in 1.1.

A triplet (V,V,+) is an affine space if
(i) V is a nonvoid set,
(ii) V is a vector space,
(iii) + is a map from V×V into V, denoted by

(x,x) 7→ x+ x

having the properties
1) (x+ x) + y = x+ (x+ y) (x ∈ V,x,y ∈ V),
2) for every x ∈ V the map V → V, x 7→ x+ x is bijective.
2. Let V be an affine space over V. Let V/N denote the set of affine

subspaces in V, directed by a given linear subspace N of V. If M is a linear
subspace complementary to N then V/N becomes an affine space over M if
we define the subtraction by

S − T := x− y (x ∈ S, y ∈ T, x− y ∈ M).

In other words, if P denotes the projection onto M along N then

(x+N)− (y +N) := P · (x− y).

Illustrate this fact by V := R
2, N := {(α, 0) | α ∈ R}, M := {(α,mα) |

α ∈ R} where m is a given nonzero number.
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3. Prove that the intersection of affine subspaces is an affine subspace, thus
the affine subspace generated by a subset of an affine space is meaningful.

4. Let V be a vector space over the field K. Then {1} × V is an affine
subspace of the vector space K×V.

5. Let T be a one-dimensional oriented affine space over the vector space T.
Then an order can be defined on T by a < b if and only if a − b < 0. Define
the intervals of T.

2. Affine maps

2.1. Definition. Let V and U be affine spaces over V and U, respectively.
A map L : V → U is called affine if there is a linear map L : V → U such that

L(y)− L(x) = L · (y − x) (x, y,∈ V).

We say that L is an affine map over L. If L is a bijection, V and U are
oriented, L is called orientation preserving or orientation-reversing if L has
that property.

The formula above is equivalent to

L(x+ x) = L(x) +L · x (x ∈ V,x ∈ V).

It is easy to show that the linear map L in the definition is unique.

2.2. Proposition. Let L : V → U be an affine map. Then
(i) L is injective or surjective if and only if L is injective or surjective,

respectively; if L is bijective then L−1 is an affine bijection over L−1;
(ii) L = 0 if and only if L is a constant map;
(iii) RanL is an affine subspace of U, directed by RanL;
(iv) if Z is an affine subspace of U, directed by Z, and (RanL)∩Z 6= ∅ then
−1
L (Z) is an affine subspace of V, directed by

−1
L (Z);

(v) L preserves convex combinations.

Observe that according to (iv), for all u ∈ RanL,
−1
L ({u}) is an affine

subspace of V, directed by KerL.

2.3. Proposition. (i) If L and K are affine maps such that K ◦ L exists
then K ◦ L is affine map over K ·L;
(ii) Let I be a nonvoid set. If Li : Vi → Ui (i ∈ I) are affine maps, then

×
i∈I

Li is an affine map over ×
i∈I

Li;

(iii) If Li : V → Ui (i ∈ I) are affine maps then (Li)i∈I is an affine map over
(Li)i∈I ;
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(iv) If L and K are affine maps from V into U then

K − L : V → U , x 7→ K(x)− L(x)

is an affine map over K − L (recall that the vector space U is an affine space
over itself).

2.4. (i) Let V and U be vector spaces and consider them to be affine spaces.
Take a linear map L : V → U and an a ∈ U; then V → U, x 7→ a+L · x is
an affine map over L.

Conversely, suppose L : V → U is an affine map over the linear map L. Put
a := L(0). Then L(x) = a+L · x for all x ∈ V.

Thus we have proved:

Proposition. We can identify the set of affine maps from V into U with
{(a,L) | a ∈ U,L ∈ Lin(V,U)} = U× Lin(V,U) in such a way that

(a,L)(x) := a+L · x (x ∈ L).

Such an affine map (a,L) : V → U can be represented in more suitable ways,
as follows.
(ii) V → K×V, x 7→ (1,x) (see Exercise 1.7.4) is an affine injection. We often

find convenient to identify V, considered to be an affine space, with {1} ×V.
Take an affine map (a,L) : V → U and consider it to be an affine map

from {1} × V into {1} × U. It can be uniquely extended to a linear map
K×V → K×U, (α,x) 7→ (α, αa+L · x).

Representing the linear maps from K×V into K×U by a matrix (see IV.3.7),
we can write the extension of the affine map (a,L) in the form

(

1 0

a L

)

.

(iii) It often occurs that the vector space V is regarded as an affine space
(i.e. we use only its affine structure, the subtraction of vectors) but the vector
space U is continued to be regarded as a vector space (i.e. we use its vectorial
structure, the sum of vectors and the multiple of vectors).

In this case we identify V with {1} ×V and U with {0} ×U, and so we
can conceive that (a,L) maps from {1} ×V into {0} ×U. This map can be
uniquely extended to a linear map K ×V → K ×U, (α,x) 7→ (0, αa + L · x).
Then the affine map (a,L) in a matrix representation has the form

(

0 0

a L

)

.
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2.5. Exercises

1. Let o be an element of the affine space V. Then Oo : V → V, x 7→ x− o
is an affine map over 1V.

Consequently, if V is N -dimensional then there are affine bijections V →
K

N .
2. Let L : V → V be an affine map and o an element of V. Then Oo◦L◦Oo

−1

is an affine map V → V. Using the matrix form given in the preceding paragraph
show that

Oo ◦ L ◦Oo
−1 =

(

1 0
L(o)− o L

)

.

3. Let H : V → V be an affine map and o an element of V. Then H ◦Oo
−1

is an affine map V → V. Then the vector space V as the domain of this affine
map is considered to be an affine space (representing the affine space V); and
V as the range is considered to be a vector space. Using the matrix form given
in the preceding paragraph show that

H ◦Oo
−1 =

(

0 0

H(o) H

)

.

4. The matrix forms of affine maps V → V are extremely useful for ob-
taining the composition of such maps because we can apply the usual matrix
multiplication rule. Find the composition of
(i) (a,L) : {1} ×V → {1} ×V and (b,K) : {1} ×V → {1} ×V,
(ii) (a,L) : {1} ×V → {1} ×V and (b,K) : {1} ×V → {0} ×V.
5. Let V be an affine space over V.
(i) If a ∈ V then Ta : V → V, x 7→ x+ a is an affine map over 1V.
(ii) If L : V → V is an affine map over 1V then there is an a ∈ V such that

L = Ta.
(iii) For all x, y ∈ V we have Oy ◦Ox

−1 = Tx−y.
6. If L : V → V is an affine map over −1V then there is an o ∈ V such that

L(x) = o− (x− o) (x ∈ V).
7. Let K and L be affine maps between the same affine spaces. Show that

K = L if and only if K − L is a constant map.
8. Let K,L,A : V → V be affine maps. Show that A◦K−A◦L = A◦(K−L).

3. Differentiation

3.1. Let V be a vector space. A norm on V is a map

‖ · ‖ : V → R
+
0 , x 7→ ‖x‖
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‖x‖ = 0 if and only if x = 0,for which (i)

‖αx‖ = |α|‖x‖ for all α ∈ K, x ∈ V,(ii)

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x,y ∈ V.(iii)

The distance of x,y ∈ V is defined to be ‖x− y‖ ; the map

V ×V → R, (x,y) 7→ ‖x− y‖
is called the metrics associated with the norm.

The reader is supposed to be familiar with the fundamental notions of analysis
connected with metrics: open subsets, closed subsets, convergence, continuity,
etc.

It is important that if V is finite-dimensional then all the norms on V are
equivalent, i.e. they determine the same open subsets, closed subsets, convergent
series, continuous functions etc.

As a consequence, in finite-dimensional vector spaces—e.g. in pseudo-Euclidean
vector spaces—we can speak about open subsets, closed subsets, continuity etc.
without giving an actual norm. Linear, bilinear, multilinear maps between finite-
dimensional vector spaces are continuous.

3.2. If V is an affine space over V and there is a norm on V then

V×V → R, (x, y) 7→ ‖x− y‖
is a metrics on V. Then the open subsets, closed subsets, convergence etc. are
defined in V.

In the following we deal with finite dimensional real affine spaces; hence we
speak about the fundamental notions of analysis without specifying norms on the
underlying vector spaces.

As usual, if V and U are finite-dimensional vector spaces, ordo : V  U

denotes a function such that
(i) it is defined in a neighbourhood of 0 ∈ V,

(ii) lim
x→0

ordo(x)
‖x‖ = 0 for some (hence for every) norm ‖ · ‖ on V.

3.3. Definition. Let V and U be affine spaces. A map F : V  U is
called differentiable at an interior point x of DomF if there is a linear map
DF (x) : V → U and a neighbourhood N (x) ⊂ DomF of x such that

F (y)− F (x) = DF (x) · (y − x) + ordo(y − x) (y ∈ N (x)).

DF (x) is the derivative of F at x.
F is differentiable on a subset S of DomF if it is differentiable at every point

of S. F is differentiable if it is differentiable on its domain (which is necessarily
open in this case). F is continuously differentiable if it is differentiable and
DomF → Lin(V,U), x 7→ DF (x) is continuous.
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If the real affine spaces V and U are oriented, a differentiable mapping
F : V  U is called orientation preserving if DF (x) : V → U is an orientation
preserving linear bijection for all x ∈ DomF.

The differentiability of F at x is equivalent to the following: there is a
neighbourhood N of 0 ∈ V such that x+N ⊂ DomF and

F (x+ x)− F (x) = DF (x) · x+ ordo(x) (x ∈ N ).

This form shows immediately that DF (x) is uniquely determined.

3.4. If the affine spaces in question are actually vector spaces, i.e. F is a
map between vector spaces then the above definition coincides with the one in
standard analysis. Hence in the case of vector spaces we can apply the well-
known results regarding differentiability. Moreover, for affine spaces one proves
without difficulty that

(i) a differentiable map is continuous;
(ii) if F : V  U and G : U  W are differentiable then G ◦ F is differen-

tiable, too, and

D(G ◦ F )(x) = DG(F (x)) ·DF (x) (x ∈ Dom(G ◦ F ));
(iii) if F,G : V  U are differentiable then F −G : V  U, x 7→ F (x)−G(x)

is differentiable and

D(F −G)(x) = DF (x)−DG(x) (x ∈ DomF ∩DomG).

(iv) An affine map L : V → U is differentiable, its derivative at every x equals
the underlying linear map:

DL(x) = L (x ∈ V).

3.5. Let V and U be affine spaces. If F : V  U is differentiable and its
derivative map V  Lin(V,U), x 7→ DF (x) is differentiable then F is called
twice differentiable.

Differentiability of higher order is defined similarly. An infinitely many times
differentiable map is called smooth.

The second derivative of F at x is denoted by D2F (x); by definition, it is
an element of Lin(V,Lin(V,U)).

The n -th derivative of F at x, DnF (x) is an element of
Lin(V,Lin(V, . . . ,Lin(V,U) . . . )).
This rather complicated object is significantly simplified with the aid of tensor

products.
We know that Lin(V,U) ≡ U⊗V∗. Thus DF (x) ∈ U⊗V∗.
Further,

Lin(V,Lin(V,U)) ≡ Lin(V,U⊗V∗) ≡ (U⊗V∗)⊗V∗ ≡ U⊗V∗ ⊗V∗,

thus D2F (x) ∈ U⊗V∗ ⊗V∗.
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Similarly we have that DnF (x) ∈ U⊗
( n
⊗ V∗

)

.

Moreover, a well-known theorem states that the n -th derivative is symmetric,

i.e. DnF (x) ∈ U⊗
(

n∨ V∗
)

.

3.6. We often need the following particular result.

Proposition. Let V, U and Z be affine spaces, A : V → Z an affine
surjection. A mapping f : Z  U is k times (continuously) differentiable if
and only if f ◦A is k times (continuously) differentiable (k ∈ N).

Proof. The first part of the statement is trivial.
Suppose that F := f ◦ A is k times (continuously) differentiable. We know

that there is a linear injection L : Z → V such that A · L = 1Z. Then for
z ∈ Domf ⊂ Z, ξ in a neighbourhood of 0 ∈ Z we have

f(z + ξ)− f(z) = F (x+L · ξ)− F (x) = DF (x) ·L · ξ + ordo(L · ξ)

if A(x) = z. Since ordo(L · ξ) = ordo(ξ), we see that f is (continuously)
differentiable and

Df(z) = DF (x) ·L (z ∈ Domf, x ∈
−1
A{z}).

Moreover, Df : Z  U ⊗ Z∗ is a mapping such that Df ◦ A = DF · L and
we can repeat the previous arguments to obtain that if F is twice (continu-
ously) differentiable (i.e. DF is (continuously) differentiable) then f is twice
(continuously) differentiable (i.e. Df is (continuously) differentiable).

Proceeding in this way we can demonstrate k times (continuously) differen-
tiability.

3.7. (i) Let C : V  V be a differentiable mapping (a vector field in V).
Then DC(x) ∈ V ⊗V∗ for all x ∈ DomC, thus we can take its trace:

D ·C(x) := Tr (DC(x)) .

