
Eötvös Loránd University
Faculty of Science

Astrophysical sources and fast
prediction of gravitational waves:

Radial pulsation of compact stars, surrogate-model representation
of signals and their propagation in interstellar medium

Doctoral dissertation
submitted to the

Doctoral School of Physics
Particle Physics and Astronomy Program

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Physics

Doctoral candidate: Doctoral advisor:
Dániel Barta Dr. Mátyás Zsolt Vasúth
Assistant research fellow, Wigner RCP Senior research fellow, Wigner RCP

Head of the Doctoral School:
Prof. Dr. habil. Jenő Gubicza
Full professor, Eötvös Loránd University

Supervisor of the Doctoral Program:
Prof. Dr. habil. Sándor Katz
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The presented doctoral dissertation covers a range of actively sought fields of research in
gravitational-wave astrophysics, divided into three broad topics. With the advent of the era
of multi-channel astronomy, the demand both for fast and accurate prediction of theoretical
waveforms and for improving models of plausible astrophysical sources has renewed significantly.

I first address the issue of computationally efficient generation of predicted waveform tem-
plates. A large number of theoretically predicted waveforms are required by matched-filtering
searches for the gravitational-wave signals produced by compact binary coalescence. In order
to substantially alleviate the computational burden in gravitational-wave searches and param-
eter estimation, I propose a novel reduced-order model approach for inspiral waveforms of
non-spinning compact binaries that evolve on eccentric orbits. Inspiral waveform templates
for spinning compact binaries produced by such a method have proved highly effective and
are already available in the LIGO Scientific Collaboration’s Algorithms Library (LAL). The
inspiral evolution is adequately described by using third-and-a-half post-Newtonian (3.5PN)
accurate equations of motion of the binary while the far-zone radiation field is determined by
a simultaneous evaluation of analytic waveforms, involving all high-order relativistic contribu-
tions up to second-and-a-half (2.5PN) post-Newtonian order beyond the Newtonian order. I
provide a singular value decomposition-based reduced-order method in the frequency domain
to represent any waveform within the parameter range of the model with optimal accuracy
and precision. I construct efficient reduced bases comprized of a relatively small number of
the most relevant waveforms over 3-dimensional parameter-space covered by the template bank
(total mass 2.15M� ≤ M ≤ 215M�, mass ratio 0.01 ≤ q ≤ 1, and initial orbital eccentricity
0 ≤ e0 ≤ 0.95). The ROM is designed to predict signals in the frequency band from 10 Hz to
2 kHz for aLIGO and aVirgo design sensitivity. Beside moderating the data reduction, finer
sampling of fiducial templates improves the accuracy of surrogates. Considerable increase in
the speedup from several hundreds to thousands can be achieved by evaluating surrogates for
low-mass systems especially when combined with high-eccentricity.

Binary neutron-star mergers are among the most promising sources of multi-channel as-
tronomy. For this reason, events accompanying oscillations of neutron stars provide invaluable
insight into the inner structure of neutron stars. Energetic explosive events associated with
gamma-ray bursts or X-ray radiation perturb these stars, and the resulting dynamical be-
haviour may eventually be deduced from both electromagnetic and gravitational observations.
Observations from the current and future missions of space-based radio telescopes will impose
stricter constraints on plausible equation of states by yielding the mass and radius of a few
stars to ∼ 5% precision. Therefrom, the next chapter is dedicated to presenting my variational
formulation of the linearized dynamical equations governing small adiabatic radial oscillations
of neutron stars. The interior structure, that relies on accurate stellar models, may be probed
by the frequency spectrum of neutrons-star oscillations. These oscillations occur when a star is
perturbed away from its dynamical equilibrium and a restoring force tries to return it back to
that equilibrium state. The dynamical equations are derived by taking into consideration those
effects of viscosity and thermal conductivity of neutron-star matter which directly determine
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the minimum period of observable pulsars. The period of stellar oscillations for non-relativistic
stars is in the range of minutes, whilst for neutron stars the periods are much shorter, typically
range from 0.2 to about 0.9 milliseconds. A variational principle is applied to determine the
eigenfunctions with a discrete set of complex eigenvalues. The real and imaginary parts of
eigenvalues represent the squared natural frequencies and relaxation time of radial oscillations
of non-rotating neutron stars, respectively. Moreover, I provide a suitable framework which
may be supplemented with various potential species of cold-nuclear-matter models to compute
the spectra of the normalized eigenfrequencies with a certain numerical precision. I provide a
qualitative estimation of the rate at which viscosity and thermal conductivity drain the kinetic
energy of radial oscillation mode in reasonably homogeneous neutron stars, without relying on
explicit numerical computations.

Potentially detectable gravitational-wave signals are expected to be of extragalactic origin.
Therefore, their sources are likely to be obscured by dust or gas in addition to the Milky Way’s
stellar halo through which the gravitational waves have to pass on their way to our ground-
based detectors. The improving sensitivity of second-generation laser-interferometric detectors
and envisaged plans for even more sophisticated instruments have inspired me to investigate
the propagation of locally plane, small-amplitude, monochromatic gravitational waves through
cold compressible interstellar gas, in order to provide a more accurate picture of expected
waveforms for direct detection. The quasi-isothermal gas is concentrated in a giant molecular
cloud held together by self-gravitation. Gravitational waves can be treated as linearized per-
turbations on the background spacetime. The perturbated field equations that govern the gas
dynamics and describe the gravitational-wave–matter interaction are decoupled asymptotically
for monochromatic high-frequency waves to a set of partial differential equations of different
orders through a second-order Wentzel–Kramers–Brillouin method. Three distinct degenerate
modes of polarization are revealed, corresponding to gravitational and sound waves propagating
along null geodesics of the background spacetime and a zero-frequency mode that corresponds
to non-propagating density and vorticity perturbations of the dispersive medium. I have shown
that the transport equation for the gravitational-wave amplitudes in post-geometrical optics
provides numerical solutions for the frequency shift of gravitational waves that are expressed by
varying sinusoidal components of Fourier series. The decrease in frequency is driven by energy
dissipation via interaction of gravitational waves with interstellar matter. The decrease is signif-
icantly smaller than the magnitude of the original frequency and too small to be detectable by
present second- and planned third-generation detectors. The frequency-shift exhibits a power-
law relationship between original and decreased frequencies and I examined it particularly for
the transient signal GW150914.



Kulcsszavak: gravitációs hullám, hullámforma, neutroncsillag, oszcilláció, diszperzió
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A doktori értekezés a gravitációshullám-asztrofizika akt́ıvan kutatott területei közül három
átfogó témakört ölel fel. A többcsatornás csillagászat korszakának kezdetével jelentősen megnőtt
az igény mind az elméleti hullámformák gyors és pontos előálĺıtása, mind pedig a valósźınűśıthető
asztrofizikai források modelljeinek továbbfejlesztése iránt.

Először az elméleti hullámformasablonok számı́tási szempontból hatékony előálĺıtásának
kérdésével foglalkozom. A kompakt kettős rendszerek összeolvadásából származó gravitációs-
hullám-jelek célzott keresése és a rendszer asztrofizikai paramétereinek becslése során nagyszámú
elméleti hullámforma szűrőként történő használatára van szükség. Annak érdekében, hogy a
számı́tógépes erőforrások igénybevételét jelentősen csökkentsem a jelkeresés és paraméterbecslés
során, ún. „csökkentett rendű modelleket” (ROM: reduced-order model) alkalmazok elliptikus
pályán keringő kompakt kettős rendszerek által sugárzott gravitációs hullámok előálĺıtására.
Ezek a modellek rendḱıvül hatékonynak bizonyultak gyorsan forgó komponensekből álló kom-
pakt kettős rendszerek hullámformáinak előálĺıtására és elérhetőek a LIGO Tudományos Együtt-
működés adatelemzési algoritmusainak gyűjteményében (LAL). A befelé spirálozó kompakt
kettős rendszerek fejlődésének megfelelő léırására egy negyedfél rendű poszt-newtoni közeĺıtésben
(3,5 PN) megadott mozgásegyenleteket használok, amivel egyidejűleg történik a sugárzási tér
meghatározása analitikus hullámformák seǵıtségével, melyek a Newton-féle rendet követő har-
madfél rendig (2,5 PN) megjelenő minden relativisztikus járulékot tartalmaznak. Egy szin-
guláris értékek szerinti felbontáson (SVD) alapuló dimenziócsökkentési vagy jellemzőszelekciós
eljárást (ROM) mutatok be, amivel a frekvenciatérben ábrázolt hullámforma-gyűjtemény sok-
dimenziós ćımkézett adatpontjait úgy transzformáljuk egy alacsonyabb dimenziós altér tenge-
lyeire, hogy nagy pontossággal reprezentálható marad az eredeti adat (kiinduló hullámformák
adatmátrixa) és bármely más hullámforma alacsonyabb rangú közeĺıtése a gyűjtemény által
lefedett paramétertartományban. Az adat varianciáját legjobban megőrző alacsonyabb dimen-
ziós projekciót úgy kapjuk, hogy a projekciós mátrixot a legnagyobb sajátértékhez tartozó
sajátvektorból képezzük (a közeĺıtés eltérését Frobenius-normában mérjük), és hogy az eltérő
osztályú pontok minél kevésbé keveredjenek az új altérben. A redukált bázist viszonylag kis-
számú leglényegesebb hullámformából képzem. A vizsgálat az aLIGO és aVirgo második ge-
nerációs földi interferometrikus gravitációshullám-detektorok érzékenysége szempontjából lénye-
ges 10 Hz és 2 kHz frekvenciatartományba eső 2.15M� ≤ M ≤ 215M� össztömegű; 0.01 ≤
q ≤ 1 tömegarányú; és 0 ≤ e0 ≤ 0.95 kezdeti pályaexcentricitással rendelkező konfigurációk
háromdimenziós paraméterterét fedte le. A helyetteśıtő hullámformamodellek pontosságát
növelheti a mérsékeltebb adatcsökkentés mellett a kiindulási hullámformasablonok finomabb
mintavételezése (finomabb frekvenciafelbontás). Jelentős gyorsulás érhető el a hullámforma-
számı́tás során, amely néhány száztól több ezerszeres mértékű is lehet, különösen alacsony
tömegű és magas pályaexcentricitású kompakt kettős rendszerek helyetteśıtő hullámformáinak
kiértékelése során.

Az összeolvadó neutroncsillagok a többcsatornás csillagászat leǵıgéretesebb forrásai közé tar-
toznak. Ezért a neutroncsillagok rezgéseit ḱısérő események felbecsülhetetlen értékű betekintést
engednek a neutroncsillagok belső szerkezetébe. A gamma-kitörésekhez vagy röntgensugárzáshoz
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kapcsolódó nagyenergiájú események zavarokat okoznak ezekben a csillagokban, és az ebből
adódó dinamikus viselkedés mind elektromágneses, mind gravitációs megfigyelésekből kinyer-
hető. A jelenleg működő és tervezett rádiócsillagászati űrtávcsövek megfigyelései szigorúbb
korlátozásokat fognak kiszabni az elképzelhető állapotegyenletekre azáltal, hogy néhány neut-
roncsillag tömegét és sugárát ∼ 5%-os pontossággal meghatározzák. A következő fejezetet tehát
a linearizált dinamikai egyenletek variációs módszerek seǵıtségével történő határozásának szen-
teltem. Ezek az egyenletek szabályozzák a neutroncsillagok adiabatikus radiális pulzációját
(melyet azonban nemadiabatikus folyamatok gerjesztenek). A neutroncsillag belső szerkeze-
te, amelyet pontosan megadott csillagmodellek határoznak meg, az alaprezgéseinek frekven-
ciaspektrumán keresztül feltérképezhetővé válik. Ezek a csillagrezgések akkor fordulnak elő,
amikor egy zavar kimozd́ıtja a csillagot dinamikus egyensúlyából, egy visszatéŕıtő erő pedig
megpróbálja helyreálĺıtani az egyensúlyi állapotot. A dinamikai egyenleteket a neutroncsillag
anyagának transzportjelenségeinek (viszkozitás és hővezetés) figyelembevételével határozzuk
meg; ezek közvetlenül meghatározzák a megfigyelhető pulzárok minimális periódusát. A nem-
relativisztikus csillagok rezgésének periódusideje perces nagyságrendű. Ezzel szemben a ne-
utroncsillagoknál sokkal rövidebb, jellemzően 0,2 és 0,9 milliszekundum közé eső periódusidő
mérhető. A sajátértékek valós és képzetes része a nemforgó neutroncsillagok radiális rezgéseit
jellemző csillaṕıtatlan sajátfrekvenciák négyzetének, illetve relaxációs idő inverz négyzetének fe-
lel meg. Konzisztens elméleti keretet biztośıtok, amely a hideg sűrű maganyagot léıró különféle
potenciális modellekkel kiegésźıtve lehetővé teszi az egyes modellekhez tartozó normalizált
sajátfrekvenciák spektrumának adott numerikus pontosságú kiszámı́tását. Azonfelül nagyság-
rendi becslést adok arra, hogy meglehetősen homogén anyag esetén a neutroncsillag anyagának
viszkozitása és hővezetése milyen mértékben csapolja meg a radiális rezgés energiáját anélkül,
hogy explicit numerikus számı́tásokra támaszkodnék.

A potenciálisan észlelhető gravitációshullám-jelek várhatóan extragalaktikus eredetűek. Ezért
valósźınűleg forrásaikat a csillagközi por és gáz fedi el, ezenfelül a Tejút halóján áthaladva a
hullámok hosszú utat tesznek meg a földi detektorokig. A második generációs lézer-interferomet-
rikus detektorok érzékenységének javulása és a kilátásba helyezett még fejlettebb műszerek arra
ösztönöztek, hogy vizsgáljam meg a lokálisan śık, kis amplitúdójú, monokromatikus gravitációs
hullámok terjedését hideg összenyomható csillagközi gázban annak érdekében, hogy pontosabb
képet kapjunk a közvetlen detektálásra várható hullámformákról. A kvázi-izotermikus gáz egy
óriás molekuláris felhőben koncentrálódik, amelyet a saját gravitációja tart össze. A gravitációs
hullámok az óriás molekuláris felhő által kialaḱıtott „háttér” téridő linearizált perturbációiként
kezelhetőek. A másodrendű Wentzel–Kramers–Brillouin-eljárás aszimptotikusan rendenként
szétcsatolja a perturbált téregyenleteket – amelyek iránýıtják a gáz dinamikáját és léırják a
gravitációs hullám–anyag kölcsönhatást – monokromatikus magasfrekvenciás hullámok parciális
differenciálegyenletek rendszerére. Három különféle degenerált polarizációs mód jelenik meg,
amelyek a „háttér” téridő fényszerű geodetikus görbék mentén terjedő gravitációs és hang-
hullámoknak, valamint az anyagi közeg nullfrekvenciás sűrűség- és örvényességperturbációinak
felelnek meg. Megmutattam, hogy a gravitációs hullám amplitúdóinak transzportegyenlete
posztgeometriai optikai közeĺıtésben megoldásokat biztośıt a Fourier-sorba fejtett gravitációs
hullám komponenseinek frekvenciaeltolódására. A frekvenciacsökkenés a gravitációs hullámok
csillagközi anyaggal történő kölcsönhatása során fellépő energiaveszteség következménye. A
csökkenés lényegesen kisebb az eredeti frekvencia nagyságrendjénél; túl kicsi ahhoz, hogy a
jelenleg működő második, valamint tervezett harmadik generációs detektorokkal kimutatható
legyen. A frekvenciaeltolódás hatványfüggést mutat az eredeti frekvenciákkal, és ezt meg-
vizsgáltam speciálisan a GW150914 tranziens jelre.
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Preface

The �rst direct detection of gravitational waves (designated `GW150914'), made on Septem-
ber 14, 2015 by LIGO (Laser Interferometer Gravitational-Wave Observatory), was a sig-
ni�cant milestone in the history of astrophysics, which led to the birth of an entirely new
�eld of observational astronomy; the gravitational-wave astronomy. Gravitational-wave
detections provides astronomy with a revolutionary new tool for probing the universe
through ripples in spacetime, in addition to more conventional means of observation of
EM (Electromagnetic) radiation. The increased sensitivity of second-generation laser-
interferometric detectors operated by the Europe-based aVirgo (Advanced Virgo) and
the US-based aLIGO (Advanced LIGO) provided us the much-anticipated joint detec-
tion of a GW signal (GW170817) and EM radiation (GRB 170817A) from a binary of
colliding neutron stars for the �rst time. The brief gamma-ray burst from the collisions
was recorded on August 17, 2017 by ESA's Integral and NASA's Fermi gamma-ray
satellites only 1.7 sec after the LIGO. Due to the tremendous technological advances,
the number of observed events is exploding. The �rst catalogue of GW transient events
(GWTC-1), released on Dec 1, 2018, contains the properties of a total of 11 con�rmed
events discovered during the �rst and second observing runs of the global network of
advanced gravitational-wave detectors.

