"Classical and Quantum symmetries in mathematics and physics"

July 25-29, 2016, Jena

The bootstrap program for the gauge/gravity duality Z. Bajnok

Holographic QFT Group, Wigner Research Centre for Physics, Budapest

"Classical and Quantum symmetries in mathematics and physics"

July 25-29, 2016, Jena

The bootstrap program for the gauge/gravity duality Z. Bajnok

Holographic QFT Group, Wigner Research Centre for Physics, Budapest

IIB strings on $AdS_5 \times S^5$	Integrability	N = 4 SYM
SFT vertex	Form factors	3pt functions

Same light-cone gauge fixing: integrable 2D QFT with particle like excitation. Amplitude \equiv string vertex \leftrightarrow 3pt functions and 1/N corrections in dual gauge theory.

1501.04533,1512.01471: work done in collaboration with Romuald Janik

Large hadron collider

Large hadron collider

Large hadron collider

.

Large hadron collider

Large hadron collider

Large hadron collider

н.

Many "elementary particles" \rightarrow classification

Large hadron collider

Many "elementary particles" \rightarrow classification

Large hadron collider

۰.

Many "elementary particles" \rightarrow classification

 $\label{eq:Fundamental} Fundamental \ representation \rightarrow quarks \rightarrow Standard \ Model: \ \ Calculate \ scatterings$

Interactiongauge groupelectromagneticU(1)weakSU(2)strongSU(3)

Space-time symmetries

Space-time symmetries

Space-time symmetries

Translations: space and time: $\mathbb{R}^{1,d}$ mostly d = 1

Space-time symmetries

Translations: space and time: $\mathbb{R}^{1,d}$ mostly d = 1

conserved charges: E energy and P momentum generate time/space shifts

Space-time symmetries

Translations: space and time: $\mathbb{R}^{1,d}$ mostly d = 1

Decompactify:

Lorentz emerges SO(1, d)

Space-time symmetries

Translations: space and time: $\mathbb{R}^{1,d}$ mostly d = 1

Decompactify:

time proton space

Lorentz emerges

SO(1,d)

Full symmetry: $SO(1, d) \ltimes \mathbb{R}^{1, d}$ dispersion relation $E^2 - P^2 = m^2$ trajectory: $x(t) = v(t - t_0)$

LHC

Space-time symmetries

Translations: space and time: $\mathbb{R}^{1,d}$ mostly d = 1

Decompactify:

Lorentz emerges

SO(1,d)

Full symmetry: $SO(1, d) \ltimes \mathbb{R}^{1, d}$ dispersion relation $E^2 - P^2 = m^2$

trajectory: $x(t) = v(t - t_0)$

Inner symmetries typically Lie group

Nontrivial combination with boosts $[B, Q_s] = sQ_s$

Space-time symmetries

Translations: space and time: $\mathbb{R}^{1,d}$ mostly d = 1

Decompactify:

Lorentz emerges SO(1, d)

Full symmetry: $SO(1, d) \ltimes \mathbb{R}^{1, d}$ dispersion relation $E^2 - P^2 = m^2$

Inner symmetries typically Lie group

Nontrivial combination with boosts $[B, Q_s] = sQ_s$

trajectory:
$$x(t) = v(t - t_0)$$

 $s = \frac{1}{2}$ SUSY, s = 1, energy and momentum, s > 1 momentum dependent time-shift: d = 1 factorization and YBE, d > 1 trivial scattering [Coleman-Mandula]

The simplest interacting QFT: $\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - V(\varphi) \quad V(\varphi) = \frac{m^2}{b^2}(\cosh b\varphi - 1)$

The simplest interacting QFT: $\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - V(\varphi) \quad V(\varphi) = \frac{m^2}{b^2}(\cosh b\varphi - 1)$

S-matrix connects initial and final states asymptotic states are multiparticle states

 \rightarrow LSZ reduction formula

The simplest interacting QFT: $\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - V(\varphi) \quad V(\varphi) = \frac{m^2}{b^2}(\cosh b\varphi - 1)$

