1. Marius de Leeuw, Tamás Gombor, Charlotte Kristjansen, Georgios Linardopoulos, Balázs Pozsgay, Spin Chain Overlaps and the Twisted Yangian, e-Print: arXiv:1912.09338
  2. J. Balog, F. Niedermayer, P. Weisz., On the rotator Hamiltonian for the SU(N)×SU(N) sigma-model in the delta-regime, e-Print: arXiv:1912.05232
  3. Changrim Ahn, Janos Balog, Francesco Ravanini, Addendum: Nonlinear integral equations for the sausage model e-Print: arXiv:1911.12583
  4. Zoltan Bajnok, Istvan Vona, Exact finite volume expectation values of conserved currents, e-Print: arXiv:1911.08525
  5. Sinya Aoki, Janos Balog, Shuichi Yokoyama, Kentaroh Yoshida,Non-relativistic Hybrid Geometry with Gravitational Gauge-Fixing Term, e-Print: arXiv:1910.11032
  6. Zoltán Bajnok, Etienne Granet, Jesper Lykke Jacobsen, Rafael I. Nepomechie, On Generalized QQ-systems, e-Print: arXiv:1910.07805
  7. Arpád Hegedűs, Finite volume expectation values in the sine-Gordon model, e-Print: arXiv:1909.08467
  8. Istvan Vona, Finite volume corrections of non-diagonal form factors, e-Print: arXiv:1908.09704
  9. Tamas Gombor, On the classification of rational K-matrices, e-Print: arXiv:1904.03044
  10. Zoltan Bajnok, Marton Lajer, Balint Szepfalvi, Istvan Vona, Leading exponential finite size corrections for non-diagonal form factors, JHEP 1907 (2019) 173, e-Print: arXiv:1904.00492
  11. Zoltan Bajnok, Fedor Smirnov, Diagonal finite volume matrix elements in the sinh-Gordon model, Nucl.Phys. B945 (2019) 114664 e-Print: arXiv:1903.06990
  12. Árpád Hegedűs, On the finite volume expectation values of local operators in the sine-Gordon model , Nucl.Phys. B948 (2019) 114749, e-Print: arXiv:1901.01806
  13. Michael C. Abbott, Benjamin B. Machta, A scaling law from discrete to continuous solutions of channel capacity problems in the low-noise limit, J. Stat. Phys. (2019), e-Print: arXiv:1710.09351


  1. Chao Wu, Second order transport coefficients of nonconformal relativistic fluids in various dimensions from Dp-brane, e-Print: arXiv:1807.08268
  2. Zoltán Kökényesi, Annamária Sinkovics, Richard J. Szabo, Double field theory for the A/B-models and topological S-duality in generalized geometry, Fortsch.Phys. 66 (2018) no.11-22, 1800069, e-Print: arXiv:1805.11485
  3. Tamás Gombor, New boundary monodromy matrices for classical sigma models, e-Print: arXiv:1805.03034
  4. Haryanto M. Siahaan, Hidden conformal symmetry for the accelerating Kerr black holes, Class.Quant.Grav. 35 (2018) no.15, 155002, e-Print: arXiv:1805.07789
  5. Haryanto M. Siahaan, Accelerating black holes in the low energy heterotic string theory, Phys.Lett. B782 (2018) 594-601, e-Print: arXiv:1805.07790
  6. Árpad Hegedus, Norm of Bethe-wave functions in the continuum limit, Nucl.Phys. B933 (2018) 349-383, e-Print: arXiv:1805.02897
  7. Mahmut Elbistan, Pengming Zhang, Janos Balog, Marchenko method with incomplete data and singular nucleon scattering, e-Print: arXiv:1805.00690
  8. Sinya Aoki, Janos Balog, Shuichi Yokoyama, Holographic computation of quantum corrections to the bulk cosmological constant, e-Print: arXiv:1804.04636
  9. Mahmut Elbistan, Pengming Zhang, Janos Balog, Nucleon scattering and singular potentials, J.Phys. G45 (2018) no.10, 105103, e-Print: arXiv:1803.03047
  10. Zoltan Kokenyesi, Annamaria Sinkovics, Richard J. Szabo, AKSZ Constructions for Topological Membranes on G2‐Manifolds, Fortsch.Phys. 66 (2018) no.3, 1800018, e-Print: arXiv:1802.04581
  11. Zoltán Bajnok, János Balog, Márton Lájer, Chao Wu, Field theoretical derivation of L\"uscher's formula and calculation of finite volume form factors, JHEP 1807 (2018) 174, e-Print: arXiv:1802.04021
  12. Tamas Gombor, Nonstandard Bethe Ansatz equations for open O(N) spin chains, Nucl.Phys. B935 (2018) 310-343, e-Print: arXiv:1712.03753
  13. Arpad Hegedus, Exact finite volume expectation values of $\bar \Psi \Psi $ in the Massive Thirring model from light-cone lattice correlators, JHEP 1803 (2018) 047, e-Print: arXiv:1710.09583