The mapping V  R, x 7→ D ·C(x) is called the divergence of C.
If Z is a vector space, the divergence of differentiable mappings V  Z⊗V

is defined similarly according to IV.3.9.
(ii) Let S : V  V∗ be a differentiable mapping (a covector field in V). Then

DS(x) ∈ V∗ ⊗V∗ for all x ∈ DomS, and we can take

D ∧ S(x) := (DS(x))
∗ −DS(x).

The mapping V  V∗ ∧V∗, x 7→ D ∧ S(x) is called the curl of S.
(iii) Keep in mind that a vector field has no curl and a covector field has no

divergence.
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3.8. (i) Let V1, V2 and U be affine spaces and consider a differentiable
mapping F : V1 × V2  U. Take an (x1, x2) ∈ DomF and fix x2. Then
V1  U, y1 7→ F (y1, x2) is a differentiable mapping; its derivative at x1 is
called the first partial derivative of F at (x1, x2) and is denoted by D1F (x1, x2).
By definition, D1F (x1, x2) is a linear map V1 → U.

The second partial derivative D2F (x1, x2) of F is defined similarly, and an
evident generalization can be made for the k -th partial derivative (k = 1, . . . , n)

of a mapping
n
×
k=1

Vk  U.

For a vector field C : V1×V2  V1×V2 we define the components Ci : V1×
V2  Vi (i = 1, 2) such that C = (C1,C2). Then DC(x1, x2) is an element
of (V1 × V2) ⊗ (V1 ×V2)

∗ ≡ (V1 × V2) ⊗ (V∗1 × V∗2). It is not hard to see
that using a matrix form corresponding to the convention introduced in IV.3.7
we have

DC(x1, x2) =

(

D1C
1 D2C

1

D1C
2 D2C

2

)

(x1, x2),

where the symbol (x1, x2) after the matrix means that every entry is to be taken
at (x1, x2); shortly,

DC =

(

D1C
1 D2C

1

D1C
2 D2C

2

)

.

Furthermore, we easily find that

D ·C = D1 ·C1 +D2 ·C2.

(ii) Similar notations for a covector field S = (S1,S2) : V1 × V2  (V1 ×
V2)

∗ ≡ V∗1 ×V∗2 yield

DS =

(

D1S1 D2S1

D1S2 D2S2

)

and

D ∧ S =

(

D1 ∧ S1 (D1S2)
∗ −D2S1

(D2S1)
∗ −D1S2 D2 ∧ S2

)

.

3.9. A vector field C : RN
 R

N is given by its components Ci : RN
 R

(i = 1, . . . , N), C = (C1, . . . , CN ). Its derivative at ξ is a linear map R
N →

R
N ; one easily finds for its matrix entries

(DC(ξ))
i
k = ∂kC

i(ξ) (i, k = 1, . . . , N)

where ∂k denotes the k -th partial differentiation.
Then

D ·C =

N
∑

i=1

∂iC
i.
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A covector field S : RN


(

R
N
)∗

is given by its components Si : R
N

 R

(i = 1, . . . , N), S = (S1, . . . , SN ). We have

(DS(ξ))ik = ∂kSi(ξ)

and
(D ∧ S)ik = ∂iSk − ∂kSi

for i, k = 1, . . . , N.

3.10. If T is a one-dimensional affine space, V is an affine space and
r : T  V is differentiable, then, for t ∈ Domr, Dr(t) is an element of
V ⊗ T

∗ ≡ V

T
.

It is not hard to see that in this case

dr(t)

dt
:= ṙ(t) := Dr(t) = lim

t→0

t∈T

r(t+ t)− r(t)

t
.

Similarly we arrive at d2r(t)
dt2 := r̈(t) := D2r(t) ∈ V

T⊗T .

3.11. Let V and T as before and suppose T is real and oriented. Recall
that then T

+ and T
− denote the sets of positive and negative elements of T,

respectively.
Then r : T  V is called differentiable on the right at an interior point t of

Domr if there exists

ṙ+(t) := lim
t→0

t∈T+

r(t+ t)− r(t)

t
,

called the right derivative of r at t.
The differentiability on the left and the left derivative ṙ−(t) are defined

similarly.

Definition. Let V and T be as before, T is oriented. A function r : T  V
is called piecewise differentiable if it is

(i) continuous,
(ii) differentiable with the possible exception of finite points where r is dif-

ferentiable both on the right and on the left.

r is called piecewise twice differentiable if

(i) it is piecewise differentiable,
(ii) it is twice differentiable where it is differentiable,
(iii) if a is a point where r is not differentiable then there exist

lim
t→0

t∈T+

ṙ(a+ t)− ṙ+(a)

t
and lim

t→0

t∈T−

ṙ(a+ t)− ṙ−(a)
t

.
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3.12. Recall that for a finite dimensional vector space V, Lin(V) ≡ V⊗V∗ is
a finite-dimensional vector space as well. Hence the differentiability of a function
R : T  Lin(V) makes sense. It can be shown without difficulty that R is

differentiable (and then its derivative at t is Ṙ(t) ∈ V⊗V∗

T
≡ Lin

(

V

T
,V
)

) if
and only if T  V, t 7→ R(t) · v is differentiable for all v ∈ V and then

d

dt
(R(t) · v) =

(

d

dt
R(t)

)

· v.

Moreover, if r : T  V is a differentiable function then R ·r is differentiable
and

(R · r)· = Ṙ · r +R · ṙ.

4. Submanifolds in affine spaces

In this section the affine spaces are real and finite dimensional.

4.1. The inverse mapping theorem and the implicit mapping theorem are
important and well-known results of analysis. Now we formulate them for affine
spaces in a form convenient for our application.

The inverse mapping theorem. Let V and U be affine spaces, dimU =
dimV. If F : V  U is n ≥ 1 times continuously differentiable, e ∈ DomF
and DF (e) : V → U is a linear bijection, then there is a neighbourhood N of
e, N ⊂ DomF, such that
(i) F |N is injective,
(ii) F [N ] is open in U,

(iii) (F |N )
−1

is n times continuously differentiable.

The implicit mapping theorem. Let V and U be affine spaces, dimU <
dimV. Suppose S : V  U is n ≥ 1 times continuously differentiable, e ∈
DomS and DS(e) is surjective.

Let V1 be a linear subspace of V such that the restriction of DS(e) onto V1

is a bijection between V1 and U and suppose V0 is a subspace complementary
to V1.

Then there are
— neighbourhoods N0 and N1 of the zero in V0 and in V1, respectively,

e+N0 +N1 ⊂ DomS,
— a uniquely determined, n times continuously differentiable mapping G :

N0 → N1 such that

S(e+ x0 +G(x0)) = S(e) (x0 ∈ N0).
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Observe that V0 := KerDS(e) and a subspace V1 complementary to V0

satisfy the above requirements.

4.2. Definition. Let V be an affine space, dimV := N ≥ 2. Let M and
n be natural numbers, 1 ≤ M ≤ N, n ≥ 1. A subset H of V is called an
M -dimensional n times differentiable simple submanifold in V if there are

— an M -dimensional affine space D,
— a mapping p : D  V, called a parametrization of H, such that
(i) Domp is open and connected, Ranp = H,
(ii) p is n times continuously differentiable and Dp(ξ) is injective for all

ξ ∈ Domp,
(iii) p is injective and p−1 is continuous.

Recall that Dp(ξ) ∈ Lin(L,V).
Since p is differentiable, it is continuous.
The parametrization of H is not unique. For instance, if S is an affine space

and L : S → D is an affine bijection then p ◦ L is a parametrization, too. In
particular, we can take S := R

M (see Exercise 2.5.2); as a consequence, D can
be replaced by R

M in the definition.
The inverse mapping theorem implies that the N -dimensional, n times dif-

ferentiable simple submanifolds are the connected open subsets of V.
Evidently, an M -dimensional affine subspace of V is an M -dimensional n

times differentiable simple manifold for all n.

4.3. Definition. Let N ≥ 2. A subset H of the N -dimensional affine space
V is called an M -dimensional n times differentiable submanifold if every x ∈ H
has a neighbourhood N (x) in V such that N (x) ∩ H is an M -dimensional n
times differentiable simple submanifold.

A subset which is an n times differentiable submanifold for all n ∈ N is a
smooth submanifold.

A submanifold means anntimes differentiable submanifold for somen.
A submanifold which is a closed subset of V is called a closed submanifold.
One-dimensional submanifolds, two-dimensional submanifolds and (N − 1) -

dimensional submanifolds are called curves or lines, surfaces and hypersurfaces,
respectively.

By definition, every point of a submanifold has a neighbourhood in the sub-
manifold that can be parametrized. A parametrization of such a neighbourhood
is called a local parametrization of the manifold.

4.4. Proposition. Let H be an M -dimensional n times differentiable
submanifold in V, M < N, and let p : RM

 V be a local parametrization of
H. If e ∈ Ranp then there are

— a neighbourhood N of e in V,
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— continuously n times differentiable mappings

F : N → R
M , S : N → R

N−M

such that
(i) N ∩H ⊂ Ranp;
(ii) F (p(ξ)) = ξ, S(p(ξ)) = 0 for all ξ ∈ Domp, p(ξ) ∈ N ;
(iii) DS(x) is surjective for all x ∈ N .

Proof. There is a unique α ∈ Domp for which p(α) = e. Dp(α) : RM →
V is a linear injection, hence V1 := RanDp(α) is an M -dimensional linear
subspace. Let V0 be a linear subspace, complementary to V1. Evidently,
dimV0 = N −M.

Let P : V → V be the projection onto V1 along V0 (i.e. P is linear and
P · x1 = x1 for x ∈ V1 and P · x0 = 0 for x ∈ V0). Then

P · (p− e) : RM
 V1, ξ 7→ P · (p(ξ)− e)

is n times continuously differentiable, its derivative at α equals P · Dp(α); it
is a linear bijection from R

M onto V1. Thus, according to the inverse mapping
theorem, there is a neighbourhood Ω of α such that P · (p− e)|

Ω
is injective,

its inverse is continuously differentiable, (P · (p− e))[Ω] = P [p[Ω]− e] is open
in V1.

For the sake of simplicity and without loss of generality we can suppose
Ω = Domp (considering p|

Ω
instead of p).

Then the continuity of P involves that
−1
P (P [p[Ω]−e]) is an open subset of

V and so e+
−1
P (P [p[Ω]−e]) is an open subset of V. Since p−1 is continuous,

p[Ω] is open in Ranp and p[Ω] ⊂ e +
−1
P (P [p[Ω] − e]); thus there is an

open subset N in e+
−1
P (P [p[Ω]− e]) ⊂ V such that p[Ω] = H ∩N .

Let L : V0 → R
N−M be a linear bijection and

F := (P · (p− e))
−1 ◦ P · (1V − e)|N , S := L ◦ (1V − p ◦ F ).

N ⊂ e+
−1
P (P [p[Ω]−e]) implies P [e+N ] ⊂ P [p[Ω]−e] = Dom(P · (p− e))

−1
,

hence both F and S are defined on N . It is left to the reader to prove that
properties (ii) and (iii) in the proposition hold.

4.5. Proposition. Let p : RM
 V and q : RM

 V be local parame-
terizations of the M -dimensional n times differentiable submanifold H such
that Ranp ∩ Ranq 6= ∅. Then p−1 ◦ q : RM

 R
M is n times continuously

differentiable and

D(p−1 ◦ q)(q−1(x)) = [Dp(p−1(x))]
−1 ·Dq(q−1(x)) (x ∈ Ranp ∩ Ranq).
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Proof. If M = N then the inverse mapping theorem implies that p−1

is n times continuously differentiable; as a consequence, p−1 ◦ q is n times
continuously differentiable as well and the above formula is valid in view of the
well-known rule of differentiation of composite mappings.

If M < N, the differentiability of p−1 makes no sense because H contains
no open subsets in V. Nevertheless, p−1 ◦ q is continuously differentiable as we
shall see below.

Let e be an arbitrary point of Ranp ∩ Ranq. According to the previous
proposition, there are a neighbourhood N of e and an n times continuously
differentiable mapping F for which N ∩H ⊂ Ranp and F ◦ p ⊂ 1RM holds.

Then Ω :=
−1
q (N ) ⊂ Dom(p−1 ◦ q) is open and

(p−1 ◦ q)
∣

∣

Ω
= (F ◦ p) ◦ (p−1 ◦ q)

∣

∣

Ω
= F ◦ q|Ω ;

the mapping on the right-hand side is n times continuously differentiable being
a composition of two such mappings. Thus we have shown that each point of
Dom(p−1 ◦ q) has a neighbourhood Ω in which p−1 ◦ q is n times continuously
differentiable.

Let x be an element of Ranp ∩ Ranq, ξ := q−1(x) and Φ := p−1 ◦ q. Then
p ◦ Φ ⊂ q and ξ ∈ Dom(p ◦ Φ). Thus

Dq(q−1(x)) = Dq(ξ) = Dp(Φ(ξ)) ·DΦ(ξ) = Dp(p−1(x)) ·DΦ(ξ), (∗)

which gives immediately the desired equality.

