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I C.Bild–D.A. Deckert–H.Ruhl. Phys. Rev. D, 99 (2019)
I Dirac’s derivation of LAD equation: unjustified
Gauss-Stokes theorem, Taylor expansion, limit to a point

I rigid spherical shell, radious ε, uniform continuous charge
distribution; world tube

I Basic assumption: the electromagnetic fields outside the
world tube of the shell and the point charge at the centre
are equal.

I Equation with time delay ε.

We have shown
1. the world tube breaks down for accelerations higher than 1

ε

2. the basic assumption is not valid, proved by Distribution
Theory.
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Scheme of the presentation

Usual notions of electric energy and force
in statics are reappraised

⇓
New results are obtained in the frame-
work of Distribution Theory

⇓
Suggested by the considerations in stat-
ics, the self-force of an accelerated point
charge is derived in Distribution Theory

⇓
The role of the self-force and its relation
to the LAD equation is examined



Distributions

distribution and Distribution

I measure λ → Distribution: (λ | ψ) :=
∫
ψ(x) dλ(x)

I locally integrable function f → Distribution:
(f | ψ) :=

∫
f (x)ψ(x) dx

I locally non-integrable → pole taming → Distribution



Pole taming

I |q| is the length of the vector q in a three dimensional
Euclidean space (the function | · | is the distance from the
origin)

I 1
|·|2+m is not locally integrable if m is a positive integer

I T (m−1)
ψ is the Taylor polynomial of order m − 1 of ψ at zero

I
(
tm 1
|·|2+m

∣∣∣ ψ) :=
∫ ψ(q)−T (m−1)

ψ
(q)

|q|2+m dq !!



Electrostatics

An important notion
I Charge distributions extraneous to each other: disjoint

supports
I Electric field extraneous to a charge distribution: its

producing charge distribution is extraneous to the one in
question
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Electrostatic energies (by Jackson)
I Point charge e at space point qe , extraneous potential V ,

extraneous electric energy: eV (qe); charge density ρ,
extraneous potential, extraneous electric energy density: ρV

I A charge distribution has a self-energy because of the inside
interaction

I System of point charges, self-energy: the work done by
transporting e1 . . . , en from the infinity to their places
q1, . . . , qn

I 1. step: no work for the first charge, the self-energy is zero
I n. step:

1
2

n∑
k 6=i=1

ekei
4π|qk − qi |

= 1
2

n∑
k=1

(
ek(V − Vk)(qk)

)
I More and more particles with smaller and smaller charges

together → continuous charge distribution

Without a serious objection, 1
2ρV can be accepted as the self-

energy density of a charge density ρ in its own potential V
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Electrostatic energies (by Jackson)
I ρV = (divE)V = div(EV )−E · gradV =

= div(EV ) + |E|2 (divE = ρ)
I The total self-energy (Gauss theorem)

1
2

∫
ρV = 1

2

∫
|E|2

I ‘Electric self-energy density’ = 1
2 |E|

2

I For a point charge: the electric self-energy is infinite

Comment
ρV is zero where ρ is zero but |E|2 is not zero there

It is unjustified to consider 1
2 |E|

2 the self-energy
density of a static electric field E. It has the only
physical meaning: its integral – if it is integrable –
over all the space is the total self-energy

Amazing and shocking:
first step “the electric self-energy of a point charge is zero”
conclusion “the electric self-energy of a point charge is infinite”
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Electric self-energy of a point charge

I The infinite self-electric energy: three times incorrect
reasoning:
1. 1

2ρV does not make sense for a point charge
2. 1

2 |E|
2 is not the self-energy density even in the continuous case

3. Gauss theorem is not applicable
I 1

2 |E|
2 is not locally integrable, it has a pole at the space point

where the charge is
I 1

2tm|E|2, mathematical construction; it could have the only
physical meaning: its ‘integral’ is the self-energy of the point
charge

I 1
2tm|E|2 does have this physical meaning: the self-energy is
zero, in accordance with the ‘first step’:(1

2tm|E|2
∣∣∣ 1) = 0



Electrostatic forces

I Point charge e at space point qe , extraneous electric field E,
extraneous force: eE(qe); charge density ρ, extraneous
electric field E, extraneous force density: ρE



Electrostatic forces

I Point charge e at space point qe , extraneous electric field E,
extraneous force: eE(qe); charge density ρ, extraneous
electric field E, extraneous force density: ρE