Our fundamental understanding of the Universe has predominantly been relying on
observations of EM radiation, emitted by various types of astrophysical sources across the
EM spectrum. The early second half of the 20th century was marked by the emergence
of new types of astronomy (radio, infrared, X-ray and gamma-ray) by which astronomy
was transformed from a purely optical science to a multi-wavelength discipline. Pulsars
and quasars were discovered in the 1960s to be strong sources of radio waves, and in
1964 the accidental discovery of the CMB (Cosmic microwave background) in microwave
region of the radio spectrum implied a compelling evidence of the Big Bang origin of
the universe. In infrared band, spectral lines and features of cold dust in the interstellar
medium of galaxies are most prominent. Higher energy or shorter wavelength photons
are studied by ultraviolet (for hot young stars and evolution of galaxies), X-ray (for AGN
(Active galactic nucleus)s, supernova remnants) and gamma-ray astronomy (for distant
high-energy objects, blazars, hypernovae). The following decades witnessed humanity's
�rst space exploration and the technological advances enabled both ground- and space-
based experiments of improved precision measurements, such as the measurements of
CMB anisotropies by COBE (Cosmic Background Explorer) and WMAP (Wilkinson Mi-
crowave Anisotropy Probe), and the high-precision estimation of Hubble's constant using
photometric redshift catalogues based on SDSS (Sloan Digital Sky Survey). Therefore,
neutron star oscillations may impact on a range of observations, involving in particular
radio and X-ray timing and gravitational waves. The possibility that radial oscillations
of neutron stars give rise to oscillations observed within radio subpulses of pulsars was
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proposed by V. Boriako� [6] in 1976. X-ray and γ-ray burst events have been generally
associated with neutron stars by many authors e.g. [7]. Periodicities have been observed
in X-ray bursts, which has raised considerable interest in radial [8] and other types [9]
of neutron-star oscillations since the early 1980s. Bursters exhibit periodic and rapid
increases in luminosity (typically a factor of 10 or greater) when an enormous amount of
energy deposited in oscillation modes is released in a short period of time through heat
out�ow via neutrino emission. [10] Physically, some mass from the stellar interior is drawn
toward the surface where the hydrogen fuses to helium which accumulates until it fuses
in a burst, producing X-rays. After the subsequent emission of thermal photon from the
surface, the crust thermally relaxes toward equilibrium with the core. X-ray observations
from the recently lunched NICER (Neutron Star Interior Composition Explorer) mission
[11] and from the upcoming LOFT (Large Observatory for X-ray Timing) mission [12] will
yield the mass and radius of a few stars up to ∼ 5% precision. The observations of CBC
(Compact binary coalescence) events by gravitational-wave detectors such as the tran-
sient signal GW170817 will also dramatically improve our understanding of ultra-dense
matter in neutron stars. Further interest in the study has been stimulated by [13], where
γ-ray bursts were assumed to originate as results of collisions between strange stars at
cosmological distances. Even though radial oscillations of strange stars are expected to
be damped rapidly [14], such strange stars during their short time-scales are likely to be
promising targets for multi-messenger observations. For most stellar models, the periods
(typically ranging from 0.2 to about 0.9 milliseconds) depend on the stellar model and
its central density [15], while the relaxation time is in the range of 0.1 − 0.3 seconds.
Therefore, the study of oscillation spectra and relaxation times of neutron stars could be
very valuable as their dynamical behaviour may eventually be deduced from observations.

CBCs such as stellar-mass BBH (Binary black hole)s and BNS (Binary neutron star)s,
are among the most promising GWs sources for ground-based GW detectors. [16]. Bi-
naries that evolved through typical main sequence evolution [17] are expected to shed
their formation eccentricities over time due to gravitational radiation reaction. For this
reason, isolated compact binaries are commonly assumed to move on quasicircular orbits
by the time they spiral into the sensitive frequency band of terrestrial GW observatories.
[18, 19] Some relatively young sources, nevertheless, which had too short time for the
gravitational radiation reaction to completely circularize their orbits retain some residual
eccentricity. [20] Therefore, CBC inspirals with non-negligible orbital eccentricities are
plausible sources. [18] Some results [21, 22] support the qualitative conclusion that ne-
glecting residual orbital eccentricities (even small ones) in CBCs may seriously deteriorate
matched-�lter detection performance. A number of possible astrophysical scenarios and
mechanisms allow the formation of observationally relevant eccentric ultracompact bina-
ries (cf. [23�25]). Short-period CBCs may form by dynamical capture in dense stellar
enviroments, present in both galactic central regions and globular clusters, or by tidal
capture of compact object by NS (Neutron star)s; this phenomenon is described in great
detail in [26�28]. Stable hierarchical triple star-systems may form in globular clusters
where multi-body interactions are involved. It has been estimated that ∼ 30% of binaries
formed in systems where the Kozai resonance increased the eccentricity of the inner bi-
nary will have initial eccentricities e0 > 0.1 when they enter the frequency window of the
aLIGO. [29] The great majority (∼ 90%) of stellar-mass BH (Black hole) binaries formed
by scattering in AGN containing a supermassive BH have e0 > 0.9, where e0 denotes the
initial eccentricity of the binary by the time it enters the lower part of the frequency band

ix



of detectors. [27] Roughly 0.1−10 eccentric inspiral events per year up to redshift z ∼ 0.2
are anticipated to be discovered by LIGO-type observatories. [23] One of the key goals of
GW observatories is to measure the intrinsic parameters of coalescing BNSs. Moreover,
Favata (2014) pointed out that neglecting initial eccentricities e0 & 0.002 causes system-
atic errors that exceed statistical errors in aLIGO measurements. [30] Since the phasing of
the GW signal is signi�cantly more important for parameter estimation, and eccentricity
modi�es the phasing beginning at 1.5PN (Post-Newtonian) orders, eccentricity corrections
to the PN phase have to be included at leading order.

Motivation and academic engagement

On the advent of the multi-channel astronomy, the demand both for computationally ef-
�cient generation of predicted waveforms (in Chapter 2) and for theoretical investigation
of plausible astrophysical sources, such as BNS or BH�NS systems, has renewed signif-
icantly. The potential to observe BNS and BH�NS coalescence events motivated us to
study the NS oscillations (in Chapter 3) and investigate their thermal relaxation at the
neutrino cooling stage that directly determine a minimum period of observable pulsars.
They provide us with unique insights into the physics of the extremely dense and cold
nuclear matter, which cannot be reached in terrestrial experiments. The ever-increasing
sensitivity of instruments prompts us to discover, gradually reduce and eventually elimi-
nate potential new e�ects that may lead to the degradation of signal detectability, such
as interaction of gravitational waves with matter (in Chapter 4). The presented doctoral
dissertation covers a wide range of actively sought �elds of research which can be divided
into three major topics, accordingly.

The pieces of academic research set out in the doctoral dissertation were conducted at
Wigner Research Centre for Physics in the position of junior research fellow from 2013,
then as assistant research fellow since 2016. I was enrolled in the Particle Physics and
Astronomy Doctoral Program of the Doctoral School of Physics at E�otv�os Lor�and Univer-
sity from 2013 to 2016. The Gravitational Physics Research Group, led by my supervisor,
Dr. M�aty�as Vas�uth, is dedicated to the study of gravitational phenomena in nature, cov-
ering a wide range of subjects in numerical and post-Newtonian general relativity, and
as a member of Virgo Collaboration it is engaged in gravitational-wave experiments and
developing related algorithms. I have also got involved in the collaborative e�ort of the
broader gravitational-wave science community to pursue groundbreaking discoveries in the
�eld of gravitational-wave astrophysics. In the autumn of 2015, the Virgo Membership
Committee approved my nomination for addition to the author list of joint LSC�Virgo
publications, which consists of a narrower group of members (currently about 1,200 peo-
ple). In behalf of my membership, I have appeared as co-author on over 70 peer-reviewed
research articles as of today. In 2016, together with the entire discovery team from LIGO
Scienti�c Collaboration and Virgo Collaboration, as one of the authors of the GW150914
announcement paper, I was awarded with the Special Breakthrough Prize in Fundamental
Physics and the Gruber Prize in Cosmology for the �rst detection of gravitational waves.

In April 2014, I carried out a short-term scienti�c mission (STSM) at Cardi� Uni-
versity, United Kingdom in the framework of NewCompStar program (COST Action
MP1304), where Prof. Bangalore Sathyaprakash and Dr. Michael P�urrer with exper-
tise on reduced-order models, have assisted me on constructing computationally e�cient
waveform templates. In April 2018, I was supported by PHAROS program (COST Ac-
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tion CA16214) to undertake a study aimed at investigating radial pulsations of neutron
stars under the supervision of Prof. Kostas Kokkotas, Director of Institute for Astron-
omy and Astrophysics at University of T�ubingen, Germany. In 2019, I was awarded two
research grants within the framework of OzGrav International Visitor Funding

Program and of the National Talent Scholarship (�Nemzeti Tehets�eg Program
� Nemzet Fiatal Tehets�egei�ert �Oszt�ond��j� in Hungarian, NTP-NFT�O-18), supported by
the Australian Research Council and by the Hungarian Ministry of Human Capacities,
respectively. They provided me with the opportunity to carry out a research at Monash
University, Australia, to assess the utilization of phenomenological waveforms that include
very late IMR (Inspiral-merger-ringdown) phases of the CBCs. Dr. Eric Thrane, Data
Theme Leader for OzGrav who supervised my work at Monash University supported my
membership in LSC (LIGO Scienti�c Collaboration) and in the ARC Centre of Excellence
for Gravitational Wave Discovery (OzGrav).

Structure and components of the dissertation

The body of my dissertation is divided into four chapters, according to their respective
subjects. These main chapters are preceded by a preface which explains the underly-
ing motivation for each subject and highlights the links between them in the context of
contemporary gravitational-wave research.

Chapter 1 is intended to provide a brief overview of the essential scienti�c background
and basic concepts that are required for the understanding of the pieces of academic re-
search set out in the presented doctoral dissertation. In Sec. 1.1, I begin with a brief
account of major historical milestones of the combined theoretical and technological de-
velopment in gravitational-wave research that led to the discovery of gravitational waves.
The discussion in Sec. 1.2 provides a brief overview of the development of Weber-type
resonant-mass detectors and type of LIGO-type laser-interferometric detectors. It is in-
tended to cover the most relevant issues of instrumentation, noise sources, strain sensitivi-
ties and mission development, including the status of currently operational and upcoming
gravitational-wave detectors across the globe. Sec. 1.3 summarizes observations of gravi-
tational waves, including the �rst indirect evidence presented by PSR B1913+16, followed
by direct observations of gravitational waves which constitute part of the �rst GWTC-1
(1st GW-transient catalogue of compact binary mergers). After reviewing mathematical
notation and conventions in Sec. 1.4, the necessary mathematical preliminaries of pseudo-
Riemannian geometry are presented which lay the conceptual foundations for clear and
intuitive discussion of my own research discussed in the following chapters. The linearized
weak-�eld equations and the corresponding linear plane-waves solution in the transverse-
traceless gauge are then derived in Sec. 1.5.

Chapter 2 focuses on the issue of generating gravitational waveforms for non-spinning
eccentric compact binaries with reduced computational cost. Sec. 2.1 reviews the devel-
opment of ROM-based models in GW data analysis. Sec. 2.2 starts with the description
of the procedure for generating �ducial PN waveforms by CBwaves, with respect to the
statistics of the cost of computing individual waveforms to estimate the total cost of build-
ing template banks. Sec. 2.3 proposes the simplest strategy (regular spacing) for template
placement in the intrinsic parameter space, followed by the representation of the �ducial
waveform templates on a common, �nely sampled and regularly spaced frequency grid.
Sec. 2.4 gives a general description of my approach to construct e�cient ROM assembled
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from the reduced bases and their characteristic features, particularly the truncation error.
Sec. 2.5 is dedicated to assessing the overall performance of ROM building, including the
accuracy of the surrogate model and its computational cost relative to that of the �ducial
model. Sec. 2.6 contains the summary of this chapter, including the limitations of the
research and an outlook for future development.

Chapter 3 is dedicated to discourse radial pulsations of relativistic stellar models for
dissipative �uids. Sec. 3.1 places the subject of relativistic stellar oscillations in context.
Sec. 3.2 presents a collection of tabulated EOS (Equation of state)s for four nucleonic and
three non-nucleonic matter models I examined. Then one-piece and piecewise-polytropic
EOSs are discussed, together with hybrid models that extend the validity of polytropic
description to heating and cooling processes. Sec. 3.3 presents the basic equations of
hydrodynamics of perfect �uids and of dissipative �uids in Eckart frame where the equa-
tions of thermal evolution of pulsating neutron stars include radiative transfer. In Sec.
3.4, the Einstein �eld equations and the generalized Tolman�Oppenheimer�Volko� equa-
tion are expressed through a pair of e�ective variables that incorporate time-dependent
dissipative contributions of the neutron-star matter. In Sec. 3.5, I present a variational
method to formulate a lowest-order asymptotic approximation of in�nitesimal adiabatic
radial oscillations. Sec. 3.5.3 outlines equilibrium stellar models through a local adia-
batic index which may be regarded as constant near the centre, but in general, varies,
depending on the dynamical regime. Sec. 3.6 deals with the second-order linear ODE
(Ordinary di�erential equation) of radial pulsations that were derived from the perturba-
tion equations. Sec. 3.6.1 discusses the regular Sturm�Liouville eigenvalue problem for
the natural frequencies of oscillation, imposed by the aforementioned pulsation equation.
Sec. 3.6.2 addresses the characteristic time-scale for the relaxation of dissipation-damped
radial oscillations. Lastly, the principal results established in this paper are summarized
in Sec. 3.7.