Evidently, then q−1 ◦ p is n times continuously differentiable as well. Since

q−1 ◦ p = (p−1 ◦ q)−1, this means that the derivative of p−1 ◦ q at every point
is a linear bijection R

M → R
M .

As a consequence, the dimension of a submanifold is uniquely determined.
Supposing that a submanifold is both M -dimensional and M ′ -dimensional we
get M =M ′.

We have proved the statement for parametrizations from R
M . Obviously, the

same is true for parametrizations with domains in affine spaces.

4.6. Proposition. Let p and q be local parametrizations of a submanifold
such that Ranp ∩ Ranq 6= ∅. If x ∈ Ranp ∩ Ranq then

Ran
(

Dp(p−1(x))
)

= Ran
(

Dq(q−1(x))
)

.

Proof. Equality (∗) in the preceding paragraph involves that the range of
Dq(q)−1(x)) is contained in the range of Dp(p−1(x)). A similar argument yields
that the range of Dp(p−1(x)) is contained in the range of Dq(q)−1(x)).
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Definition. Let H be an M -dimensional submanifold, x ∈ H. Then

Tx(H) := Ran
(

Dp(p−1(x))
)

is called the tangent space of H at x where p is a parametrization of H such
that x ∈ Ranp. The elements of Tx(H) are called tangent vectors of H at x.

The preceding proposition says that the tangent space, though it is defined
by a parametrization, is independent of the parametrization.

The tangent space is an M -dimensional linear subspace of V. x+Tx(H) is
an affine subspace of V which we call the geometric tangent space of H at x.

4.7. Let M < N. We have seen in Proposition 4.4. that every point e of
an M -dimensional n times differentiable submanifold H has a neighbourhood
N in V and an n times continuously differentiable mapping S : N → R

N−M

such that N ∩ H =
−1
S ({0}) and DS(x) is surjective. Evidently, R

N−M and
0 ∈ R

N−M can be replaced by an arbitrary affine space U, dimU = N −M,
and a point o ∈ U, respectively.

Now we prove a converse statement.

Proposition. Let V and U be affine spaces, dimV =: N, dimU =: N −M,
and S : V  U an n times continuously differentiable mapping. Suppose
o ∈ RanS. Then

H := {x ∈
−1
S ({o})| RanDS(x) is (N −M)-dimensional}

is either void or an M -dimensional n times differentiable submanifold of V.

Proof. Suppose H is not void and e belongs to it. Then V0 := KerDS(e)
is an M -dimensional linear subspace of V. Let V1 be a linear subspace,
complementary to V0. Then we can apply the implicit mapping theorem: there
are neighbourhoods N0 and N1 of the zero in V0 and in V1, respectively, an
n times continuously differentiable mapping G : N0 → N1 such that

S(e+ x0 +G(x0)) = S(e) (x0 ∈ N0).

Let us define
p : V0  V, x0 7→ e+ x0 +G(x0) (x0 ∈ N0).

Evidently, p is n times continuously differentiable and Ranp ⊂
−1
S ({o}).

We can easily see that p is injective, its inverse is x 7→ P · (x− e) where P

is the projection onto V0 along V1. Consequently, p
−1 is continuous.

These mean that p is a parametrization of H in a neighbourhood of e.
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4.8. Proposition. Let H 6= ∅ be the submanifold described in the previous
proposition. Then

Tx(H) = KerDS(x) (x ∈ H).

Proof. Let p be a local parametrization of H. Then S ◦p = const., thus for
x ∈ Ranp we have DS(x) ·Dp(p−1(x)) = 0 from which we deduce immediately
that Tx(H) := RanDp(p−1(x)) ⊂ KerDS(x). Since both linear subspaces on
the two sides of ⊂ are M -dimensional, equality occurs necessarily.

4.9. Definition. Let p and q be two local parametrizations of a subman-
ifold, Domp ⊂ R

M , Domq ⊂ R
M and Ranp ∩ Ranq 6= ∅. Then p and q are

said to be equally oriented if the determinant of D(p−1 ◦ q)(ξ) is positive for all
ξ ∈ Dom(p−1 ◦ q).

A family (pi)i∈I of local parametrizations of a submanifold H is orienting if
H = ∪i∈IRanpi and, in the case Ranpi ∩ Ranpj 6= ∅, pi and pj are equally
oriented (i, j ∈ I).

Two orienting parametrization families are called equally orienting if their
union is orienting as well.

The submanifold is orientable if it has an orienting parametrization family.

To be equally orienting is an equivalence relation. If the submanifold is
connected, there are exactly two equivalence classes.

An orientable submanifold together with one of the equivalence classes of
the orienting local parametrization families is an oriented submanifold. A local
parametrization of an oriented submanifold is called positively oriented if it
belongs to a family of the chosen equivalence class.

A simple submanifold is obviously orientable.
Connected N -dimensional submanifolds—i.e. connected open subsets—are

orientable.

4.10. Let p be a local parametrization of the submanifold H, Domp ⊂ R
M .

If (χ1, . . . ,χM ) is the standard ordered basis of R
M then Dp(ξ) · χi = ∂ip(ξ)

(i = 1, . . . ,M) for ξ ∈ Domp. This means that ((∂1p(ξ), . . . , ∂Mp(ξ)) is an
ordered basis in Tp(ξ)(H).

In other words,
(

∂1p(p
−1(x)), . . . , ∂Mp(p−1(x))

)

is an ordered basis in Tx(H)
(x ∈ Ranp).

If q is another local parametrization, with domain in R
M , and x ∈ Ranp ∩

Ranq 6= ∅ then
(

∂1q(q)
−1(x)), . . . , ∂Mq(q1(x))

)

is another ordered basis in
Tx(H).

Evidently,

∂iq(q
−1(x)) = Dq(q−1(x)) · [Dp(p−1(x))]−1 · ∂ip(p−1(x))

for all i = 1, ..,M.
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We know from 4.5 and IV.3.20 that

det
(

D(p−1 ◦ q)(q−1(x))
)

= det
(

[Dp(p−1(x))]
−1 ·Dq(q−1(x))

)

=

= det
(

Dq(q−1(x)) · [Dp(p−1(x))]−1
)

.

We have proved the following statement.

Proposition. Let p and q be local parametrizations of the submanifold
H, Domp ⊂ R

M , Domq ⊂ R
M and Ranp ∩ Ranq 6= ∅. p and q are equally

oriented if and only if the ordered bases
(

∂1p(p
−1(x)), . . . ., ∂Mp(p

−1(x))
)

and
(

∂1q(q
−1(x)), . . . ., ∂Mq(q

−1(x))
)

in Tx(H) are equally oriented for all x ∈ Ranp ∩ Ranq.

4.11 Observe that in the case M = 1, i.e. when the submanifold is a curve,
instead of partial derivatives we have a single derivative of p, denoted usually
by ṗ. Then ṗ(p−1(x)) spans the (one-dimensional) tangent space at x.

Two local parametrizations p and q are equally oriented if and only if one of
the following three conditions is fulfilled:

(i) (p−1 ◦ q)·(α) > 0 for all α ∈ Dom(p−1 ◦ q),
(ii) p−1 ◦ q : R  R is strictly monotone increasing,
(iii) ṗ(p−1(x)) is a positive multiple of q̇(q−1(x)) for all x ∈ Ranp ∩ Ranq.

4.12. The following notion concerning curves appears frequently in applica-
tion.

Let x and y be different elements of V. We say that the curve C connects
x and y if these points form the boundary ofC, i.e. {x, y} = C \ C where C is
the closure of C. We can conceive that x and y are the extremities of a curve
connecting them.

4.13. Definition. Let H and F be M -dimensional and K -dimen- sional
submanifolds of V and U, respectively. A mapping F : H  F is called
differentiable at x if there are local parametrizations q of H and p of F
for which x ∈ Ranq, F (x) ∈ Ranp, and the function p−1 ◦F ◦ q : RM

 R
K is

differentiable at q−1(x).
The derivative of F at x is defined to be the linear map DF (x) : Tx(H) →

TF (x)(F) that satisfies

Dp(F (x))−1 ·DF (x) ·Dq(q−1(x)) = D(p−1 ◦ F ◦ q)(q−1(x)).

F is differentiable if it is differentiable at each point of its domain.
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If H and F are n times differentiable submanifolds, we define F to be k
times (continuously) differentiable, for 0 ≤ k ≤ n, if p−1 ◦ F ◦ q is k times
(continuously) differentiable.

4.14. Exercises

1. Let V and U be affine spaces. The graph of an n times continuously
differentiable mapping F : V  U —i.e. the set {(x, F (x) | x ∈ DomF} —is
a (dimV ) -dimensional n times differentiable submanifold in V × U. Give its
tangent space at an arbitrary point.

2. Prove that the mapping (F, S) : V  R
M ×R

N−M ≡ R
N described in 4.4

is injective and its inverse is (ξ, η) 7→ p(ξ) +L−1η.
3. Let (V,B, b) be a pseudo-Euclidean vector space, 0 6= a ∈ B. Prove that

{

x ∈ V
∣

∣ x · x = a2
}

and
{

x ∈ V
∣

∣ x · x = −a2
}

are either void or hypersurfaces in V whose tangent space at x equals

{y ∈ V | x · y = 0}.

(The derivative of the map V → B ⊗ B, x 7→ x · x at x is 2x regarded as
the linear map V → B⊗ B, y 7→ 2x · y.) Why is the statement not true for
a = 0?

4. A linear bijection R
M → R

M has a positive determinant if and only
if it is orientation preserving. On the basis of this remark define that two
local parametrizations p : D  V and q : E  V of a submanifold are equally
oriented where D and E are oriented affine spaces.

5. Use the notations of 4.13. Prove that
(i) p−1◦F ◦q is differentiable for some p and q if and only if it is differentiable

for all p and q;
(ii) the derivative of F is uniquely defined.
(iii) if F is the restriction of a k times (continuously) differentiable mapping
G : V  U then F is k times (continuously) differentiable and DF (x) is the
restriction of DG(x) onto Tx(H).

5. Coordinatization

5.1. Let V be an N -dimensional real affine space. Take an o ∈ V and an
ordered basis (x1, . . . ,xN ) of V. The affine map K : V → R

N determined by
K(o+xi) := χi (i = 1, . . . , N) where (χ1, . . . ,χN ) is the ordered standard basis
of RN is called the coordinatization of V corresponding to o and (x1, . . . ,xN ).



5. Coordinatization 353

The inverse of the coordinatization, P := K−1, is called the corresponding
parametrization of V. It is quite evident that

P (ξ) = o+

N
∑

i=1

ξixi (ξ ∈ R
N ).

Moreover, if (p1, . . . ,pN ) is the dual of the basis in question, then

K(x) =
(

pi · (x− o)| i = 1, . . . , N
)

(x ∈ V).

Obviously, every affine bijection K : V → R
N is a coordinatization in the

above sense: the one corresponding to o := K−1(0) and (x1, . . . ,xN ) where
xi := K−1(χi)− o (i = 1, . . . , N).

Such a parametrization maps straight lines into straight lines. More closely,
if α ∈ R

N then P maps the straight line passing through α and parallel to χi

into the straight line passing through P (α) and parallel to xi :

P [α+ Rχi] = P (α) + Rxi (i = 1, . . . , N).

This is why affine coordinatizations are generally called rectilinear.

5.2. In application we often need nonaffine coordinatizations as well. Coor-
dinatization means in general that we represent the elements of the affine space
by ordered N -tuples of real numbers (i.e. by elements of R

N ) in a smooth way.

Definition. Let V be an N -dimensional affine space. A mapping K : V 

R
N is called a local coordinatization of V if
(i) K is injective,
(ii) K is smooth,
(iii) DK(x) is injective for all x ∈ DomK.

Evidently, DK(x) is bijective since the dimensions of its domain and range
are equal; thus the inverse mapping theorem implies that also the inverse of K
has the properties (i)–(ii)–(iii ;) P := K−1 is called a local parametrization of
V. We often omit the adjective ‘local’.

5.3. If α ∈ RanK = DomP then P [α + Rχi] is a smooth curve in V; a
parametrization of this curve is pi : R  V, a 7→ P (α + aχi) (i = 1, ..., N).
The parametrization maps straight lines into curves, that is why such coordina-
tizations are often called curvilinear.

The curves corresponding to parallel straight lines do not intersect each other.
The curves corresponding to meeting straight lines intersect each other transver-
sally, i.e. their tangent spaces at the point of intersection do not coincide. For in-
stance, using the previous notations we have that ṗi(0) = DP (α)·χi = ∂iP (α) is
the tangent vector of the curve P [α+Rχi] at P (α); if i 6= k then ṗi(0) 6= ṗk(0).
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If x ∈ DomK then P [K(x) +Rχi] is called the i -th coordinate line passing
through x.

5.4. Recall Proposition 4.4: if H is an M -dimensional smooth submanifold
of V then for every e ∈ H there is a coordinatization K := (F, S) of V in
a neighbourhood of e such that the first M coordinate lines run in H. In
other words, if P is the corresponding parametrization of V then R

M
 V,

ζ 7→ P (ζ, 0) is a parametrization of H.

