Integrability and Chaos in Multicomponent Systems, 2-7 October 2017 Far Eastern Federal University, Vladivostok

Finite size effects in QFTs Z. Bajnok

MTA Wigner Research Centre for Physics, Budapest

Integrability and Chaos in Multicomponent Systems, 2-7 October 2017 Far Eastern Federal University, Vladivostok

Finite size effects in QFTs Z. Bajnok

MTA Wigner Research Centre for Physics, Budapest

Leading Lüscher correction for a non-diagonal form factor

$$\langle 0|\mathcal{O}|q\rangle_L = \frac{\sqrt{2\pi}}{\sqrt{\rho_1^{(1)}}} \left\{ F_1 + \int_{-\infty}^{\infty} d\theta \, F_3^{\text{reg}}(\theta + i\pi, \theta, \theta_1 - i\frac{\pi}{2})e^{-mL\cosh\theta} + \dots \right\}$$

In collaboration with János Balog, Márton Lájer and Chao Wu

Introduction

If you want to learn about nature, to appreciate nature, it is necessary to understand the language she speaks in: Quantum Field Theory Fundamental interactions

interaction	particles	gauge theory	
electromagnetic	photon+electron	U(1)	
electroweak	$W^{\pm}, Z \mu, \nu + Higgs$	$SU(2) \times U(1)$	
strong	gluon+quarks	<i>SU</i> (3)	

Effective theories: solid state systems, statistical physics...

Strongly coupled gauge theories?

Introduction

(1918 - 1988)

If you want to learn about nature, to appreciate nature, it is necessary to understand the language she speaks in: Quantum Field Theory Fundamental interactions

interaction	particles	gauge theory	
electromagnetic	photon+electron	<i>U</i> (1)	
electroweak	$W^{\pm}, Z \mu, \nu + Higgs$	$SU(2) \times U(1)$	
strong	gluon+quarks	<i>SU</i> (3)	
Effective theories: colid state systems, statistica			

Effective theories: solid state systems, statistical physics...

Strongly coupled gauge theories?

maximally supersymmetric gauge theory (harmonic oscillator) or QCD

interaction	particles	gauge theory	Lattice simulations
$\mathcal{N} = 4$ SYM	gluon+quarks+scalars	SU(N)	

Introduction

If you want to learn about nature, to appreciate nature, it is necessary to understand the language she speaks in: Quantum Field Theory Fundamental interactions interaction particles gauge theory electromagnetic photon+electron U(1) $W^{\pm}, Z = \mu, \nu + \text{Higgs}$ $SU(2) \times U(1)$ electroweak *SU*(3) gluon+guarks strong Effective theories: solid state systems, statistical physics...

Strongly coupled gauge theories?

maximally supersymmetric gauge theory (harmonic oscillator) or QCD

interaction	particles	gauge theory	Lattice simulations
$\mathcal{N} = 4$ SYM	gluon+quarks+scalars	SU(N)	

Finite size effects are unavoidable

II_B superstring on $AdS_5 \times S^5$: finite J charge $| \leftrightarrow \rangle$

Finite size effects

Finite size energy corrections:

finite volume mass from lattice simulations: Lüscher

$$m(L) = -\int \frac{d\theta}{2\pi} \cosh\theta \left(S(\theta + \frac{i\pi}{2}) - 1\right) e^{-mL\cosh\theta}$$

Finite size effects

Finite size energy corrections:

finite volume mass from lattice simulations: Lüscher

 $m(L) = -\int \frac{d\theta}{2\pi} \cosh\theta \left(S(\theta + \frac{i\pi}{2}) - 1 \right) e^{-mL \cosh\theta}$

Perturbative dimension of $Tr(\Phi^2)$ at 4loop from strings:

 $(324+864\zeta_3-1440\zeta_5)g^8$

conjectured multiparticle Lüscher correction

[ZB, Janik]

 $E(\theta_1, \dots, \theta_n) = \sum_i m \cosh(\theta_i + \delta \theta_i)$ $- \int \frac{d\theta}{2\pi} \cosh\theta \left(\prod_j S(\theta - \theta_j + \frac{i\pi}{2}) - 1 \right) e^{-mL \cosh\theta}$

Finite size effects

Finite size energy corrections:

finite volume mass from lattice simulations: Lüscher

 $m(L) = -\int \frac{d\theta}{2\pi} \cosh\theta \left(S(\theta + \frac{i\pi}{2}) - 1 \right) e^{-mL \cosh\theta}$

Perturbative dimension of $Tr(\Phi^2)$ at 4loop from strings:

conjectured multiparticle Lüscher correction

(324+864
$$\zeta_3$$
-1440 ζ_5) g^8

[ZB,Janik]

$$E(\theta_1, \dots, \theta_n) = \sum_i m \cosh(\theta_i + \delta \theta_i) - \int \frac{d\theta}{2\pi} \cosh \theta \left(\prod_j S(\theta - \theta_j + \frac{i\pi}{2}) - 1 \right) e^{-mL \cosh \theta}$$

Decay rates from the lattice or 3pt functions from strings

Finite size form factor corrections?

We will work in 1+1D integrable models as higher dimensional counterparts are conceptually the same

Motivation from AdS/CFT

IIB strings on $AdS_5 \times S^5$	Integrability	N = 4 SYM
	finite volume energy levels	$O(x) = \operatorname{Tr}(\Phi(x)^J)$ J: length $\langle O(x)O(0) \rangle = x^{-2\Delta(\lambda)}$ scaling dimensions
	finite volume form factors	3pt functions $\langle O_1 O_2 O_3 \rangle = C_{123}(\lambda)$

How integrability works:

The simplest interacting QFT in 1+1 D: $\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - \frac{m^2}{b^2}(\cosh b\varphi - 1)$

interesting observables: finite size spectrum,

finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_nt}$

The simplest interacting QFT in 1+1 D: $\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - \frac{m^2}{b^2}(\cosh b\varphi - 1)$

interesting observables: finite size spectrum,

finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_n t}$

Infinite volume \rightarrow LSZ reduction formula

The simplest interacting QFT in 1+1 D: $\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - \frac{m^2}{b^2}(\cosh b\varphi - 1)$

interesting observables: finite size spectrum,

(0,it)

finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_n t}$

Infinite volume \rightarrow LSZ reduction formula

$$\begin{split} \langle p_1', p_2' | \mathcal{O} | p_1, p_2 \rangle &= \bar{\mathcal{D}}_1' \bar{\mathcal{D}}_2' \mathcal{D}_1 \mathcal{D}_2 \langle 0 | T(\mathcal{O}\varphi(1)\varphi(2)\varphi(3)\varphi(4)) | 0 \rangle \\ \mathcal{D}_j &= i \int d^2 x_j e^{i p_j x - i \omega_j t} \left\{ \partial_t^2 - \partial_x^2 + m^2 \right\}: \text{ amputates a leg + puts it onshell} \end{split}$$

