Institute for Theoretical Physics, Utrecht, 19th of January, 2011

# Casimir effect, boundary quantum field theories and AdS/CFT Zoltán Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences,

Eötvös University, Budapest

in collaboration with L. Palla and G. Takács

Institute for Theoretical Physics, Utrecht, 19th of January, 2011

# Casimir effect, boundary quantum field theories and AdS/CFT Zoltán Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences,

Eötvös University, Budapest

in collaboration with L. Palla and G. Takács



Institute for Theoretical Physics, Utrecht, 19th of January, 2011

# Casimir effect, boundary quantum field theories and AdS/CFT Zoltán Bajnok,

Theoretical Physics Research Group of the Hungarian Academy of Sciences,

Eötvös University, Budapest

in collaboration with L. Palla and G. Takács





Planar Casimir energy  $E_0(L) \equiv \Delta_n(\lambda)$  anomalous dimensions of determinant type operators: from finite size effects in *(integrable)* boundary QFT

## **Motivation: Casimir effect**

## Hendrik Casimir (1909-2000)

#### Gecko legs micro mechanical devices (Sandia)









## **Motivation: Casimir effect**

#### Hendrik Casimir (1909-2000)

Gecko legs

#### micro mechanical devices (Sandia)









(a)

(b)









Usual explanation: energy of the vacuum:  $E_0(L) = \frac{1}{2} \sum_{k(L)} \omega(k(L)) \propto \infty$ 



Usual explanation: energy of the vacuum:  $E_0(L) = \frac{1}{2} \sum_{k(L)} \omega(k(L)) \propto \infty$ 

$$E_0(L) - E_0(\infty) - 2E_{plate} = \Delta E_0(L) \quad ; \quad \frac{\Delta E_0(L)}{A}$$



Usual explanation: energy of the vacuum:  $E_0(L) = \frac{1}{2} \sum_{k(L)} \omega(k(L)) \propto \infty$ 

$$E_0(L) - E_0(\infty) - 2E_{plate} = \Delta E_0(L) \quad ; \quad \frac{\Delta E_0(L)}{A}$$

Lifshitz formula: QED, Parallel dielectric slabs  $(\epsilon_1, 1, \epsilon_2)$ 

$$\Delta E_0(L)/A = \sum_{i=\parallel,\perp} \int_0^\infty \frac{d^2q}{8\pi^2} d\zeta \log\left[1 - R_i^1(\zeta,q)R_i^2(\zeta,q)e^{-2L\sqrt{q^2+\zeta^2}}\right]$$



Usual explanation: energy of the vacuum:  $E_0(L) = \frac{1}{2} \sum_{k(L)} \omega(k(L)) \propto \infty$ 

$$E_0(L) - E_0(\infty) - 2E_{plate} = \Delta E_0(L) \quad ; \quad \frac{\Delta E_0(L)}{A}$$

Lifshitz formula: QED, Parallel dielectric slabs  $(\epsilon_1, 1, \epsilon_2)$ 

$$\Delta E_0(L)/A = \sum_{i=\parallel,\perp} \int_0^\infty \frac{d^2q}{8\pi^2} d\zeta \log \left[ 1 - R_i^1(\zeta, q) R_i^2(\zeta, q) e^{-2L\sqrt{q^2 + \zeta^2}} \right] L$$

Physics can be understood in 1+1 D QFT  $\square$ 

integrability helps to solve the problem even exactly  $\rightarrow$  large volume expansion in any D

Infinite volume



S-matrix

#### Infinite volume



S-matrix

Large volumes  $\boldsymbol{\theta}_n$ 0<sub>.</sub> L  $\theta_1$ 

Bethe-Yang lines



Large volumes  $\theta_n$   $\theta_1$   $\theta_2$ 

Bethe-Yang lines





Large volumes  $\theta_n$   $\theta_1$   $\theta_2$   $\theta_2$   $\theta_3$   $\theta_1$   $\theta_2$   $\theta_3$   $\theta_3$   $\theta_1$   $\theta_2$   $\theta_3$   $\theta_3$ 