I A point charge does not act on itself: its self-force is zero



Electrostatic forces

I Point charge e at space point qe , extraneous electric field E,
extraneous force: eE(qe); charge density ρ, extraneous
electric field E, extraneous force density: ρE

I A point charge does not act on itself: its self-force is zero
I System of point charges, self-force:

∑n
k=1 ek(E −Ek)(qk)



Electrostatic forces

I Point charge e at space point qe , extraneous electric field E,
extraneous force: eE(qe); charge density ρ, extraneous
electric field E, extraneous force density: ρE

I A point charge does not act on itself: its self-force is zero
I System of point charges, self-force:

∑n
k=1 ek(E −Ek)(qk)

I More and more particles with smaller and smaller charges
together → continuous charge distribution

Without a serious objection, ρE can be accepted as the self-force
density of the charge density ρ in its own electric field E



Electrostatic forces

I Point charge e at space point qe , extraneous electric field E,
extraneous force: eE(qe); charge density ρ, extraneous
electric field E, extraneous force density: ρE

I A point charge does not act on itself: its self-force is zero
I System of point charges, self-force:

∑n
k=1 ek(E −Ek)(qk)

I More and more particles with smaller and smaller charges
together → continuous charge distribution

Without a serious objection, ρE can be accepted as the self-force
density of the charge density ρ in its own electric field E

I ‘Electrostatical stress tensor’ P := −E ⊗E + 1
2 |E|

21S
−divP = ρE (divE = ρ, E is produced by ρ)



Electrostatic forces
I Point charge e at space point qe , extraneous electric field E,

extraneous force: eE(qe); charge density ρ, extraneous
electric field E, extraneous force density: ρE

I A point charge does not act on itself: its self-force is zero
I System of point charges, self-force:

∑n
k=1 ek(E −Ek)(qk)

I More and more particles with smaller and smaller charges
together → continuous charge distribution

Without a serious objection, ρE can be accepted as the self-force
density of the charge density ρ in its own electric field E

I ‘Electrostatical stress tensor’ P := −E ⊗E + 1
2 |E|

21S
−divP = ρE (divE = ρ, E is produced by ρ)

Comment
ρE is zero where ρ is zero but P is not zero there:

It is unjustified to consider P a real stress tensor of a
static electric field. It has the only physical meaning
that its negative divergence is the self-force density
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Electrostatic self-force of a point charge

I The fictitious stress tensor P := −E ⊗E + 1
2 |E|

21S
is not locally integrable, it has a pole at the space point where
the charge is

I tmP, mathematical construction; it could have the only
physical meaning: its negative divergence is the self-force of
the point charge

I tmP does have this physical meaning: the self-force is zero:

−div(tmP) = 0
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Going round

I The path we have taken in statics for self-energy and
self-force:
– point charge (known quantities)
– system of point charges
– continuous charge distribution
– point charge by pole taming (resulting quantities)

I The resulting quantities are equal to the starting ones
I Leaving statics, we shall take a similar path: the unknown

starting quantity, the self-force, will be obtained by the
resulting one
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Beyond statics
I Point charge e, velocity v , extraneous electric and magnetic

field E and B, extraneous force: e(E + v ×B)
I Charge density ρ, velocity field v , extraneous electric and

magnetic fields, extraneous force density: ρ(E + v ×B)
I A non-inertial point charge acts on itself, self-force: fs
I System of point charges, self-force:

n∑
k=1

ek
(
(E −Ek) + vk × (B −Bk)

)
+

n∑
k=1

fs,k

I More and more particles with smaller and smaller charges
together → continuous charge distribution:

ρ(E + v ×B)+?
? 6= 0 probably

Contrary to electrostatics, it is questionable
that ρ(E+v×B) = ρE+i×B is the self-force
density of ρ in its own fields E and B



Spacetime formulae

T. Matolcsi: Spacetime without Reference Frames, Minkowski
Institute Press, 2020

I Spacetime points x , y . . . spacetime vectors x,y , . . .
I If x , y are spacetime points then x − y is a spacetime vector
I x · y ∼ xkyk , L · x ∼ Likxk , x ⊗ y ∼ x iyk

I absolute velocity u, u · u = −1
(
(−1, 1, 1, 1)

)
I Spacetime differentiation D ∼ ∂k , D ·T ∼ ∂kT ik
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Spacetime formulation; continuous case

I F · j + ? absolute self-force density

It is questionable that F · j is the absolute
self-force density of j in its own field F

I ‘Energy-momentum tensor’ T := −F · F − 1
4(TrF · F)1

I The time-time component of T is 1
2(|E|2 + |B|2)

I The space-space component of T is −E⊗E + 1
2 |E|

21S + . . .