The simplest interacting QFT in 1+1 D: $\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - \frac{m^2}{b^2}(\cosh b\varphi - 1)$

interesting observables: finite size spectrum,

finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_n t}$

Infinite volume \rightarrow LSZ reduction formula

 $\langle p_1', p_2' | \mathcal{O} | p_1, p_2 \rangle = \bar{\mathcal{D}}_1' \bar{\mathcal{D}}_2' \mathcal{D}_1 \mathcal{D}_2 \langle 0 | T(\mathcal{O}\varphi(1)\varphi(2)\varphi(3)\varphi(4)) | 0 \rangle$

 $\mathcal{D}_j = i \int d^2 x_j e^{ip_j x - i\omega_j t} \left\{ \partial_t^2 - \partial_x^2 + m^2 \right\}: \text{ amputates a leg } + \text{ puts it onshell}$

Observables:

S-matrix	Form factor (FF)	correlator
on-shell	on-shell/off-shell	off-shell

The simplest interacting QFT in 1+1 D: $\mathcal{L} = \frac{1}{2}(\partial_t \varphi)^2 - \frac{1}{2}(\partial_x \varphi)^2 - \frac{m^2}{b^2}(\cosh b\varphi - 1)$

interesting observables: finite size spectrum,

finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_n t}$

Infinite volume \rightarrow LSZ reduction formula

p₁

$$\begin{split} \langle p_1', p_2' | \mathcal{O} | p_1, p_2 \rangle &= \bar{\mathcal{D}}_1' \bar{\mathcal{D}}_2' \mathcal{D}_1 \mathcal{D}_2 \langle 0 | T(\mathcal{O}\varphi(1)\varphi(2)\varphi(3)\varphi(4)) | 0 \rangle \\ \mathcal{D}_j &= i \int d^2 x_j e^{i p_j x - i \omega_j t} \left\{ \partial_t^2 - \partial_x^2 + m^2 \right\}: \text{ amputates a leg + puts it onshell} \end{split}$$

Observables:

S-matrixForm factor (FF)correlatoron-shellon-shell/off-shelloff-shell

Perturbative definition, calculational tool: [Arefyeva et al] $S(\theta) = 1 - \frac{1}{4}ib^2 \operatorname{csch}\theta - \frac{b^4(\operatorname{csch}\theta(\pi\operatorname{csch}\theta - i))}{32\pi} + \frac{ib^6 \operatorname{csch}\theta(\pi\operatorname{csch}\theta - i)^2}{256\pi^2} + O\left(b^8\right)$ Mandelstam $s = 4m^2 \operatorname{cosh}^2 \frac{\theta}{2}$ with $\theta = \theta_1 - \theta_2$ rapidity: $p_i = m \sinh \theta_i$

The simplest interacting QFT in 1+1 D: $\mathcal{L} = \frac{1}{2} (\partial_t \varphi)^2 - \frac{1}{2} (\partial_x \varphi)^2 - \frac{m^2}{h^2} (\cosh b\varphi - 1)$ (0,it) interesting observables: finite size spectrum, finite size correlators $_L\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle_L = \sum_n |_L\langle 0|\mathcal{O}(0)|n\rangle_L|^2 e^{-E_n t}$ Infinite volume \rightarrow LSZ reduction formula $\langle p_1', p_2' | \mathcal{O} | p_1, p_2 \rangle = \bar{\mathcal{D}}_1' \bar{\mathcal{D}}_2' \mathcal{D}_1 \mathcal{D}_2 \langle 0 | T(\mathcal{O}\varphi(1)\varphi(2)\varphi(3)\varphi(4)) | 0 \rangle$ $\mathcal{D}_{j} = i \int d^{2}x_{j} e^{ip_{j}x - i\omega_{j}t} \left\{ \partial_{t}^{2} - \partial_{x}^{2} + m^{2} \right\}$: amputates a leg + puts it onshell S-matrix Form factor (FF) correlator **Observables:** on-shell on-shell/off-shell off-shell Perturbative definition, calculational tool: [Arefyeva et al] $S(\theta) = 1 - \frac{1}{4}ib^2\operatorname{csch}\theta - \frac{b^4(\operatorname{csch}\theta(\pi\operatorname{csch}\theta - i))}{32\pi} + \frac{ib^6\operatorname{csch}\theta(\pi\operatorname{csch}\theta - i)^2}{256\pi^2} + O\left(b^8\right)$ Mandelstam $s = 4m^2 \cosh^2 \frac{\theta}{2}$ with $\theta = \theta_1 - \theta_2$ rapidity: $p_i = m \sinh \theta_i$ Analytical properties: unitarity, crossing $S(\theta) = S(-\theta)^{-1} = S(i\pi - \theta)$ FF

S-matrix bootstrap: Calculate the two particle S-matrix [Zamolodchikov²]

S-matrix bootstrap: Calculate the two particle S-matrix [Zamolodchikov²]

Infinite volume \rightarrow crossing symmetry, $\theta \rightarrow i\pi - \theta$ in rapidity $(E(\theta), p(\theta)) = m(\cosh \theta, \sinh \theta)$

 $S(\theta_1 - \theta_2) = S(\theta) = S(i\pi - \theta) = S(-\theta)^{-1} :$

S-matrix bootstrap: Calculate the two particle S-matrix [Zamolodchikov²]

Infinite volume \rightarrow crossing symmetry, $\theta \rightarrow i\pi - \theta$ in rapidity $(E(\theta), p(\theta)) = m(\cosh \theta, \sinh \theta)$

 $S(\theta_1 - \theta_2) = S(\theta) = S(i\pi - \theta) = S(-\theta)^{-1} :$

Simplest solution: sinh-Gordon $S(\theta) = \frac{\sinh \theta - i \sin a}{\sinh \theta + i \sin a}$

Finite volume spectrum

Finite volume spectrum

Finite volume spectrum

Polynomial volume corrections: $E(\theta_1,\ldots,\theta_n) = \sum_i E(\theta_i)$

Finite volume spectrum

pectrum

Polynomial volume corrections: $E(\theta_1, \ldots, \theta_n) = \sum_i E(\theta_i)$

Bethe-Yang; p_i quantized: $e^{ip_jL}\prod_k S(\theta_j - \theta_k) = -1$

Finite volume spectrum

Polynomial volume corrections: $E(\theta_1, \ldots, \theta_n) = \sum_i E(\theta_i)$

Bethe-Yang; p_i quantized: $e^{ip_jL} \prod_k S(\theta_j - \theta_k) = -1$ $p_jL + \sum_k \frac{1}{i} \log S(\theta_j - \theta_k) = (2n + 1)\pi$