Bethe-Yang lines



Strip





Bethe-Yang lines



Strip

Semiinfinite volume







Bethe-Yang lines



Strip







Bethe-Yang lines



Strip



 $p_i = m \sinh \theta_i$  $E_i = m \cosh \theta_i$ 



Bulk multiparticle state: with n particles

 $E(\theta_1, \theta_2, \dots, \theta_n) = \sum_i m \cosh \theta_i$ 



| $p_i = m \sinh \theta_i$ |  |
|--------------------------|--|
| $E_i = m \cosh \theta_i$ |  |

Bulk twoparticle state:



| $p_i = m \sinh \theta_i$ |  |
|--------------------------|--|
| $E_i = m \cosh \theta_i$ |  |

Bulk twoparticle in state:  $t \to -\infty$ 





Bulk twoparticle in state:  $t \to -\infty$ 

times develop







Bulk twoparticle in state:  $t \to -\infty$ 

times develop further





Bulk twoparticle in state:  $t \to -\infty$ 

Bulk twoparticle out state:  $t \to \infty$ 

































Minimal solutions: free boson S = 1 sinh-Gordon  $S(\theta) = \frac{\sinh \theta - i \sin \pi p}{\sinh \theta + i \sin \pi p}$ , Lee-Yang  $p = -\frac{1}{3}$ 



Lagrangian:  $\mathcal{L} = \frac{1}{2} (\partial \phi)^2 \qquad -\mu (\cosh b\phi - 1) \qquad p = \frac{b^2}{8\pi + b^2}$ 

## Very large volume spectrum

0 L  $\theta_2$  $\theta_1$ 

 $\theta_n$ 

 $\frac{1}{2}(\partial\phi)^2 - \mu(\cosh b\phi - 1) \leftrightarrow S(\theta) = \frac{\sinh\theta - i\sin\pi p}{\sinh\theta + i\sin\pi p}$ 

## Very large volume spectrum

0 L  $\theta_1$ 

 $\boldsymbol{\theta}_n$ 

$$\frac{1}{2}(\partial\phi)^2 - \mu(\cosh b\phi - 1) \leftrightarrow S(\theta) = \frac{\sinh\theta - i\sin\pi p}{\sinh\theta + i\sin\pi p}$$

Infinite volume  $E(\theta) = m \cosh \theta$  $p(\theta) = m \sinh \theta$  $E(\theta_1,...,\theta_n) = \sum_i E(\theta_i)$ ΕŴ 3m 2mm 0

#### Very large volume spectrum

θ

0

$$\frac{1}{2}(\partial\phi)^2 - \mu(\cosh b\phi - 1) \leftrightarrow S(\theta) = \frac{\sinh\theta - i\sin\pi p}{\sinh\theta + i\sin\pi p}$$


#### Very large volume spectrum

$$\frac{1}{2}(\partial\phi)^2 - \mu(\cosh b\phi - 1) \leftrightarrow S(\theta) = \frac{\sinh\theta - i\sin\pi p}{\sinh\theta + i\sin\pi p}$$



$$\begin{array}{c}
 \theta_{n} \\
 \theta_{n} \\
 \theta_{1} \\
 \theta_{2}
 \end{array}$$

#### Very large volume spectrum

θn

0

$$\frac{1}{2}(\partial\phi)^2 - \mu(\cosh b\phi - 1) \leftrightarrow S(\theta) = \frac{\sinh\theta - i\sin\pi p}{\sinh\theta + i\sin\pi p}$$



Groundstate energy  $E_0(L) =$ 



Groundstate energy  $E_0(L) =$ 

Groundstate energy  $E_0(L) =$ 

$$-\lim_{R\to\infty}\frac{1}{R}\log(\operatorname{Tr}(e^{-H(L)R})) = -\lim_{R\to\infty}\frac{1}{R}\log(e^{-E_0(L)R})$$









