Fundamental aspects of nonequilibrium thermodynamics

Theme issue compiled and edited by Peter Ván

Published 30 March 2020. Available online and in print.
About this issue

Non-equilibrium thermodynamics is a theory where the powerful methods of equilibrium are missing. Non-equilibrium thermodynamics is considered as an emergent theory; its fundamental principles, like the second law, are due to microscopic or mesoscopic properties of matter. Nonequilibrium thermodynamics is a general framework; its universal principles provide strict bounds on macroscopic material properties, restricting the possible micro- or mesodynamics as well. Recent developments show that the latter approach (nonequilibrium thermodynamics without the hyphen) may unify dissipative and nondissipative evolution. Universal principles lead to universal consequences.

Access content online at bit.ly/TransA2170

Purchase the print issue at the reduced price of £35 (usual price £60) by visiting bit.ly/TA-print and entering the promotional code TA 2170 when prompted, or contact:

Turpin Distribution
T +44 1767 604951
E royalsociety@turpin-distribution.com

For more information, contact:
The Royal Society
6 – 9 Carlton House Terrace
London
SW1Y 5AG
T +44 20 7451 2500
W royalsociety.org
E philtransa@royalsociety.org

To find out more about proposing a theme issue and becoming a Guest Editor of the journal, please visit: bit.ly/TAGuestEd

Cover image:
The red spiral represents the von Neumann entropy $S = k \text{Tr}(\rho \ln \rho)$ of a single isolated qubit with an initial mean energy $\langle E \rangle = \text{Tr}(\rho H)$ along a combined Hamiltonian and steepest-entropy-ascent time evolution describing its approach from far non-equilibrium towards the maximum-entropy stable-equilibrium state $\langle X \rangle, \langle Y \rangle, \langle Z \rangle, \langle E \rangle$. The blue spiral in the $\langle X \rangle$–$\langle Y \rangle$ plane represents the corresponding constant-energy time evolution of the state of the qubit. Image courtesy of Professor Gian Paolo Beretta.