Finite volume spectrum

Polynomial volume corrections: $E(\theta_1, \ldots, \theta_n) = \sum_i E(\theta_i)$

Bethe-Yang; p_i quantized: $e^{ip_jL} \prod_k S(\theta_j - \theta_k) = -1$ $p_jL + \sum_k \frac{1}{i} \log S(\theta_j - \theta_k) = (2n + 1)\pi$

Lüscher-type corrections:

 $E(\theta_1, \dots, \theta_n) = \sum_i E(\theta_i) - \int \frac{d\theta}{2\pi} \prod_k S(\theta + i\frac{\pi}{2} - \theta_k) e^{-mL\cosh\theta}$ BY modified as $p_j L + \sum_k \frac{1}{i} \log S(\theta_j - \theta_k) + \delta = (2n+1)\pi$

where $\delta = i \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \log' S(\theta_j - \theta') \prod_k S(i\frac{\pi}{2} + \theta_k - \theta') e^{-mL \cosh \theta'}$

Luscher

CFT

Bethe-Yang

matrix

Finite volume spectrum

Polynomial volume corrections: $E(\theta_1,\ldots,\theta_n) = \sum_i E(\theta_i)$

Bethe-Yang; p_i quantized: $e^{ip_jL}\prod_k S(\theta_j - \theta_k) = -1$ $p_i L + \sum_k \frac{1}{i} \log S(\theta_i - \theta_k) = (2n+1)\pi$

Ground-state energy from Euclidean partition function: $Z(L,R) =_{R \to \infty} \operatorname{Tr}(e^{-H(L)R}) = e^{-E_0(L)R} + \dots$

matrix

Large volume: Bethe-Yang can be used $p_j R + \sum_k \frac{1}{i} \log S(\theta_j - \theta_k) = (2n+1)\pi \longrightarrow R + \int (-id_p \log S(p,p'))\rho(p')dp' = 2\pi(\rho + \rho_h)$ $Z(L,R) = \int d[\rho,\rho_h] e^{-LE(R) - \int ((\rho + \rho_h) \ln(\rho + \rho_h) - \rho \ln \rho - \rho_h \ln \rho_h)dp}$

How integrability works:

Form factor bootstrap

Form factor bootstrap

Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle = \sum_{\substack{\theta_1 \\ \theta_2 \\ \sum_n \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \cdots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n \rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$

Form factor bootstrap

(0,it)

 θ_n

(0,0)

Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle =$ $\sum_{n} \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \cdots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n\rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$

Form factor bootstrap

(0,it)

 θ_n

(0.0)

 Σ_n

Correlation functions: [Smirnov, Karowszki] $\langle 0|\mathcal{O}(it)\mathcal{O}(0)|0\rangle =$ $\sum_{n} \frac{1}{n!} \int \frac{d\theta_1}{2\pi} \cdots \int \frac{d\theta_n}{2\pi} |\langle 0|\mathcal{O}(0)|\theta_1, \dots, \theta_n\rangle|^2 e^{-m(\sum_i \cosh \theta_i)t}$

Form factor bootstrap: $\langle 0|\mathcal{O}|\theta_{1},\ldots,\theta_{n}\rangle = \left(\begin{array}{c} \theta_{1}-\theta_{1}-\theta_{1}-\theta_{n} \\ \theta_{1}-\theta_{1}-\theta_{n} \end{array}\right) = \left(\begin{array}{c} \theta_{1}-\theta_{1}-\theta_{n} \\ \theta_{1}-\theta_{1}-\theta_{n} \end{array}\right) = \left(\begin{array}{c} \theta_{1}-\theta_{1}-\theta_{n} \\ \theta_{1}-\theta_{1}-\theta_{n} \end{array}\right) = \left(\begin{array}{c} \theta_{1}-\theta_{1}-\theta_{n} \\ \theta_{1}-\theta_{1}-\theta_{1}-\theta_{n} \end{array}\right) = \left(\begin{array}{c} \theta_{1}-\theta_{1}-\theta_{1}-\theta_{n} \\ \theta_{1}-\theta_{1}-\theta_{1}-\theta_{1}-\theta_{n} \end{array}\right) = \left(\begin{array}{c} \theta_{1}-\theta_{1}-\theta_{1}-\theta_{1}-\theta_{n} \\ \theta_{1}-\theta_{1}-\theta_{1}-\theta_{1}-\theta_{n} \end{array}\right) = \left(\begin{array}{c} \theta_{1}-$

 $-i\operatorname{Res}_{\theta'=\theta}F(\theta'+i\pi,\theta,\theta_1\ldots,\theta_n)=(1-\prod_i S(\theta-\theta_i))F(\theta_1,\ldots,\theta_n)$

Form factor bootstrap

(0,it)

 $-i\operatorname{Res}_{\theta'=\theta}F(\theta'+i\pi,\theta,\theta_1\ldots,\theta_n)=(1-\prod_i S(\theta-\theta_i))F(\theta_1,\ldots,\theta_n)$

Solution for sinh-Gordon: $f(\theta_1 - \theta_2) = e^{(D+D^{-1})^{-1} \log S}$; $Df(\theta) = f(\theta + i\pi)$ [Fring, Mussardo, Simonetti]

Normalization of states: $|\{n_i\}\rangle = \frac{|\{\theta_i\}\rangle}{\sqrt{\rho_n(\{\theta_i\})}}$ where $\rho_n = \det|\partial_i Q_j|$

Nondiagonal FF: $\langle \theta'_1, \dots, \theta'_m | \mathcal{O} | \theta_n, \dots, \theta_1 \rangle_L = \frac{F_{n+m}(\overline{\theta}'_1, \dots, \overline{\theta}'_m, \theta_n, \dots, \theta_1)}{\sqrt{\rho_n \rho'_m}} + O(e^{-mL})$ [proved Pozsgay, Takacs] crossing $\overline{\theta} = \theta + i\pi$

[proved Pozsgay, Takacs]

Diagonal FF: $\langle \theta_1, \ldots, \theta_n | \mathcal{O} | \theta_n, \ldots, \theta_1 \rangle_L = \frac{\sum_{\alpha \cup \bar{\alpha}} F_{\alpha}^c \rho_{\bar{\alpha}}}{\rho_n} + O(e^{-mL})$ where $\rho_{\alpha} = \det[\partial_{\alpha_i} Q_{\alpha_i}]$ [conjectured Pozsgay, Takacs proved ZB, Wu]

Polynomial volume corrections: $Q_j = p(\theta_j)L + \sum_{k \neq j} \frac{1}{i} \log S(\theta_j - \theta_k) = 2n_j \pi$

Normalization of states:
$$|\{n_i\}\rangle = \frac{|\{\theta_i\}\rangle}{\sqrt{\rho_n(\{\theta_i\})}}$$
 where $\rho_n = \det|\partial_i Q_j|$