Groundstate energy  $E_0(L) =$ 

$$-\lim_{R\to\infty}\frac{1}{R}\log(\operatorname{Tr}\left(e^{-H(L)R}\right)) = -\lim_{R\to\infty}\frac{1}{R}\log(e^{-E_0(L)R})$$

$$-\lim_{R\to\infty}\frac{1}{R}\log Z(L,R) = -\lim_{R\to\infty}\frac{1}{R}\log(\operatorname{Tr}(e^{-H(R)L}))$$

Dominant contribution for large L: one particle term

$$Tr(e^{-H(R)L}) = 1 + \sum_{k} e^{-m \cosh \theta_k(R)L} + O(e^{-2mL})$$





Groundstate energy 
$$E_0(L) =$$
  

$$-\lim_{R\to\infty} \frac{1}{R} \log(\operatorname{Tr}(e^{-H(L)R})) = -\lim_{R\to\infty} \frac{1}{R} \log(e^{-E_0(L)R})$$

$$-\lim_{R\to\infty} \frac{1}{R} \log Z(L,R) = -\lim_{R\to\infty} \frac{1}{R} \log(\operatorname{Tr}(e^{-H(R)L}))$$
Dominant contribution for large L: one particle term  

$$\operatorname{Tr}(e^{-H(R)L}) = 1 + \sum_k e^{-m\cosh\theta_k(R)L} + O(e^{-2mL})$$
one particle quantization  $m\sinh\theta = \frac{2\pi k}{R} \sum_k \rightarrow \frac{Rm}{2\pi} \int d\theta \cosh\theta$ 

$$E_0(L) = -m \int d\theta \cosh\theta e^{-mL\cosh\theta} + O(e^{-2mL})$$





Groundstate energy  $E_0(L) =$  $-\lim_{R\to\infty}\frac{1}{R}\log(\operatorname{Tr}(e^{-H(L)R})) = -\lim_{R\to\infty}\frac{1}{R}\log(e^{-E_0(L)R})$  $-\lim_{R\to\infty}\frac{1}{R}\log Z(L,R) = -\lim_{R\to\infty}\frac{1}{R}\log(\operatorname{Tr}(e^{-H(R)L}))$ Dominant contribution for large L: one particle term  $Tr(e^{-H(R)L}) = 1 + \sum_{k} e^{-m \cosh \theta_k(R)L} + O(e^{-2mL})$ one particle quantization  $m \sinh \theta = \frac{2\pi k}{R} \quad \sum_k \to \frac{Rm}{2\pi} \int d\theta \cosh \theta$  $E_0(L) = -m \int d\theta \cosh \theta \, e^{-mL \cosh \theta} + O(e^{-2mL})$ Ground state energy exactly: AI. Zamolodchikov '90  $E_0(L) = -m \int \frac{d\theta}{2\pi} \cosh(\theta) \log(1 + e^{-\epsilon(\theta)})$  $\epsilon(\theta) = mL \cosh \theta - \int \frac{d\theta'}{2\pi} \varphi'(\theta - \theta') \log(1 + e^{-\epsilon(\theta')})$ 





Infinite volume



S-matrix

#### Infinite volume



S-matrix

Large volumes  $\boldsymbol{\theta}_n$ 0<sub>.</sub> L  $\theta_1$ 

Bethe-Yang lines



Large volumes  $\theta_n$   $\theta_1$   $\theta_2$ 

Bethe-Yang lines





Large volumes  $\theta_n$   $\theta_1$   $\theta_2$   $\theta_2$   $\theta_3$   $\theta_1$   $\theta_2$   $\theta_3$   $\theta_3$   $\theta_1$   $\theta_2$   $\theta_3$   $\theta_3$ 

Bethe-Yang lines



Strip





Bethe-Yang lines



Strip

Semiinfinite volume







Bethe-Yang lines



Strip







Bethe-Yang lines



Strip



Boundary multiparticle state: with n particles



Boundary one particle state:



