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1. NAPLIFE Introduction

Theoretical group 

(modelling, simulations)

Target fabrication group 

(nanocomposite preparation, 

measurements)

Laser group

(Target irradiation)

Analytical group

(Effect detection)

Target properties

Target

Irradiated target

Target 

performance

Material 

properties

Nano-Plasmonic Laser Inertial Fusion Experiment Collaboration
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Time profile of 

the laser beam:

Initial pre-

compression of 

~ 10 ns,

 Stable 

compression

 Then final 

“shocks” of 

~ 15 ns 

to ignite

2. Target fabrication considerations
…for validation.
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1 ps laser pulse length, λ = 800 nm. One-sided & two-sided irradiation tested, 85-

100 % absorption in the DT target length h. Nano-antenna shapes, layer

configurations, layer distribution varied & analyzed.

Our general idea is to increase the absorptivity of the target by using

different types of nanomaterials, such as core-shell structures and nano

rods. Calculations via solving the Maxwell equations, and evaluating the

Ohmic heating were performed.

[M. Csete, et al.,  University of Szeged, HU]

core-shell

nanorod

ordered
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individual cross-sections

2. Target fabrication considerations
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Simulations were performed to

 optimize the particle geometry

considering the RI of the target.

 investigate the effect of random

orientation and distribution.

 maximize the absorption (and heating)

along the target.

k

E

[M. Csete, et al.,  University of Szeged, HU]

σ0°
ACS/σ0°

GCS = 14.245

σ45°
ACS/σ45°

GCS = 9.9052

σ90°
ACS/σ90°

GCS =0.0346

2. Target fabrication considerations
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2. Target fabrication considerations

Steady-state simulations -> random nanoresonator distributions

-> uniform heating throughout UDMA target

[M. Csete, et al.,  University of Szeged, HU]

optimization result:

near-uniform absorption

randomized
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2. Target fabrication considerations
Concept of our target for nanoplasmonic laser fusion

.

.

.

.

.

.

.

.

.

d1, r1

d2, r2

d3, r3

dn, rn

.

.

.

Target parameters

(from simulations): 

Number of layers n=10

d1=d2=…=dn= 2 mm

D = sum(d) = 20 mm

rn: different concentration of 

nanoparticles in one layer.

Laser top

Laser bottom
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The fusion target will be a nanocomposite, where the nanoparticles are doped 

into the bulk of a polymer. The type of the polymer and the polymerization itself 

needs to be selected according to our requirements:

 Uniform particle distribution,

 Avoid particle aggregation,

 Long-time particle stability,

 Possibility to build layers on each other.

 Polymerization type:

 Solution polymerization,

 Bulk polymerization,

 Photopolymerization.

 Particle capping should be controlled.

 Hydrophilic (synthesis),

 Hydrophobic (for doping).

 Nanoparticle phase transfer

10

3. Nanocomposite preparation

Water 

+ NPs

Organic 

solvent

Organic 

solvent + 

NPs

Water

[El Khoury, 2009, 10.1039/b901826c]
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3. Nanocomposite preparation
The selected polymerization method is photopolymerization:

 Works with thin layers (see microtechnology resists e.g. SU-8).

 Fast polymerization (a couple of minutes).

 Polymerized layers are stable in organic solvents.

 Layers can be built on each other.

The selected polymer is UDMA (urethane dimethacrylate) with TEGDMA

(Triethylene Glycol Dimethacrylate) dilution monomer, CQ (Camphorquinone)

photoinitiator and EDAB (ethyl 4-dimethylaminobenzoate) co-initiator, which is a

well-known mixture in dentistry.

Emission spectrum and equipment used for the photopolymerization
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4. Fabrication methods – Spin Coating

Challenges: 

 The viscosity needs to be controlled.

 There is non-polymerized film on top of the polymerized layer.

 Surface roughness is not ideal. 

[Rodrigo Perez Gartia: 10.13140/RG.2.2.31031.78247]