Nondiagonal FF: $\langle \theta'_1, \dots, \theta'_m | \mathcal{O} | \theta_n, \dots, \theta_1 \rangle_L = \frac{F_{n+m}(\bar{\theta}'_1, \dots, \bar{\theta}'_m, \theta_n, \dots, \theta_1)}{\sqrt{\rho_n \rho'_m}} + O(e^{-mL})$ [proved Pozsgay, Takacs] crossing $\bar{\theta} = \theta + i\pi$

Diagonal FF: $\langle \theta_1, \dots, \theta_n | \mathcal{O} | \theta_n, \dots, \theta_1 \rangle_L = \frac{\sum_{\alpha \cup \bar{\alpha}} F_{\alpha}^c \rho_{\bar{\alpha}}}{\rho_n} + O(e^{-mL})$ [conjectured Pozsgay, Takacs proved ZB, Wu] where $\rho_{\alpha} = \det |\partial_{\alpha_i} Q_{\alpha_j}|$

$$\langle \theta_1, \theta_2 | \mathcal{O} | \theta_2, \theta_1 \rangle_L = \frac{F_2^c(\theta_1, \theta_2) + \rho_1(\theta_1) F_1^c(\theta_2) + \rho_1(\theta_2) F_1^c(\theta_1) + F_0 \rho_2(\theta_1, \theta_2)}{\rho_2(\theta_1, \theta_2)}$$

Normalization of states:
$$|\{n_i\}\rangle = \frac{|\{\theta_i\}\rangle}{\sqrt{\rho_n(\{\theta_i\})}}$$
 where $\rho_n = \det|\partial_i Q_j|$

Nondiagonal FF:
$$\langle \theta'_1, \dots, \theta'_m | \mathcal{O} | \theta_n, \dots, \theta_1 \rangle_L = \frac{F_{n+m}(\bar{\theta}'_1, \dots, \bar{\theta}'_m, \theta_n, \dots, \theta_1)}{\sqrt{\rho_n \rho'_m}} + O(e^{-mL})$$

[proved Pozsgay, Takacs] crossing $\bar{\theta} = \theta + i\pi$

Diagonal FF: $\langle \theta_1, \dots, \theta_n | \mathcal{O} | \theta_n, \dots, \theta_1 \rangle_L = \frac{\sum_{\alpha \cup \bar{\alpha}} F_{\alpha}^c \rho_{\bar{\alpha}}}{\rho_n} + O(e^{-mL})$ [conjectured Pozsgay, Takacs proved ZB, Wu] where $\rho_{\alpha} = \det |\partial_{\alpha_i} Q_{\alpha_j}|$

$$\langle \theta_1, \theta_2 | \mathcal{O} | \theta_2, \theta_1 \rangle_L = \frac{F_2^c(\theta_1, \theta_2) + \rho_1(\theta_1) F_1^c(\theta_2) + \rho_1(\theta_2) F_1^c(\theta_1) + F_0 \rho_2(\theta_1, \theta_2)}{\rho_2(\theta_1, \theta_2)}$$

BY: $Q_1 = p_1 L - i \log S(\theta_1 - \theta_2) = 2\pi n_1; Q_2 = p_2 L - i \log S(\theta_2 - \theta_1) = 2\pi n_2$

Finite volume state
$$|\{ heta_i\}
angle_L\equiv|\{n_i\}
angle$$

Polynomial volume corrections: $Q_j = p(\theta_j)L + \sum_{k \neq j} \frac{1}{i} \log S(\theta_j - \theta_k) = 2n_j \pi$ Normalization of states: $|\{n_i\}\rangle = \frac{|\{\theta_i\}\rangle}{\sqrt{\rho_n(\{\theta_i\})}}$ where $\rho_n = \det|\partial_i Q_j|$

Nondiagonal FF:
$$\langle \theta'_1, \dots, \theta'_m | \mathcal{O} | \theta_n, \dots, \theta_1 \rangle_L = \frac{F_{n+m}(\bar{\theta}'_1, \dots, \bar{\theta}'_m, \theta_n, \dots, \theta_1)}{\sqrt{\rho_n \rho'_m}} + O(e^{-mL})$$

[proved Pozsgay, Takacs] crossing $\bar{\theta} = \theta + i\pi$

 $\begin{array}{l} \text{Diagonal FF: } \langle \theta_1, \dots, \theta_n | \mathcal{O} | \theta_n, \dots, \theta_1 \rangle_L = \frac{\sum_{\alpha \cup \bar{\alpha}} F_{\alpha}^c \rho_{\bar{\alpha}}}{\rho_n} + O(e^{-mL}) \\ \text{[conjectured Pozsgay, Takacs proved ZB, Wu]} & \text{where } \rho_{\alpha} = \det |\partial_{\alpha_i} Q_{\alpha_j}| \end{array}$

$$\langle \theta_1, \theta_2 | \mathcal{O} | \theta_2, \theta_1 \rangle_L = \frac{F_2^c(\theta_1, \theta_2) + \rho_1(\theta_1) F_1^c(\theta_2) + \rho_1(\theta_2) F_1^c(\theta_1) + F_0 \rho_2(\theta_1, \theta_2)}{\rho_2(\theta_1, \theta_2)}$$

$$\rho_2(\theta_1, \theta_2) = \begin{vmatrix} E_1 L + \phi & -\phi \\ -\phi & E_2 L + \phi \end{vmatrix} = E_1 E_2 L^2 + \phi(E_1 + E_2) L \qquad \phi(\theta) = -i\partial_\theta \log S(\theta)$$

and $\rho_1(\theta_1) = E_1L + \phi$; $\rho_1(\theta_2) = E_2L + \phi$

We need $F(\overline{\theta}_1 + \epsilon_1, \dots, \overline{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1)$

We need $F(\bar{\theta}_1 + \epsilon_1, \dots, \bar{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1)$ BUT: kinematical singularity: $F(\bar{\theta} + \epsilon, \theta, \theta_1, \dots, \theta_n) = \frac{i}{\epsilon} (1 - \prod_i S(\theta - \theta_i)) F(\theta_1, \dots, \theta_n)$

$$F(\bar{\theta}_1 + \epsilon_1, \dots, \bar{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1) = \frac{\sum a_{i_1 \dots i_n} \epsilon_{i_1} \dots \epsilon_{i_n}}{\epsilon_1 \dots \epsilon_n} + O(\epsilon)$$

We need $F(\bar{\theta}_1 + \epsilon_1, \dots, \bar{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1)$ BUT: kinematical singularity: $F(\bar{\theta} + \epsilon, \theta, \theta_1, \dots, \theta_n) = \frac{i}{\epsilon} (1 - \prod_i S(\theta - \theta_i)) F(\theta_1, \dots, \theta_n)$

$$F(\bar{\theta}_1 + \epsilon_1, \dots, \bar{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1) = \frac{\sum a_{i_1 \dots i_n} \epsilon_{i_1} \dots \epsilon_{i_n}}{\epsilon_1 \dots \epsilon_n} + O(\epsilon)$$