  1. Minkyoo Kim, Naoki Kiryu, Shota Komatsu, Takuya Nishimura, Structure Constants of Defect Changing Operators on the 1/2 BPS Wilson Loop, JHEP 1712 (2017) 055, e-Print: 1710.07325
  2. Zoltan Bajnok, Chao Wu, Diagonal form factors from non-diagonal ones e-Print: arXiv:1707.08027
  3. Ines Aniceto, Zoltan Bajnok, Tamas Gombor, Minkyoo Kim, Laszlo Palla, On integrable boundaries in the 2 dimensional O(N) σ-models, J.Phys. A50 (2017) no.36, 364002, e-Print: arXiv:1706.05221
  4. Minkyoo Kim, Naoki Kiryu, Structure constants of operators on the Wilson loop from integrability, JHEP 1711 (2017) 116, e-Print: arXiv:1706.02989
  5. Arpad Hegedus, Lattice approach to finite volume form-factors of the Massive Thirring/Sine-Gordon model, JHEP 1708 (2017) 059, e-Print: arXiv:1705.00319
  6. Zoltan Bajnok, Romuald A. Janik, From the octagon to the SFT vertex - gluing and multiple wrapping, JHEP 1706 (2017) 058, e-Print: arXiv:1704.03633
  7. B.G. Pusztai, Self-duality and scattering map for the hyperbolic van Diejen systems with two coupling parameters (with an appendix by S. Ruijsenaars), e-Print: arXiv:1701.08558
  8. Changrim Ahn, Janos Balog, Francesco Ravanini, NLIE for the Sausage model, J.Phys. A50 (2017) no.31, 314005, e-Print: arXiv:1701.08933
  9. Sinya Aoki, Janos Balog, Tetsuya Onogi, Peter Weisz, Flow equation for the scalar model in the large N expansion and its applications, PTEP 2017 (2017) no.4, 043B01, e-Print: arXiv:1701.00046
  10. Zoltan Bajnok, Romuald A. Janik , Classical limit of diagonal form factors and HHL correlators, JHEP 1701 (2017) 063 e-Print: arXiv:1607.02830
  11. Mahmut Elbistan, Pengming Zhang, Janos Balog, Effective potential for relativistic scattering, PTEP 2017 (2017) no.2, 023B01, e-Print: arXiv:1611.07923
  12. Gabor Zsolt Toth, Noether's theorems and conserved currents in gauge theories in the presence of fixed fields, Phys.Rev. D96 (2017) no.2, 025018 e-Print: arXiv:1610.03281
  13. B.G. Pusztai, T.F. Gorbe, Lax representation of the hyperbolic van Diejen dynamics with two coupling parameters, Commun.Math.Phys. 354 (2017) no.3, 829-864, e-Print: arXiv:1603.06710