S-matrix connects initial and final states asymptotic states are multiparticle states \rightarrow LSZ reduction formula

 $\langle p'_1, p'_2 | \mathcal{O} | p_1, p_2 \rangle = \bar{\mathcal{D}}'_1 \bar{\mathcal{D}}'_2 \mathcal{D}_1 \mathcal{D}_2 \langle 0 | T(\mathcal{O}\varphi(1)\varphi(2)\varphi(3)\varphi(4)) | 0 \rangle$ where $\mathcal{D}_j = i \int d^2 x_j e^{ip_j x - i\omega_j t} \left\{ \partial_t^2 - \partial_x^2 + m^2 \right\}$ amputes a leg and puts it onshell

The simplest interacting QFT: $\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - V(\varphi) \quad V(\varphi) = \frac{m^2}{b^2}(\cosh b\varphi - 1)$

S-matrix connects initial and final states asymptotic states are multiparticle states

 \rightarrow LSZ reduction formula

 $\langle p'_1, p'_2 | \mathcal{O} | p_1, p_2 \rangle = \bar{\mathcal{D}}'_1 \bar{\mathcal{D}}'_2 \mathcal{D}_1 \mathcal{D}_2 \langle 0 | T(\mathcal{O}\varphi(1)\varphi(2)\varphi(3)\varphi(4)) | 0 \rangle$ where $\mathcal{D}_j = i \int d^2 x_j e^{ip_j x - i\omega_j t} \left\{ \partial_t^2 - \partial_x^2 + m^2 \right\}$ amputes a leg and puts it onshell

Consequence: perturbative definition, convergent expansion, calculational tool :

$$S(\theta) = 1 - \frac{1}{4}ib^2\operatorname{csch}\theta - \frac{b^4(\operatorname{csch}\theta(\pi\operatorname{csch}\theta - i))}{32\pi} + \frac{ib^6\operatorname{csch}\theta(\pi\operatorname{csch}\theta - i)^2}{256\pi^2} + O\left(b^8\right)$$

Lorentz transformation $\theta \rightarrow \theta + \Lambda$: invariant combination: $\theta = \theta_1 - \theta_2$

The simplest interacting QFT: $\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - V(\varphi) \quad V(\varphi) = \frac{m^2}{b^2}(\cosh b\varphi - 1)$

S-matrix connects initial and final states asymptotic states are multiparticle states

 \rightarrow LSZ reduction formula

 $\langle p'_1, p'_2 | \mathcal{O} | p_1, p_2 \rangle = \bar{\mathcal{D}}'_1 \bar{\mathcal{D}}'_2 \mathcal{D}_1 \mathcal{D}_2 \langle 0 | T(\mathcal{O}\varphi(1)\varphi(2)\varphi(3)\varphi(4)) | 0 \rangle$ where $\mathcal{D}_j = i \int d^2 x_j e^{ip_j x - i\omega_j t} \left\{ \partial_t^2 - \partial_x^2 + m^2 \right\}$ amputes a leg and puts it onshell

Consequence: perturbative definition, convergent expansion, calculational tool :

$$S(\theta) = 1 - \frac{1}{4}ib^2\operatorname{csch}\theta - \frac{b^4(\operatorname{csch}\theta(\pi\operatorname{csch}\theta - i))}{32\pi} + \frac{ib^6\operatorname{csch}\theta(\pi\operatorname{csch}\theta - i)^2}{256\pi^2} + O\left(b^8\right)$$

Lorentz transformation $\theta \rightarrow \theta + \Lambda$: invariant combination: $\theta = \theta_1 - \theta_2$

control over analytical properties: unitarity, crossing $S(\theta) = S(-\theta)^{-1} = S(i\pi - \theta)$

S-matrix bootstrap : find the two particle S-matrix which satisfies [Zamolodchikov² '79]

1. Yang-Baxter equation:

 $S_{ij}(\theta_i - \theta_j) : V_i \otimes V_j \to V_j \otimes V_i$

3. Maximal analyticity: $S_{12}(\theta)$ is meromorphic for $\Im m(\theta) \in [0, \pi]$, with possible poles at $\Re e(\theta) = 0$. For each pole \exists a Coleman-Thun diagram, in which particles propage on-shell interacting at 3pt or 4pt vertices, preserving all conserved charges.