Connected form factor: $F^{c}(\theta_{1}, \ldots, \theta_{k}) = n!a_{12...n} \in \epsilon$ -independent part

We need $F(\bar{\theta}_1 + \epsilon_1, \dots, \bar{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1)$ BUT: kinematical singularity: $F(\bar{\theta} + \epsilon, \theta, \theta_1, \dots, \theta_n) = \frac{i}{\epsilon} (1 - \prod_i S(\theta - \theta_i)) F(\theta_1, \dots, \theta_n)$

$$F(\bar{\theta}_1 + \epsilon_1, \dots, \bar{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1) = \frac{\sum a_{i_1 \dots i_n} \epsilon_{i_1} \dots \epsilon_{i_n}}{\epsilon_1 \dots \epsilon_n} + O(\epsilon)$$

Connected form factor: $F^{c}(\theta_{1}, \ldots, \theta_{k}) = n!a_{12...n}$ ϵ -independent part

Graphical representation: $F(\overline{\theta}_1 + \epsilon_1, \dots, \overline{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1) = \sum_{\text{graphs}} F_{\text{graphs}}$ [Pozsgay, Takacs]

graphs: oriented, tree-like, at each vertex only at most one outgoing edge

contributions: (i_1, \ldots, i_k) with no outgoing edges $F^c(\theta_{i_1}, \ldots, \theta_{i_k})$, for each edge from i to j: factor $\frac{\epsilon_j}{\epsilon_i}\phi(\theta_i - \theta_j)$,

We need $F(\overline{\theta}_1 + \epsilon_1, \dots, \overline{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1)$ BUT: kinematical singularity: $F(\overline{\theta} + \epsilon, \theta, \theta_1, \dots, \theta_n) = \frac{i}{\epsilon} (1 - \prod_i S(\theta - \theta_i)) F(\theta_1, \dots, \theta_n)$

$$F(\bar{\theta}_1 + \epsilon_1, \dots, \bar{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1) = \frac{\sum a_{i_1 \dots i_n} \epsilon_{i_1} \dots \epsilon_{i_n}}{\epsilon_1 \dots \epsilon_n} + O(\epsilon)$$

Connected form factor: $F^{c}(\theta_{1}, \ldots, \theta_{k}) = n!a_{12...n} \mid \epsilon$ -independent part

Graphical representation: $F(\overline{\theta}_1 + \epsilon_1, \dots, \overline{\theta}_n + \epsilon_n, \theta_n, \dots, \theta_1) = \sum_{\text{graphs}} F_{\text{graphs}}$ [Pozsgay, Takacs]

graphs: oriented, tree-like, at each vertex only at most one outgoing edge

contributions: (i_1, \ldots, i_k) with no outgoing edges $F^c(\theta_{i_1}, \ldots, \theta_{i_k})$, for each edge from i to j: factor $\frac{\epsilon_j}{\epsilon_i}\phi(\theta_i - \theta_j)$,

which gives $F_4(\bar{\theta}_1 + \epsilon_1, \bar{\theta}_2 + \epsilon_2, \theta_2, \theta_1) = F_4^c(\theta_1, \theta_2) + \frac{\epsilon_1}{\epsilon_2}\phi_{12}F_2^c(\theta_1) + \frac{\epsilon_2}{\epsilon_1}\phi_{21}F_2^c(\theta_2)$

LeClair-Mussardo formula from thermal evaluation: $\langle 0|\mathcal{O}|0\rangle_L =_{R\to\infty} \operatorname{Tr}(\mathcal{O}e^{-H(L)R})/Z(L,R) + \dots$

LeClair-Mussardo formula from thermal evaluation: $\langle 0|\mathcal{O}|0\rangle_L =_{R\to\infty} \operatorname{Tr}(\mathcal{O}e^{-H(L)R})/Z(L,R) + \dots$ Exchange space and Euclidean time $_{R\to\infty}\operatorname{Tr}(\mathcal{O}e^{-H(L)R})/Z =_{R\to\infty} \operatorname{Tr}(e^{-H(R)L})/Z$ $=_{R\to\infty} \frac{\sum_n \langle n|\mathcal{O}|n\rangle e^{-E_n(L)R}}{\sum_n e^{-E_n(L)R}}$

LeClair-Mussardo formula from thermal evaluation: $\langle 0|\mathcal{O}|0\rangle_L =_{R\to\infty} \operatorname{Tr}(\mathcal{O}e^{-H(L)R})/Z(L,R) + \dots$ Exchange space and Euclidean time $_{R\to\infty}\operatorname{Tr}(\mathcal{O}e^{-H(L)R})/Z =_{R\to\infty} \operatorname{Tr}(e^{-H(R)L})/Z$ $=_{R\to\infty} \frac{\sum_n \langle n|\mathcal{O}|n\rangle e^{-En(L)R}}{\sum_n e^{-En(L)R}}$

we need $\langle \rho, \rho_n | \mathcal{O} | \rho, \rho_n \rangle$ in a highly excited Bethe state [Pozsgay]

Large volume: asymptotic formula $\frac{\sum_{\alpha\cupar{lpha}}F^c_{lpha}
ho_{ar{lpha}}}{
ho_n}$ can be used as

$$\frac{\sum_{\alpha \cup \bar{\alpha}} F_{\alpha}^{c} \rho_{\bar{\alpha}}}{\rho_{n}} = F_{0} + \lim_{n \to \infty} \int \frac{d\theta}{2\pi} F^{c}(\theta) \frac{\rho_{n-1}}{\rho_{n}} + \dots \text{ giving } F_{0} + \int \frac{d\theta}{2\pi} F^{c}(\theta) \frac{e^{-\epsilon(\theta)}}{1 + e^{-\epsilon(\theta)}} + \dots$$

LeClair-Mussardo formula from thermal evaluation: $\langle 0|\mathcal{O}|0\rangle_L =_{R\to\infty} \operatorname{Tr}(\mathcal{O}e^{-H(L)R})/Z(L,R) + ...$ Exchange space and Euclidean time $_{R\to\infty}\operatorname{Tr}(\mathcal{O}e^{-H(L)R})/Z =_{R\to\infty} \operatorname{Tr}(e^{-H(R)L})/Z$ $=_{R\to\infty} \frac{\sum_n \langle n|\mathcal{O}|n\rangle e^{-E_n(L)R}}{\sum_n e^{-E_n(L)R}}$

we need $\langle \rho, \rho_n | \mathcal{O} | \rho, \rho_n \rangle$ in a highly excited Bethe state [Pozsgay] Large volume: asymptotic formula $\frac{\sum_{\alpha \cup \overline{\alpha}} F_{\alpha}^c \rho_{\overline{\alpha}}}{\rho_n}$ can be used as $\frac{\sum_{\alpha \cup \overline{\alpha}} F_{\alpha}^c \rho_{\overline{\alpha}}}{\rho_n} = F_0 + \lim_{n \to \infty} \int \frac{d\theta}{2\pi} F^c(\theta) \frac{\rho_{n-1}}{\rho_n} + \dots$ giving $F_0 + \int \frac{d\theta}{2\pi} F^c(\theta) \frac{e^{-\epsilon(\theta)}}{1 + e^{-\epsilon(\theta)}} + \dots$