Nitrogen flow

Illumination

Sample

https://www.researchgate.net/deref/http:/dx.doi.org/10.13140/RG.2.2.31031.78247?_sg%5b0%5d=2g7XXprKvAiZTLLXEZZY7Q02htu0WxE0EmxAFEmoqeGsKmfI-Dz0Fwm_bhL1Lh-PF23H25UwsnOzSYEm95ovUxfUag.GpBVyuHgD3_Pnvf3O7gVATT1BuCK8KyxK777WIVwladSPPvMutzeakarYPc0cpQ22_Js9uxwxytcbx4l_Rf4SA
https://www.researchgate.net/deref/http:/dx.doi.org/10.13140/RG.2.2.31031.78247?_sg%5b0%5d=2g7XXprKvAiZTLLXEZZY7Q02htu0WxE0EmxAFEmoqeGsKmfI-Dz0Fwm_bhL1Lh-PF23H25UwsnOzSYEm95ovUxfUag.GpBVyuHgD3_Pnvf3O7gVATT1BuCK8KyxK777WIVwladSPPvMutzeakarYPc0cpQ22_Js9uxwxytcbx4l_Rf4SA
https://www.researchgate.net/deref/http:/dx.doi.org/10.13140/RG.2.2.31031.78247?_sg%5b0%5d=2g7XXprKvAiZTLLXEZZY7Q02htu0WxE0EmxAFEmoqeGsKmfI-Dz0Fwm_bhL1Lh-PF23H25UwsnOzSYEm95ovUxfUag.GpBVyuHgD3_Pnvf3O7gVATT1BuCK8KyxK777WIVwladSPPvMutzeakarYPc0cpQ22_Js9uxwxytcbx4l_Rf4SA
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4. Fabrication methods – Sandwich 

Pressing

Glass (silicon)

Glass (silicon)
Pressure

a droplet of polymer

Pressure

Illumination

Challenges: 

 the viscosity needs to be controlled,

 layer uniformity needs to be controlled (pressing).
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5. Refractive index measurements -

Ellipsometry

Woollam M-2000DI

ELKH, Centre for Energy Research, 

Institute for Technical Physics and 

Materials Science

For the simulations the complex 

refractive index sensitivity is needed!
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5. Refractive index measurements -

Ellipsometry

Top: Results obtained on a spin 

coated thick (~5um) sample

Bottom: Sample made with 

sandwich pressing, thickness 

below 1 um
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5. Refractive index measurements -

Ellipsometry

Correlation between the sample thickness, the obtained refractive index, and the 

MSE of model fitting

Obtained along a line with 

decreasing sample 

thickness
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6. Refractive index measurements –

LSPRi sensor

Interesting method: LSPRi nanocomposite to measure the RI of the polymer

[Lednický, 2020ACS APPLIED MATERIALS & INTERFACES 12 : 4 pp. 4804-
4814. , 11 p. (2020)] 
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6. Refractive index measurements –

LSPRi sensor

Peak positions: air 528 nm, water: 558 nm, prepolymer mixture: 570 nm, polymer: 577 nm. 

From this the refractive index sensitivity of the sensor is: 90 nm/RIU. 

The refractive index of the prepolymer is 1.466; the polymer: 1.544.

Light source

Spectrometer

a) air; b) water; c) prepolymer mixture; d) polymer

epoxy epoxy epoxy epoxy

glass glass glass
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7. Absorbance measurements

Wavelength [nm]
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Reference

nanoparticle 

concentration

After subtracting the reference

Further optimization is needed!

Measured in transmittance mode with a VIS-NIR spectrometer
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8. Laser irradiation experiments

The setup at Wigner Research Centre for Physics

Laser

Vacuum 

chamber with 

sample
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8. Laser irradiation experiments

Main laser parameters

Impulse energy ~ 32 mJ

Impulse length ~ 45 fs

Focusing lens: f = 50 cm

Beam diameter without focusing ~ 12 mm

Beam diameter in the focus ~ 100 mm

Calculated intensity in the focus ~ 8x1016 W/cm2

During the 

shot

After the shot

After irradiation (one side only!)
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9. Raman spectroscopy on irradiated 

targets

Renishaw inVia mikro-Raman spectrometer and 

a LeicaDM2700 optical microscope

Experimental conditions

Excitation wavelength: 532 nm

Focus diameter: 1.3 mm

Laser intensity in focus: 6 mW

Exposition time: 10 s

Accumulation number: 20

5 points were averaged for each 

sample
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9. Raman spectroscopy on irradiated 

targets
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Normalized and background 

corrected Raman intensities

Doped - reference sample 

(differential Raman intensities)

Differences in the intensities of carbon-related peaks can be 

observed for the doped samples

Small differences 

in peak 

intensities
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Conclusions

 A concept for nanoplasmonic laser fusion with two-sided laser

illumination was presented.

 Preliminary experiments are being performed on nanocomposites:

polymers doped with nanoparticles.

 The effect of the nanoparticles’ properties on the absorption of the

target was discussed.

 Target fabrication technologies were introduced.

 Preliminary characterization results obtained on the first batch of

nanocomposites were presented, including ellipsometry, optical

spectroscopy and Raman spectroscopy.
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