Chapter 4 addresses the issue of the interaction of gravitational waves with interstel-
lar matter, in order to provide a more accurate picture of expected waveforms for direct
detection. Sec. 4.1 presents a brief review of previously published studies in the literature
that were engaged in studying the propagation of gravitational waves through interstellar
matter. Sec. 4.2 �rst discusses the background with physical properties of typical giant
molecular clouds, then its perturbations in detail. In Sec. 4.3 these perturbed quanti-
ties yield the �eld equations governing the gas dynamics and express the interaction of
GWs with matter. Sec. 4.4 presents the Wentzel�Kramers�Brillouin method for �nding
approximate solutions to the perturbed �eld equations. In this context, in Sec. 4.4.1, the
�eld equations decoupled asymptotically for locally plane high-frequency monochromatic
waves to a set of second-order homogeneous linear PDE (Partial di�erential equations)s
of di�erent orders of magnitude. In Sec. 4.4.2 the transport equation for the �rst-order
secondary amplitudes which depend on the density in geometrical-optics limit are formu-
lated, and subsequently solved in Sec. 4.5.1 for varying sinusoidal components of Fourier
series. In Sec. 4.5.2 �rst a match-�ltering technique is used to correlate the transient GW
signal `GW150914' with the corresponding signal a�ected by the interaction with mat-
ter. Then I bring to light for what kind of possible GW-sources the e�ect of interaction
is expected to be powerful enough to be taken into consideration in GW data analysis.
Conclusions, remarks and limitations are given in Sec. 4.6.
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Chapter 1

Introduction to gravitational-wave

astronomy

This chapter is intended to provide readers with a review of the essential scienti�c back-
ground and basic concepts needed to understand the pieces of academic research set out in
the presented doctoral dissertation. In Sec. 1.1, mostly based on [31], I begin with a brief
account of major historical milestones of the combined theoretical and technological de-
velopment in gravitational-wave research that led to the discovery of gravitational waves.
The discussion in Sec. 1.2 provides a brief overview of the development of Weber-type
resonant-mass detectors and type of LIGO-type laser-interferometric detectors. It is in-
tended to cover the most relevant issues of instrumentation, noise sources, strain sensitivi-
ties and mission development, including the status of currently operational and upcoming
gravitational-wave detectors across the globe. Sec. 1.3 summarizes observations of gravi-
tational waves including �rst indirect evidence presented by PSR B1913+16, followed by
direct observations of gravitational waves which constitute part of the GWTC-1. After
reviewing mathematical notation and conventions in Sec. 1.4, the necessary mathemati-
cal preliminaries of pseudo-Riemannian geometry are presented which lay the conceptual
foundations for clear and intuitive discussion of my own research discussed in the following
chapters. The linearized weak-�eld equations and the corresponding linear plane-waves
solution in the transverse-traceless gauge are then derived in Sec. 1.5. The discourse
of Sections 1.4 and 1.5 is mostly based on the content of comprehensive introductory
textbooks [32�34].

1.1 A brief history of gravitational-wave research

The way for Albert Einstein's special theory of relativity was paved by Hendrik Antoon
Lorentz [35], who postulated the concept of so-called Lorentz transformation (1.14) in 1904
to explain the invariance of the source-free Maxwell equations under such transformations.
In 1905, Henri Poincar�e [36] explicitly formulated that the new spacetime transformation
emitted by Lorentz applies not only to the electromagnetic, but all forces in nature. The
existence of gravitational waves was �rst proposed by Henri Poincar�e as early as June
5, 1905 and subsequently predicted in 1916 by Albert Einstein [37] on the basis of his
gravitational-�eld equations (1.24) in a weak-�eld approximation (cf. the linearization
in more detail in Sec. 1.5). The �rst attempt to de�ne a solution for polarized plane
gravitational waves (1.53) not only in the linearized Einstein theory, but in the full theory
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was made by Albert Einstein and Nathan Rosen [38] in 1937, who, however, argued
that such waves could not exist because the metric would have to contain certain physical
singularities.1 In 1952 Yvonne Choquet-Bruhat [39] provided a proof of the well-posedness
of the Cauchy problem for the Einstein equations, but until 1957 broad consensus has not
been reached among the scienti�c community about the physical reality of gravitational
waves.

The decisive Conference on the Role of Gravitation in Physics held at Chapel Hill
on 18�23 January 1957 brought about a dramatic change of opinion. The discovery of a
singularity-free solution of a plane gravitational wave that carries energy was announced
by Bondi [40] in his Nature paper. In fact, the �rst attempt at giving a purely geometric
de�nition of GWs was made by Felix Pirani who submitted his paper [41] just a few
months before the Chapel Hill conference. He argued that a spacetime containing gravi-
tational radiation should be algebraically special and it should appear as a discontinuity
in the Riemann tensor. In Bondi's earlier paper, and the subsequent paper written by
Bondi, Pirani, and Robinson [42], plane GWs were de�ned to be non-�at solutions of
the vacuum Einstein equations which admit as much symmetry as do plane electromag-
netic waves and inferred that such waves transport energy. Analogous to the changing
dipole moment of charge that is necessary for the emission of electromagnetic radiation,
gravitational radiation is emitted by time-varying mass quadrupole moment of the source
(1.77). But unlike EM radiation, the lowest order of gravitational radiation is quadrupolar
and the amplitudes of gravitational radiation from astrophysical sources were expected
to be prohibitively small, which questioned even the existence of gravitational waves for
decades.[43] Polarized plane gravitational waves (1.53), represented by transverse waves
of spatial strain that propagate at speed of light, are perturbative vacuum solutions to the
linearized weak-�eld equations (1.46).2 Shortly after, Robinson and Trautman [44] found
the �rst class of exact solutions of the full system of Einstein equations in 1962 which, as
demonstrated in [45], satis�es Trautman's boundary for spatially con�ned gravitational
sources and thus describing GWs with closed fronts coming from con�ned sources. In con-
clusion, the Bondi�Pirani�Robinson papers [40�42] and the Trautman�Robinson papers
[44, 45], which were all published at the turn of the 1950s and 1960s, brought about an
unprecedented rate of development in the theory of gravitational radiation and provided
a �rm theoretical foundation for further research and experiments.

The discovery of the �rst known binary pulsar system, designated PSR1913+16, by
Hulse and Taylor [46] in 1974 and the subsequent observation of its pulse-arrival times by
Taylor and Weisberg [47] in 1982 provided the �rst �rm observational evidence for the exis-
tence of gravitational waves. The groundbreaking discovery and analysis of PSR1913+16
earned them the 1993 Nobel Prize in Physics and led to the recognition that direct ob-
servations of gravitational waves would o�er the potential of new insight into some of the
most extreme, compact objects in the universe. For further details about PSR1913+16,
cf. Sec. 1.3.1. The developement of NR (Numerical relativity) methods begins with
linearized theory and the PN approximation (cf. 1.5.6). PN approximation (in �rst-
order) was �rst put into use by Einstein [37] for calculating relativistic corrections to the

1Later, it was revealed by H. Robertson that the Rosen's argument was invalid because the singularities
were induced by a wrong choice of coordinates and the solution may in fact be interpreted as a cylindrical
wave.

2The amount by which the ripples of the perturbation stretches and contracts measurements of space
is referred to as the `strain'.
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perihelion precession of Mercury's orbit in 1915. However, the systematic study of PN ap-
proximations was, infact, conducted in the 1960s by the seminal works of Chandrasekhar
[48] and co-workers. Numerical methods are used among other things, to predict the
gravitational waves emanating from CBCs (cf. Sec. 2.2.1).

1.2 Gravitational-wave observatories and data analysis

This section gives a brief overview of gravitational-wave observatories (or gravitational-
wave detectors) devised to measure the subtle e�ects of stretching and compressing of
space that are caused by passing gravitational waves. Sec. 1.2.1 draws the reader's
attention to the earlier, Weber-type resonant-mass detectors which were only sensitive to
narrow ranges of frequencies and to a small portions of the sky, yet far less expensive than
interferometric ones. Sec. 1.2.2 �rst discusses the basic idea and implementation of using
laser interferometry for the measurement of gravitational radiation. Next, I give a brief
review of the development of LIGO-type ground-based laser-interferometric gravitational-
wave detectors, including the latest technological advancements and instrumental limit
of detection. The section is concluded with a presentation of currently operational laser-
interferometric gravitational-wave detectors across the globe and a plausible timeline for
future detectors over the coming years.

Figure 1.1: A plausible timeline for the evolution of horizon distance for observing runs of
aLIGO, aVirgo and KAGRA (Kamioka Gravitational Wave Detector) detector over the coming
years. The coloured bars show the observing runs, with achieved sensitivities in O1, O2 and
O3, and the expected sensitivities for future runs (as shown in Fig. 1.5). There is signi�cant
uncertainty in the start and end times of the planned observing runs, especially for those further
in the future, and these could move forward or backwards relative to what is shown above.
Uncertainty in start or �nish dates is represented by shading. The break between O3 and O4
will last at least 18 months. O3 is expected to �nish by June 30, 2020 at the latest. The O4 run is
planned to last for one calendar year. I indicate a range of potential sensitivities for aLIGO during
O4 depending on which upgrades and improvements are made after O3. The most signi�cant
driver of the aLIGO range in O4 is from the implementation of frequency-dependent squeezing.
(Original �gure, courtesy of the KAGRA Collaboration, the LIGO Scienti�c Collaboration, and
the Virgo Collaboration [49].)
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1.2.1 Early measurements with resonant-mass detectors

The experimental search for gravitational waves began in the 1960s with Joseph Weber.
In 1960 his paper [50] discussed the possibility of direct detection of GWs and stated
that GW luminosity of binary black-hole coalescences could be as high as c5/G, or about
1023L�. In 1966 Weber and his students at the University of Maryland constructed the
�rst resonant-mass detector or `Weber bar'. [51] These cylinders consisted of multiple
aluminium cylinders (2 meters in length, 1 meter in diameter and each weighted 1.2
tons) which were held at room temperature and isolated from vibrations in a vacuum
chamber. They vibrated at a resonance frequency of 1660 Hz and were designed to be
massive enough to be set in motion by supposedly weak GWs and the piezoelectric sensors
had to be extremely sensitive as well, capable of detecting a change in the cylinders'
length of about 10−16 meters. [52] Although Weber began publishing papers in 1968 with
evidence claiming that he had detected GWs with one such resonant bar, the results of
his experiments were largely discredited by others who all failed to replicate the positive
results. Weber-type detectors as the earliest type of resonant-mass detector were dominant
in 1960s and 1970s and many were built around the world.

The second generation of resonant-mass detectors emerged in the 1980s and 1990s.
They were cooled to cryogenic temperatures with superconducting transducers and, as
a result of their upgraded design, they achieved at least 6 orders of magnitude greater
�ux sensitivity than the original Weber-type detectors. [53] The �ve detectors � AL-
LERGO (Louisiana, US), AURIGA (Padua, Italy), EXPLORER (CERN, Switzerland),
NAUTILUS (Rome, Italy) and NIOBE (Perth, Australia) � have been almost continuously
searching for impulsive events since 1997 and as part of a global network for International
Gravitational Event Collaboration (IGEC), they have been providing mutual data ac-
cess. [51] The third generation of resonant-mass detectors is represented by two cryogenic
spherical GW antennas, the MiniGRAIL (Leiden, Netherlands) and the M�ario Schenberg
(S�ao Paulo, Brazil) that were built in the 2000s as downsized versions of the original
proposals (others were cancelled). NAUTILUS, AURIGA and the two spherical antennas
are still active, but most resonant-mass detectors have been decommissioned in favour of
interferometric detectors.

1.2.2 Modern measurements with interferometric detectors

The idea of using laser interferometry for the measurement of gravitational radiation
was �rst suggested in the early 1960s by Soviet scientists Mikhail Gertsenshtein and
Vladislav Pustovoit. [55] The basic idea behind laser interferometry is to split laser beam
from a single source into two sub-beams that travel in di�erent optical paths, which
are then combined again to produce interference. In classical Michelson�Morley-type
laser interferometers designed for gravitational-wave detection, the sub-beams travel down
orthogonal arms, bounce o� mirrors, and then return to recombine. Normally the travel
time is the same in each sub-beam, hence the light recombines constructively. However,
interference occurs when a passing GW changes the relative length of the optical cavities
in the interferometer (or equivalently, the proper travel time of photons) resulting in a
strain

h = ∆L/L, (1.1)

where ∆L is the di�erence in path lengths L along the two arms of the interferometer.
[56] For the typically-used, infrared lasers of wavelength λ ∼ 1µm, and interferometer
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Figure 1.2: A simpli�ed schematic diagram of a Michelson interferometer with annotations
showing the optical power used during O1 run in aLIGO detectors. The interferometer is en-
hanced by two 4-km-long resonant arm cavities, which increase the optical power in the arms
by a factor of Garm ' 270. The diagram illustrates a laser beam being split into two sub-beams
that travel down orthogonal arms, bounce o� mirrors, and then return to recombine. Since the
interferometer is operated near a dark fringe, all but a small fraction of the light is directed back
towards the laser. The Nd:YAG laser, with wavelength λ = 1064 nm, is capable of producing
power up to 180 W, but only 22 Wwere used in O1. A suspended, triangular Fabry�P�erot optical
cavity serves as an input mode cleaner to clean up the spatial pro�le of the laser beam, suppress
input beam jitter, clean polarization, and help stabilize the laser frequency (modulated at radio
frequencies 9 and 45 MHz). The power recycling mirror between the beam splitter and the read-
out photosensors resonates this light again to increase the power incident on the beamsplitter
by a factor of ' 40, improving the shot noise sensing limit and �ltering laser noises. On the
antisymmetric side, the signal recycling mirror is used to broaden the response of the detector
beyond the linewidth of the arm cavities. The output mode cleaner at the antisymmetric port
removes excess spatial and frequency components of the laser light before the signal is detected
by the main photodetectors. Faraday isolators suppress re�ected beams while electro-optic mod-
ulators add radio frequency-sidebands to the laser light for the locking of laser beams to optical
cavities. (Based partly on a �gure courtesy of the LIGO Scienti�c Collaboration. [54])

arms of length L = 4 km, the minimum detectable strain is h ∼ λ/L ∼ 3 × 10−10. The
schematic illustration of the specialized versions of Michelson interferometer applied in
the instrumental design of GW detectors is shown in Fig. 1.2. Although the concept of
using laser interferometry was conceived the early 1960s, its realization came only in the
late 1960s and early 1970s through the pioneering work of Rainer Weiss at MIT and Kip
Thorne and Ronald Drever at Caltech. The idea was put into practice by Rainer Weiss,
who published an analysis of laser-interferometer performance in 1967 [57], demonstrating
that its sensitivity is limited only by photon-shot noise at high frequencies. In 1972, Weiss
identi�ed all the fundamental noise sources that can cause movement in the optics. [58]
He conceived the original idea of interferometric detectors with L-shaped arms, at 90◦

angles to each other would be optimal for GW detections. A passing GW would slightly
stretch one arm as it would squeeze the other. In the late 1970s, Kip Thorne triggered the
creation of an experimental gravitational-wave group at Caltech, led by Ronald Drever
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and Stan Whitcomb. The subsequent construction of Weiss's 1.5-meter-long prototype
at MIT and Drever's and Whitcomb's 40-meter-long prototype interferometer at Caltech
was funded by the US NSF (National Science Foundation).

Following the success of the �rst prototypes, Weiss was funded by NSF to design and
lead a technical and cost study for the �rst generation of several-kilometer-long interfer-
ometers. Caltech and MIT submitted proposal to NSF in 1989 for the joint design and
building of two 4-km-long and one 2-km-long laser interferometers in the United States
at two sites (cf. Fig. 1.3); L1 in Livingston, Louisiana and H1 and H2 in Hanford,
Washington under the joint leadership of Drever, Weiss and Thorne. To operate these
facilities at both sites, the LSC was created in 1997 under the leadership of Barry Barish,
and later joined by a number of universities and research institutions (mostly US-based),
including Hungarian research groups from E�otv�os Lor�and University and University of
Szeged. The �rst European-based interferometric instrument, GEO600 of just 600 me-
tres arm length was built in a German-British partnership in 1995, in Sarstedt (near
Hanover, Germany: see Fig. 1.3) as a downsized version of the original proposal of a
3-kilometer-long interferometer. However, in 1994 the French CNRS (Centre national de
la recherche scienti�que) and the Italian INFN (Istituto Nazionale di Fisica Nucleare) set
up a project as well to design and construct the 3-km-long Virgo interferometric detector
in the vicinity of Cascina (near Pisa, Italy: see Fig. 1.3). In 2000, CNRS and INFN
created the EGO (European Gravitational Observatory) consortium that is responsible
for the maintenance and operation of the instrument. The Virgo Collaboration was later
joined by Wigner Research Centre for Physics (Hungary), NIKHEF (the Netherlands),
POLGRAW (Poland) and University of Valencia (Spain).