Saddle point :
$$\epsilon(p) = \ln \frac{\rho_h(p)}{\rho(p)} \left[\epsilon(\theta) = E(\theta)L - \int \frac{d\theta}{2\pi} \phi(\theta - \theta') \log(1 + e^{-\epsilon(\theta')}) \right]$$

Finite volume expectation value: $\langle \mathcal{O} \rangle_L = \sum_n \frac{1}{n!} \prod_{j=1}^n \int \frac{d\theta_i}{2\pi} \frac{e^{-\epsilon(\theta)}}{1 + e^{-\epsilon(\theta)}} F^c(\theta_1, \dots, \theta_n)$

[LeClair-Mussardo] diagonal FF: excited states [Pozsgay] What about non-diagonal?

Finite volume 2-point function: $\langle \mathcal{O}(x,t)\mathcal{O}\rangle_L = \frac{\int [\mathcal{D}\phi]\mathcal{O}(x,t)\mathcal{O}(0,0)e^{-S[\phi]}}{\int [\mathcal{D}\phi]e^{-S[\phi]}}$ in Fourier space: $\Gamma(\omega,q) = \frac{1}{L} \int_{-L/2}^{L/2} \mathrm{d}x \int_{-\infty}^{\infty} \mathrm{d}t \, \mathrm{e}^{i(\omega t + qx)} \langle \mathcal{O}(x,t)\mathcal{O}\rangle_L$

Finite volume 2-point function: $\langle \mathcal{O}(x,t)\mathcal{O}\rangle_L = \frac{\int [\mathcal{D}\phi]\mathcal{O}(x,t)\mathcal{O}(0,0)e^{-S[\phi]}}{\int [\mathcal{D}\phi]e^{-S[\phi]}}$ in Fourier space: $\Gamma(\omega,q) = \frac{1}{L} \int_{-L/2}^{L/2} \mathrm{d}x \int_{-\infty}^{\infty} \mathrm{d}t \, \mathrm{e}^{i(\omega t + qx)} \langle \mathcal{O}(x,t)\mathcal{O}\rangle_L$

evaluating in the finite volume channel $\Gamma(\omega,q) = \sum_{N} |\langle 0|\mathcal{O}|\theta_{1},\ldots,\theta_{N}\rangle_{L}|^{2} \left\{ \frac{\delta_{q-P_{N}(L)}}{E_{N}(L)-i\omega} + \frac{\delta_{q+P_{N}(L)}}{E_{N}(L)+i\omega} \right\}$

Finite volume 2-point function: $\langle \mathcal{O}(x,t)\mathcal{O}\rangle_L = \frac{\int [\mathcal{D}\phi]\mathcal{O}(x,t)\mathcal{O}(0,0)e^{-S[\phi]}}{\int [\mathcal{D}\phi]e^{-S[\phi]}}$ in Fourier space: $\Gamma(\omega,q) = \frac{1}{L} \int_{-L/2}^{L/2} \mathrm{d}x \int_{-\infty}^{\infty} \mathrm{d}t \, \mathrm{e}^{i(\omega t + qx)} \langle \mathcal{O}(x,t)\mathcal{O}\rangle_L$

evaluating in the finite volume channel $\Gamma(\omega,q) = \sum_{N} |\langle 0|\mathcal{O}|\theta_{1}, \dots, \theta_{N} \rangle_{L}|^{2} \left\{ \frac{\delta_{q-P_{N}(L)}}{E_{N}(L) - i\omega} + \frac{\delta_{q+P_{N}(L)}}{E_{N}(L) + i\omega} \right\}$ exact finite volume energy levels: poles, form factors: residues

Finite volume LSZ: $\lim_{\omega \to iE_N(L)} (E_N(L) + i\omega) \Gamma(\omega, P_N(L)) = |\langle 0|\mathcal{O}|\theta_1, \dots, \theta_N \rangle_L|^2$

Finite volume 2-point function: $\langle \mathcal{O}(x,t)\mathcal{O}\rangle_L = \frac{\int [\mathcal{D}\phi]\mathcal{O}(x,t)\mathcal{O}(0,0)e^{-S[\phi]}}{\int [\mathcal{D}\phi]e^{-S[\phi]}}$ in Fourier space: $\Gamma(\omega,q) = \frac{1}{L} \int_{-L/2}^{L/2} \mathrm{d}x \int_{-\infty}^{\infty} \mathrm{d}t \, \mathrm{e}^{i(\omega t + qx)} \langle \mathcal{O}(x,t)\mathcal{O}\rangle_L$

evaluating in the finite volume channel $\Gamma(\omega,q) = \sum_{N} |\langle 0|\mathcal{O}|\theta_{1},\ldots,\theta_{N}\rangle_{L}|^{2} \left\{ \frac{\delta_{q-P_{N}(L)}}{E_{N}(L)-i\omega} + \frac{\delta_{q+P_{N}(L)}}{E_{N}(L)+i\omega} \right\}$ exact finite volume energy levels: poles, form factors: residues

Finite volume LSZ: $\lim_{\omega \to iE_N(L)} (E_N(L) + i\omega) \Gamma(\omega, P_N(L)) = |\langle 0|\mathcal{O}|\theta_1, \dots, \theta_N \rangle_L|^2$

evaluating in the finite temperature channel $\langle \mathcal{O}(x,t)\mathcal{O}\rangle_L = \Theta(x) \frac{\mathsf{Tr}[\mathcal{O}(0,t)e^{-Hx}\mathcal{O}e^{-H(L-x)}]}{\mathsf{Tr}[e^{-HL}]} + \\ \Theta(-x) \frac{\mathsf{Tr}[\mathcal{O}e^{Hx}\mathcal{O}(0,t)e^{-H(L+x)}]}{\mathsf{Tr}[e^{-HL}]}$