Boundary one particle in state:  $t \to -\infty$ 



Boundary one particle in state:  $t \to -\infty$ 

times develop



Boundary one particle in state:  $t \to -\infty$ 

times develop further





Boundary one particle in state:  $t \to -\infty$ 

Boundary one pt out state:  $t 
ightarrow \infty$ 





Boundary one particle in state:  $t \to -\infty$ 

Boundary one pt out state:  $t 
ightarrow \infty$ 



Boundary one particle in state:  $t \to -\infty$ Boundary one pt out state:  $t \to \infty$   $\downarrow^{v_1}$   $\downarrow^{v_1}$ Free in particle Free out particle















## **Boundary Lüscher correction**

Groundstate energy for large L from IR reflection:  $E_0(L) =$ 

## **Boundary Lüscher correction**

Groundstate energy for large L from IR reflection:  $E_0(L) =$ 



## **Boundary Lüscher correction**

Groundstate energy for large L from IR reflection:  $E_0(L) =$ 

$$-\lim_{R\to\infty}\frac{1}{R}\log(\operatorname{Tr}(e^{-H^{B}(L)R})) = -\lim_{R\to\infty}\frac{1}{R}\log(e^{-E_{0}(L)R})$$


Groundstate energy for large L from IR reflection:  $E_0(L) =$ 

 $-\lim_{R\to\infty}\frac{1}{R}\log(\operatorname{Tr}(e^{-H^{B}(L)R})) = -\lim_{R\to\infty}\frac{1}{R}\log\langle B|e^{-H(R)L}|B\rangle$ 





Groundstate energy for large L from IR reflection:  $E_0(L) =$ 

 $-\lim_{R\to\infty}\frac{1}{R}\log(\operatorname{Tr}(e^{-H^{B}(L)R})) = -\lim_{R\to\infty}\frac{1}{R}\log\langle B|e^{-H(R)L}|B\rangle$ 

Boundary state  $|B\rangle = \exp\left\{\int_{-\infty}^{\infty} \frac{d\theta}{4\pi} R(\frac{i\pi}{2} - \theta) A^{+}(-\theta) A^{+}(\theta)\right\} |0\rangle$ 





Groundstate energy for large L from IR reflection:  $E_0(L) =$ 

 $-\lim_{R\to\infty}\frac{1}{R}\log(\operatorname{Tr}(e^{-H^{B}(L)R})) = -\lim_{R\to\infty}\frac{1}{R}\log\langle B|e^{-H(R)L}|B\rangle$ 

Boundary state  $|B\rangle = \exp\left\{\int_{-\infty}^{\infty} \frac{d\theta}{4\pi} R(\frac{i\pi}{2} - \theta) A^{+}(-\theta) A^{+}(\theta)\right\} |0\rangle$ 

Dominant contribution for large L: two particle term

$$\langle B|e^{-H(R)L}|B\rangle = 1 + \sum_k R(\frac{i\pi}{2} - \theta)R(\frac{i\pi}{2} + \theta)e^{-2m\cosh\theta_k L} + \dots$$





Groundstate energy for large L from IR reflection:  $E_0(L) =$ 

 $-\lim_{R\to\infty}\frac{1}{R}\log(\operatorname{Tr}(e^{-H^{B}(L)R})) = -\lim_{R\to\infty}\frac{1}{R}\log\langle B|e^{-H(R)L}|B\rangle$ 

Boundary state  $|B\rangle = \exp\left\{\int_{-\infty}^{\infty} \frac{d\theta}{4\pi} R(\frac{i\pi}{2} - \theta) A^{+}(-\theta) A^{+}(\theta)\right\} |0\rangle$ 