It is unjustified to consider T a
real energy-momentum tensor

I −D ·T = F · j (D · F = j, F is produced by j)

It is questionable that T has the physical meaning
that its negative spacetime divergence is the absolute
self-force density
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world line function r (proper time→spacetime)

I Absolute velocity of the point charge:
ṙ (proper time→spacetime vector)

I World line: Ranr (one dimensional submanifold)
I Lebesgue measure λRanr
I A point charge e, world line function r ,

spacetime current: eṙλRanr
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I Given r , retarded proper time sr (x):
x − r(sr (x)) is future-lightlike

I A point charge e, given r , produced electromagnetic potential
(Liénard–Wiechert)

x 7→ e
4π

ṙ(sr (x))
−ṙ(sr (x)) ·

(
x − r(sr (x)

)
I Electromagnetic field F[r ] is some functional of the given r
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Spacetime formulation; point charge
I Fictitious energy-momentum tensor

T[r ] := −F[r ] ·F[r ]− 1
4(TrF[r ] ·F[r ])1 is some functional of

the given r
I T[r ] is not locally integrable
I T[r ] is not differentiable on the world line, nevertheless, it can

be expounded, in a convenient sense, in powers of the ‘radial
distance’ from the world line

I T[r ] has a pole in ‘radial distance’ on the world line
I tmT[r ], mathematical construction; it could have the only

physical meaning: its negative spacetime divergence is the
self-force of the point charge but even this meaning is
questionable

I It is proved that

−D · tmT[r ] = 1
4π

2e2

3 (ṙ ∧ ...r ) · ṙλRanr
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On the self-force

I To get the usual self-force, the unjustified use of Gauss-Stokes
theorem, Taylor expansion, limit to a point are ruled out by
pole taming

I We obtained the usual self-force for a given world line
function, thus it can be possibly accepted only for a given
spacetime existence of a point charge

I Enlightment:
– if the force f acts on the point charge
– mr̈ = f (r , ṙ) would valid if there were no radiation
– then the self-force 1

4π
2e2

3 (ṙ ∧ ...r ) · ṙ must be compensated
by an opposite force
– in order that mr̈ = f (r , ṙ) remain valid in case of radiation

I An actual example is an elementary particle revolved in a
cyclotron
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On the LAD equation

I We obtained the usual self-force for a given world line
function

I It is unjustified to put this self-force in a Newtonian-like
equation to obtain the LAD equation which would serve to
determine the world line function

I The LAD equation is a misconception; its pathological
properties are not surprising
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I At present we have not a well working theory of interaction
which would define both F and r together
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I Usual formulation: a point charge under the action of a given
force f , the balance equation

−D · (T m[r ] + T e[F]) + f (r , ṙ)λRanr = 0

I It seems evident that T m[r ] = mṙ ⊗ ṙλRanr and then

mr̈λRanr = f (r , ṙ)λRanr −D · T e[F ]

D · F = ṙλRanr , D ∧ F = 0

would describe that r and F determine each other mutually
I It is not sure that this is a good system of equations with a

convenient T e[F]
I It is sure that T e[F ] cannot be replaced with tmT[r ]

obtained for a given r
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Major approaches

Nonlocal modi�cations of the electromagnetic part, the Maxwell
equations, [1, 2, 3].

Dissipative modi�cations of the mechanical part, the Newton equation
[4, 5, 6, 7].

A suitable interpretation of the LAD equation, e.g. excluding particular
solutions, [8, 9, 10].

Application of continuum charge distributions instead of point charges.
This is the method of the classical papers of Lorentz, Abraham and
Dirac, too, [11, 12, 13, 8]. There are two main aspects of this
strategy:

One may improve the classical theory, with the identi�cation and
elimination of the mathematical problems, [14, 15],
One may modify the point charge model with the help of quantum
mechanics, or with various renormalization procedures,
[16, 17, 18, 19, 20, 21].
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Related issues

The recent experiments of radiation reaction related phenomena, see,
e.g. [22, 23, 24], open the way toward the veri�cation of the
mentioned theories.

There are less rigorous, but more applicable (?) approaches,
[25, 26, 27].
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