Finite volume 2-point function: $\langle \mathcal{O}(x,t)\mathcal{O}\rangle_L = \frac{\int [\mathcal{D}\phi]\mathcal{O}(x,t)\mathcal{O}(0,0)e^{-S[\phi]}}{\int [\mathcal{D}\phi]e^{-S[\phi]}}$ in Fourier space: $\Gamma(\omega,q) = \frac{1}{L} \int_{-L/2}^{L/2} \mathrm{d}x \int_{-\infty}^{\infty} \mathrm{d}t \, \mathrm{e}^{i(\omega t + qx)} \langle \mathcal{O}(x,t)\mathcal{O}\rangle_L$

evaluating in the finite volume channel $\Gamma(\omega,q) = \sum_{N} |\langle 0|\mathcal{O}|\theta_{1}, \dots, \theta_{N} \rangle_{L}|^{2} \left\{ \frac{\delta_{q-P_{N}(L)}}{E_{N}(L)-i\omega} + \frac{\delta_{q+P_{N}(L)}}{E_{N}(L)+i\omega} \right\}$ exact finite volume energy levels: poles, form factors: residues

Finite volume LSZ: $\lim_{\omega \to iE_N(L)} (E_N(L) + i\omega) \Gamma(\omega, P_N(L)) = |\langle 0|\mathcal{O}|\theta_1, \dots, \theta_N \rangle_L|^2$

evaluating in the finite temperature channel $\langle \mathcal{O}(x,t)\mathcal{O}\rangle_L = \Theta(x) \frac{\text{Tr}[\mathcal{O}(0,t)e^{-Hx}\mathcal{O}e^{-H(L-x)}]}{\text{Tr}[e^{-HL}]} + \\ \Theta(-x) \frac{\text{Tr}[\mathcal{O}e^{Hx}\mathcal{O}(0,t)e^{-H(L+x)}]}{\text{Tr}[e^{-HL}]}$

(x.it)

Insert two complete systems of states:

$$Z\Gamma(\omega,q) = \frac{2\pi}{L} \sum_{\mu,\nu} |\langle \nu | \mathcal{O} | \mu \rangle|^2 e^{-E_{\nu}L} \delta(P_{\mu} - P_{\nu} + \omega) \left\{ \frac{1}{E_{\mu} - E_{\nu} - iq} + \frac{1}{E_{\mu} - E_{\nu} + iq} \right\}$$

Use asymptotic expressions. Do analytical continuation as $\omega \to iE_N(L)$

Specify to a 1-particle pole

$$\Gamma(\omega,q) = \frac{\mathcal{F}(q)^2}{E(q)+i\omega} + \dots$$

Exact 1-particle energy: E(q), form factor: $\mathcal{F}(q) = \langle 0 | \mathcal{O} | q \rangle$

Specify to a 1-particle pole $\Gamma(\omega,q) = \frac{\mathcal{F}(q)^2}{E(q)+i\omega} + \dots$ Exact 1-particle energy: E(q), form factor: $\mathcal{F}(q) = \langle 0|\mathcal{O}|q\rangle$

Lüscher correction: Expand around the BY pole $\mathcal{E}(q) = \sqrt{q^2 + m^2}$

$$\Gamma(\omega,q) = \frac{2\pi F_1^2(q)}{L\mathcal{E}(q)} \frac{-i}{\omega - i\mathcal{E}(q)} + \frac{\mathcal{L}_0(q)}{(\omega - i\mathcal{E}(q))^2} + \frac{\mathcal{L}_1(q)}{\omega - i\mathcal{E}(q)} + \text{regular}$$

Energy correction:
$$E(q) = \mathcal{E}(q) \left\{ 1 + \frac{L}{2\pi F_1^2} \mathcal{L}_0(q) + \dots \right\}$$

FF correction $\mathcal{F}(q) = \frac{\sqrt{2\pi}F_1}{\sqrt{L\mathcal{E}(q)}} \left\{ 1 + \frac{iL\mathcal{E}(q)}{4\pi F_1^2} \mathcal{L}_1(q) + \dots \right\}$

Specify to a 1-particle pole $\Gamma(\omega,q) = \frac{\mathcal{F}(q)^2}{E(q)+i\omega} + \dots$ Exact 1-particle energy: E(q), form factor: $\mathcal{F}(q) = \langle 0|\mathcal{O}|q\rangle$

Lüscher correction: Expand around the BY pole $\mathcal{E}(q) = \sqrt{q^2 + m^2}$

$$\Gamma(\omega,q) = \frac{2\pi F_1^2(q)}{L\mathcal{E}(q)} \frac{-i}{\omega - i\mathcal{E}(q)} + \frac{\mathcal{L}_0(q)}{(\omega - i\mathcal{E}(q))^2} + \frac{\mathcal{L}_1(q)}{\omega - i\mathcal{E}(q)} + \text{regular}$$

Energy correction:
$$E(q) = \mathcal{E}(q) \left\{ 1 + \frac{L}{2\pi F_1^2} \mathcal{L}_0(q) + \dots \right\}$$

FF correction $\mathcal{F}(q) = \frac{\sqrt{2\pi}F_1}{\sqrt{L\mathcal{E}(q)}} \left\{ 1 + \frac{iL\mathcal{E}(q)}{4\pi F_1^2} \mathcal{L}_1(q) + \dots \right\}$

Leading Lüscher correction from ν 1-particle state, relevant pole: μ vacuum or 2-particle state

$$Z\Gamma(\omega,q) = \frac{2\pi}{L} \sum_{\mu,\nu} |\langle \nu | \mathcal{O} | \mu \rangle|^2 e^{-E_{\nu}L} \delta(P_{\mu} - P_{\nu} + \omega) \left\{ \frac{1}{E_{\mu} - E_{\nu} - iq} + \frac{1}{E_{\mu} - E_{\nu} + iq} \right\}$$

Specify to a 1-particle pole $\Gamma(\omega,q) = \frac{\mathcal{F}(q)^2}{E(q)+i\omega} + \dots$ Exact 1-particle energy: E(q), form factor: $\mathcal{F}(q) = \langle 0|\mathcal{O}|q\rangle$

Lüscher correction: Expand around the BY pole $\mathcal{E}(q) = \sqrt{q^2 + m^2}$

$$\Gamma(\omega,q) = \frac{2\pi F_1^2(q)}{L\mathcal{E}(q)} \frac{-i}{\omega - i\mathcal{E}(q)} + \frac{\mathcal{L}_0(q)}{(\omega - i\mathcal{E}(q))^2} + \frac{\mathcal{L}_1(q)}{\omega - i\mathcal{E}(q)} + \text{regular}$$

Energy correction: $E(q) = \mathcal{E}(q) \left\{ 1 + \frac{L}{2\pi F_1^2} \mathcal{L}_0(q) + \dots \right\}$

FF correction
$$\mathcal{F}(q) = \frac{\sqrt{2\pi}F_1}{\sqrt{L\mathcal{E}(q)}} \left\{ 1 + \frac{iL\mathcal{E}(q)}{4\pi F_1^2} \mathcal{L}_1(q) + \dots \right\}$$