3. Maximal analyticity: $S_{12}(\theta)$ is meromorphic for $\Im m(\theta) \in [0, \pi]$, with possible poles at $\Re e(\theta) = 0$. For each pole \exists a Coleman-Thun diagram, in which particles propage on-shell interacting at 3pt or 4pt vertices, preserving all conserved charges.

4. Inner symmetry: for any conserved charge, Q

 $S_{12}\Delta_{12}(Q) = \Delta_{21}(Q)S_{12}$ qtriang. (w) Hopf algebra

No inner symmetry, scalar particle $S(\theta) = S(-\theta)^{-1} = S(i\pi - \theta)$

no pole $S(\theta) = \frac{\sinh \theta - i \sin a}{\sinh \theta + i \sin a}$ sinh-Gordon: $a = \frac{\pi b^2}{8\pi + b^2}$ $V(\varphi) = \frac{m^2}{b^2} (\cosh b\varphi - 1)$

No inner symmetry, scalar particle
$$S(\theta) = S(-\theta)^{-1} = S(i\pi - \theta)$$

no pole $S(\theta) = \frac{\sinh \theta - i \sin a}{\sinh \theta + i \sin a}$ sinh-Gordon: $a = \frac{\pi b^2}{8\pi + b^2}$ $V(\varphi) = \frac{m^2}{b^2} (\cosh b\varphi - 1)$
one pole $S(\theta) = \frac{\sinh \theta + i \sin \frac{\pi}{3}}{\sinh \theta - i \sin \frac{\pi}{3}}$ scaling Lee-Yang model

No inner symmetry, scalar particle
$$S(\theta) = S(-\theta)^{-1} = S(i\pi - \theta)$$

no pole $S(\theta) = \frac{\sinh \theta - i \sin a}{\sinh \theta + i \sin a}$ sinh-Gordon: $a = \frac{\pi b^2}{8\pi + b^2}$ $V(\varphi) = \frac{m^2}{b^2} (\cosh b\varphi - 1)$
one pole $S(\theta) = \frac{\sinh \theta + i \sin \frac{\pi}{3}}{\sinh \theta - i \sin \frac{\pi}{3}}$ scaling Lee-Yang model

Inner symmetry= $U_q(\hat{sl}_2)$

2d evaluation representation: soliton doublet (s, \overline{s})

No inner symmetry, scalar particle $S(\theta) = S(-\theta)^{-1} = S(i\pi - \theta)$ no pole $S(\theta) = \frac{\sinh \theta - i \sin a}{\sinh \theta + i \sin a}$ $\sinh - i \sin \frac{\pi}{3}$ $\sinh - i \sin \frac{\pi}{3}$ one pole $S(\theta) = \frac{\sinh \theta + i \sin \frac{\pi}{3}}{\sinh \theta - i \sin \frac{\pi}{3}}$ scaling Lee-Yang modelInner symmetry= $Uq(\hat{sl}_2)$ $R(\theta) = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & \frac{-\sin \lambda \pi}{\sin \lambda(\pi + i\theta)} & \frac{\sin i \lambda \theta}{\sin \lambda(\pi + i\theta)} & 0 \\ 0 & \frac{\sin i \lambda(\pi + i\theta)}{\sin \lambda(\pi + i\theta)} & \frac{-\sin \lambda \pi}{\sin \lambda(\pi + i\theta)} & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ 2d evaluation representation:
soliton doublet (s, \bar{s}) $R(\theta) = S_0(\theta)R(\theta)$ Nondiagonal scattering: $S(\theta) = S_0(\theta)R(\theta)$ $R-matrix \text{ of } U_q = e^{i\pi\lambda}(\hat{sl}_2) XXZ$