Dominant contribution for large L: two particle term

$$\langle B|e^{-H(R)L}|B\rangle = 1 + \sum_k R(\frac{i\pi}{2} - \theta)R(\frac{i\pi}{2} + \theta)e^{-2m\cosh\theta_k L} + .$$

quantization condition:  $m \sinh \theta_k = \frac{2\pi}{R} \quad \sum_k \to \frac{Rm}{4\pi} \int d\theta \cosh \theta$ 

 $E_0(L) = -\int \frac{m\cosh\theta d\theta}{4\pi} R(\frac{i\pi}{2} - \theta) R(\frac{i\pi}{2} + \theta) e^{-2mL\cosh\theta}; \text{ Z.B, L. Palla, G. Takacs '04-'08}$ 





Groundstate energy for large L from IR reflection:  $E_0(L) =$ 

 $-\lim_{R\to\infty} \frac{1}{R} \log(\operatorname{Tr}(e^{-H^{B}(L)R})) = -\lim_{R\to\infty} \frac{1}{R} \log\langle B|e^{-H(R)L}|B\rangle$ Boundary state  $|B\rangle = \exp\left\{\int_{-\infty}^{\infty} \frac{d\theta}{4\pi} R(\frac{i\pi}{2} - \theta)A^{+}(-\theta)A^{+}(\theta)\right\}|0\rangle$ Dominant contribution for large L: two particle term  $\langle B|e^{-H(R)L}|B\rangle = 1 + \sum_{k} R(\frac{i\pi}{2} - \theta)R(\frac{i\pi}{2} + \theta)e^{-2m\cosh\theta_{k}L} + \dots$ quantization condition:  $m\sinh\theta_{k} = \frac{2\pi}{R} \quad \sum_{k} \rightarrow \frac{Rm}{4\pi}\int d\theta\cosh\theta$ 

 $E_0(L) = -\int \frac{m\cosh\theta d\theta}{4\pi} R(\frac{i\pi}{2} - \theta) R(\frac{i\pi}{2} + \theta) e^{-2mL\cosh\theta}; \text{ Z.B, L. Palla, G. Takacs '04-'08}$ 

Ground state energy exactly:  $E_0(L) = -m \int \frac{d\theta}{4\pi} \cosh(\theta) \log(1 + e^{-\epsilon(\theta)})$ 

$$\epsilon(\theta) = 2mL \cosh \theta - \log(R(\frac{i\pi}{2} - \theta)R(\frac{i\pi}{2} + \theta)) - \int \frac{d\theta'}{2\pi} \varphi'(\theta - \theta') \log(1 + e^{-\epsilon(\theta')})$$
 LeClair, Mussardo, Saleur, Skorik







Extension to higher dimensions:  $\vec{k}_{\parallel}$  label Dispersion  $\omega = \sqrt{m^2 + \vec{k}_{\parallel}^2 + k_{\perp}^2} = \sqrt{m_{\text{eff}}^2 + k_{\perp}^2}$ rapidity  $\omega = m_{\text{eff}}(k_{\parallel}) \cosh \theta$ ,  $k_{\perp} = m_{\text{eff}}(k_{\parallel}) \sinh \theta$ Reflection  $R(\theta, m_{\text{eff}}(k_{\parallel}))$ 



Extension to higher dimensions:  $\vec{k}_{\parallel}$  label Dispersion  $\omega = \sqrt{m^2 + \vec{k}_{\parallel}^2 + k_{\perp}^2} = \sqrt{m_{\text{eff}}^2 + k_{\perp}^2}$ rapidity  $\omega = m_{\text{eff}}(k_{\parallel}) \cosh \theta$ ,  $k_{\perp} = m_{\text{eff}}(k_{\parallel}) \sinh \theta$ Reflection  $R(\theta, m_{\text{eff}}(k_{\parallel}))$ 

Bestate: 
$$|B\rangle = \left\{1 + \int \frac{d^{D-1}k_{\parallel}}{(2\pi)^{D-1}} \frac{d\theta}{4\pi} R(\frac{i\pi}{2} - \theta, m_{\text{eff}}(k_{\parallel}))A^{+}(-\theta, -\vec{k}_{\parallel})A^{+}(\theta, \vec{k}_{\parallel}) + ...\right\} |0\rangle$$