5.5. The most frequently used curvilinear coordinatizations are the polar
coordinatization, the cylindrical coordinatization and the spherical coordinati-
zation. We give them as coordinatizations in R

2 and R
3; composed with affine

coordinatizations they result in curvilinear coordinatizations of two- and three-
dimensional affine spaces.
(i) Polar coordinatization

K : R2\{(x1, 0) | x1 ≤ 0} → R
+×]− π, π[ ,

x = (x1, x2) 7→
(

|x|, sign(x2) arccos
x1
|x|

)

;

its inverse is

P : R+×]− π, π[→ R
2 \ {(x1, 0) | x1 ≤ 0},

(r, ϕ) 7→ (r cosϕ, r sinϕ),

for which

DP (r, ϕ) =

(

cosϕ −r sinϕ
sinϕ r cosϕ

)

,

det (DP (r, ϕ)) = r.

(ii) Cylindrical coordinatization

K :R3 \ {(x1, 0, x3) | x1 ≤ 0, x3 ∈ R} → R
+×]− π, π[×R,

x = (x1, x2, x3) 7→
(

√

x21 + x22, sign(x2) arccos
x1

√

x21 + x22
, x3

)

;

its inverse is

P : R+×]− π, π[×R → R
3 \ {(x1, 0, x3, ) | x1 ≤ 0, x3 ∈ R},

(ρ, ϕ, z) 7→ (ρ cosϕ, ρ sinϕ, z),
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for which

DP (ρ, ϕ, z) =





cosϕ −ρ sinϕ o
sinϕ ρ cosϕ 0
0 0 1



 ,

det (DP (ρ, ϕ, z)) = ρ.

(iii) Spherical coordinatization

K : R3 \ {(x1, 0, x3) | x1 ≤ 0, x3 ∈ R} → R
+×]0, π[×]− π, π[,

x = (x1, x2, x3) 7→
(

|x|, arccos x3|x| , sign(x2) arccos
x1

√

x21 + x22

)

;

its inverse is

P : R+×]0, π[×[−π, π[→ R
3 \ {(x1, 0, x3) | x1 ≤ 0, x3 ∈ R},

(r, ϑ, ϕ) 7→ (r sinϑ cosϕ, r sinϑ sinϕ, r cosϑ),

for which

DP (r, ϑ, ϕ) =





sinϑ cosϕ r cosϑ cosϕ −r sinϑ sinϕ
sinϑ sinϕ r cosϑ sinϕ r sinϑ cosϕ

cosϑ −r sinϑ 0



 ,

det (DP (r, ϑ, ϕ)) = r2 sinϑ.

5.6. Let K : V  R
N be a coordinatization. Then for all x ∈ DomK the

tangent vectors of the coordinate lines passing through x form a basis in V.
More closely, if P is the corresponding parametrization then ∂iP (P

−1(x)) =
DP (P−1(x)) ·χi (i = 1, . . . , N) form a basis in V which is called the local basis
at x corresponding to K.

Note that DK(x) : V → R
N is the linear bijection that sends the local

basis into the standard basis of R
N , i.e. DK(x) is the coordinatization of

V corresponding to the local basis at x.
We shall often use the relation

[DK(P (ξ))]
−1

= DP (ξ) (ξ ∈ DomP )

which will be written in the form

DK(P )
−1

= DP.

(i) A vector field C : V  V is coordinatized in such a way that for x ∈
DomC ∩DomK the vector C(x) is given by its coordinates with respect to the
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local basis at x and x is represented by the coordinatization in question; the
coordinatized form of C is the function

DK(P ) ·C(P ) : RN
 R

N , ξ 7→ DK(P (ξ)) ·C(P (ξ)).

(ii) A covector field S : V  V∗ is coordinatized similarly, with the aid of the
dual of the local bases (see IV.2.2); the coordinatized form of S is the function

DP ∗ · S(P ) : RN → (RN )
∗
, ξ 7→ DP (ξ)

∗ · S(P (ξ)) = S(P (ξ)) ·DP (ξ).

(iii) Accordingly (see IV.2.3), the coordinatizated forms of the tensor fields
L : V  V ⊗V∗ ≡ Lin(V) and F : V  V∗ ⊗V∗ ≡ Lin(V,V∗) are

DK(P ) ·L(P ) ·DP : R
N

 R
N ⊗

(

R
N
)∗
, ξ 7→ DK(P (ξ)) ·L(P (ξ)) ·DP (ξ),

DP ∗ · F (P ) ·DP : R
N



(

R
N
)∗ ⊗

(

R
N
)∗
, ξ 7→ DP (ξ)

∗ · F (P (ξ)) ·DP (ξ).

5.7. If K : V → R
N is an affine coordinatization then DK(x) = K for all

x ∈ V where K is the linear map under K. Similarly, DP (ξ) = P for all
ξ ∈ R

N .
In this case the vector field C and the covector field S have the coordinatized

form

ξ 7→ K ·C(P (ξ)), (1)

ξ 7→ P ∗ · S(P (ξ)). (2)

The derivative of C is the mixed tensor field DC : V  V⊗V∗, x 7→ DC(x),
and the derivative of S is the cotensor field DS : V  V∗ ⊗V∗, x 7→ DS(x).
Now they have the coordinatized forms

ξ 7→ K ·DC(P (ξ)) · P , (3)

ξ 7→ P ∗ ·DS(P (ξ)) · P . (4)

A glance at the previous formulae convinces us that (3) and (4) are the
derivatives of (1) and (2), respectively.

Thus in the case of a rectilinear coordinatization the order of differentiation
and coordinatization can be interchanged: taking coordinates first and then dif-
ferentiating is the same as differentiating first and then taking coordinates.

5.8. In the case of curvilinear coordinates, in general, the order of differenti-
ation and coordinatization cannot be interchanged.

To get a rule, how to compute the coordinatized form of the derivative of a
vector field or a covector field from the coordinatized form of these fields, we
introduce a new notation.
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Without loss of generality we suppose that V = R
N , since every curvilinear

coordinatization V  R
N can be obtained as the composition of a rectilinear

coordinatization V → R
N and a curvilinear one R

N
 R

N .
For the components of elements in V = R

N , Latin subscripts and superscripts:
i, j, k, . . . ; for the components of the curvililinear coordinates in R

N , Greek
subscripts and superscripts: α, β, γ, . . . are used. Moreover, we agree that all
indices run from 1 to N and we accept the Einstein summation rule: for equal
subscripts and superscripts a summation is to be taken from 1 to N.

Thus for K we write Kα, for P we write P i; moreover, for any function
φ : RN

 R we find it convenient to write φ(P ) instead of φ ◦ P. The rule of
differentiation of composite functions will be used frequently,

∂α (φ(P )) = (∂iφ)(P )∂αP
i,

as well as the relations

∂γP
i∂jK

γ(P ) = δij , (∗)
∂jK

α(P )∂βP
j = δαβ .

The second one implies

∂i∂jK
α(P )∂γP

i∂βP
j + ∂iK

α(P )∂γ∂βP
i = 0.

We put

Γα
βγ := ∂γ∂βP

i∂iK
α(P ) = −∂i∂jKα(P )∂γP

i∂βP
j

and we call it the Christoffel symbol of the coordinatization in question.
The Christoffel symbol is a mapping defined on DomP ; for ξ ∈ DomP, Γ(ξ)

is a bilinear map from R
N × R

N into
(

R
N
)∗

:

(ζ,η) 7→
(

Γα
βγ(ξ)ζ

βηγ | α = 1, . . . , N
)

.

It is usually emphasized that the Christoffel symbol is not a tensor of third
order though it has three indices. This means that in general there is no mapping
V  Bilin(V×V,V∗) (third order tensor field) whose coordinatized form would
be the Christoffel symbol.

5.9. The coordinatized form of

f : V  R is f(P ),
C : V  V is ∂iK

α(P )Ci(P ) =: Cα,
S : V  V∗ is ∂αP

iSi(P ) =: Sα,
L : V  V ⊗V∗ is ∂iK

α(P )Li
k(P )∂βP

k =: Lα
β ,

F : V  V∗ ⊗V∗ is ∂αP
iTik(P )∂βP

k =: Tαβ .
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(i) The coordinatized form of Df : V  V∗ is ∂αP
i∂if(P ) = ∂α (f(P )) ;

thus for a real-valued function the order of differentiation and coordinatization
can be interchanged even in the case of curvilinear coordinatization.
(ii) The coordinatized form of DC : V  V ⊗V∗ is

(DC)αβ := ∂iK
α(P )(∂kC

i)(P )∂βP
k,

whereas the derivative of the coordinatized form of C reads

∂β
(

∂iK
α(P )Ci(P )

)

= (∂i∂kK
α)(P )∂βP

kCi(P ) + ∂iK
α(P )(∂kC

i)(P )∂βP
k.

The second term equals the coordinatized form of DC; with the aid of
relation (∗) in 5.8, the first term is transformed into an expression containing
the Christoffel symbol and the coordinatized form of C. In this way we get

(DC)αβ = ∂βCα + Γα
βγCγ .

(iii) Similarly, if (DS)αβ denotes the coordinatized form of DS then

(DS)αβ = ∂βSα − Γγ
αβSγ .

5.10. Now we shall examine the coordinatizated form of two-times differen-
tiable functions T  V where T is a one-dimensional affine space.

A useful notation will be applied: functions T  V and elements of V will
be denoted by the same letter. If necessary, supplementary remarks rule out
ambiguity.

For the sake of simplicity and without loss of generality we suppose that
T = R.

Let K : V  R
N be a coordinatization, P := K−1.

For x ∈ V let ξ := K(x); then x = P (ξ).
For x : T  V we put ξ := K(x) := K ◦ x; then x = P (ξ) := P ◦ ξ.
Denoting the differentiation by a dot we deduce

ξ̇ = DK(x) · ẋ, ẋ = DP (ξ) · ξ̇, (∗∗)
ẍ = D2P (ξ)(ξ̇, ξ̇) + DP (ξ) · ξ̈,
ξ̈ = D2K(x)(ẋ, ẋ) + DK(x) · ẍ,

from which we obtain
DK(x) · ẍ = ξ̈ − Γ(ξ)(ξ̇, ξ̇) (∗ ∗ ∗)

where
Γ(ξ) := D2K(P (ξ)) ◦ (DP (ξ)×DP (ξ))
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is exactly the Christoffel symbol of the coordinatization.
In view of physical application, x, ẋ and ẍ will be called position, velocity

and acceleration, respectively.
The velocity at t ∈ R, ẋ(t) is in V; it is represented by its coordinates

corresponding to the local basis at x(t), i.e. by DK(x(t)) · ẋ(t). Thus (∗∗) tells
us that the coordinatized form of velocity coincides with the derivative of the
coordinatization of position.

Similarly, DK(x(t)) · ẍ(t) gives the coordinates of acceleration in the local
basis at x(t). Thus (∗ ∗ ∗) shows that the coordinatized form of acceleration
does not coincide with the second derivative of the coordinatization of position.

5.11. Now we consider the coordinatizations treated in 5.5. They are orthog-
onal which means that every local basis is orthogonal with respect to the usual
inner product in R

N (N = 2, 3); in other words, if {χ1, . . . ,χN} is the stan-
dard basis in R

N then {DP (ξ) · χi | i = 1, . . . , N} is an orthogonal basis (the
local basis at P (ξ)).

Introducing the notation

αi(ξ) := |DP (ξ) · χi| (i = 1, . . . , N)

we define the linear map T (ξ) : RN → R
N by

T (ξ) · χi := αi(ξ)χi (i = 1, . . . , N)

and then
DP (ξ) = R(ξ) · T (ξ)

where R(ξ) : RN → R
N is an orthogonal linear map.

In usual physical applications one prefers orthonormal local bases, i.e. one

takes DP (ξ)·χi

αi(ξ)
= DP (ξ) · T (ξ)−1 · χi = R(ξ) · χi instead of DP (ξ) · χi (i =

1, .., N).

The vector y ∈ R
N at P (ξ) has the coordinates R(ξ)

−1 ·y in the local basis
{R(ξ) · χi | i = 1, . . . , N}.

Take x : R  R
N , ξ := K(x), x = P (ξ) as in the previous paragraph. Then

ẋ = R(ξ) · T (ξ) · ξ̇

from which we derive

ẍ = R(ξ)· · T (ξ) · ξ̇ +R(ξ) · T (ξ)· · ξ̇ +R(ξ) · T (ξ) · ξ̈ =
= R(ξ) ·

((

R(ξ)
−1 ·R(ξ)· · T (ξ) + T (ξ)·

)

· ξ̇ + T (ξ) · ξ̈
)

.

According to the foregoings, the coordinates of velocity in the orthonormal
local basis at P (ξ) are

T (ξ) · ξ̇
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and the coordinates of acceleration in the orthonormal local basis at P (ξ) are

(

R(ξ)
−1 ·R(ξ)· · T (ξ) + T (ξ)·

)

· ξ̇ + T (ξ) · ξ̈.