No inner symmetry, scalar particle $S(\theta) = S(-\theta)^{-1} = S(i\pi - \theta)$ no pole $S(\theta) = \frac{\sinh \theta - i \sin a}{\sinh \theta + i \sin a}$ sinh-Gordon: $a = \frac{\pi b^2}{8\pi + b^2}$ $V(\varphi) = \frac{m^2}{b^2} (\cosh b\varphi - 1)$ one pole $S(\theta) = \frac{\sinh \theta + i \sin \frac{\pi}{3}}{\sinh \theta - i \sin \frac{\pi}{2}}$ scaling Lee-Yang model Inner symmetry = $U_q(sl_2)$ $R(\theta) = \begin{pmatrix} 0 & \frac{-\sin\lambda\pi}{\sin\lambda(\pi+i\theta)} & \frac{\sin i\lambda\theta}{\sin\lambda(\pi+i\theta)} & 0\\ 0 & \frac{\sin i\lambda\theta}{\sin\lambda(\pi+i\theta)} & \frac{-\sin\lambda\pi}{\sin\lambda(\pi+i\theta)} & 0 \end{pmatrix}$ 2d evaluation representation: soliton doublet (s, \overline{s}) Nondiagonal scattering: $S(\theta) = S_0(\theta)R(\theta)$ R-matrix of $U_{a=e^{i\pi\lambda}}(\hat{sl}_2)$ XXZ Unitarity: $S_0(\theta)S_0(-\theta) = 1$ $S_{0}(\theta) = \prod_{l=1}^{\infty} \left| \frac{\Gamma(2(l-1)\lambda + \frac{\lambda i\theta}{\pi})\Gamma(2l\lambda + 1 + \frac{\lambda i\theta}{\pi})}{\Gamma((2l-1)\lambda + \frac{\lambda i\theta}{\pi})\Gamma((2l-1)\lambda + 1 + \frac{\lambda i\theta}{\pi})} / (\theta \to -\theta) \right|$ Crossing symmetry: $S_0(i\pi - \theta) = S_0(\theta) \frac{-\sin \lambda \pi}{\sin \lambda (\pi + i\theta)}$

No inner symmetry, scalar particle $S(\theta) = S(-\theta)^{-1} = S(i\pi - \theta)$ no pole $S(\theta) = \frac{\sinh \theta - i \sin a}{\sinh \theta + i \sin a}$ sinh-Gordon: $a = \frac{\pi b^2}{8\pi + b^2}$ $V(\varphi) = \frac{m^2}{b^2} (\cosh b\varphi - 1)$ one pole $S(\theta) = \frac{\sinh \theta + i \sin \frac{\pi}{3}}{\sinh \theta - i \sin \frac{\pi}{2}}$ scaling Lee-Yang model Inner symmetry = $U_q(sl_2)$ $R(\theta) = \begin{pmatrix} 0 & \frac{-\sin\lambda\pi}{\sin\lambda(\pi+i\theta)} & \frac{\sin i\lambda\theta}{\sin\lambda(\pi+i\theta)} & 0\\ 0 & \frac{\sin i\lambda\theta}{\sin\lambda(\pi+i\theta)} & \frac{-\sin\lambda\pi}{\sin\lambda(\pi+i\theta)} & 0 \end{pmatrix}$ 2d evaluation representation: soliton doublet (s, \overline{s}) Nondiagonal scattering: $S(\theta) = S_0(\theta)R(\theta)$ R-matrix of $U_{a=e^{i\pi\lambda}}(\hat{sl}_2)$ XXZ Unitarity: $S_0(\theta)S_0(-\theta) = 1$ $S_{0}(\theta) = \prod_{l=1}^{\infty} \left| \frac{\Gamma(2(l-1)\lambda + \frac{\lambda i \theta}{\pi}) \Gamma(2l\lambda + 1 + \frac{\lambda i \theta}{\pi})}{\Gamma((2l-1)\lambda + \frac{\lambda i \theta}{\pi}) \Gamma((2l-1)\lambda + 1 + \frac{\lambda i \theta}{\pi})} / (\theta \to -\theta) \right|$