  1. Bajnok Z: How integrability works (for AdS/CFT) , ACTA PHYS POL B 47: (12) 2451-2477, 2016
  2. Minkyoo Kim, Comments on the slope function, e-Print: arXiv:1606.05141 e-Print: arXiv:1606.05141
  3. Sinya Aoki, Janos Balog, Tetsuya Onogi, Peter Weisz, Flow equation for the large N scalar model and induced geometries, Prog. Theor. Exp. Phys. (2016) 083B04, e-Print: arXiv:1605.02413
  4. Zoltan Bajnok, Janos Balog, Katsushi Ito, Yuji Satoh, Gábor Zsolt Tóth, On the mass-coupling relation of multi-scale quantum integrable models JHEP 1606 (2016) 071, e-Print: arXiv:1604.02811
  5. Arpad Hegedus, Jozsef Konczer, Strong coupling results from the numerical solution of the quantum spectral curve, JHEP 1608 (2016) 061, e-Print: arXiv:1604.02346
  6. Janos Balog, Pengming Zhang, Effective potential from zero-momentum potential, PTEP 2016 (2016) no.10, 103B02, e-Print: arXiv:1602.07498
  7. Zoltan Bajnok, Janos Balog, Katsushi Ito, Yuji Satoh, Gábor Zsolt Tóth, Exact mass-coupling relation of the simplest multi-scale quantum integrable model, Phys.Rev.Lett. 116 (2016) no.18, 181601, e-Print: arXiv:1512.04673
  8. Zoltan Bajnok, Romuald A. Janik, The kinematical AdS5xS5 Neumann coefficient, JHEP 1602 (2016) 138, e-Print: arXiv:1512.01471
  9. Zoltan Bajnok, Rafael I. Nepomechie, Wrapping corrections for non-diagonal boundaries in AdS/CFT, JHEP 1602 (2016) 024, e-Print: arXiv:1512.01296
  10. Tamas Gombor, Laszlo Palla, Algebraic Bethe Ansatz for O(2N) sigma models with integrable diagonal boundaries JHEP 1602 (2016) 158, e-Print: arXiv:1511.03107
  11. Zoltan Bajnok and Laszlo Hollo, On form factors of boundary changing operators, Nucl.Phys. B905 (2016) 96-131, e-Print: arXiv:1510.08232
  12. G. Zs. Tóth, Weak cosmic censorship, dyonic Kerr-Newman black holes and Dirac fields, Class.Quant.Grav. 33 (2016) no.11, 115012, e-Print: arXiv:1509.02878
  13. Z. Bajnok, M. Lajer, Truncated Hilbert space approach to the 2d $\phi^4$ theory, J HIGH ENERGY PHYS 2016: (10), 2016, e-Print: arXiv:1512.06901


  1. B.G. Pusztai, On the classical r-matrix structure of the rational BC(n) Ruijsenaars-Schneider-van Diejen system, Nucl. Phys. B 900 (2015) 115-146, e-Print: arXiv:1508.03556
  2. Laszlo Hollo, Yunfeng Jiang, Andrei Petrovskii, Diagonal Form Factors and Heavy-Heavy-Light Three-Point Functions at Weak Coupling, JHEP, vol. 09 (2015), pp 125, e-Print: arXiv:1504.07133
  3. Arpad Hegedus, Extensive numerical study of a D-brane, anti-D-brane system in AdS5/CFT4, JHEP 1504 (2015) 107, DOI: 10.1007/JHEP04(2015)107 e-Print: arXiv:1501.07412
  4. Zoltan Bajnok, Romuald A. Janik, String field theory vertex from integrability JHEP 1504 (2015) 042 DOI: 10.1007/JHEP04(2015)042 e-Print: arXiv:1501.04533
  5. L. Feher, B.G. Pusztai, Generalized spin Sutherland systems revisited, Nucl.Phys. B893 (2015) 236-256 DOI: 10.1016/j.nuclphysb.2015.02.003 e-Print: arXiv:1501.03085
  6. Zoltan Bajnok, Omar el Deeb, Paul A. Pearce, Finite-Volume Spectra of the Lee-Yang Model JHEP 1504 (2015) 073 DOI: 10.1007/JHEP04(2015)073 e-Print: arXiv:1412.8494