5.12. (i) For polar coordinates ξ = (r, ϕ),

R(r, ϕ) =

(

cosϕ − sinϕ
sinϕ cosϕ

)

=: R(ϕ)

T (r, ϕ) =

(

1 0
0 r

)

=: T (r).

Furthermore

R(ϕ)· = ϕ̇R(ϕ) ·R(π/2), T (r)· = T (ṙ),

and so velocity and acceleration in the local orthonormal basis at (r, ϕ) are

(ṙ, rϕ̇) and (r̈ − rϕ̇2, rϕ̈+ 2ṙϕ̇),

respectively.
(ii) For cylindrical coordinates ξ = (ρ, ϕ, z),

R(ρ, ϕ, z) =





cosϕ − sinϕ 0
sinϕ cosϕ 0
0 0 1



 =: R(ϕ),

T (ρ, ϕ, z) =





1 0 0
0 ρ 0
0 0 1



 =: T (ρ)

and we deduce as previously that velocity and acceleration in the local orthonor-
mal basis at (ρ, ϕ, z) are

(ρ̇, ρϕ̇, ż) and (ρ̈− ρϕ̇2, ρϕ̈+ 2ρ̇ϕ̇, z̈),

respectively.
(iii) For spherical coordinates ξ = (r, ϑ, ϕ),

R(r, ϑ, ϕ) =





sinϑ cosϕ cosϑ cosϕ − sinϕ
sinϑ sinϕ cosϕ sinϕ cosϕ

cosϑ − sinϑ 0



 =: R(ϑ, ϕ),

T (r, ϑ, ϕ) =





1 0 0
0 r 0
0 0 r sinϑ



 =: T (r, ϑ).
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The components of velocity in the local orthonormal basis at (r, ϑ, ϕ) are

(ṙ, rϑ̇, r sinϑ ϕ̇).

The components of acceleration are given by rather complicated formulae; the
ambitious reader is asked to perform the calculations.

5.13. Exercises

1. Give the polar coordinatized form of the linear map (vector field) R
2 → R

2

whose matrix is
(

cosα − sinα
sinα cosα

)

.

2. Give the cylindrical and the spherical coordinates of the following vector
fields:

(i) L : R3 → R
3 is a linear map;

(ii) R
3 → R

3, x 7→ |x|v where v is a given nonzero element of R
3.

3. Find the coordinatized form of
(i) the divergence of a vector field,
(ii) the curl of a covector field.

6. Differential equations

6.1. Definition. Let V be a finite-dimensional affine space over the vector
space V.

Suppose C : V  V is a differentiable vector field, DomC is connected.
Then a solution of the differential equation

(x : R  V)? ẋ = C(x)

is a differentiable function r : R  V such that
(i) Domr is an interval,
(ii) Ranr ⊂ DomC,
(iii) ṙ(t) = C(r(t)) for t ∈ Domr.

The range of a solution is called an integral curve of C. An integral curve is
maximal if it is not contained properly in an integral curve.

An integral curve, in general, is not a curve in the sense of our definition in
4.3, i.e. it is not necessarily a submanifold.

6.2. Definition. Let C be as before and let xo be an element of DomC.
A solution of the initial value problem

(x : R  V)? ẋ = C(x), x(to) = xo (∗)
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is a solution r of the corresponding differential equation such that

to ∈ Domr and r(to) = xo.

The range of the solution of the initial value problem is called the integral
curve of C passing through xo.

The well-known existence and local uniqueness theorem asserts that solutions
of the initial value problem exist and two solutions coincide on the intersection of
their domain; consequently there is a single maximal integral curve of C passing
through xo.

6.3. Let U be another affine space over the vector space U, dimU = dimV.
Suppose L : V  U is a continuously differentiable injection whose inverse is
continuously differentiable as well, and DomC ⊂ DomL.

Put

G : U  U, y 7→ DL
(

L−1(y)
)

·C(L−1(y)).

Then r is a solution of the initial value problem (∗) if and only if L ◦ r is a
solution of the initial value problem

(y : R  U)? ẏ = G(y), y(to) = L(xo) (∗∗).

That is why we call (∗∗) the transformation of (∗) by L.

6.4. Proposition. Let C be a differentiable vector field in V and let H
be a submanifold in the domain of C. If C(x) ∈ Tx(H) for all x ∈ H and
xo ∈ H then every solution r of the initial value problem (∗) runs in H, i.e.
Ranr ⊂ H.

Proof. The element xo has a neighbourhood N in V and there are continu-
ously differentiable functions F : N → R

M , S : N → R
N−M such that S(x) = 0

for x ∈ H ∩ N , and K := (F, S) : V  R
M × R

N−M ≡ R
N is a local coordi-

natization of V. For P := K−1 (the corresponding local parametrization of V)
ζ 7→ P (ζ, 0) is a parametrization of H ∩ N . Thus the tangent space of H at
P (ζ, 0) is KerDS(P (ζ, 0)) (see 4.4 and 4.8).

The coordinatized form of C becomes

(Φ,Ψ) : RM × R
N−M

 R
M × R

N−M

where
Φ(ζ, η) : = DF (P (ζ, η)) ·C(P (ζ, η)),

Ψ(ζ, η) : = DS(P (ζ, η)) ·C(P (ζ, η)).
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Then the coordinatization transforms the initial value problem (∗) into the
following one:

(ζ̇ , η̇) = (Φ(ζ, η),Ψ(ζ, η)) , ζ(to) = F (xo), η(to) = 0. (∗ ∗ ∗)

This means that r is a solution of (∗) if and only if (F ◦r, S ◦r) is a solution
of (∗ ∗ ∗), or (ρ, σ) is a solution of (∗ ∗ ∗) if and only if P ◦ (ρ, σ) is a solution
of (∗).

Since C(x) ∈ Tx(H) for x ∈ H, C
(

P (ζ, 0)
)

is in the kernel of DS
(

P (ζ, 0)
)

,

i.e. Ψ(ζ, 0) = 0 for all possible ζ ∈ R
M . Then if ρ is a solution of the initial

value problem
ζ̇ = Φ(ζ, 0), ζ(to) = F (xo)

then (ρ, 0) is a solution of (∗∗∗). Then the uniqueness of solutions of initial value
problems implies that every solution of (∗∗∗) has the form (ρ, 0). Consequently,
t 7→ P (ρ(t), 0), a solution of (∗), takes values in H.

6.5. Physical application requires differential equations for functions T  V
where T is a one-dimensional real affine space. Since the derivative of such
functions takes values in V

T
, we start with a differentiable mapping C : V 

V

T
.

A solution of the differential equation

(x : T  V)? ẋ = C(x)

is a differentiable function r : T  V for which (i)–(ii)–(iii) of definition 6.1
holds.

Integral curves, solutions of initial value problems etc. are formulated as
previously.

7. Integration on curves

7.1. Let T be an oriented one-dimensional affine space over the vector space
T. Suppose A is a one-dimensional vector space and f : T  A is a continuous
function defined on an interval (see Exercise 1.7.5). If a, b ∈ Domf, a < b, then

b
∫

a

f(t)dt ∈ A⊗ T

is defined by some limit procedure, in the way well-known in standard analysis
of real functions, using the integral approximation sums of the form

n
∑

k=1

f(tk)(tk+1 − tk).
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7.2. Let V be an affine space over the vector space V and let A be a one-
dimensional vector space. Suppose F : V × V → A is a continuous function,
positively homogeneous in the second variable, i.e.

F (x, λx) = λF (x,x) (x ∈ V, λ ∈ R
+
0 ,x ∈ V).

Let C be a connected curve in V .

Proposition. Let p, q : R  V be equally oriented parametrizations of C,
x, y ∈ Ranp ∩ Ranq. Then

p−1(y)
∫

p−1(x)

F (p(t), ṗ(t)) dt =

q−1(y)
∫

q−1(x)

F (q(s), q̇(s)) ds.

Proof. We know that Φ := p−1 ◦ q : R → R is differentiable and Φ̇ > 0 (see

4.11). Consequently, q = p ◦ Φ, q̇(s) = ṗ(Φ(s)) · Φ̇(s) and

q−1(y)
∫

q−1(x)

F (q(s), q̇(s)) ds =

Φ−1(p−1(y))
∫

Φ−1(p−1(x))

F (p(Φ(s)), ṗ(Φ(s))) Φ̇(s)ds,

which gives the desired result by the well-known formula of integration by sub-
stitution.

7.3. Suppose C is oriented. Then, according to the previous result, we
introduce the notation

y
∫

x

F (·, dC) :=
p−1(y)
∫

p−1(x)

F (p(t), ṗ(t))dt

where p is an arbitrary positively oriented parametrization of C such that
x, y ∈ Ranp.

Note that according to the definition we have

x
∫

y

F (·, dC) = −
y
∫

x

F (·, dC).

If C is not oriented, we shall use the symbol

∫

[x,y]

F (·, dC) :=

∣

∣

∣

∣

∣

∣

∣

p−1(y)
∫

p−1(x)

F (p(t), ṗ(t))dt

∣

∣

∣

∣

∣

∣

∣
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where p is an arbitrary parametrization.
We frequently meet the particular case when F does not depend on the

elements of V, i.e. there is a positively homogeneous f : V → A such that
F (x,x) = f(x) for all x ∈ V, x ∈ V. Then we use the symbol

y
∫

x

f(dC) and

∫

[x,y]

f(dC)

for the corresponding integrals.

7.4. We can generalize the previous result for a parametrization r : T  V
where T is an oriented one-dimensional affine space over the vector space T.

Then ṙ(t) is in V

T
and accepting the definition F

(

x, x
t

)

:= F (x,x)
|t| (x ∈ V,x ∈

V,0 6= t ∈ T) we have

y
∫

x

F (·, dC) =
r−1(y)
∫

r−1(x)

F (r(t), ṙ(t)) dt

if r is positively oriented.

7.5. Let (V,B, b) be a pseudo-Euclidean affine space (i.e. V is an affine
space over V and (V,B, b) is a pseudo-Euclidean vector space). Supposing B

is oriented, we have the square root mapping (B⊗ B)+
0
→ B

+
0

and

V → B, x 7→ |x| :=
√

|x · x|

is a positively homogeneous function. Thus if C is an oriented curve in V, then

y
∫

x

|dC|

is meaningful for all x, y ∈ C. In the Euclidean case it is regarded as the signed
length of the curve segment between x and y; in the nonEuclidean case it is
interpreted as the pseudo-length of the curve segment.

Proposition. Suppose that |x| 6= 0 for all nonzero tangent vectors x of C.
Then for all xo ∈ C,

C → B, x 7→
x
∫

xo

|dC|
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is a continuous injection whose inverse is a positively oriented parametrization
of C.

Proof. Let Z denote the above mapping and choose a positively oriented
parametrization p : R  V and put to := p−1(xo). Then

(Z ◦ p)(t) =
t
∫

to

|ṗ(s)|ds (t ∈ Domp);

consequently, Z ◦ p : R  B is continuously differentiable and (Z ◦ p)·(t) =
|ṗ(t)| > 0 for all t ∈ Domp. Thus Z ◦ p is strictly monotone increasing: it

is injective and its inverse (Z ◦ p)−1 is continuously differentiable as well, and
according to the well-known rule,

(

(Z ◦ p)−1
)· = 1

(Z ◦ p)·
(

(Z ◦ p)−1
) > 0.

As a consequence, introducing the notation r := Z−1, we have that r =
p ◦ (Z ◦ p)−1 is continuously differentiable, too, and

ṙ ◦ r−1 =
ṗ

|ṗ| ◦ p
−1.

This means that r is a parametrization of C and r−1 ◦ p (= Z ◦ p) has
everywhere positive derivative, i.e. r and p are equally oriented.

It is worth noting that |ṙ| = 1.
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We treat only a special type of Lie groups appearing in physics; so we avoid
the application of the theory of smooth manifolds.

1. Groups of linear bijections

1.1. Let V be an N -dimensional real vector space, N 6= 0.

Then Lin(V) is an N2 -dimensional real vector space.

Now the symbol of composition between elements of Lin(V) will be omitted,
i.e. we write AB := A ◦B for A,B ∈ Lin(V).

Since V is finite dimensional, all norms on it are equivalent, i.e. all norms
give the same open subsets. Given a norm ‖ ‖ on V, a norm is defined on
Lin(V) by

‖A‖ := sup
‖v‖=1

‖A · v‖

for which ‖AB‖ ≤ ‖A‖ ‖B‖ holds (A,B ∈ Lin(V)).

We introduce the notation

GL(V) := {F ∈ Lin(V)| F is bijective}.

Endowed with the multiplication (F ,G) 7→ FG (composition), GL(V) is a
group whose identity (neutral element) is

I := 1V.

1.2. One can prove without difficulty that if A ∈ Lin(V), ‖A‖ < 1, then
I −A ∈ GL(V) and

(I −A)
−1

=
∞
∑

n=0

An.
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In other words, if K ∈ Lin(V), ‖I −K‖ < 1, then K ∈ GL(V) and

K−1 =

∞
∑

n=0

(I −K)n.