Figure 1.3: Geographical locations and orientations of current and future laser-interferometric
gravitational-wave detectors across the globe. The GEO600 detector is currently taking data; the
aLIGO detectors at Hanford and Livingston and aVirgo are expected to begin taking data in 2015;
KAGRA should operate in its full optical con�guration starting around 2018; and LIGO-India
around 2020. LIGO-India is contingent on �nal approvals and funding, and its exact location
has not yet been determined. (Based partly on a �gure courtesy of the Virgo Collaboration.[59])
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The �rst-generation laser-interferometric detectors; iLIGO (Initial LIGO) and iVirgo
(Initial Virgo) commenced several data-taking periods from 2002 to 2010 and from 2007 to
2011, respectively. The 6th science run (S6) of the two iLIGO detectors that occurred from
July 2009 through October 2010 were conducted in coincidence with iVirgo detector's 2nd
and 3rd science runs (VSR2, VSR3). Although the sensitivity of iLIGO increased in a wide
frequency band over four orders of magnitude larger than Weber's original instrument and
reached its primary design speci�cation of a detectable strain of 2×10−23 Hz−1/2 at 200 Hz,
no gravitational wave signals were detected at this stage. [54] The era of �rst-generation
instruments in iLIGO came to an end in 2010, at which point it was disassembled to make
way for new and improved instruments which were designed to be 10 times more sensitive
than their predecessor, and promised to increase the volume of the observable universe
by a factor of 1000. Upgraded components for the aLIGO detectors (shown in Fig. 1.2)
were installed in the existing facilities from 2008 to 2014. [60] These upgrades included an
increase in the laser power to reduce quantum noise, larger and heavier mirrors to reduce
thermal and radiation pressure noise, better suspension �bers for the mirrors to reduce
suspension thermal noise, among many other improvements. [31] The design levels of the
aforementioned sources of noise limiting the sensitivity of the two aLIGO detectors are
shown in Fig. 1.4.

(a) aLIGO Livingston Observatory (b) aLIGO Hanford Observatory

Figure 1.4: The design levels of numerous noise sources that limit the sensitivity of the two
aLIGO detectors at low frequencies. The strain sensitivities are similar between the two sites.
Panel (a) shows the low-frequency curves for L1, whereas panel (b) shows the high-frequency
curves for H1 detector. Quantum noise is the sum of the quantum radiation pressure noise and
shot noise. Dark noise refers to electronic noise in the signal chain with no light incident on
the readout photodetectors. Thermal noise is the sum of suspension and coating thermal noises.
Gas noise is the sum of squeezed �lm damping and beam tube gas phase noises. The coupling
of the residual motion of the Michelson (MICH) and signal-recycling cavity (SRCL) degrees of
freedom to gravitational wave channel is reduced by a feedforward-cancellation technique. At
low frequencies, there is currently a signi�cant gap between the measured strain noise and the
root-square sum of investigated noises. At high frequencies, the sensitivity is limited by shot
noise and input beam jitter. (Original �gure, courtesy of the LIGO Scienti�c Collaboration.
[54])

The newly-installed aLIGO was commissioned from mid-2014 to mid-2015 with a
sensitivity roughly 3�4 times greater in the frequency range between 10 Hz and 10 kHz
than that of iLIGO's last science run. Around 100 Hz, the strain sensitivity was 8 ×
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10−23 Hz−1/2, which resulted in an astrophysical reach w 4.1 and w 3.5 times greater than
that of the iLIGO detectors: The sky location and source orientation-averaged range was
1.3 Gpc for a 30M� + 30M� BNS, whereas for a BNS star system the range was 70�80
Mpc. [54] The target strain sensitivities of advanced detectors anticipated for future runs
are shown as bands in Fig. 1.5. All these improvements have culminated in the discovery
of a series of GW transient events during the observation runs O1 and O2 between 2015
to 2017 that marked the opening of the era of gravitational-wave astronomy. [61] For
further details about GW transient events discovered during the �rst observation runs of
advanced detectors, cf. Sec. 1.3.2.

(a) Advanced LIGO (b) Advanced Virgo

(c) KAGRA

Figure 1.5: The target strain sensitivities of aLIGO (top left), aVirgo (top right) and KAGRA
(bottom) as a function of frequency. The quoted range is for a 1.4M�+1.4M� BNS merger. The
BNS range (in Mpc) achieved in past observing runs and anticipated for future runs is shown
as bands. The O1 aLIGO curve is taken from the Hanford detector, the O2 aLIGO curve comes
from Livingston. In each case these had the better performance for that observing run. The
O3 curves for aLIGO and aVirgo re�ect recent performance. Detailed planning for the post-O3
to O4 period, shown in Fig. 1.1, is now in progress and may result in changes to both target
sensitivities for O4 and the start date for this run. The the BNS curve for KAGRA may be
realized by detuning the signal recycling cavity to signi�cantly improve the BNS range to 155
Mpc once design sensitivity is reached. (Original �gure, courtesy of the KAGRA Collaboration,
the LIGO Scienti�c Collaboration, and the Virgo Collaboration. [49])

Current operating facilities in the global network include the twin aLIGO facilities in
the United States and the aVirgo in Europe. KAGRA, an underground cryogenic inter-
ferometer built in Japan (Kamioka mine near Hida, Gifu Prefecture) is coming online by
the end of 2019 to join the campaign of aLIGO and aVirgo. The coming years will also
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see the arrival of a third LIGO detector located in India (near Aundha Nagnath, Hingoli
District, Maharashtra), which is expected to be operational around 2022. Geographical
locations and orientations of current and future laser-interferometric gravitational-wave
detectors across the globe are listed in Table 1.1 and shown in Fig. 1.3. Furthermore,
the plans to design third-generation observatories, such as the Einstein Telescope [62] or
Cosmic Explorer [63], with another factor of 10 improvement in sensitivity, are already
on the way. It is also possible that for some sources, there could be multiband GW obser-
vations. [49] The space-borne LISA (Laser Interferometer Space Antenna) could provide
early warning and sky localization, as well as additional information on system parame-
ters and formation mechanisms. [24, 25] Building multiple GW observatories around the
globe will increase the con�dence of a detection by observing the signal by independent
observatories with uncorrelated noise. Operating them together is also helpful in locating
the sources of GW signals more accurately and determining the source parameters with
higher precision. [64]

Detector Latitude (φ) Longitude (λ) Orientation (γ) ζ
LIGO Hanford 46◦27′19′′ N 119◦24′28′′ W 171◦ 90◦

LIGO Livingston 30◦33′46′′ N 90◦46′27′′ W 242◦ 90◦

GEO600 52◦15′ N 9◦48′36′′ E 68◦46′48′′ 94◦19′48′′

Virgo 43◦37′53′′ N 10◦30′16′′ E 115◦36′ 90◦

KAGRA 36◦25′26′′ N 137◦19′11′′ E 75◦ 90◦

LIGO-India 19◦32′24′′ N 77◦2′26′′ E 58◦12′ + k×90◦ 90◦

Table 1.1: Geographical locations and orientations of currently operational and future laser-
interferometric gravitational-wave detectors across the globe. The angles φ and λ are the geodetic
latitude and longitude, respectively, of the detector's site. The angle γ determines the orienta-
tion of the interferometer arms with respect to local geographical directions and it is measured
counter-clockwise from the East to the bisector of the interferometer arms. The angle ζ is the
angle between the interferometer arms. The geographical locations and orientation angles are
based on Refs. [65, 66].

1.3 Observations of gravitational waves

I begin with a discussion of the observations of gravitational-wave events with the �rst
indirect observational evidence of gravitational waves in Sec. 1.3.1. Next, I review a series
of directly observed GW events, commenced with the detection of GW150914.

1.3.1 Hulse�Taylor binary pulsar

A number of experiments have provided indirect evidence, notably the observation of
binary pulsars. The binary-pulsar system PSR1913+16 was certainly not the �rst dis-
covered pulsar, but it was the �rst observed binary-pulsar system which evolves precisely
matching the general relativistic predictions of energy loss through gravitational-wave
emission. In 1974 Russell Hulse and Joseph Taylor [46] detected pulsed radio emissions
from this system using the Arecibo Observatory's 305m radio telescope in Puerto Rico.
Subsequent observations of its pulse-arrival times, taken between September 1974 and
March 1981, by Taylor and Weisberg, [47] veri�ed that the measured decay of the orbital
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parameters in the system is in precise agreement with the rate at which the orbital period
should decay as kinetic energy is lost from the system through gravitational radiation, ac-
cording to Einstein's general theory of relativity. The precise agreement provided the �rst
compelling observational evidence for the existence of gravitational waves. The ratio of
observed to predicted rate of orbital decay was calculated to be Ṗ intr

b /ṖGR
b = 0.997±0.002

at the time. (Now Ṗ intr
b /ṖGR

b = 0.9983± 0.0016, cf. Table 1.2). The importance of grav-
itational waves is highlighted by the very fact that even this indirect evidence for their
existence earned Hulse and Taylor the Nobel Prize in 1993. Taylor and co-workers moni-
tored PSR1913+16 for 20 years to further con�rm that the system lost energy exactly as
predicted. [64] Its detailed features were deducted from observations of the pulse-arrival
times and the Doppler e�ect. Fig. 1.6 summarizes the comparsion between the observed
change in the epoch of periastron of measurement and the corresponding general relativis-
tic prediction. Since the discovery of PSR B1913+16, several other binary-pulsar systems

Figure 1.6: Orbital decay of PSR B1913+16 as a function of time. The parabola represents
the orbital phase shift predicted for gravitational emission according to general relativity. The
data points, with error bars too small to show, indicate the observed change in the epoch of
periastron. (Original �gure, courtesy of J. M. Weisberg. [67])

with gravitational radiation-induced orbital decay have been observed, albeit with some-
what less precision than PSR B1913+16. See the published measurements of Ṗ intr

b /ṖGR
b

for 10 such pulsars in Table 1.2.
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PSR Ṗ intr
b /ṖGR

b

J0348+0432 1.05± 0.18
J0737-3039 1.003± 0.014
J1141-6545 1.04± 0.06
B1534+12 0.91± 0.06
J1738+0333 0.94± 0.13
J1756-2251 1.08± 0.03
J1906+0746 1.01± 0.05
B1913+16 0.9983± 0.0016
B2127+11C 1.00± 0.03

Table 1.2: Comparison of gravitational radiation-induced orbital decay with the orbital decay
predicted by general relativity in 10 binary PRSs. (For further details and references, please, see
Ref. [67].)

1.3.2 GW events and source parameters from observation runs

O1 and O2

Event m1/M� m2/M� M/M� ξe� Mf/M� af Erad/(M�c
2) `peak/(ergs

−1) dL/Mpc z ∆Ω/deg2

GW150914 35.6+4.8
−3.0 30.6+3.0

−4.4 28.6+1.6
−1.5 −0.01+0.12

−0.13 63.1+3.3
−3.0 0.69+0.05

−0.04 3.1+0.4
−0.4 3.6+0.4

−0.4× 1056 430+150
−170 0.09+0.03

−0.03 179
GW151012 23.3+14.0

−5.5 13.6+4.1
−4.8 15.2+2.0

−1.1 0.04+0.28
−0.19 35.7+9.9

−3.8 0.67+0.13
−0.11 1.5+0.5

−0.5 3.2+0.8
−1.7× 1056 1060+540

−480 0.21+0.09
−0.09 1555

GW151226 13.7+8.8
−3.2 7.7+2.2

−2.6 8.9+0.3
−0.3 0.18+0.20

−0.12 20.5+6.4
−1.5 0.74+0.07

−0.05 1.0+0.1
−0.2 3.4+0.7

.1.7 × 1056 440+180
−190 0.09+0.04

−0.04 1033
GW170104 31.0+7.2

−5.6 20.1+4.9
−4.5 21.5+2.1

−1.7 −0.04+0.17
−0.20 49.1+5.2

−3.9 0.66+0.08
−0.10 2.2+0.5

−0.5 3.3+0.6
−0.9× 1056 960+430

−410 0.19+0.07
−0.08 924

GW170608 10.9+5.3
−1.7 7.6+1.3

−2.1 7.9+0.2
−0.2 0.03+0.19

−0.07 17.8+3.2
−0.7 0.69+0.04

−0.04 0.9+0.0
−0.1 3.5+0.4

−1.3× 1056 320+120
−110 0.07+0.02

−0.02 396
GW170729 50.6+16.6

−10.2 34.3 +9.1
−10.1 35.7+6.5

−4.7 0.36+0.21
−0.25 80.3+14.6

−10.2 0.81+0.07
−0.13 4.8+1.7

−1.7 4.2+0.9
−1.5× 1056 2750+1350

−1320 0.48+0.19
−0.20 1033

GW170809 35.2+8.3
−6.0 23.8+5.2

−5.1 25.0+2.1
−1.6 0.07+0.16

−0.16 56.4+5.2
−3.7 0.70+0.08

−0.09 2.7+0.6
−0.6 3.5+0.6

−0.9× 1056 990+320
−380 0.20+0.05

−0.07 340
GW170814 30.7+5.7

−3.0 25.3+2.9
−4.1 24.2+1.4

−1.1 0.07+0.12
−0.11 53.4+3.2

−2.4 0.72+0.07
−0.05 2.7+0.4

−0.3 3.7+0.4
−0.5× 1056 580+160

−210 0.12+0.03
−0.04 87

GW170817 1.46 + 0.12
−0.10 1.27+0.09

−0.09 1.186+0.001
−0.001 0.00+0.02

−0.01 ≤ 2.8 ≤ 0.89 ≥ 0.04 ≥ 0.1× 1056 40+10
−10 0.01+0.00

−0.00 16
GW170818 35.5+7.5

−4.7 26.8+4.3
−5.2 26.7+2.1

−1.7 −0.09+0.18
−0.21 59.8+4.8

−3.8 0.67+0.07
−0.08 2.7+0.5

−0.5 3.4+0.5
−0.7× 1056 1020+430

−360 0.20+0.07
−0.07 39

GW170823 39.6+10.0
−6.6 29.4+6.3

−7.1 29.3+4.2
−3.2 0.08+0.20

−0.22 65.6+9.4
−6.6 0.71+0.08

−0.10 3.3+0.9
−0.8 3.6+0.6

−0.9× 1056 1850+840
−840 0.34+0.13

−0.14 1651

Table 1.3: Selected source parameters of the 11 con�dent detections. The columns show source
frame component masses mi and chirp mass M, dimensionless e�ective aligned spin ξe�, �nal
source frame mass Mf, �nal spin af, radiated energy Erad, peak luminosity `peak, luminosity
distance dL, redshift z and sky localization ∆Ω/deg2. Median values with 90% credible intervals
include statistical errors, and systematic errors from averaging the results of two waveform models
for BBHs. The sky localization is the area of the 90% credible region. For BBH events, the
redshift was calculated from the luminosity distance and assumed cosmology. (Original table,
courtesy of the LIGO Scienti�c Collaboration and the Virgo Collaboration. [61])

Just a few days after the start of the �rst science run (O1), on September 14, 2015,
the aLIGO detectors recorded an interference pattern associated with a gravitational-wave
transient which was emitted from a BBH system of chirp massM = 28.2+1.8

−1.7 M� (cf. def-
inition in (1.6)) at a luminosity distance dL = 440+160

−180 Mpc. [68] The signal, designated
`GW150914' [69], was so loud3 that the probability of a false alarm was much smaller
than 10−7. [31] The direct observation of the �rst signal was shortly followed by the iden-
ti�cation of another 10 con�rmed signals over the period of aLIGO's �rst two observation
runs (O1, September 2015 to January 2016) and (O2, November 2016 to August 2017) to
which aVirgo has joined in August 2017. A third observation run (O3) began on April 1,
2019 from which a large number of candidate events were recorded (a total number of 22

3The level of signal relative to the level of background noise, measured by the SNR (Signal-to-noise
ratio), was much larger than 5σ.