 $\square$ 

 $\overline{}$ 

Extension to higher dimensions: 
$$\vec{k}_{\parallel}$$
 label  
Dispersion  $\omega = \sqrt{m^2 + \vec{k}_{\parallel}^2 + k_{\perp}^2} = \sqrt{m_{\text{eff}}^2 + k_{\perp}^2}$   
rapidity  $\omega = m_{\text{eff}}(k_{\parallel}) \cosh \theta$ ,  $k_{\perp} = m_{\text{eff}}(k_{\parallel}) \sinh \theta$   
Reflection  $R(\theta, m_{\text{eff}}(k_{\parallel}))$ 

Betate: 
$$|B\rangle = \left\{ 1 + \int \frac{d^{D-1}k_{\parallel}}{(2\pi)^{D-1}} \frac{d\theta}{4\pi} R(\frac{i\pi}{2} - \theta, m_{\text{eff}}(k_{\parallel})) A^{+}(-\theta, -\vec{k}_{\parallel}) A^{+}(\theta, \vec{k}_{\parallel}) + ... \right\} |0\rangle$$

Ground state energy (for free bulk):

$$E_{0}(L) = \int \frac{d^{D-1}k_{\parallel}}{(2\pi)^{D-1}} \frac{d\theta}{4\pi} \log(1 + R^{1}(\frac{i\pi}{2} + \theta, m_{\text{eff}})R^{2}(\frac{i\pi}{2} - \theta, m_{\text{eff}})e^{-2m} \text{eff}^{\cosh\theta L})$$



Ground state energy (for free bulk):

$$E_{0}(L) = \int \frac{d^{D-1}k_{\parallel}}{(2\pi)^{D-1}} \frac{d\theta}{4\pi} \log(1 + R^{1}(\frac{i\pi}{2} + \theta, m_{\text{eff}})R^{2}(\frac{i\pi}{2} - \theta, m_{\text{eff}})e^{-2m} \text{eff}^{\cosh\theta L})$$

QED: Parallel dielectric slabs  $(\epsilon_1, 1, \epsilon_2)$ 

reflections  $E_{\parallel,\perp}, B_{\parallel,\perp} \longrightarrow R_{\parallel,\perp}$  look it up in Jackson:

$$R_{\perp}(\omega, k_{\parallel} = q) = \frac{\sqrt{\omega^2 - q^2} - \sqrt{\epsilon\omega^2 - q^2}}{\sqrt{\omega^2 - q^2} + \sqrt{\epsilon\omega^2 - q^2}} \quad R_{\parallel}(\omega, k_{\parallel} = q) = \frac{\epsilon\sqrt{\omega^2 - q^2} - \sqrt{\epsilon\omega^2 - q^2}}{\epsilon\sqrt{\omega^2 - q^2} + \sqrt{\epsilon\omega^2 - q^2}}$$

 $\square$ 

Extension to higher dimensions: 
$$\vec{k}_{\parallel}$$
 label  
Dispersion  $\omega = \sqrt{m^2 + \vec{k}_{\parallel}^2 + k_{\perp}^2} = \sqrt{m_{\text{eff}}^2 + k_{\perp}^2}$   
rapidity  $\omega = m_{\text{eff}}(k_{\parallel}) \cosh \theta$ ,  $k_{\perp} = m_{\text{eff}}(k_{\parallel}) \sinh \theta$   
Reflection  $R(\theta, m_{\text{eff}}(k_{\parallel}))$ 

Bestate: 
$$|B\rangle = \left\{1 + \int \frac{d^{D-1}k_{\parallel}}{(2\pi)^{D-1}} \frac{d\theta}{4\pi} R(\frac{i\pi}{2} - \theta, m_{\mathsf{eff}}(k_{\parallel}))A^+(-\theta, -\vec{k}_{\parallel})A^+(\theta, \vec{k}_{\parallel}) + \dots\right\} |0\rangle$$