Proposition. Let F ∈ GL(V). If L ∈ Lin(V) and ‖F −L‖ < 1
‖F−1‖ then

L ∈ GL(V).

Proof. ‖I −F−1L‖ = ‖F−1(F −L)‖ ≤ ‖F−1‖ ‖F −L‖ < 1, thus F−1 ·L
is bijective. F is bijective by assumption, hence F (F−1L) = L is bijective as
well.

As a corollary of this result we have that GL(V) is an open subset of Lin(V).

1.3. The proof of the following statement is elementary. The mappings

m : GL(V)× GL(V) → GL(V), (F ,G) 7→ FG,

j : GL(V) → GL(V), F 7→ F−1

are smooth and

Dm(F ,G) : Lin(V)× Lin(V) → Lin(V), (A,B) 7→ AG+ FB,

Dj(F ) : Lin(V) 7→ Lin(V), A 7→ −F−1AF−1.

1.4. It is a well-known fact, too, that for A ∈ Lin(V)

expA := eA :=

∞
∑

n=0

An

n!

is meaningful, it is an element of GL(V) and

e0 = I,
(

eA
)−1

= e−A.

Moreover, the exponential mapping,

Lin(V) → GL(V), A 7→ eA

is smooth, its derivative at 0 ∈ Lin(V) is the identity map Lin(V) → Lin(V).
The inverse mapping theorem implies that the exponential mapping is injec-

tive in a neighbourhood of 0, its inverse regarding this neighbourhood is smooth
as well.
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If A,B ∈ Lin(V) and AB = BA then eAeB = eBeA = eA+B. In
particular, etAesA = esAetA = e(t+s)A for t, s ∈ R.

1.5. For A ∈ Lin(V), the function R → GL(V), t 7→ etA is smooth and

d

dt

(

etA
)

= AetA = etAA.

As a consequence, the initial value problem

(X : R  Lin(V))? Ẋ = XA, X(0) = I

has the unique maximal solution

R(t) = etA (t ∈ R).

2. Groups of affine bijections

2.1. Let V be an affine space over the N -dimensional real vector space V.
Then

Aff(V,V) := {A : V → V | A is affine},

endowed with the pointwise operations, is a real vector space.
Given o ∈ V, the correspondence

Aff(V,V) → V × Lin(V), A 7→ (A(o),A)

(where A is the linear map under A) is a linear bijection; it is evidently
linear and injective and it is surjective because the affine map V → V, x 7→
A · (x− o) + a corresponds to (a,A) ∈ V × Lin(V).

As a consequence, Aff(V,V) is an (N +N2) -dimensional vector space.

2.2. We easily find that

Aff(V) := {L : V → V | L is affine},

endowed with the pointwise subtraction (see VI.2.3(iv)), is an affine space over
Aff(V,V). Thus, according to the previous paragraph, Aff(V) is (N + N2) -
dimensional.
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Two elements K and L of Aff(V), as well as an element A of Aff(V,V)
and an element L of Aff(V) can be composed; the symbol of compositions will
be omitted, i.e. KL := K ◦ L and AL := A ◦ L.

We introduce

GA(V) := {F ∈ Aff(V) | F is bijective}.

Endowed with the multiplication (F,G) 7→ FG (composition), GA(V) is a
group whose identity (neutral element) is

I := 1V.

2.3. Given o ∈ V, the mapping

Aff(V) → V × Lin(V), L 7→ (L(o)− o,L)

is an affine bijection over the linear bijection given in 2.1. Evidently, this bijection
maps GA(V) onto V×GL(V). As a consequence, GA(V) is an open subset of
Aff(V).

2.4. The mappings

m : GA(V)× GA(V) → GA(V), (F,G) 7→ FG,

j : GA(V) → GA(V), F 7→ F−1

are smooth and

Dm(F,G) : Aff(V,V)×Aff(V,V) → Aff(V,V), (A,B) 7→ AG+ FB,

Dj(F ) : Aff(V,V) → Aff(V,V), A 7→ −F−1AF−1.

2.5. If P ∈ GL(V) then

ℓP : Aff(V,V) → Aff(V,V), A→ PA

is a linear bijection, (ℓP )
−1

= ℓP−1 .
If P ∈ GA(V) then

ℓP : Aff(V) → Aff(V), L 7→ PL

is an affine bijection over ℓP , where P is the linear map under P ; moreover,
(ℓP )

−1
= ℓP−1 .
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2.6. If A ∈ Aff(V,V) and A ∈ Lin(V) is the linear map under A then

expA := eA := I +

∞
∑

n=1

An−1A
n!

is meaningful, it is an element of GA(V),

e0 = I,
(

eA
)−1

= e−A

and the linear map under eA is eA.
Moreover, the exponential mapping

Aff(V,V) → GA(V), A 7→ eA

is smooth, its derivative at 0 ∈ Aff(V,V) is the identity map Aff(V,V) →
Aff(V,V).

The inverse mapping theorem implies that the exponential mapping is injec-
tive in a neighbourhood of 0, its inverse regarding this neighbourhood is smooth
as well.

If A,B ∈ Aff(V,V) and AB = BA then eAeB = eBeA = eA+B . In
particular, etAesA = esAetA = e(t+s)A for t, s ∈ R.

2.7. For A ∈ Aff(V,V), the function R → GA(V), t 7→ etA is smooth and

d

dt

(

etA
)

= etAA = AetA.

As a consequence, the initial value problem

(X : R  Aff(V,V))? Ẋ = AX, X(0) = I

has the unique maximal solution

R(t) = etA (t ∈ R).

3. Lie groups

3.1. Definition Let V be an N -dimensional real affine space. A subgroup
G of GA(V) which is an M -dimensional smooth submanifold of GA(V) is called
an M -dimensional plain Lie group.
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The group multiplication G×G → G, (F,G) 7→ FG and the inversion G → G,
F 7→ F−1 are smooth mappings (see 2.4 and VI.4.13, Exercise VI.4.14.5(iii)).

Observe that by definition 0 < M ≤ N + N2. (N + N2) -dimensional plain
Lie groups are GA(V) and its open subgroups.

Remark. In general, a Lie group is defined to be a group endowed with a
smooth structure in such a way that the group multiplication and the inversion
are smooth mappings.

Since we shall deal only with plain Lie groups, we shall omit the adjective
‘plain’. By the way, all the results we shall derive for plain Lie groups are valid
for arbitrary Lie groups as well.

3.2. (i) For a ∈ V we defined the affine bijection Ta : V → V, x 7→ x + a

(VI.2.4.3), the translation by a. It is quite evident that Ta = Tb if and only if
a = b and so

T n(V) := {Ta | a ∈ V},
called the translation group of V, is an N -dimensional Lie group. The group
multiplication in T n(V) corresponds exactly to the addition in V that is why
one often says that V—in particular R

N —endowed with the addition as a group
multiplication is an N -dimensional Lie group.
(ii) If the vector space V is considered to be an affine space then GL(V) is

a subgroup and an N2 -dimensional submanifold of GA(V), thus GL(V) is an
N2 -dimensional Lie group.

3.3. It is obvious that

GA(V) → GL(V), L 7→ L (L is the linear map under L)

is a smooth group homomorphism whose kernel is T n(V) (L = I if and only
if L ∈ T n(V), see VI.2.5.6).
(i) Take a Lie group G ⊂ GA(V). Then

under(G) := {F ∈ GL(V)| F is under an F ∈ G},

i.e. the image of G by the above group homomorphism is a Lie group.
(ii) Conversely, if G ⊂ GL(V) is an M -dimensional Lie group, then

over(G) := {F ∈ GA(V)| F is over an F ∈ G},

the pre-image of G by the above group homomorphism, is an (M + N) -
dimensional Lie group.

3.4. Recall that the tangent spaces of G are linear subspaces of Aff(V,V).
Every tangent space of G is obtained quite simply from the tangent space at
I : TF (G) is the ‘translation’ by F of TI(G).
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Proposition. Let G ⊂ GA(V) be a Lie group. Then

TF (G) = F [TI(G)] = {FA | A ∈ TI(G)} (F ∈ G).

Proof. Let G be M -dimensional. There is a neighbourhood N of I in

GA(V), a smooth mapping S : N → R
N+N2−M such that G ∩ N =

−1
S ({0})

(see VI.4.4), and TI(G) = KerDS(I) (see VI.4.8).
Let F be an arbitrary element of G. Then G is invariant under the affine

bijection ℓF−1 = ℓF
−1, thus S ◦ ℓF−1

∣

∣

G = 0. Consequently, if P is in the

domain of S ◦ ℓF−1, i.e. ℓF
−1P = F−1P is in N , recalling that ℓF

−1 is an
affine map over ℓF

−1, hence DℓF
−1(P ) = ℓF

−1, we have

TP (G) = KerD(S ◦ ℓF−1)(P ) = Ker
(

DS(ℓF
−1P ) ·DℓF−1(P )

)

=

= Ker
(

DS(F−1P )ℓF
−1) = {A ∈ Aff(V,V)| DS(F−1P )F−1A = 0} =

=
{

FB
∣

∣ B ∈ KerDS(F−1P )
}

= F
(

KerDS(F−1P )
)

.

We can take P := F to have the desired result.

The tangent space of G at I plays an important role; for convenience we
introduce the notation

La(G) := TI(G).

Note that La(GA(V)) = Aff(V,V), La(GL(V) = Lin(V).
Moreover, La(T n(V)) = V where V is identified with the constant maps

V → V.

3.5. Definition. A smooth function R : R → G ⊂ GA(V) is called a one-
parameter subgroup in the Lie group G if

R(t+ s) = R(t)R(s) (t, s ∈ R).

In other words, a one-parameter subgroup is a smooth group homomorphism
R : T n(R) → G. Evidently, R(0) = I and R(−t) = R(t)−1.

There are three possibilities.
(i) There is a neighbourhood of 0 ∈ R such that R(t) = I for all t in that

neighbourhood; then R is a constant function, R(t) = I for all t ∈ R.
(ii) There is a T ∈ R

+ such that R(T ) = I but R(t) 6= I for 0 < t < T ;
then R is periodic, R(t+ T ) = R(t) for all t ∈ R.
(iii) R(t) 6= I for all 0 6= t ∈ R.

3.6. If R(t) denotes the linear map under R(t) then R : R → under(G) is a
one-parameter subgroup; R(0) = I.
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Differentiating with respect to s in the defining equality of R and then
putting s = 0 we get

Ṙ(t) = R(t)Ṙ(0) = Ṙ(0)R(t) (t ∈ R)

which shows that if RanR is not a single point (if R is not constant) then it is
a one-dimensional submanifold and a subgroup in GA(V ). Thus RanR is either
the singleton {I} or a one-dimensional Lie group. In the case (ii) treated in the
preceding paragraph, the restriction of R to an interval shorter than T is a local
parametrization of RanR; in the case (iii) R is a parametrization of RanR.

3.7. Proposition. Every one-parameter subgroup R in G has the form

R(t) = etA (t ∈ R)

where A = Ṙ(0) ∈ La(G).
Conversely, if A ∈ La(G) ⊂ Aff(V,V) then t 7→ etA is a one-parameter

subgroup in G.
Proof. According to the previous paragraph, the one-parameter subgroup R

is the solution of the initial value problem

(X : R  Ga(V))? Ẋ = XA, X(0) = I

where A := Ṙ(0). Apply 2.7 to obtain the first statement.
Conversely, t 7→ etA is a one-parameter subgroup in GA(V); we have to show

only that etA ∈ G for all t ∈ R which follows from VI.6.4.

The assertions are true for local one-parameter subgroups as well, i.e. for
smooth functions R : R → G defined on an interval around 0 ∈ R such that
R(t+ s) = R(t)R(s) whenever t, s, t+ s are in DomR.

3.8. The previous result involves that eA ∈ G for A ∈ La(G), i.e. the
restriction of the exponential mapping onto La(G) takes values in G. Since the
exponential mapping is smooth and injective in a neighbourhood of 0, its inverse
regarding this neighbourhood is smooth as well (in particular continuous), we
can state:

Proposition. Let G be a Lie group. Then

La(G) → G, A 7→ eA

is a parametrization of G in a neighbourhood of the identity I.
In particular, every element in a neighbourhood of I belongs to a one-

parameter subgroup.
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3.9. Proposition. Every element of G in a neighbourhood of the identity
is a product of elements taken from one-parameter subgroups corresponding to
a basis of La(G).

Proof. Let A1, . . . AM be a basis of La(G) and complete it to a basis
A1, . . . , AP of Aff(V,V) where P := N +N2. Then

Φ : RP → GA(V), (t1, t2, . . . , tP ) 7→ exp (t1A1) exp (t2A2) . . . exp (tPAP )

is a smooth map, Φ(0, 0, . . . , 0) = I, ∂kΦ(0, 0, . . . , 0) = Ak (k = 1, . . . , P ).
We can state on the basis of the inverse mapping theorem that Φ is injective
in a neighbourhood of (0, 0, . . . , 0), its inverse regarding this neighbourhood is
smooth as well.