11



candidate events to September 2019). This section will brie�y discuss the �rst series of
con�rmed GW events, shown in Fig. 1.7, that constitute the �rst GW-transient catalogue
of CBCs (GWTC-1) [61], and the properties of their sources. From O1, two con�dent

Figure 1.7: Time-frequency maps and reconstructed signal waveforms for the eleven GW
events in GWTC-1. (Original �gure, courtesy of LSC�Virgo Collaboration, S. Ghonge and K.
Jani. [61])

detections of signals from BBH mergers were made: GW150914 [70] and GW151226 [71].
Additionally, a third trigger has appeared in the O1 catalog of binary black holes which
was later relabel as GW151012 [72] after its assessment. Following the reanalysis of O1
with the O2 pipelines, GW150914 remained the highest SNR in O1 data sets, behind only
the binary neutron star inspiral GW170817 [73] and no new GW events were discovered.
[61] From O2, four additional BBH merger events; GW170729, GW170809, GW170818
and GW170823 were reported by Ref. [61]: GW170729, GW170809, GW170818 and
GW170823.

The GW signals emitted from CBCs depend on intrinsic parameters that speci�cally
delineate emitted waveform (1.76) and the general relativistic two-body dynamics (1.75) in
the binary and on extrinsic parameters that encode the position of the source in relation
to the detector network. Thus, an isolated compact binary undergoing quasi-circular
inspiral is uniquely described by the mass mi, spin vector ~Si and electric charge Qi of its
components that are intrinsic to the source. Note that the electric charge of astrophysical
BHs is supposed to be negligible. Seven additional extrinsic parameters are required to
de�ne the sky location (right ascension α and declination δ), luminosity distance dL, the
orbital inclination ι and polarization angle ψ, the time tc and phase φc at coalescence that
are extrinsic to the source. For more information about polarizations and sky location,
cf. Sec. 1.5.5. Parameter estimation for the sky locations of con�rmed GW events from
observation runs O1 and O2 are shown in Fig. 1.8. For more details, see references in
[61]. If the spins have a component in the orbital plane, then the binary's orbital angular
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Figure 1.8: Parameter estimation for the sky locations of con�rmed GW events from observa-
tion runs O1 and O2 in a Mollweide projection. The probable position of the source is shown in
equatorial coordinates (right ascension is measured in hours, and declination is measured in de-
grees). 50% and 90% credible regions of posterior probability sky areas for the GW events. Top
panel : Con�dently detected O2 GW events (GW170817, GW170104, GW170823, GW170608,
GW170809, GW170814) for which alerts were sent to EM observers. Bottom panel : O1 events
(GW150914, GW151226, GW151012), along with O2 events (GW170729, GW170818) not pre-
viously released to EM observers. (Original �gure, courtesy of the LIGO Scienti�c Collaboration
and the Virgo Collaboration. [61])

momentum ~L and its spin vectors precess [74, 75] around the total angular momentum

~J = ~L+ ~S1 + ~S2. (1.2)

For precessing binaries the orbital angular momentum vector ~L is not a stable direction,
and it is preferable to describe the source inclination by the angle θJN between the total
angular momentum ~J and the line of sight vector ~N instead of the orbital inclination
angle ι between ~L and ~N [76]. Frequency-dependent quantities such as spin vectors, and
derived quantities as ξp were quoted by Ref. [61] at a GW reference frequency fref = 20
Hz. The dimensionless spin vectors and spin magnitudes are de�ned by

~ξi = c~Si/(Gm
2
i ), ai = c|~Si|/(Gm2

i ), (1.3)

respectively, on the grounds that the maximum spin a Kerr BH of mass m may reach is
Gm2/c. The e�ective aligned spin that represents the dominant spin e�ect is written as a
simple mass-weighted linear combination of the spins [77] projected onto the Newtonian
angular momentum L̂N , which is normal to the orbital plane (L̂ = L̂N for aligned-spin
binaries)

ξe� =
(m1

~ξ1 +m2
~ξ2)L̂N

M
, (1.4)
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where m1 is de�ned to be the mass of the larger component of the binary, such that
m1 ≥ m2, and

M = m1 +m2 (1.5)

is the total mass of the binary. Throughout the inspiral ξe� is approximately conserved
[78] and the phase evolution depends at leading order on the chirp mass [79],

M =
(m1m2)3/5

M1/5
, (1.6)

which is also the best measured parameter for low-mass systems dominated by the inspiral
[80]. The mass ratio

q =
m2

m1

≤ 1, (1.7)

and e�ective aligned spin ξe� appear in the phasing at higher orders [78]. One may also
�nd it useful 0to introduce the reduced mass and the symmetric mass ratio by

µ = m1m2/M, η = µ/M, (1.8)

respectively.

1.4 Fundamentals of spacetimes on pseudo-Riemannian

manifolds

In this section, �rst the mathematical notation and conventions used in the present dis-
sertation are discussed. Next, I summarize the necessary mathematical preliminaries of
pseudo-Riemannian geometry which lay the conceptual foundations for clear and intuitive
discussion of my own research discussed in the following chapters. The discourse in this
section is mostly based on the content of comprehensive introductory textbooks [32�34].

1.4.1 Mathematical notation and conventions

Throughout the dissertation, I shall use `geometrized' units, in which the speed of light c in
vacuum and the gravitational constant G are set to unity by an appropriate choice of units
so that the Einstein constant becomes κ ≡ 8πG/c3 = 8π. However, for convenience of the
reader, G and c have been restored in those formulae that are compared to their respective
Newtonian counterpart. Table A.1 that provides conversion factors for `geometrized' units
into SI units is found in Appendix A.2. Spatial coordinates are labeled with Latin indices
a, b . . ., whereas the ones belonging to 4-vectors and tensors are labeled with Greek indices
α, β . . .. I conventionally denote time coordinate by the index 0, while spatial coordinates
are denoted by indices running from 1 to 3. According to Einstein's notational convention,
I am summing over all of the possible values of that index variable which occurs twice
in a single term, once in an upper and once in a lower position. Lower indices stand
for covariant quantities, upper ones for contravariant ones, whereas both in a single term
denote mixed variance. Symmetrization of indices is indicated by ( ). The metric signature
is chosen as (−+ + +) according to the Pauli space-like convention. Partial derivatives are
denoted by ∂µ or a comma, single and repeated covariant derivatives by ∇µ, ∇µν or by a
semicolon. Any variable with overhead hat (e.g. q̂) represents the linearized perturbation

14



of its corresponding `background' quantity (e.g. q). In the present dissertation, common
homogeneous relations which fall into various types according to their speci�c properties
are denoted by the following symbols: Symbols based on equality relations in a broader
sense comprise = for equality, ≡ for equality by de�nition, ≈ for approximate equality,
∝ for proportionality, ∼ for asymptotic equivalency or for same order of magnitude.
Furthermore, the following types of inequalities include < or > for strict inequality, ≤ or
≥ for not-strict inequality (not greater/less than), � or � for asymptotic comparison
(i.e. much less/greater than).

1.4.2 Fundamental de�nitions and concepts

A principal premise of general relativity is that a spacetime can be modeled by a 4-
dimensional pseudo-Riemannian manifold, more speci�cally, a Lorentzian manifold (which
is a pseudo-Riemannian manifold of Lorentzian signature). A pseudo-Riemannian space-
time (M, g) is a di�erentiable manifoldM endowed with an everywhere non-degenerate,
second-degree, smooth and symmetric metric tensor �eld g. Let the components of a
vector x ∈ R4 given onM by local coordinates

{xµ : µ ∈ [0, 3] ⊂ N}, (1.9)

then any tangent vector, denoted by u = uµeµ, de�nes the local basis of the tangent space
toM at each point x ∈M by

{eµ = ∂/∂xµ : µ ∈ [0, 3] ⊂ N}. (1.10)

The metric tensor can be written in the form

g = gµνdx
µ ⊗ dxν where gµν ≡ eµeν . (1.11)

(1.11) is a linear combination of tensor products of one-form gradients of local coordinates
(1.9), where the coe�cients gµν are a set of 16 real-valued functions. In order for the metric
to be symmetric, 10 of its coe�cients are independent. The non-degeneracy of gµν means
that this matrix is non-singular (i.e. has non-vanishing determinant), while the Lorentzian
signature of g implies that the matrix gµν of the metric tensor has one positive and three
negative (+ − −−) eigenvalues (or the other way around (− + + +)). In a 4-dimensional
�at spacetime, the metric tensor is named after Hermann Minkowski and written as

ηµν ≡ diag[+1,−1,−1,−1] ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (1.12)

with the signature of our choice. Most importantly, the Minkowski spacetime (M, η) is the
mathematical setting in which Einstein's theory of special relativity is most conveniently
formulated. This metric is Lorentz invariant, in other words, it transforms under a change
of coordinates

xµ → xµ
′
= Λµ′

νx
ν (1.13)

as ηµ′ν′ = Λα
µ′ηαβΛβ

ν′ which is the de�ning property of a Lorentz transformation:

Λµ
ν ≡

∂xµ
′

∂xν
≡


γ βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 , (1.14)
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where β = v/c and γ = (1 − β2)−1/2 are notations from classical electrodynamics for
fractional speed and for the Lorentz factor, respectively. A particular Minkowski diagram
of Fig. 1.9 illustrates some properties of Lorentz transformations relating events in two
inertial frames of reference, where an observer stationary at the event (0, 0) makes a
change of velocity along the x-axis. With the quantities dxµ in (1.11) being regarded as

Figure 1.9: Minkowski diagram with resting frame (x, t), moving frame (x′, t′), light cone, and
hyperbolas indicating the surfaces of transitivity of the orthochronous Lorentz transformations.
In 4-dimensional spacetime, they are represented by hyperboloids of two sheets inside the light
cone and one-sheeted hyperboloids outside the light cone together with the past and future light
cones themselves and, separately, the origin. (Original �gure, courtesy of M. P. Hobson et al.

[34].)

the components of an in�nitesimal coordinate displacement four-vector (1.9), the metric
determines the invariant square of an in�nitesimal line element (also often referred to as
`spacetime interval') that measures the separation between two arbitrarily close events in
spacetime. The line element is conventionally denoted by

ds2 = gµνdx
µ ⊗ dxν (1.15)

and indicates the causal structure of spacetime. In Minkowski spacetime, the Lorentz
transformations (1.14) preserve the spacetime interval between any two events. Unlike
Riemannian manifolds with positive-de�nite metrics, an inde�nite signature allows any
tangent vector u in (1.10) to be classi�ed into timelike, null or spacelike, shown in Fig.
1.9. Accordingly, the spacetime interval (1.15) is

• timelike and can be physically traversed only by a massive object when ds2 < 0.√
|ds2| acts as an incremental proper time;

• lightlike and can only be traversed by light when ds2 = 0;

• spacelike and cannot be traversed when ds2 > 0, since they connect events that are
outside each other's light cones.

√
|ds2| acts as an incremental proper length.

For a tangent vector �eld u = {uµeµ} in eq. (1.10), the covariant derivative ∇µu is
de�ned by

∇µu
ν = ∂µu

ν + Γνρµu
ρ, (1.16)
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where ∇µ denotes the covariant derivative along tangent vectors of the manifold. Deter-
mined by how the tangent space is attached to the cotangent space by the metric tensor,
the Christo�el symbols of the second kind (also known as metric connection coe�cients)

Γµαβ ≡
1

2
gµσ
(
∂gσβ
∂xα

+
∂gσα
∂xβ

− ∂gαβ
∂xσ

)
(1.17)

are constructed from the metric tensor (1.11) and its �rst partial derivatives and repre-
sented by an 4× 4× 4 array of real number and provide a concrete representation of the
connection of pseudo-Riemannian geometry in terms of coordinates on the manifoldM.
They are symmetric in the two lower indices and represents the change in the local basis
(1.10) at each point x ∈M through

∂eα

∂xν
= −Γµαβe

β. (1.18)

In general relativity, the world line of a freely moving or falling particle is given by the
geodesic equation of motion

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0, (1.19)

where s is an a�ne parameter of motion (e.g. the proper time). The Riemann curvature
tensor, containing linear in the second-order derivatives of the metric tensor, is formally
given by

Rρ
σµν = ∇µΓρνσ −∇νΓ

ρ
µσ + ΓρµλΓ

λ
νσ − ΓρνλΓ

λ
µσ, (1.20)

which measures intrinsic curvature of any manifoldM equipped with an a�ne connection
(1.17). The Ricci curvature tensor is formed by the contraction of the �rst and third
indices of the Riemann tensor, and it is written in a more compact form

Rµν = Rµν ≡ Rσ
µσν = gσρRσ

σµρν . (1.21)

By further contraction of indices, the Ricci scalar is called into being as

R ≡ gσρRσρ. (1.22)

The Ricci curvature tensor and another rank-2 tensor, known as the Einstein tensor,
de�ned by

Gµν ≡ Rµν −
1

2
Rgµν (1.23)

stand in dual relationship; they are the trace reverse of each other. Finally, Einstein's
gravitational-�eld equations

Gµν = κTµν (1.24)

allows us to relate local curvature of the spacetime, incorporated in Gµν , to its source, the
stress�energy tensor Tµν which represents the energy and momentum present in the space-
time and κ ≡ 8πG/c3 is the Einstein constant. � To read more about the stress�energy
tensor, please read Sec. 3.3 and Ref. [34, p. 176�201]. � Thus the Einstein equations
(1.24) constitute the mathematical setting for the description of the gravitational �eld
and of the chrono-geometrical structure of the spacetime, where the metric tensor deter-
mines the invariant line element (1.15), and acts also as a dynamical variable describing
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the gravitational �eld. The high degree of non-linearity in eqs. (1.24) implies that exact
solutions is analytically unattainable for arbitrary matter distribution. Therefore there is
no complete solution for a spacetime with compact binary objects in it but approximate
solutions can be found in the case of weak �elds. A pair of commonly used approximations
found in the dissertation are the following:

• Linearized gravity is a perturbative approximation in the week-�eld regime which
involves expansions in a small parameter which express orders of deviations of the
metric from the Minkowski metric. (Appears in Sec. 1.5 and Sec. 4.3);

• Post-Newtonian expansion is a week-�eld and slow-motion approximation expanded
in small parameters which express orders of deviations from Newton's law of uni-
versal gravitation. (Appears in Sec. 1.5.6 and Sec. 2.2).

In addition, special types of exact solutions of the Einstein equations (1.24) can be found
in the dissertation by imposing simplifying assumptions. Such simplifying assumptions
on the metrics exhibiting symmetries of the spacetime are the following:

• Spherical symmetry is a characteristic feature of some exact solutions, especially
the Schwarzschild solution and the Reissner�Nordstr�om solution. (Appears in Sec.
3.4 and Sec. 4.2.1);

• Axially symmetry is a characteristic feature of Kerr solution which describes the
empty spacetime around a rotating uncharged axially-symmetric black hole with a
quasi-spherical event horizon. (Not used in the dissertation).

Simplifying assumptions on the intended physical interpretation of the stress�energy ten-
sor comprise the following solutions:

• Dissipative-�uid solution often employed as general stellar models where viscous
�ow and heat transfer is present. (Appears in Sec. 3.3.2);

• Perfect-�uid solution is used to model idealized distributions of matter, such as the
interior of a star or an isotropic universe. It has vanishing viscous shear and heat
�ux, therefore it is completely characterized by their rest-mass density and isotropic
pressure. (Appears in Sec. 3.3.1 and Sec. 4.2.1);

• Dust solution is a pressureless perfect �uid often used as cosmological models for
matter-dominated epoch. Its constituent particles locally move in concert and in-
teract with each other only gravitationally. (Appears in Sec. 4.3 and Sec. 4.4.2);

• Vacuum solution describes regions in which no matter or non-gravitational �elds
are present. (Appears in Sec. 1.5.4 and Sec. 4.4.2).