Ground state energy (for free bulk):

$$E_{0}(L) = \int \frac{d^{D-1}k_{\parallel}}{(2\pi)^{D-1}} \frac{d\theta}{4\pi} \log(1 + R^{1}(\frac{i\pi}{2} + \theta, m_{\text{eff}})R^{2}(\frac{i\pi}{2} - \theta, m_{\text{eff}})e^{-2m} \text{eff}^{\cosh\theta L})$$

QED: Parallel dielectric slabs 
$$(\epsilon_1, 1, \epsilon_2)$$
  
reflections  $E_{\parallel,\perp}, B_{\parallel,\perp} \longrightarrow R_{\parallel,\perp}$  look it up in Jackson:  
 $R_{\perp}(\omega, k_{\parallel} = q) = \frac{\sqrt{\omega^2 - q^2} - \sqrt{\epsilon\omega^2 - q^2}}{\sqrt{\omega^2 - q^2} + \sqrt{\epsilon\omega^2 - q^2}} \quad R_{\parallel}(\omega, k_{\parallel} = q) = \frac{\epsilon\sqrt{\omega^2 - q^2} - \sqrt{\epsilon\omega^2 - q^2}}{\epsilon\sqrt{\omega^2 - q^2} + \sqrt{\epsilon\omega^2 - q^2}}$ 

## **Conclusion about Casimir**

#### **Conclusion about Casimir**

Usual derivation:

summing up zero freqencies  $E_0(L) = \frac{1}{2} \sum_{k(L)} \omega(k(L)) \propto \infty$ Complicated finite volume problem + divergencies



### **Conclusion about Casimir**

Usual derivation:

summing up zero frequencies  $E_0(L) = \frac{1}{2} \sum_{k(L)} \omega(k(L)) \propto \infty$ Complicated finite volume problem + divergencies



as a boundary finite size effect

$$E_0(L) = -\int \frac{d\tilde{p}}{2\pi} \log(1 + R(-\tilde{p})R(\tilde{p})e^{-2E(\tilde{p})L})$$

Reflection factor of the IR degrees of freedom: semi infinite settings, easier to calculate, no divergences



#### AdS/CFT correspondence (Maldacena 1997)



The Illusion of Gravity - Juan Maldacena, Scientific American (2005)

AdS/CFT correspondence (Maldacena 1997)





AdS/CFT correspondence (Maldacena 1997)



AdS/CFT correspondence (Maldacena 1997)



2D integrable QFT

AdS/CFT correspondence: confirmation





AdS/CFT correspondence: boundary



det operator anomalous dimension  $Z = \Phi_5 + i\Phi_6, Y = \Phi_3 + i\Phi_4$ "Z=0 vacuum"  $\mathcal{O} = \epsilon_{ij..kp}^{lm..nq} Z_l^i Z_m^j ... Z_n^k (Y Z^J Y)_q^p$  $|\downarrow\uparrow\uparrow$  ...  $\uparrow\uparrow\downarrow\rangle$ "Y=0 vacuum"  $\mathcal{O} = \epsilon_{ij..kp}^{lm..nq} Y_l^i Y_m^j ... Y_n^k (Z^J)_q^p$  $|\uparrow\uparrow\ldots\uparrow\uparrow\rangle$ operator mixing integrable open spinchain  $\langle \mathcal{O}_i(x)\mathcal{O}_j(0)\rangle = \frac{\delta_{ij}}{|x|^{2\Delta_i(\lambda)}}$ Z=0: Bethe Ansatz + wrapping  $\Delta(\lambda) = \Delta(0) + \lambda \Delta_1 + \ldots + \lambda^4 \Delta_4 +$ Y=0: Bethe Ansatz (Correa-Young '09) direct test from BA!