The main result: energy correction reproduced, form factor

$$\mathcal{F}(q) = \frac{\sqrt{2\pi}}{\sqrt{\rho_1^{(1)}}} \left\{ F_1 + \int_{-\infty}^{\infty} d\theta \, F_3^{\mathsf{reg}}(\theta + i\pi, \theta, \theta_1 - i\frac{\pi}{2}) e^{-mL\cosh\theta} + \dots \right\}$$

$$F_{3}^{\text{reg}}(\theta,\theta_{1},\theta_{2}) = F_{3}(\theta,\theta_{1},\theta_{2}) - \frac{iF_{1}}{\theta-\theta_{1}-i\pi} \left[1 - S(\theta_{1}-\theta_{2})\right] + i\frac{F_{1}}{2}S'(\theta_{1}-\theta_{2})$$

density of states at Lüscher order: $\rho_1^{(1)}$ from Lüscher quantization

AdS/CFT correspondence (Maldacena 1998)

$$\mathcal{N} = 4 \text{ D} = 4 SU(N) \text{ SYM}$$

$$\frac{2}{g_{YM}^2} \int d^4x \text{Tr} \left[-\frac{1}{4}F^2 - \frac{1}{2}(D\Phi)^2 + i\overline{\Psi} \not{D}\Psi + V \right]$$

$$V(\Phi, \Psi) = \frac{1}{4}[\Phi, \Phi]^2 + \overline{\Psi}[\Phi, \Psi]$$

$$\beta = 0 \text{ superconformal } \frac{PSU(2,2|4)}{SO(5) \times SO(1,4)}$$

$$gaugeinvariants: \mathcal{O} = \text{Tr}(\Phi^2), \det(\)$$

AdS/CFT correspondence (Maldacena 1998)

AdS/CFT correspondence (Maldacena 1998)

2D integrable QFT

spectrum: $Q = 1, 2, ..., \infty$ dispersion: $\epsilon_Q(p) = \sqrt{Q^2 + \frac{\lambda}{\pi^2} \sin^2 \frac{p}{2}}$ Exact scattering matrix: $S_{Q_1Q_2}(p_1, p_2, \lambda)$

Decompactify string 2 & 3:

Decompactify string 2 & 3:

 $N_L(\theta_1,\ldots,\theta_n) = e^{-ip_1L} N_L(\theta_2,\ldots,\theta_n,\theta_1-2i\pi) = S(\theta_i-\theta_{i+1}) N_L(\ldots,\theta_{i+1},\theta_i,\ldots)$
Decompactification limit of the string vertex

Decompactify string 2 & 3 but $L_1 = 0$:

Decompactify string 2 & 3

Decompactify string 2 & 3

Local operator form factor equations:

 $N_0(\theta_1,\ldots,\theta_n) = N_0(\theta_2,\ldots,\theta_n,\theta_1-2i\pi) = S(\theta_i-\theta_{i+1})N_0(\ldots,\theta_{i+1},\theta_i,\ldots)$ $-i\operatorname{Res}_{\theta'=\theta}N_0(\theta'+i\pi,\theta,\theta_1\ldots,\theta_n) = (1-\prod_i S(\theta-\theta_i))N_0(\theta_1,\ldots,\theta_n)$

Decompactify string 2 & 3

Local operator form factor equations:

$$N_{0}(\theta_{1},\ldots,\theta_{n}) = N_{0}(\theta_{2},\ldots,\theta_{n},\theta_{1}-2i\pi) = S(\theta_{i}-\theta_{i+1})N_{0}(\ldots,\theta_{i+1},\theta_{i},\ldots)$$
$$-i\operatorname{Res}_{\theta'=\theta}N_{0}(\theta'+i\pi,\theta,\theta_{1}\ldots,\theta_{n}) = (1-\prod_{i}S(\theta-\theta_{i}))N_{0}(\theta_{1},\ldots,\theta_{n})$$

HeavyHeavyLight 3pt function strong coupling prescription

[Costa et al., Zarembo]: $C_{HHL} = \int_{\text{world sheet}} \mathcal{V}(X[\text{heavy solution}(\sigma, \tau)]) d^2\sigma$

Decompactify string 2 & 3

Local operator form factor equations:

$$N_{0}(\theta_{1},\ldots,\theta_{n}) = N_{0}(\theta_{2},\ldots,\theta_{n},\theta_{1}-2i\pi) = S(\theta_{i}-\theta_{i+1})N_{0}(\ldots,\theta_{i+1},\theta_{i},\ldots)$$
$$-i\operatorname{Res}_{\theta'=\theta}N_{0}(\theta'+i\pi,\theta,\theta_{1}\ldots,\theta_{n}) = (1-\prod_{i}S(\theta-\theta_{i}))N_{0}(\theta_{1},\ldots,\theta_{n})$$

HeavyHeavyLight 3pt function strong coupling prescription

[Costa et al., Zarembo]: $C_{HHL} = \int_{\text{world sheet}} \mathcal{V}(X[\text{heavy solution}(\sigma, \tau)]) d^2\sigma$

for multiparticle state: $C_{HHL} = \int_{\text{moduli space}} \mathcal{V}(X[\text{heavy solution}(y_i)]) d^n y$

Decompactify string 2 & 3

Local operator form factor equations:

$$N_{0}(\theta_{1},\ldots,\theta_{n}) = N_{0}(\theta_{2},\ldots,\theta_{n},\theta_{1}-2i\pi) = S(\theta_{i}-\theta_{i+1})N_{0}(\ldots,\theta_{i+1},\theta_{i},\ldots)$$
$$-i\operatorname{Res}_{\theta'=\theta}N_{0}(\theta'+i\pi,\theta,\theta_{1}\ldots,\theta_{n}) = (1-\prod_{i}S(\theta-\theta_{i}))N_{0}(\theta_{1},\ldots,\theta_{n})$$

HeavyHeavyLight 3pt function strong coupling prescription

[Costa et al., Zarembo]: $C_{HHL} = \int_{\text{world sheet}} \mathcal{V}(X[\text{heavy solution}(\sigma, \tau)]) d^2\sigma$

for multiparticle state: $C_{HHL} = \int_{\text{moduli space } \{y_i\}} \mathcal{V}(X[\text{heavy solution}(y_i)]) d^n y$

classical diagonal form factors:

 ${}_{L}\langle\theta_{2},\theta_{1}|\mathcal{V}|\theta_{1},\theta_{2}\rangle_{L} = \frac{F_{2}^{s}(\theta_{1},\theta_{2}) + \rho_{1}(\theta_{1})F_{1}^{s}(\theta_{2}) + \rho_{1}(\theta_{2})F_{1}^{s}(\theta_{1})}{\rho_{2}(\theta_{1},\theta_{2})}$

Explicitly checked at weak coupling [Hollo, Jiang, Petrovskii], checked from hexagon [Basso, Komatsu, Vieira] by [Jiang]