Thus the restriction of Φ onto R
M regarded as the subspace of R

P con-
sisting of elements whose i -th components are zero for i = M + 1, . . . , P is a
parametrization of G in a neighbourhood of I.

Note that in general

exp (t1A1) exp (t2A2) . . . exp (tPAP ) 6= exp

(

P
∑

k=1

tkAk

)

.

3.10. If G is connected, every element of G is a product of elements in a
neighbourhood of I, hence every element is a product of elements taken from
one-parameter subgroups corresponding to a basis of La(G), since the following
proposition is true.

Proposition. If G is connected and V is a neighbourhood of the identity I
in G, then

G =
⋃

n∈N
Vn

where Vn := {F1F2 . . . Fn | Fk ∈ V, k = 1, . . . , n}.
Proof. Given F ∈ G, the mapping G → G, G 7→ FG is bijective, continuous,

its inverse is continuous as well. Thus for all F ∈ G, FV := {FG | G ∈ V} is
open, so V2 = ∪

F∈V
FV is open as well. Consequently, Vn is open for all n and

thus H := ∪
n∈N

Vn is open, too. We shall show that the closure of H in G equals

H; thus H, being open and closed, equals G.
Let L be an element of the closure of H in G. Since LV−1 is a neighbourhood

of L, there is an F ∈ H such that F ∈ LV−1 which implies L ∈ FV; since
FV ⊂ HV = H, the proof is complete.
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4. The Lie algebra of a Lie group

4.1. Recall that if G is a Lie group in GA(V) then La(G), the tangent space
of G at I = 1V is a linear subspace of Aff(V,V). If A ∈ Aff(V,V) then A

denotes the underlying linear map V → V.

Proposition. Let G be a Lie group. If A,B ∈ La(G) then

AB −BA ∈ La(G).

Proof. Take a neighbourhood N of I in GA(V) and a smooth map S

defined on N such that
−1
S ({0}) = G ∩ N and La(G) = KerDS(I) (see the

proof of 3.3).
Then

t 7→ S
(

etAetB
)

= 0 and t 7→ S
(

etBetA
)

= 0

for t in a neighbourhood of 0 ∈ R. Differentiating the first function with respect
to t we get

t 7→ DS
(

etAetB
)

·
(

etAAetB + etAetBB
)

= 0.

Again differentiating and then taking t = 0 we deduce

D2S(I) (A+B,A+B) + DS(I) · (AA+ 2AB +BB) = 0.

Similarly we derive from the second function that

D2S(I) (B +A,B +A) + DS(I) · (BB + 2BA+AA) = 0.

Let us subtract the equalities from each other to have

DS(I) · (AB −BA) = 0

which ends the proof.

4.2. According to the previous proposition we are given the commutator
mapping

La(G)× La(G) → La(G), (A,B) 7→ AB −BA =: [A,B].

Proposition. The commutator mapping
(i) is bilinear,
(ii) is antisymmetric,
(iii) satisfies the Jacobian identity:

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0 (A,B,C ∈ La(G)).
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Definition. La(G) endowed with the commutator mapping is called the Lie
algebra of G.

We deduce without difficulty that for A,B ∈ La(G)

[A,B] =
1

2

(

d2

dt2
(

etAetBe−tAe−tB
)

)

t=0

.

4.3. The Lie algebra of GA(V) is Aff(V,V). We have seen that if a linear
subspace L of Aff(V,V) is the tangent space at I of a Lie group then the
commutator of elements from L belongs to L, too; in other words, L is a Lie
subalgebra of Aff(V,V).

Conversely, if L is a Lie subalgebra of Aff(V,V) then there is a Lie group
G such that La(G)=L : the subgroup generated by

{

eA
∣

∣ A∈L
}

. It is not
so easy to verify that this subgroup is a submanifold.

4.4. Definition. Let G and H be Lie groups. A mapping Φ : GH
is called a local Lie group homomorphism if

(i) DomΦ is a neighbourhood of the identity of G,
(ii) Φ is smooth,

(iii) Φ(FG) = Φ(F )Φ(G) whenever F,G, FG ∈ DomΦ.

If Φ is injective and Φ−1 is smooth as well, then Φ is a local Lie group
isomorphism.

4.5. For a local Lie group homomorphism Φ : G  H we put

Φ := DΦ(I) ∈ Lin (La(G),La(H)) .

If A ∈ La(G), then t 7→ Φ(etA) is a local one-parameter subgroup in H and

(

d

dt
Φ(etA)

)

t=0

= Φ(A),

which implies

Φ(etA) = etΦ(A)

for t in a neighbourhood of 0 ∈ R.

Proposition. Φ : La(G) → La(H) is a Lie algebra homomorphism, i.e. it is
linear and

[Φ(A),Φ(B)] = Φ ([A,B]) (A,B ∈ La(G)).
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Proof. Start with

[Φ(A),Φ(B)] =

(

d2

dt2

(

etΦ(A)etΦ(B) − etΦ(B)etΦ(A)
)

)

t=0

=

=

(

d2

dt2
(

Φ(etAetB)− Φ(etBetA)
)

)

t=0

and then apply the formulae in the proof of 4.1 putting Φ in place of S.

4.6. The previous proposition involves that locally isomorphic Lie groups
have isomorphic Lie algebras. One can prove the converse, too, a fundamental
theorem of the theory of Lie groups: if the Lie algebras of two Lie groups are
isomorphic then the Lie groups are locally isomorphic.

5. Pseudo-orthogonal groups

Let (V,B, b) be a pseudo-Euclidean vector space. Recall the notations (see
V.2.7)

O(b) :=
{

L ∈ GL(V)
∣

∣ L> ·L = I
}

,

A(b) :=
{

A ∈ Lin(V)
∣

∣ A> = −A
}

.

Proposition. If dimV = N then O(b) is an N(N−1)
2 -dimensional Lie group

having A(b) as its Lie algebra.

Proof. It is evident that O(b) is a subgroup of GL(V).
We know that A(b) and S(b) := {S ∈ Lin(V)| S> = S} are complementary

subspaces, dim S(b) = N(N+1)
2 , dimA(b) = N(N−1)

2 (see V.2.9).
Let us consider the mapping

ϕ : GL(V) → S(b), L 7→ L> ·L.

Since the b -adjunction L 7→ L> is linear and the multiplication in Lin(V)
is bilinear, ϕ is smooth. Moreover, the equality

(L+H)
> · (L+H)−L> ·L = L> ·H +H> ·L+H> ·H

shows that

Dϕ(L) ·H = L> ·H +H> ·L
(

L ∈ GL(V), H ∈ Lin(V)
)

.

We have O(b) = {L ∈ GL(V) | ϕ(L) = I} and Dϕ(L) is surjective if L is
in O(b) : if S ∈ S(b) then Dϕ(L) · L·S

2 = S. Consequently, O(b) is a smooth
submanifold of GL(V) (see VI.4.7).
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Finally, Dϕ(I) ·H = 0 if and only if H ∈ A(b), hence

La(O(b)) = KerDϕ(I) = A(b).

6. Exercises

1. Let G be a Lie group, A,B ∈ La(G). Prove that [A,B] = 0 if and only if
etAetB = etBetA for all t in an interval around 0 ∈ R.

Consequently, G is commutative (Abelian) if and only if La(G) is commuta-
tive (the commutator mapping on La(G) is zero).

2. Using the definition of exponentials (see 2.6) demonstrate that

[A,B] = lim
t→0

1

t2
(

etAetB − etBetA
)

= lim
t→0

1

t2
(

etAetBe−tAe−tB − I
)

.

3. Let V be a finite dimensional real vector space and make the identification

Aff(V) ≡ V × Lin(V), A ≡ (A(0),A),

i.e. (a,A) ∈ V × Lin(V) is considered to be the affine map

V → V, x 7→ Ax+ a.

Then the composition of such affine maps is

(a,A)(b,B) = (a+Ab,AB).

In this way we have GA(V) ≡ V × GL(V).
Prove that

e(a,0) = (a, I), e(0,A) = (0, eA).

4. Let n be a positive integer. Prove that

O(n) := {L ∈ Lin(Rn) | L∗L = I}
SO(n) := {L ∈ O(n) | detL = 1}

are n(n−1)
2 -dimensional Lie groups having the same Lie algebra:

{A ∈ Lin(Rn) | A∗ = −A}

(cf. Proposition in Section 5).
Give a local Lie group isomorphism between O(n) and SO(n).
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5. A complex vector space and its complex linear maps can be considered to
be a real vector space and real linear maps.

Demonstrate that

SL(2,C) :=
{

L ∈ Lin(C2)
∣

∣ detL = 1
}

is a six-dimensional Lie group having

{

A ∈ Lin(C2)
∣

∣ TrA = 0
}

as its Lie algebra.
6. Let n be a positive integer. Prove that

U(n) : =
{

L ∈ Lin(Cn)
∣

∣ L>L = I
}

,

SU(n) : = {L ∈ U(n) | detL = 1}

are an n2 -dimensional and an (n2−1) -dimensional Lie group, respectively. (The
star denotes adjoint with respect to the usual complex inner product; in other
words, if L is regarded as a matrix then L> is the conjugate of the transpose
of L.) Verify that they have the Lie algebras

{

A ∈ Lin(Cn)
∣

∣ A> = −A
}

,
{

A ∈ Lin(Cn)
∣

∣ A> = −A, TrA = 0
}

,

respectively.
7. Prove that

U(1) :=
{

L ∈ Lin(C)
∣

∣ L>L = I
}

≡
{

α ∈ C
∣

∣ |α| = 1
}

is a one-dimensional Lie group, locally isomorphic but not isomorphic to T n(R).
8. Let G ⊂ GA(V) be a Lie group. An orbit of G is a nonvoid subset P of

V such that {L(x)| L ∈ G} = P for some—hence for all— x ∈ P.
Prove that distinct orbits are disjoint. V is the union of orbits of G. In other

words, the relation ∼ on V defined by x ∼ y if x and y are in the same orbit
of G is an equivalence relation.

9. Find the orbits of GA(V), GL(V), T n(V), O(n), SO(n), U(n), SU(n).
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1. Basic notation

marks the end of a proposition, a proof or a definition, if
necessary

:= =: defining equalities; the symbol on the side of the colon is
defined to equal the other one

∅ the void set
N the set of non-negative integers

R the set of real numbers
R

+ the set of positive real numbers

R
+
0 the set of non-negative real numbers

Xn the n -fold Cartesian product of the set X with itself (n ∈
N)

Domf the domain of the map f

Ranf the range of the map f

f : X → Y f is a map with Domf = X, Ranf ⊂ Y

f : X  Y f is a map with Domf ⊂ X, Ranf ⊂ Y

7→ the symbol showing a mapping rule

f |A the restriction of the map f onto A ∩Domf

f ⊂ g the map g is an extension of f, i.e.
Domf ⊂ Domg, g|Domf = f

−1
f the total inverse of the map f : X  Y, i.e. if H ⊂ Y then

−1
f (H) = {x ∈ Domf | f(x) ∈ H}

g ◦ f the composition of the maps g : Y  Z and f : X  Y,

Dom(g ◦ f) :=
−1
f (Domg) ∩Domf, x 7→ g(f(x))

×
i∈T

fi the Cartesian product of the maps fi : Xi 7→ Yi (i ∈ T) :
(

×
i∈T

Xi

)

→
(

×
i∈T

Yi

)

, (xi)i∈T 7→
(

fi(xi)
)

i∈T
n
× f the n -fold Cartesian product of f with itself

(n ∈ N)
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(fi)i∈T the joint of the maps fi : X → Yi,
X → ×

i∈T
Yi, x 7→

(

fi(x)
)

i∈T

KerL :=
−1
L{0}, the kernel of the linear map L

prk R
N → R, the k -th coordinate projection

1X the identity map X → X, x 7→ x for a vector space X

1X the identity map X → X, x 7→ x for an affine space X

2. Other notations

∗ marks the dual of vector spaces and the transpose of linear
maps, IV.1.1, IV.1.4

> marks adjoints of linear maps, V.1.5

⊗ tensor product, IV.3.2

∧ antisymmetric tensor product, IV.3.14

∨ symmetric tensor product, IV.3.14

⋆ q ⋆ t is the unique element in the intersection of q and t,
I.2.2, II.3.6.2

ar the arrow of spacetime transformations, I.11.3.1, II.10.1.1

A(b) the set of b -antisymmetric maps, V.2.7
in particular, A(h) : V.3.8

A(g) : V.4.15

h Euclidean form, V.3.1, I.1.2.1

hu Euclidean form on Su, II.1.3.3

Bu the set of relative velocities with respect to u, II.4.2.5

CU CU(x) is the U -line passing through x (U -space point that
x is incident with), I.3.1.6, II.3.1.3