1.5 Linearized gravitational-�eld equations and gravi-

tational waves

As discussed in Sections 1.1 and 1.2, as a result of the astronomical distances to their
respective sources, the amplitude of the gravitational waves (expressed by `strain' (1.1),
a dimensionless parameter) when measured by observatories on Earth are predicted to
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be extremely small. Far away from the source of gravitational radiation, the weak grav-
itational �eld can be approximated by a region of asymptotically �at spacetime that is
described by the metric tensor

gµν = ηµν + hµν , (1.25)

where the small linear disturbance of the Minkowski metric ηµν is represented by a dimen-
sionless strain |hµν | � 1 and the �rst and higher partial derivatives of hµν are also small.
Throughout such a region of spacetime, any coordinate system {xµ : µ ∈ [0, 3] ⊂ N}
which allows the metric tensor to be expressed in a close-to-Minkowski form is called
quasi-Minkowskian. In Sec. 1.5.2, the mathematical labour of producing the linearized
form of the Einstein �eld equations (1.24) is greatly simpli�ed by the adoption of quasi-
Minkowsian coordinates.

1.5.1 Linear coordinate transformations

Quasi-Minkowskian systems may be related to each other by two di�erent classes of coor-
dinate transformations; the global Lorentz transformations and in�nitesimal coordinate
transformations. Based on (1.13), let us �rst consider global Lorentz transformations
which were already introduced in (1.13) by the following change of coordinates:

x′µ = Λµ
νx

ν , (1.26)

where the matrix elements Λµ
ν are constant everywhere and correspond to (1.14). The

metric coe�cients transform as

g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ = Λρ

µΛσ
ν(ηρσ + hρσ) = ηµν + Λρ

µΛσ
νhρσ, (1.27)

where ηµν = Λρ
µΛσ

νηρσ. Thus, g
′
µν is also of the form (1.25), with

h′µν = Λρ
µΛσ

νhρσ. (1.28)

Moreover, it is apparent from this expression that, under a Lorentz transformation, hµν
itself transforms like contravariant tensor components in Minkowski spacetime (M, η).
[34, pp. 468] Ref. [34, pp. 468] explains that the above property suggests a convenient
alternative viewpoint when describing weak gravitational �elds. Instead of considering a
slightly curved spacetime representing the general-relativistic weak �eld, one may consider
hµν simply as a symmetric tensor �eld of rank 2 de�ned on the �at Minkowski background
spacetime in Cartesian inertial coordinates.

The other type of coordinate transformations, in�nitesimal coordinate transformations
is expressed by

x′µ = xµ + ξµ(x), (1.29)

where ξµ(x) are four arbitrary functions of position of the same order of smallness as hµν .
In�nitesimal transformations of this sort make tiny changes in the forms of all scalar,
vector and tensor �elds, but these can be ignored in all quantities except the metric,
where tiny deviations from ηµν contain all the information about gravity. From (1.29),
one has

∂x′µ

∂xν
= δµν + ∂νξ

µ, (1.30)

19



and, working to �rst order in small quantities, it is straightforward to show that the
inverse transformation is given by4

∂xµ

∂x′ν
= δµν − ∂νξµ. (1.31)

Thus, again working to �rst order in small quantities, the metric transforms as follows:

g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
gµν = (δρµ− ∂µξρ)(δσν − ∂νξσ)(ηρσ +hρσ) = ηµν +hµν − ∂µξν − ∂νξµ, (1.32)

where ξµ = ηµνξ
ν was de�ned. Hence, one sees that g′µν is also of the form (1.25), the new

metric perturbation functions being related to the old ones via

h′µν = hµν − ∂µξν − ∂νξµ. (1.33)

If one adopts the viewpoint in which hµν is considered as a tensor �eld de�ned on the �at
Minkowski background spacetime, then (1.33) can be considered as analogous to a gauge
transformation in electromagnetism. From (1.33), it is clear that if hµν is a solution to the
linearized gravitational-�eld equations (cf. eq. (1.53)), then the same physical situation
is also described by

hnewµν = hµν − ∂µξν − ∂νξµ. (1.34)

In this interpretation, however, (1.33) is viewed as a gauge transformation rather than a
coordinate transformation.

1.5.2 The linearized gravitational �eld equations

To obtain the linearized form of the Einstein's gravitational �eld equations (1.24), one
needs to produce the linearized expression for the Riemann tensor Rσ

µνρ; the correspond-
ing expressions for the Ricci tensor Rµν and the Ricci scalar R then follow by the con-
traction of indices.

To perform this task, �rst the linearized form of the connection coe�cients (1.17) is
obtained as

Γσµν =
1

2
ησρ(∂νhρµ + ∂µhρν − ∂ρhµν) =

1

2
(∂νh

σ
µ + ∂µh

σ
ν − ∂σhµν), (1.35)

where only the linear terms of the metric perturbation hµν were kept and the notation
∂σ ≡ ησρ∂ρ was introduced. One may now substitute (1.35) directly into the expression
(1.21) for the Riemann tensor where The last two terms on the right-hand side are products
of connection coe�cients and so will clearly be second order in hµν ; they will therefore be
ignored. Hence, to �rst order, one has

Rσ
µνρ =

1

2
(∂ν∂µh

σ
ρ + ∂ρ∂

σhµν − ∂ρ∂σhµν − ∂ρ∂νhσν ), (1.36)

which is easily shown to be invariant to a gauge transformation of the form (1.34). The
linearized Ricci tensor is obtained by contracting the above expression for Rσ

µνρ on its
�rst and last indices.

Rµν =
1

2
(∂ν∂µh+�2hµν − ∂ν∂ρhρµ − ∂µ∂ρhρν), (1.37)

4Note that, for the remainder of this chapter, the common symbol for equality `=' will be used to
indicate equality up to �rst order in small quantities as well as exact equality.
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where the trace h ≡ hρρ and the d'Alembertian operator �2 ≡ ∂ρ∂
ρ were de�ned. The

Ricci scalar is obtained by a further contraction, giving

R = ηµνRµν = �2h− ∂ρ∂σhρσ. (1.38)

Substituting the expressions (1.37) and (1.38) into the gravitational-�eld equations one
obtains the linearized form as

∂ν∂µh+�2hµν − ∂ν∂ρhρµ − ∂ρ∂µhρν − ηµν(�2h− ∂ρ∂σhσρ) = −2κTµν . (1.39)

The number of terms on the left-hand side of the �eld equations has clearly increased in
the linearization process. This can be simpli�ed somewhat by de�ning the `trace reverse'
of hµν , which is given by

h̄µν ≡ hµν −
1

2
ηµνh. (1.40)

On contracting indices one �nds that h̄ = −h. On substituting these expressions into
(1.39), the �eld equations become

�2h̄µν + ηµν∂ρ∂σh̄
ρσ − ∂ν∂ρh̄ρµ − ∂µ∂ρh̄ρν = −2κTµν . (1.41)

These are the basic �eld equations of linearized general relativity and are valid whenever
the metric takes the form (1.25). Unless otherwise stated, for the remainder of this chapter
I will adopt the viewpoint that hµν is simply a symmetric tensor �eld (under global Lorentz
transformations) de�ned in quasi-Cartesian coordinates on a �at Minkowski background
spacetime.

1.5.3 Linearized �eld equations in Lorenz gauge

The �eld equations (1.41) can be simpli�ed further by making use of the gauge transforma-
tion (1.34). Denoting the gauge-transformed �eld by h′µν for convenience, the components
of its trace-reverse transform as

h̄′µν = h̄µν − ∂µξν − ∂νξµ + ηµν∂σξ
σ, (1.42)

and hence one concludes that

∂ρh̄′µν = ∂ν h̄µν −�2ξµ. (1.43)

Therefore, if one chooses the functions ξµ(x) so that they satisfy

�2ξµ = ∂ν h̄
µν (1.44)

then one has ∂ν h̄
′µν = 0. The importance of this result is that, in this new gauge, each of

the last three terms on the left-hand side of (1.41) vanishes. Thus, the �eld equations in
the new gauge become

�2h̄′µν = −2κT ′µν . (1.45)

The linearized �eld equations may be written in the form of inhomogeneous at d'Alembertian
equations, [81, pp. 21]

�2h̄µν = −2κTµν , (1.46)
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Figure 1.10: The disturbance in the gravitational �eld at the event (ct, xi) is the sum of the
in�uences of the energy and momentum sources at the points (ct, x′i) on the past lightcone.
(Original �gure, courtesy of M. P. Hobson et al. [34].)

provided that the h̄µν satisfy the Lorenz gauge condition (also referred to as harmonic
gauge)

∂ν h̄
µν = 0. (1.47)

The constrains (1.44) and (1.47) on the functions ξµ(x) require

�2ξµ = 0 (1.48)

to hold to preserve the Lorenz gauge condition by any further gauge transformation of
the form (1.34). A suitable transformation, which satis�es the condition (1.48), is given
by

ξµ = εµ exp(ikρx
ρ), (1.49)

where the εµ are constants and kρ are components of the 4-wavevector (1.54). In the
presence of some non-zero stress�energy tensor T µν , the general solution to the linearized
�eld equations (1.46) in harmonic coordinates is most easily obtained by using a Green's
function in the form

h̄µν(~x, t) = −4G

c4

y d3~x′

|~x− ~x′|
T µν

(
~x′, t− |~x− ~x

′|
c

)
, (1.50)

extending over the whole three-dimensional space R3. In the interests of brevity, the
lengthy calculation presented in [34, pp. 475�478] is not repeated here. It is apparent
that the solution at the event (~x, t) depends not only on the data on the light cone where
(~x− ~x′)2 = c2t2 but also on data that are interior to that cone. [81, pp. 22] Illustrated by
Figure 1.10, this region of spacetime is the intersection of the past lightcone of the �eld
point with the world tube of the source at the retarded times tr de�ned by

tr = t− |~x− ~x
′|

c
. (1.51)
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1.5.4 Plane waves as vacuum solutions of the linearized �eld equa-

tions

In empty space, the linearized �eld equations (1.46) reduce to the wave equation

�2h̄µν = 0, (1.52)

with the attendant gauge condition (1.47). Obviously, the wave equation (1.52) has plane-
wave solutions of the form

h̄µν = Aµν exp(ikρx
ρ), (1.53)

where Aµν are constant complex components of a symmetric amplitude tensor. The
kµ ≡ ηµνkν are constant real components of the 4-wavevector, conventionally to denoted
by

[kµ] = (ω/c,~k), (1.54)

where ~k is the spatial 3-wavevector in the direction of propagation and ω is the angular
frequency of the wave. It is convenient to consider a plane GW propagating in the x3-
direction, in which case the components of the 4-wavevector are

[kµ] = (ω/c, 0, 0, ω/c). (1.55)

Substituting the plane-wave solutions (1.53) into the wave equation (1.52) and using the
fact that ∂ρh̄

µν = kρh̄
µν , one �nds that

�2h̄µν = ηρσ∂ρ∂σh̄
µν = ηρσkρkσh̄

µν = 0. (1.56)

This can only be satis�ed if
kσkσ = 0, (1.57)

i.e. the vector ~k must be null or lightlike vector (cf. Sec. 1.4.2). The nullity of k implies
that

ω2 = c2~k2, (1.58)

and so both the group and phase velocity of a gravitational wave are equal to the speed of
light. Since the linearized Einstein equations only take the simple form (1.52) in the Lorenz
gauge, one must also take into account the gauge condition (1.47). On substituting into
the latter the plane-wave form (1.53), as a consequence the gauge condition is satis�ed,
provided that one obeys the additional constraint

Aµνkν = 0. (1.59)

Thus any plane wave of the form (1.53) is a valid solution of the linearized vacuum �eld
equations in the Lorenz gauge, provided that the vector kµ satis�es (1.57�1.59). Since the
vacuum �eld equations are linear, any solution of them may be written as a superposition
of such plane-wave solutions of the form

h̄µν(x) =

∫
Aµν(~k) exp(ikρx

ρ)d3~k, (1.60)

where the integral is taken over all values of ~k. Physical solutions corresponding to
propagating plane waves in empty space are represented by the real part of the plane-
wave solutions (1.53):

h̄µν = Aµν exp(ikρx
ρ) + (Aµν)∗ exp(−ikρxρ) (1.61)
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as a superposition of two plane waves of the form (1.53). Under the residual gauge
transfomation allowed by (1.48), the amplitude tensor transforms as

Ā′µν = Aµν − εµkν − ενkµ + iηµνερkρ (1.62)

when the expression (1.49) is substituted for ξµ into the transformation law (1.42) for
the trace-reverse tensor h̄′µν , which is assumed to be of the form (1.53). The symmetry
of the amplitude tensor, together with the four Lorenz-gauge conditions (1.59) for a
four-wavevector (1.55), implies that Aµ3 = Aµ0. Therefrom the number of independent
components in the amplitude matrix reduces to six.

1.5.5 Polarization states and e�ect of passing gravitational waves

In the frame of Einstein's general theory of relativity, the freedom to make a further
gauge transformation may further reduce the number of independent components in the
amplitude matrix from six to just two. [82] Accordingly, in Einstein's theory of general
relativity, which is based on the concept of metric tensor, GWs have two `tensor' polar-
izations, denoted by + and × and any possible plane gravitational waves travelling in the
z-direction may be obtained in the form

h(TT )
µν =


0 0 0 0

0 A
(TT )
+ A

(TT )
× 0

0 A
(TT )
× −A(TT )

+ 0
0 0 0 0

 exp[i(kgz − ωgt)] (1.63)

by superposing arbitrary amplitudes and relative phases of these two polarization modes
in the new transverse-traceless gauge, denoted by `TT '. kg and ωg are wave number and
angular frequency of the GWs, respectively.5

More general metric theories6, however, predict the existence of up to four additional
modes (called `vector' and `scalar' polarizations), to the full complement of six polarization
modes of GW. [83] The `monochromatic components' of amplitude tensor (1.64) can be
conveniently written in the form of

Aµν =


0 0 0 0
0 A+ + Ab A× Ax
0 A× Ab − A+ Ay
0 Ax Ay

√
2Al

 . (1.64)

The full metric perturbation due to a gravitational wave from a direction Ω̂ can be written
as a sum over all polarization modes

hij(t− Ω̂) =
∑
A

hA(t− Ω̂ · ~x)eAij(Ω̂), (1.65)

where A labels the six possible polarization modes: the +- and ×-type tensor modes, the
x- and y-type vector modes, the breathing and longitudinal scalar modes, respectively.
[56] The metric perturbation for each mode can be written in terms of a plane wave

5Provided that the all components of the GWs have the same propagating velocity (the speed of light).
6Alternative or modi�ed theories of gravity, such as Horndeski's theory, Brans�Dicke theory or f(R)

gravity, are either straightforward alternatives to or generalizations of Einstein's general theory of rela-
tivity.
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(a) `plus'-type
transverse mode
(tensor)

(b) `cross'-type
transverse mode
(tensor)

(c) `breathing'-type
transverse mode
(scalar)

(d) `x'-type longitu-
dinal mode (vector)

(e) `y'-type longitu-
dinal mode (vector)

(f) `l'-type longitu-
dial mode (scalar)

Figure 1.11: Illustration of the displacement the six polarization modes for gravitational waves
permitted in any metric theory of gravity induce on a set of circularly arranged test particles.
The initial con�guration of test particles is represented by solid and doted lines, respectively,
at the moments of di�erent phases by π. The ellipses (or circles) illustrate the e�ect of a
passing gravitational wave, the circled dot and the arrow represent the direction of propagation.
Transverse polarization modes are shown in (a), (b), and (c), where the wave propagates out
of the plane; longitudinal polarization modes are shown in (d), (e), and (f), where the wave
propagates in the plane. In Einstein's general theory of relativity, only `plus' and `cross'-type
polarization modes are present; in massless scalar�tensor gravity, (c) may also be present. (Figure
is adapted from [34, pp. 506�507] and [84].)

expansion,

hA(t, ~x) =

∫ ∞
−∞

df

∫
S2

dΩ̂ exp
[
i2πf(t− Ω̂)

]
h̃A(f, Ω̂)eAij(Ω̂), (1.66)

where f is the frequency of the gravitational waves, ~k = 2πf Ω̂ corresponds to the wave
vector (1.55), Ω̂ is a unit vector (1.69) that points in the direction of GW propagation,
and eAij is the Ath polarization tensor represented by [84]

e+
ij =

 1 0 0
0 −1 0
0 0 0

 , e×ij =

 0 1 0
1 0 0
0 0 0

 ,

exij =

 0 0 1
0 0 0
1 0 0

 , eyij =

 0 0 0
0 0 1
0 1 0

 ,

ebij =

 1 0 0
0 1 0
0 0 0

 , elij =
√

2

 0 0 0
0 0 0
0 0 1

 .