Crossing symmetry: $S_0(i\pi - \theta) = S_0(\theta) \frac{-\sin \lambda \pi}{\sin \lambda (\pi + i\theta)}$

No poles for $a = \lambda^{-1} > 1$ for a < 1 for all poles \exists a CT diagram [Zamolodchikov²]

No poles for $a = \lambda^{-1} > 1$ for a < 1 for all poles \exists a CT diagram [Zamolodchikov²]

 AdS_5/CFT_4 duality: Inner symmetry: $su(2|2)^{\otimes 2}$, particles: short representations

No inner symmetry, scalar particle

Finite volume spectrum [Bethe-Yang] upto $O(e^{-mL})$, polynomial in L^{-1} :

$$e^{i\Phi_j} = -e^{ip_j L} S(\theta_j - \theta_1) \dots S(\theta_j - \theta_n) = 1$$
$$E_n(L) = \sum_i m \cosh \theta_i$$

No inner symmetry, scalar particle

$$\begin{array}{c|c} \theta_1 & \theta_2 & \dots & \theta \\ \hline \end{array}$$

Finite volume spectrum [Bethe-Yang] upto $O(e^{-mL})$, polynomial in L^{-1} :

$$e^{i\Phi_j} = -e^{ip_j L} S(\theta_j - \theta_1) \dots S(\theta_j - \theta_n) = 1$$
$$E_n(L) = \sum_i m \cosh \theta_i$$

Inner symmetry= $U_q(\widehat{sl}_2)$

diagonalize: $BY_j(\theta_j | \{\theta_i\}) = S_{j1}(\theta_j - \theta_1) \dots S_{jn}(\theta_j - \theta_n)$ for all j

No inner symmetry, scalar particle

$$\begin{array}{c|c} \theta_1 & \theta_2 & \dots & \theta \\ \hline \end{array}$$

 $\theta_1 \wedge \theta_2 \dots \wedge \theta_n$

Finite volume spectrum [Bethe-Yang] upto $O(e^{-mL})$, polynomial in L^{-1} :

$$e^{i\Phi_j} = -e^{ip_j L} S(\theta_j - \theta_1) \dots S(\theta_j - \theta_n) = 1$$
$$E_n(L) = \sum_i m \cosh \theta_i$$

Inner symmetry= $U_q(\hat{sl}_2)$

diagonalize: $BY_j(\theta_j|\{\theta_i\}) = S_{j1}(\theta_j - \theta_1) \dots S_{jn}(\theta_j - \theta_n)$ for all jtransfer matrix: $T(\theta|\{\theta_i\}) = \prod_i S_0(\theta - \theta_i) \operatorname{tr}_0(R_{01}(\theta - \theta_1) \dots R_{01}(\theta - \theta_1))$ commutes $[T(\theta), T(\theta')] = 0$ and $T(\theta_j|\{\theta_i\}) = BY_j(\theta_j|\{\theta_i\})$ sine-Gordon $\leftrightarrow XXZ$

eigenvalue: $\lambda(\theta | \{\theta_i\})$ Bethe-Yang: $-e^{ip_j L}\lambda(\theta_j | \{\theta_i\}) = -1$

No inner symmetry, scalar particle

Finite volume spectrum [Bethe-Yang] upto $O(e^{-mL})$, polynomial in L^{-1} :

$$e^{i\Phi_j} = -e^{ip_j L} S(\theta_j - \theta_1) \dots S(\theta_j - \theta_n) = 1$$