S the set of spacelike vectors, I.1.2.1

Su the set of vectors g -orthogonal to u, II.1.3.2

SU U -space, I.3.2.1, II.3.1.3

SU the set of space vectors of a rigid observer U , I.4.3.4

det determinant, IV.3.18

DF derivative of F, VI.3.3

g Lorentz form, V.4.1, II.1.2.1

G Galilean group, I.11.3.1

ξU splitting according to U , I.3.3.3,

ξu,o splitting according to (u, o), I.4.1.4, II.3.6.3

ξu vector splitting, I.8.2.1, II.7.1.1

ξS,U splitting according to a reference frame, II.3.2.3
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ξu′u the vector transformation rule, II.8.2.4, II.7.1.4

i embedding of S into M, I.1.2.1

iu embedding of Su into M, II.1.3.2

TS time according to the simultaneity S, II.3.2.1
L Lorentz group, II.10.1.1

La( ) Lie algebra of a Lie group, VII.3.3, VII.4.2

L(u′,u) Lorentz boost, II.1.3.8

special Galilean transformation, I.11.3.7

N Noether group, I.11.6.1

N := S

L
, I.1.3.5

Oo vectorization with origin o, VI.1.1

O(h) group of orthogonal transformations, I.11.1.1

O(hu) group of orthogonal transformations, II.10.1.4

πu projection along u, I.1.3.8, II.1.3.2

P Poincaré group, II.10.3.1

Pu u -spacelike inversion I.11.3.4, II.10.1.3

RU(t, to) rotation of a rigid observer, I.4.2.2

ηu covector splitting, I.8.3.1, II.7.2.1

ηu′u the covector transformation rule, I.8.3.2, II.7.2.2

sign sign of permutations, IV.3.14

sign of spacetime transformations, I.11.3.1,II.10.1.1

SO(h) group of rotations, I.11.1.2

τ time evaluation, I.1.2.2

τS time evaluation of a synchronization, II.3.2.1

τu standard u -time evaluation, II.3.6.1

Tx( ) tangent space at x, VI.4.6

T n( ) translation group, VII.3.1

Ta translation by a, VII.3.1

Tu u -timelike inversion, I.11.3.4, II.10.1.3

vu′u relative velocity, I.6.2.2, II.4.2.2

V (1) the set of absolute velocities, I.1.3.7, II.1.3.1

V (0) the set of lightlike velocities, II.4.7.1





COMMENTS AND BIBLIOGRAPHY

The fundamental notions of space and time appear in all branches of physics,
giving a general background of phenomena. Nowadays the mathematical way of
thinking and speaking becomes general in physics; that is why it is indispensable
to construct mathematically exact models of spacetime.

Since 1976, an educational and research programme has been in progress at
the Department of Applied Analysis, Eötvös Loránd University, Budapest, to
build up a mathematical theory of physics in which only mathematically defined
notions appear. In this way we can rule out tacit assumptions and the danger
of confusions, and physics can be put on a firm basis.

The first results of this work were published in two books:

[1] Matolcsi, T.: A Concept of Mathematical Physics, Models for Spacetime,
Akadémiai Kiadó, 1984,

[2] Matolcsi, T.: A Concept of Mathematical Physics, Models in Mechanics,
Akadémiai Kiadó, 1986.

Since that time our teaching experience revealed that a mathematical treat-
ment of spacetime could claim more interest than we had thought it earlier. The
notions of the spacetime models throw new light on the whole physics, a number
of relations become clearer, simpler and more understandable; e.g. the old prob-
lem of material objectivity in continuum physics has been completely solved, as
discussed in

[3] Matolcsi, T.: On material frame-indifference, Archive for Rational Me-
chanics and Analysis, 91 (1986), 99–118.

That is why it seems necessary that spacetime models be formulated in a way
more familiar to physicists; so they can acquire and apply the notions and results
more easily. The present work is an enlarged and more detailed version of [1].
The notations (due to the dot product) became simpler. The amount of applied
mathematical tools decreased (by omitting some marginal facts, the theory of
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smooth manifolds could be eliminated), the material, the explanations and the
number of the illustrative examples increased.

There is only one point where the new version contradicts the former one
because of the following reason. In the literature one usually distinguishes
between the Lorentz group (a group of linear transformations of R

4) and the
Poincaré group, called also the ‘inhomogeneous Lorentz group’ (the Lorentz
group together with the translations of R

4). In our terminology, one considers
the arithmetic Lorentz group which is a subgroup of the arithmetic Poincaré
group. However, we know that in the absolute treatment the Poincaré group
consists of transformations of the affine space M, whereas the Lorentz group
consists of transformations of the vector space M; the Lorentz group is not
a subgroup of the Poincaré group. Special Lorentz transformations play a
fundamental role in usual treatments in connection with transformation rules.

The counterpart of the Poincaré group in the nonrelativistic case is usually
called the Galilean group and one does not determine its vectorial subgroup that
corresponds to the Lorentz group. The special Galilean transformations play
a fundamental role in connection with transformation rules. In the absolute
treatment we must distinguish between the transformation group of the affine
space M and the transformation group of the vector space M which is not
a subgroup of the former group. The special Galilean transformations turn
to be transformations of M; that is why I found it convenient to call the
corresponding linear transformation group the Galilean group and to introduce
the name Noether group for the group of affine transformations.

In the former version I used these names interchanged because then group
representations (applied in mechanical models) were in my mind and it escaped
my attention that from the point of view of transformation rules—which have a
fundamental importance—the present names are more natural.

The present treatment of spacetime is somewhat different from the usual ones;
of course, there are works in which elements of the present models appear. First
of all, in

[4] Weyl, H.: Space–Time–Matter, Dover publ. 1922

spacetime is stated to be a four-dimensional affine space, the bundle structure
of nonrelativistic spacetime (i.e. spacetime, time and time evaluation) and the
Euclidean structure on a hyperplane of simultaneous world points appear as
well. However, all these are not collected to form a clear mathematical structure;
moreover, the advantages of affine spaces are not used, immediately coordinates
and indices are taken; thus the possibility of an absolute description is not
utilized.

A similar structure (‘neoclassical spacetime’: spacetime and time elapse) is
expounded in
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[5] Noll, W.: Lectures on the foundation of continuum mechanics and thermo-
dynamics, Arch. Rat. Mech. 52 (1973) 62–92.

In these works time periods and distances are considered to be real numbers.
The notion of observer remains undefined; even this undefined notion is used to
introduce e.g. differentiability in the “neoclassical spacetime”.

When comparing our notions, results and formulae with those of other treat-
ments, using the phrases ‘in most of the textbooks’, ‘in conventional treatments’
we refer e.g. to the following books:

[6] French, A.P. Special Relativity, Norton, New York, 1968,

[7] Essen, L.: The Special Theory of Relativity, Clarendon, Oxford, 1971,

[8] Møller, C.: The Theory of Relativity, Oxford University Press, 1972,

[9] Taylor, J.G.: Special Relativity, Clarendon, Oxford, 1975,

[10] Bergmann, P.G.: Introduction to the Theory of Relativity, Dover publ.,
New York, 1976.

General relativity, i.e. the theory of gravitation is one of the most beautiful
and mathematically well elaborated area of physics which is treated in a number
of excellent books, e.g.

[11] Misner, C.W.–Thorne, K.S.–Wheeler, J.A.: Gravitation, W.H.Freeman &
Co., 1973,

[12] Adler, R.–Bazin, M.–Schiffer, M.: Introduction to General Relativity,
McGraw-Hill, 1975,

[13] Ohanian, H.C.: Gravitation and Spacetime, W.W.Norton & Co., 1976,

[14] Rindler, W.: Essential Relativity. Special, General and Cosmological,
McGraw-Hill, 1977,

[15] Wald, R.: Space, Time and Gravity, Chicago Press, 1977.

To understand the nonrelativistic and special relativistic spacetime models,
it is sufficient to have some elementary knowledge in linear algebra and anal-
ysis. Tensors and tensorial operations are the main mathematical tools used
throughout the present book. Those familiar with tensors will have no difficulty
in reading the book. The necessary mathematical tools are summarized in its
second part where the reader can find a long and detailed chapter on tensors.
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The book uses the basic notions and theorems of linear algebra (linear com-
bination, linear independence, linear subspace etc.) without explanation. There
are many excellent books on linear algebra from which the reader can acquire
the necessary knowledge, e.g.,

[16] Halmos, P.R.: Finite Dimensional Vector Spaces, Springer, 1974,

[17] Smith, L.: Linear Algebra, Springer, 1978,

[18] Grittel, D.H.: Linear Algebra and its Applications, Harwood, 1989,

[19] Fraleigh, J.B.–Beauregard, R.A.: Linear Algebra, Addison–Wesley, 1990,

Some notions and theorems of elementary analysis (limit of functions, conti-
nuity, Lagrange’s mean value theorem, implicit mapping theorem, etc.) are used
without any reference; the following books are recommended to be consulted:

[20] Zamansky, M.: Linear Algebra and Analysis, Van Nostrand, 1969,

[21] Rudin, W.: Principles of Mathematical Analysis, McGraw Hill, 1976,

[22] Aliprantis, C.D.–Burkinshow, O.: Principles of Real Analysis, Arnold,
1981,

[23] Haggarty, R.: Fundamentals of Mathematical Analysis, Addison-Wesley,
1989,

[24] Adams, R.A.: Calculus: a Complete Course, Addison–Wesley, 1991.

From the theory of differential equations only the well-known existence and
uniqueness theorem is used which can be found e.g. in

[25] Hyint-U Tyn: Ordinary Differential Equations, North-Holland, 1978,

[26] Birkhoff, G.–Rota, G.C.: Ordinary Differential Equations, Wiley, 1989.

The present book avoids the theory of smooth manifolds though it would be
useful for the investigation of the space of general observers and necessary for
the treatment of general relativistic spacetime models. The following books are
recommended to the reader interested in this area:

[27] Boothby, W.M.: An Introduction to Differentiable Manifolds and Rieman-
nian Geometry, Academic Press, 1975,
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[28] Choquet-Bruhat, Y.–Dewitt-Morette, C.: Analysis, Manifolds and Physics,
North-Holland, 1982,

[29] Abraham, R.–Marsden, J.E.–Ratiu, T.: Manifolds, Tensor Analysis, and
Applications, Springer, 1988.

Nonrelativistic and special relativistic spacetime models involve some elemen-
tary facts about certain Lie groups. Those who want to get more knowledge on
Lie groups can study, e.g. the following books:

[30] Warner, F.W.: Foundations of Differentiable Manifolds and Lie Groups,
Springer, 1983,

[31] Sattinger, R.H.–Weawer, O.L.: Lie groups and Lie algebras with Applica-
tions to Physics, Geometry and Mechanics, Springer, 1986.

Since the first edition of this book, the following articles have been based on
the present theory of spacetime to solve some problems:

[32] Matolcsi, T.– Gohér, A.: Spacetime without reference frames and its appli-
cation to the Thomas rotation, Publications in Applied Analysis, 5 (1996),
1–11,

[33] Matolcsi, T.–Gruber, T.: Spacetime without reference frames: An applica-
tion to the kinetic theory, International Journal of Theoretical Physics, 35
(1996), 1523–1539,

[34] Matolcsi, T.: Spacetime without reference frames: An application to syn-
chronizations on a rotating disk, Foundations of Physics, 28 (1998), 1685–
1701,

[35] Matolcsi, T.– Gohér, A.: Spacetime without reference frames: An applica-
tion to the velocity addition paradox, Studies In History and Philosophy of
Science Part B: Studies In History and Philosophy of Modern Physics, 32
(2001), 83–99,

[36] Farkas, Sz.–Kurucz, Z.–Weiner, M.: Poincaré covariance of relativistic
quantum position, International Journal of Theoretical Physics, 41 (2002),
79–88,

[37] Matolcsi, T.–Matolcsi, M.–Tasnádi, T.: On the relation of Thomas rotation
and angular velocity of reference frames, General Relativity and Gravita-
tion, 39 (2007), 413–426,
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[38] Matolcsi, T.–Ván, P.: On the objectivity of time derivatives, Atti dell’Ac-
cademia Peloritana dei Pericolanti Classe di Scienze Fisiche, Matematiche
e Naturali, 86 (2008), Suppl. 1, C1S0801015,

[39] Ván, P.: Kinetic equilibrium and relativistic thermodynamics, EPJ Web of
Conferences 13 (HCBM 2010 – International Workshop on Hot and Cold
Baryonic Matter), 2011, 07004,

[40] Fülöp, T.–Ván, P.: Kinematic quantities of finite elastic and plastic defor-
mation, Mathematical Methods in the Applied Sciences, 35 (2012), 1825–
1841,

[41] Fülöp, T.–Ván, P.–Csatár, A.: Elasticity, plasticity, rheology and thermal
stress – an irreversible thermodynamical theory, in: Pilotelli, M.–Beretta,
G.P. (eds.): Proceedings of the 12th Joint European Thermodynamics
Conference, JETC 2013, Cartolibreria Snoopy, 2013, 525–530,

[42] Fülöp, T.: Objective thermomechanics, arXiv:1510.08038 (2015),

[43] Asszonyi, Cs.–Csatár, A.–Fülöp, T.: Elastic, thermal expansion, plastic
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