(1.67)
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Three of them are transverse to the direction of propagation, with two `tensor' modes (+-
type and ×-type) representing quadrupolar deformations, and one `scalar' mode (b-type)
representing a monopolar `breathing' deformation. Other three modes are longitudinal,
with one being an axially symmetric stretching `scalar' mode (l-type) in the propagation
direction, and one quadrupolar `vector' mode (x-type and y-type) in each of the two
orthogonal planes containing the propagation direction. Figure 1.11 illustrates the e�ect
of the six polarization modes on a set of circularly arranged test particles. Einstein's
general theory of relativity predicts only the �rst two transverse quadrupolar modes (a)
and (b) independently of the source; these modes correspond to the waveforms h+ and
h× discussed in eq. (1.63) (note the cos 2φ and sin 2φ dependences of the displacements).
[82]

Figure 1.12: The Euler angles (θ, φ, ψ) are adapted to describe the orientation of the detector
frame (x̂, ŷ, ẑ) with respect to the frame of GW propagation (m̂, n̂, Ω̂). (Original �gure, courtesy
of N. Yunes & X. Siemens [56].)

Let us consider a frame with unit vectors x̂ = (1, 0, 0), ŷ = (0, 1, 0), ẑ = (0, 0, 1) in
the direction of the x, y, and z axes �xed to the detector's frame, shown in Figure 1.12.
Relative to the detector, a coordinate system of the gravitational wave is given by their
coordinates as

x̂′ = (cos θ cosφ, cos θ sinφ,− sin θ)
ŷ′ = (− sinφ, cosφ, 0)
ẑ′ = (sin θ cosφ, sin θ sinφ, cos θ),

(1.68)

where the two sets of coordinates may be related to one another through rotation by
angles (θ, φ). [56] One still has the freedom to perform the third elemental rotation by
the angle ψ about the propagation direction of gravitational wave, which is expressed by

m̂ = x̂′ cosψ − ŷ′ sinψ
n̂ = −x̂′ sinψ + ŷ′ cosψ

Ω̂ = ẑ′.

(1.69)
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The detector's frame is also shown in Fig. 1.12 with respect to the rotated frame of
GW propagation (m̂, n̂, Ω̂). One may use the unit vectors (m̂, n̂, Ω̂) to generalize the
polarization tensors (1.67) to a wave coming from a direction Ω̂ as follows [56]

e+
ij = (m̂⊗ m̂− n̂⊗ n̂), e×ij = (m̂⊗ n̂+ n̂⊗ m̂),

exij = (m̂⊗ Ω̂ + Ω̂⊗ m̂), eyij = (n̂⊗ Ω̂ + Ω̂⊗ n̂),

ebij = (m̂⊗ m̂+ n̂⊗ n̂), elij = Ω̂⊗ Ω̂.

(1.70)

Figure 1.13: Antenna patterns for Michelson interferometer strain response (cf. eqs. (1.73))
evaluated in the small-antenna limit with φ = 0. Panels from left to right show the antenna
pattern response functions for the +-type and ×-type tensor modes (|F+| and |F×|), the x-type
and y-type vector modes (|Fx| and |Fy|), and the b-type and l-type scalar modes (|Fb| and |Fl|
up to a sign, it is the same for both breathing and longitudinal). Colour indicates the strength
of the response with red being the strongest and blue being the weakest. The black lines near
the centre give the orientation of the interferometer arms which point in the x̂ and ŷ directions.
(Based partly on a �gure courtesy of N. Yunes & X. Siemens [56].)

For aLIGO and aVirgo, the arms are perpendicular so that the antenna pattern re-
sponse can be written as the di�erence of projection of the polarization tensor onto each
of the interferometer arms,

FA(Ω̂, ψ) =
1

2
(x̂ix̂j − ŷiŷj)eAij(Ω̂, ψ). (1.71)

This means that the strain measured by an interferometer due to a gravitational wave
from direction Ω̂ and polarization angle ψ takes the form

h(t) =
∑
A

hA(t− Ω̂ · x)FA(Ω̂, ψ). (1.72)

27



Explicitly, the antenna pattern functions are, [82]

F+(θ, φ, ψ) =
1

2
(1 + cos2 θ) cos 2φ cos 2ψ − cos θ sin 2φ sin 2ψ

F×(θ, φ, ψ) = −1

2
(1 + cos2 θ) cos 2φ sin 2ψ − cos θ sin 2φ cos 2ψ

F x(θ, φ, ψ) = sin θ(cos θ cos 2φ cosψ − sin 2φ sinψ)

F y(θ, φ, ψ) = − sin θ(cos θ cos 2φ sinψ + sin 2φ cosψ)

F b(θ, φ) = −1

2
sin2 θ cos 2φ

F l(θ, φ) =
1

2
sin2 θ cos 2φ.

(1.73)

The dependence on the polarization angles ψ reveals that the +-type and ×-type polar-
izations are spin-2 tensor modes, the x-type and y-type polarizations are spin-1 vector
modes, and the b-type and l-type polarizations are spin-0 scalar modes. Note that for
interferometers, the antenna pattern responses of the scalar modes are degenerate. Figure
1.13 shows the antenna patterns for the various polarizations given in eqs. (1.73) with
ψ = 0.

1.5.6 Post-Newtonian equations of motion and gravitational wave-

form

Post-Newtonian expansions are approximate solutions of the Einstein �eld equations
(1.24) in weak-gravitational-�eld and slow-motion regime, expanded to any speci�ed order
in a small parameter

ε ∼ v2

c2
∼ G

c2

M

r
(1.74)

which express orders of deviations from Newton's law of universal gravitation and provide
a powerful formalism for modeling CBCs during the inspiral phase, when the orbital speed
of the binary v is much smaller than the speed of light c. [29] A PN expansions of order
O(εn) to the Newtonian expression of gravity is said to be of (n/2)PN order.

In the PN formalism, the spacetime is assumed to be split into the near and wave
zones. The �eld equations (1.24) for the perturbed Minkowski metric (1.12) are solved
numerically by CBwaves in both regions. A fourth-order Runge�Kutta (RK4) method
with adaptive step-size control is carred out to numerically solve for the 3PN-accurate
near-�eld radiative dynamics for the relative two-body equation of motion written as

a =
dv

dt
=
M

r
(−n̂+A1PN +A2PN +A2.5PN +A3PN +A3.5PN + . . .) (1.75)

at each time t > t0, where t0 is the time of arrival of the signal at the detector; r = |x1−x2|
is the separation, v = v1−v2 is the orbital velocity, n̂ = (x1−x2)/r is the mean motion,
and M is the total mass (1.5), and µ is the reduced mass (1.8) of the compact binary
system that consists of two components of mass m1 and m2. The far-zone radiation �eld,
decomposed as [75]

hµν =
2Gµ

c4dL
(Qµν + P 0.5Qµν + PQµν + PQSO

ij + P 1.5Qµν + P 1.5QSO
ij + P 2Qµν + P 2QSS

µν),

(1.76)
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Figure 1.14: Range of validity of the main analytical and NR methods to solve the two-body
equation of motion. The horizontal axis shows the binary mass ratio, while the vertical axis
shows the radial separation between the two black holes in the binary. (Original �gure, courtesy
of A. Buonanno & B.S. Sathyaprakash [85].)

is determined in harmonic coordinates (1.47) by a simultaneous evaluation of orbital
elements (φ, r, n̂) for the relative two-body equation of motion (1.75), where dL is the
luminosity distance (typically a few Mpc) to the GW source. The leading term Qij is the
Newtonian mass quadrupole moment that leads to the so-called `quadrupole formula'

hµν(t, x) =
2

dL
Ïµν(t− dL) (1.77)

where Ïµν is the quadrupole moment of the source. P 0.5Qij, P
1.5Qij, P

2Qij are higher-
order relativistic corrections up to 2PN order beyond the Newtonian term, while PQSO

ij ,
P 1.5QSO

ij , P
2QSS

ij are corrections arising from spin�orbit and spin�spin e�ects, respectively.
The notation AnPN and P n indicates that the term is O(εn) relative to the Newtonian term
−n̂ and Qµν , respectively. Here, for brevity, I will not repeat the lengthy PN coe�cients
for P n. They are written out explicitly in the appendix of Ref. [86]. Nor will I quote all
relativistic corrections AnPN to the acceleration � they are written out explicitly in Ref.
[87] � but only the 1PN corrections and the leading radiation-reaction terms at 2.5PN
order:

A1PN =

[
(4 + 2η)

M

r
− (1 + 3η)v2 +

3

2
ηṙ2

]
n̂+ (4− 2η)ṙv,

A2.5PN =
8

5

M

r
η

[(
3v2 +

17

3

M

r

)
ṙn̂−

(
v2 + 3

m

r

)
v

]
.

(1.78)

The radiation-reaction acceleration is expressed in the so-called Damour�Deruelle gauge.
Radiative orbital dynamics involving all possible correction terms up the 3PN order be-
yond the Newtonian term are su�cient to analyze the orbit and evolution of the binary
pulsar (cf. the Hulse�Taylor binary pulsar in Sec. 1.3.1) and they are written out explic-
itly in terms of unperturbed mean motion n̂ and orbital eccentricity e in Ref. [25]. The
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secular evolution is treated adiabatically, assuming that the timescales of the shrinkage
of orbits (due to gravitational energy radiation Ė) and the precession (due to angular
momentum �ux J̇) are much longer than that of the orbital period. Consequently, the
functions (ẋ1PN, ė1PN . . .) in the equations derived from Ė and J̇ depend only on the
eccentricity e, and not on eccentric anomaly u. Hence, the adiabatic evolution equations
for x ≡ (Mω)2/3 and e form a closed system, and can be solved independently of Kepler's
equation. Given initial conditions x(0) and e(0), one can solve the system of ODEs nu-
merically to obtain x(t) and e(t). The integration of the equations of motion is terminated
at the ISCO (Innermost stable circular orbit), which is located at

rISCO = 6GM/c2 (1.79)

in Schwarzschild spacetime (for a non-spinning sources). The orbital angular frequency
at the ISCO is

fISCO = c3/(6
√

6πGM), (1.80)

which marks the end of the inspiral phase. It ought to be noted that the PN equations
of motion applied in the computation are a series expansion of corrections to the acceler-
ation of the binary components. Whole-order terms in the series represent conservative,
relativistic corrections, and half-order terms represent dissipative corrections. [88]

It is critical to point out that the PN approximation can not be reliably applied when
higher-order corrections to the equations of motions become comparable in magnitude to
lower-order corrections. Levin, McWilliams, and Contreras argue in Ref. [88] that the
PN expansion breaks down in the strong-�eld regime when 3.5PN order term becomes
larger than preceding terms and drives the binary system to larger separation. The range
of validity of the PN approximation is illustrated in Fig. 1.14.
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Chapter 2

Fast prediction of eccentric inspirals

using reduced-order models

The present piece of research is a response to the growing demand for computationally-
e�cient generation of eccentric waveform families in gravitational-wave searches. To the
extent of our knowledge, surrogate model building for this particular family of waveforms
has not yet been tested. ROM (Reduced-order model) techniques have proved exceedingly
e�cient for other models (such as for aligned-spin BBHs), thus, one may anticipate similar
bene�ts of extremely large speedups in the time-consuming process of generating eccentric
waveform. My aim is to give a proof-of-principle demonstration of its exceptional potential
and to o�er a novel and practical way to dramatically accelerate parameter estimations.

The introductory Sec. 2.1 delineates the issue of cost in gravitational waveforms
generation and reviews the development of ROM-based models in response to the compu-
tational demand for cheaper methods. Sec. 2.2 deals with the procedure for generating
�ducial PN waveforms by CBwaves, with respect to the statistics of the cost of comput-
ing individual waveforms to estimate the total cost of building template banks. Sec. 2.3
proposes the simplest strategy (regular spacing) for template placement in the intrinsic
parameter space, followed by the representation of the �ducial waveform templates on a
common, �nely sampled and regularly spaced frequency grid. Sec. 2.4 gives a general
description of my approach to construct e�cient ROM assembled from the reduced bases
and of its characteristic features, particularly the truncation error. Sec. 2.5 is dedicated
to assess the overall performance of the ROM, including the accuracy of the surrogate
model and its computational cost relative to that of the �ducial model. Conclusions,
remarks, limitations and an outlook for future research will be given in Sec. 2.6.

2.1 Computational complexity in the multi-dimensional

parameter space

As it has been discussed in Sec. 1.3.2, GW sources can be described by a set of eight
intrinsic and seven additional extrinsic parameters λ = λintrinsic + λextrinsic, associated
with the astrophysical model of their respective sources. The earlier are intrinsic to the
source (the mass mi, spin vector ~Si and electric charge Qi of its components) while the
extrinsic parameters are those which depend on the relative location of the source with
respect to the detector (right ascension α and declination δ of the sky location, luminosity
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distance dL, the orbital inclination ι and polarization angle ψ, the time tc and phase φc
at coalescence). Each template has a speci�c set of values for its parameters which are
hereinafter collectively referred to as model parameters. A collection of points in a p-
dimensional parameter space, provided that p is the number of model parameters, is
called a template bank (or template grid). [89] A template bank generated with minimal
match Γm could contain a large number of templates that scales as L ∼ (1−Γm)−p/2. The
number of templates L required for correlations grows rapidly with p and the number of
GW cycles Lcyc. [90] A fully coherent GW search for a CBC with p = 8 parameters lasting
for Lcyc = 105 cycles would require as much as L = 1040 waveform model evaluations. [91]

Figure 2.1: A schematic illustration of a tensor product grid on a base patch covering the
entire domain of interest in model parameters λ1, λ2 and a re�nement patch. (Original �gure,
courtesy of M. P�urrer. [92])

Over the last three decades methods have been developed for setting up template
banks which minimize the computational cost in GW searches without degrading the sig-
nal detectability, measured by the signal-to-noise ratio (SNR). [93�95] Since the 1990s a
method most feasible for small-dimensional parameter space (p = 2, 3, or 4 at most) has
been popular to address the problem of template placement by associating the parame-
ter space with a positive-de�nite metric space. In this geometric framework, the metric
measures the fractional loss in squared SNR of a predicted signal (at one point in the pa-
rameter space) �ltered through the optimal waveform template corresponding to a nearby
point in the parameter space. [96] In 2009 a template placement algorithm was developed
that is suitable for any number of dimensions, provided that the metric distance between
two points in the parameter space is large or well-de�ned. [97] A schematic illustration
of a template tensor product grid with re�nement patch is shown in Fig. 2.1. Beside
the issue of ensembling su�ciently large template banks, parameter estimation (PE) car-
ries a number of challenges unique to large data sets. The exploration of the parameter
space of BBHs relies on numerical relativity (NR) simulations of the �eld equations to
discover how such mergers evolve. [98] Even a very coarse survey of the parameter space
would require an enormous number, typically L = 106 − 107 [99], of expensive NR sim-
ulations which impose a computationally insuperable obstacle. The required number is
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in fact subtantially greater than the combined number of all simulations ever performed
by each and every NR group [100, 101]. Consequently, techniques which can estimate the
astrophysical parameters fast and accurately are needed to overcome this computational
bottleneck. [102]

Reduced-order modeling or model order reduction is a practical mathematical tool
to extract the fundamental features of a computationally demanding high-order model
through exploiting only a reduced set of information. Investigations [103�106] over the
last few years have revealed that GW templates exhibit signi�cant redundancy in the
parameter space, suggesting that the amount of information required to represent a �du-
cial waveform model is appreciably smaller than commonly anticipated. The reduction of
information content is achieved through expressing the essential information by means of
only a remarkably few, reduced number of representative waveforms r � L to construct a
reduced-order model (ROM) also known as a surrogate model. ROMs provide compressed
approximations of any selected waveforms within the same physical model. They are
projection-based techniques that aim to lower the computational complexity in the sim-
ulations by mapping the original FOM (Full-order model) onto an appropriate subspace
of much lower dimension spanned by a reduced-order basis. To �nd these representative
waveforms that constitutes the reduced basis several methods, including SVD (Singular-
value decomposition) and greedy methods have been proposed, usually combined with the
empirical interpolation method (EIM). [103, 107] SVD-based methods have been applied
in Refs. [105, 106, 108] to interpolate time-domain inspiral waveforms. I am going to pro-
vide an e�cient (fast and accurate) representations of approximated waveforms for any
desired parameter values within the model by using the information provided by only r
ROM waveforms instead of the total number L. [105, 109] The SVD-based approach to
signi�cantly accelerate PE process used in Ref. [110] is to directly interpolate the like-
lihood function over a signi�cant portion of the parameter space. Moreover there is yet
another method, presented in Refs. [98, 111], that de�nes special reduced-order quadrature
(ROQ) rules to assist in fast likelihood evaluation.