  1. Sinya Aoki, Janos Balog, Peter Weisz, Walking in the 3-dimensional large N scalar model JHEP 1409 (2014) 167 YITP-14-53, MPP-2014-296 DOI: 10.1007/JHEP09(2014)167 e-Print: arXiv:1407.7079
  2. L. Hollo, Z.B. Laczko, Z. Bajnok, Explicit boundary form factors: the scaling Lee-Yang model Nucl.Phys. B886 (2014) 1029-1045 DOI: 10.1016/j.nuclphysb.2014.07.021 e-Print: arXiv:1405.3820
  3. Zoltan Bajnok, Romuald A. Janik, Andrzej Wereszczynski, HHL correlators, orbit averaging and form factors JHEP 1409 (2014) 050 DOI: 10.1007/JHEP09(2014)050 e-Print: arXiv:1404.4556
  4. Janos Balog, Relativistic trajectory variables in 1+1 dimensional Ruijsenaars-Schneider type models e-Print: arXiv:1402.6990
  5. Janos Balog, An exact solution of the Currie-Hill equations in 1 + 1 dimensional Minkowski space Phys.Lett. A378 (2014) 3488-3496 DOI: 10.1016/j.physleta.2014.09.062 e-Print: arXiv:1401.7606
  6. Minkyoo Kim, Spectral curve for $\gamma$-deformed AdS/CFT, Phys.Lett. B735 (2014) 332-337, DOI: 10.1016/j.physletb.2014.06.052 e-Print: arXiv:1401.4032
  7. Zoltán Bajnok, János Balog, Diego Correa, Árpad Hegedűs, Fidel I. Schaposnik Massolo and Gábor Zsolt Tóth, Reformulating the TBA equations for the quark anti-quark potential and their two loop expansion, JHEP 1403 (2014) 056, DOI: 10.1007/JHEP03(2014)056, e-Print: arXiv:1312.4258.
  8. Zoltán Bajnok, Nadav Drukker, Árpád Hegedűs, Rafael Nepomechie, László Palla, Christoph Sieg and Ryo Suzuki, The spectrum of tachyons in AdS/CFT, JHEP 1403 (2014) 055, DOI: 10.1007/JHEP03(2014)055, e-Print: arXiv:1312.3900.
  9. Z. Bajnok, F. Buccheri, L. Holló, J. Konczer and G. Takács, Finite volume form factors in the presence of integrable defects, Nucl.Phys. B882 (2014) 501-531, DOI: 10.1016/j.nuclphysb.2014.03.010, e-Print: arXiv:1312.5576.
  10. Zoltan Bajnok, Minkyoo Kim, Laszlo Palla, Spectral curve for open strings attached to the Y=0 brane, JHEP 1404 (2014) 035, DOI: 10.1007/JHEP04(2014)035, e-Print: arXiv:1311.7280.
  11. Gabor Zsolt Toth, Higher spin fields with reversed spin-statistics relation, Int.J.Mod.Phys. A29 (2014) 23, 1450129 DOI: 10.1142/S0217751X14501292 e-Print: arXiv:1309.0084.
  12. Zoltan Bajnok, Laszlo Hollo, Gerard Watts, Defect scaling Lee-Yang model from the perturbed DCFT point of view. Nucl.Phys. B886 (2014) 93-124 DOI: 10.1016/j.nuclphysb.2014.06.019 e-Print: arXiv:1307.4536.


  1. Ladislav Samaj; Zoltan Bajnok: Introduction to the Statistical Physics of Integrable Many-body Systems, Cambridge University Press, 2013 May, 523 p.
  2. Janos Balog, Ferenc Niedermayer, Peter Weisz, Symanzik effective actions in the large N limit. JHEP 1308 (2013) 027. DOI:10.1007/JHEP08(2013)027. e-Print: arXiv:1304.6269.
  3. Sinya Aoki, Janos Balog, Takumi Doi, Takashi Inoue, Peter Weisz, Short Distance Repulsion Among Baryons, Int.J.Mod.Phys. E22 (2013) 1330012. DOI: 10.1142/S0218301313300129. e-Print: arXiv:1302.0185.
  4. Bajnok Zoltán, Sinkovics Annamária: Holográfia a részecskefizikában és a húrelmélet, Természet Világa, Mikrovilág II. 2013.


  1. Zoltan Bajnok, Romuald A. Janik, Six and seven loop Konishi from Luscher corrections, JHEP 1211 (2012) 002 DOI: 10.1007/JHEP11(2012)002 e-Print: arXiv:1209.0791. .
  2. J. Balog, F. Niedermayer, M. Pepe, P. Weisz, U.-J. Wiese, Drastic Reduction of Cutoff Effects in 2-d Lattice O(N) Models, JHEP 1211 (2012) 140. DOI: 10.1007/JHEP11(2012)140. e-Print: arXiv:1208.6232. .