$$E_n(L) = \sum_i m \cosh \theta_i$$

Inner symmetry= $U_q(\hat{sl}_2)$

diagonalize: $BY_j(\theta_j|\{\theta_i\}) = S_{j1}(\theta_j - \theta_1) \dots S_{jn}(\theta_j - \theta_n)$ for all jtransfer matrix: $T(\theta|\{\theta_i\}) = \prod_i S_0(\theta - \theta_i) \operatorname{tr}_0(R_{01}(\theta - \theta_1) \dots R_{01}(\theta - \theta_1))$ commutes $[T(\theta), T(\theta')] = 0$ and $T(\theta_j|\{\theta_i\}) = BY_j(\theta_j|\{\theta_i\})$ sine-Gordon $\leftrightarrow XXZ$

eigenvalue: $\lambda(\theta | \{\theta_i\})$ Bethe-Yang: $-e^{ip_j L}\lambda(\theta_j | \{\theta_i\}) = -1$

Inner symmetry= su(2|2) $AdS_5/CFT_4 \leftrightarrow Hubbard model$

Bethe-Yang equations = Beisert-Staudacher equations

Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle =$ $\sum_{n} \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \dots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n\rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$

Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle =$ $\sum_{n} \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \dots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n\rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$

Form factor bootstrap:

 $\langle 0|\mathcal{O}|\theta_1,\ldots,\theta_n\rangle = \langle 0|\mathcal{O}|\theta_2,\ldots,\theta_n,\theta_1-2i\pi\rangle = S(\theta_i-\theta_{i+1})\langle 0|\mathcal{O}|\ldots,\theta_{i+1},\theta_i,\ldots\rangle$

Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle =$ $\sum_{n} \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \dots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n\rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$

Form factor bootstrap:

 $\langle 0|\mathcal{O}|\theta_1,\ldots,\theta_n\rangle = \langle 0|\mathcal{O}|\theta_2,\ldots,\theta_n,\theta_1-2i\pi\rangle = S(\theta_i-\theta_{i+1})\langle 0|\mathcal{O}|\ldots,\theta_{i+1},\theta_i,\ldots\rangle$

 $-i\operatorname{Res}_{\theta'=\theta}\langle 0|\mathcal{O}|\theta'+i\pi,\theta,\theta_1\ldots,\theta_n\rangle=(1-\prod_i S(\theta-\theta_i))\langle 0|\mathcal{O}|\theta_1,\ldots,\theta_n\rangle$

(0,it)

 θ_n Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle =$ $\sum_{n = 1} \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \dots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n \rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$ (0,0)Form factor bootstrap: $\theta_1 - 2i\pi$ $\langle 0|\mathcal{O}|\theta_1,\ldots,\theta_n\rangle = \langle 0|\mathcal{O}|\theta_2,\ldots,\theta_n,\theta_1-2i\pi\rangle = S(\theta_i-\theta_{i+1})\langle 0|\mathcal{O}|\ldots,\theta_{i+1},\theta_i,\ldots\rangle$ Singularity stucture $-i \operatorname{Res}_{\theta'=\theta}$ $-i\operatorname{Res}_{\theta'=\theta}\langle 0|\mathcal{O}|\theta'+i\pi,\theta,\theta_1\ldots,\theta_n\rangle = (1-\prod_i S(\theta-\theta_i))\langle 0|\mathcal{O}|\theta_1,\ldots,\theta_n\rangle$ Solution for sinh-Gordon: $\langle 0|\mathcal{O}|\theta_1,\theta_2\rangle = e^{(D+D^{-1})^{-1}\log S}$; $Df(\theta) = f(\theta + i\pi)$ Finite volume form factors: polynomial in L^{-1} : $\langle 0|\mathcal{O}|\theta_1, \dots, \theta_n \rangle_L = \frac{\langle 0|\mathcal{O}|\theta_1, \dots, \theta_n \rangle}{\sqrt{\det[\frac{\partial \Phi_i}{\partial \theta_i}]}}$

Decompactify string 2 & 3:

Decompactify string 2 & 3:

 $N_L(\theta_1,\ldots,\theta_n) = e^{-ip_1L} N_L(\theta_2,\ldots,\theta_n,\theta_1-2i\pi) = S(\theta_i-\theta_{i+1}) N_L(\ldots,\theta_{i+1},\theta_i,\ldots)$