2.2 Fiducial waveform models

Current searches for GWs from NS and stellar-mass BH binaries use restricted stationary-
phase approximations to the Fourier transform of 3.5PN-accurate circular inspiral-only
waveforms, such as spin-aligned TaylorF2 or SpinTaylorT4. [29] The �rst part of this sec-
tion describes a procedure for constructing PN non-spinning eccentric inspiral waveforms
by CBwaves model in the time domain. The second part deals with the statistics of the
cost of computing individual time-domain (TD) waveforms, drawn from a relatively large
number of sample points in a �nite-sample distribution.

2.2.1 Construction of eccentric post-Newtonian waveform tem-

plates

Stellar-mass BBHs and BNSs in the inspiral regime are adequately described by high-order
Post-Newtonian (PN) waveform templates. For more details about the PN framework,
please recall Sec. 1.5.6. Therefore, I construct PN templates by making use of the
CBwaves software, developed by the Virgo Group at Wigner RCP with the intent of
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providing an e�cient computational tool capable of generating gravitational-waveform
templates produced by generic spinning binary con�gurations moving on eccentric closed
or open orbit within the applied PN framework. A detailed examination of the software's
performance is given in Ref. [86]. The source release and binary packages supported both
on x86 and x86_64 platforms are available at the group's website [112]. The range of
validity for the PN approximation in the late inspiral phase has been examined in Ref.
[86] by CBwaves simulations through PN expansion parameter ε, which was introduced
in (1.74) and found to be below the critical upper bound ε ∼ 0.08 − 0.1. Therefore, the
equations of motion shall be cut o� at the radial separation r ≈ 10GM/c2, in accordance
with Ref. [88], well outside the radius of Schwarzschild ISCO (1.79). As a consequence,
the highest orbital frequency [113]

fLSO = c3[(1− e2
LSO)/(6− 2eLSO)]3/2(πGM)−1 (2.1)

at the LSO (Last stable orbit) for nonrotating eccentric sources is less than the orbital
frequency at the ISCO (1.80) if eLSO, associated with the residual orbital eccentricity at
the end of inspiral phase, exceeds 1/3.

Fig. 2.2 demonstrates that the integration run-time tint depends sensitively both
on the initial eccentricity and on the disparity of components' masses (m1, m2) in a
binary system. The tint increases exponentially with decreasing total mass M . The mass
disparity, de�ned by q̄ ≡ 1−q, allows better comparability with e0 than q itself, considering
that tint asymptotically increases � faster than with decreasing M � towards in�nity as
either e0 (left panel) or q̄ (right panel) tends to 1. The physical interpretation of these
competing trends is very simple:

1. The lighter the components of the binary are, the longer it takes for them to grad-
ually descend onto their ISCO through a sequence of increasingly circular orbits.
[114]

2. The more eccentric the orbit was initially, the longer it takes to shed its residual
eccentricity over many orbital periods. [18]

3. Among di�erent con�gurations of equal total mass, the one with the largest mass
disparity has the longest inspiral time for harbouring the lightest component. [114]

At the high total-mass region on Fig. 2.2, the in�uence of �rst trend grows comparable
to that of the last two to reverse the trend of decreasing integration run-time. Fig. 2.4
shows the in�uence of M and q on the length of integration run-time tint from a di�erent
aspect. Excluding the red and yellow dots, each point in the coloured triangular region is
assigned to a hue level running from dark to light as the value of tint increases on a loga-
rithmic scale. The dark blue `basin' represents the region where M and q simultaneously
lower the value of tint to its minimum. Isoclines running in parallel are connecting points
at which tint has the same value, therefore they are associated with horizontal lines in
Fig. 2.2 (b). The in�uence of growing q becoming comparable to and gradually greater
than that of M accounts also for the drift from the linear rising trend in the curvature
of isoclines that occurs at the high-q region on Fig. 2.4. Although Fig. 2.4 suggests that
over 85% of the waveform templates of initial eccentricity e0 = 0 are computed up to
10 seconds, in fact, only 4.6% of all waveform templates require less then 10 seconds to
integrate, as demonstrated in Fig. 2.3. Out of a total of 1800, only those 120 templates
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are shown in Fig. 2.4 that are located in the e0 = 0 plane. Still, the �gure illustrates
well that in the same e0-plane the frequency of templates with little tint is extremely high
compared to that of templates with large tint, regardless of the value e0.

In the next section I shall give a quantitative description of the summary statistics
computed from the relative frequency of occurrence (or empirical probability) of the in-
tegration time-runs.
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(a) Integration run-times for equal-mass
systems (q̄ = 0).
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(b) Integration run-times for systems on
circular orbit (e0 = 0).

Figure 2.2: The integration run-time tint increases exponentially with decreasing total massM .
With increasing initial eccentricity e0 (left panel) or mass disparity q̄ (right panel), tint grows
asymptotically at a signi�cantly faster rate than with decreasing M . The integration time of
those template waveforms that enter a detector's sensitivity band at a frequency of 10 Hz has been
measured 20 times, each at 11 distinct values of M ∈ [2.15M�, 215M�] for three distinct values
of initial eccentricity; e0 = {0, 0.7, 0.98} and mass disparity; q̄ = {0, 0.1, 0.99} represented by
blue, orange and green dots, respectively. The template waveforms were generated at a uniform
sampling frequency 16.384 kHz. Around each median curve of corresponding tint values, the
shaded bands represent their respective 95% point-wise con�dence band.

2.2.2 Probability distribution of integration run-times

Let T = {tint1 , tint2 , . . . , tintL } be a univariate independent and identically distributed (IID)
�nite data sample drawn from the probability (or relative frequency) distribution of the
discrete random variable t ∈ T while a discrete set of L time-domain input waveforms

h(t) ≡ {h(t;λl)}Ll=1 (2.2)

is computed at each parameter point λl (cf. Sec. 2.3.1) by evaluating Eq. (1.76) at a
distance D = µ simultaneously with the integration of the equations of motions at 3PN
order that requires integration run-times tintl .

Since I do not make any prior assumption about the probability distribution, I shall
use a non-parametric model where the statistical measures are determined by the �nite

35



data sample T. In statistics, kernel density estimation (KDE) is a fundamental data-
smoothing technique that provides a non-parametric estimate, based on observed data
T, of an unobservable underlying probability density function (PDF) of the continuous
random variable inf T ≤ t ≤ supT. A PDF, denoted by ft and illustrated in Fig. 2.3,
is a non-negative Lebesgue-integrable function that de�nes the cumulative distribution
function (CDF) of a real-valued random variable t, evaluated at a value t′ as

Ft[t
′] ≡ Pr[t ≤ t′] =

∫ t′

−∞
ft[τ ]dτ. (2.3)

It represents the probability that the random variable t, with the expected value given by

E[t] =

∫ ∞
−∞

t′dFt[t
′], (2.4)

takes on a value less than or equal to t′ and its kernel density estimator is

f̂h[t] =
1

Lh

L∑
l=1

K

[
t− tintl
h

]
, (2.5)

where K ≥ 0 is a symmetric kernel with total integral normalized to unity and h > 0
is the bandwidth (or smoothing parameter). One might intuitively choose h as small
as the data sample T allows; however, there is always a trade-o� between the bias of
the estimator and its variance. Another option is the use of adaptive bandwidth kernel
estimators in which the bandwidth changes as a function of t.

A speci�c quantitative measure of the probability distribution is the n-th moment

µn ≡ E[(t− c)n] (2.6)

of the continuous random variable t about some central value c (e.g. the mean, denoted by
µ) where E is the expected value of t de�ned by Eq. (2.4). The graphical representation
of the most common measures of central tendency (mean, median, mode) is depicted on
Fig. 2.3 with solid, dashed and dotted red lines, respectively. The PDF rapidly increases
with the random variable t up to a point at t = 0.81653 sec. From then onwards this
monotone increase slows down and eventually comes to a halt at t = 4.438 sec, which
marks the mode, i.e. the most frequent value in the distribution. The median which
represents the value separating the higher half of the probability distribution from the
lower half is located at t = 20.615 sec. The mean which represents the �rst moment of
the PDF (µ ≡ µ1 in Eq. (2.6)) is situated at t = 77.499 sec.

The central tendency of distributions is typically contrasted with its dispersion that
measures the extent to which a distribution stretched or squeezed. Common measures
of statistical dispersion are the variance and standard deviation: The variance of t is
the second central moment, given by (2.6) as Var[t] ≡ E[(t − µ)2] and the standard
deviation is its square root, denoted by σ. For the given distribution σ = 266.885 sec.
Finally, the shape (or asymmetry) of probability distributions is quantitatively measured
by the third and fourth central moments, called skewness and kurtosis and denoted by
Skew[t] ≡ E[(t− µ)3/σ3] = 18.56 and Kurt[t] ≡ E[(t− µ)4/σ4] = 490.04, respectively.
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Figure 2.3: PDF denoted by ft(t) (blue line) and CDF by Ft(t) (orange line) are displayed as
functions of the random variable t ∈ [inf T, supT], corresponding to tint-values, which is measured
in seconds on the lower horizontal axis and in standard deviation (σ = 266.885 sec) round the
mean value of t on the upper horizontal axis. The smooth KDE with adaptive bandwidth is
based on the data sample T collected from the integration run-times of L = 1800 waveform
templates that were generated in the parameter space Ω, described in Sec. 2.3.1. The location
of the mode, the median and the arithmetic mean are illustrated by dotted, dashed, and solid
red lines, respectively in ascending order of their locations. This order of the measures of central
tendency is a characteristic feature of right-skewed (positive skewness) distributions.

2.3 Template placement and common frequency grid

Let us now discuss the placement of a grid of TD waveform templates in a compact
parameter space, followed by the generation of a sequence of frequency-domain (FD)
templates on a common �nely sampled uniform frequency grid. The TD waveforms are
Fourier transformed and split into their amplitude and phase parts. These functions
are accurately represented on a sparse frequency grid with only O(104) nodes, with a
sampling frequency recorded well above the Nyquist frequency of the shortest time-series
in the template bank.

2.3.1 Template placement in an associated 3-dimensional param-

eter space

The set of input waveforms (2.2) is computed by CBwaves, described in Sec. 2.2.1, at
corresponding parameter points

λ ≡ {λl ∈ Ω}Ll=1 (2.7)

in a compact p-dimensional parameter space Ω ⊂ Rp, where p is the number of model
parameters. I restricted this study to a feasible 3-dimensional parameter space consisting
of totally ordered one-dimenstional sets of values of corresponding model parameters
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(m1, m2, e) that de�ne a sparse grid of points

λ ≡m1 ⊗m2 ⊗ e = {(mi,mj, ek) : i ∈ [0, imax]; j ∈ [i, imax]; k ∈ [0, kmax]} (2.8)

covering the desired parameter range in the particular model involved. Owing to the
invariance of input waveforms under exchange of the components' masses (m1, m2), the
values of the 2-dimensional index pair (i, j) are constrained to a triangular sub-region
in the positive quadrants where i ≤ j. Considering that the waveform templates span a
3-dimensional parameter space, each template is successively placed into a single vector
(2.2) as indexed by

l ≡
[(
imax −

i− 1

2

)
i+ j

]
kmax + k + 1 (2.9)

in the range of values 1 ≤ l ≤ L. This �at index corresponds to the position of templates
in the parameter space. The total number of templates in the set is then expressed as

L =
[
(2imax + 1)2 − 2

]
kmax/8 + 1. (2.10)

It is desirable to work with a dense grid of short waveforms encompassing the late inspiral
phase to make a better coverage of the selected region of the parameter space. For the
sake of simplicity, templates are sampled at equidistant parameter combinations within the
region. Nevertheless, using a template placement algorithm that is based on a template-
space metric over the parameter space makes a far more e�cient coverage. [115, 116]
Generally, the algorithms that use geometrical techniques concentrate more points near
the boundaries of the region and at lower mass-ratios.

The set of initial eccentricity {ek : 1 ≤ k ≤ kmax} is chosen to cover the entire interval
[0, 0.95] and the mass ratio (1.7) is allowed to range between equal mass at q = 1 and
relatively extreme systems at q ≈ 0.01 with total mass M/M� ∈ [2.15, 215]. In terms of
the symmetric mass ratio (1.8) the model covers approximately η ∈ [0.01, 0.25]. Fig. 2.4
shows the placement of those L = 120 templates (red dots) that are situated in the k = 0
plane section of the parameter space Ω, out of a total of 1800 templates, and are collected
in h(t). These templates are con�ned within a triangular region with a boundary ∂Ω
(thick gray line).

2.3.2 Production of frequency-domain waveforms

For optimal orientation all time-domain waveforms in Eq. (2.2), composed of their two
fundamental polarizations h+ and h× in the dominant l= m = 2 mode are represented
by complex-valued GW strain amplitudes

hn(λl) ≡ h+(tn;λl)− ih×(tn;λl) (2.11)

at N equidistant grid points
{tn = n∆t}n∈[0,N−1] (2.12)

as elements of a �nite sequence of N regularly spaced samples of the complex-valued TD
waveforms {h0(λl), h1(λl), . . . , hN−1(λl)}. The sequence is converted by a fast Fourier
transform (FFT), denoted by a linear operator F : h→ h̃, into an other equivalent-length
sequence of regularly spaced samples

{h̃k(λl)}k∈[−N/2,N/2−1] = F{hn(λl)}n∈[0,N−1] (2.13)
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Figure 2.4: The template bank h(t) of L = 1800 waveform templates was set up over a domain
{(M, q, e0)|M ∈ [2.15M�, 215M�], q ∈ [0.01, 1], e0 ∈ [0, 0.95]} ⊂ Ω by computing Eq. (2.2)
with uniform grid spacings {∆M = 14.19M�, ∆q = 0.06, ∆e0 = 0.063}. Red points, con�ned
within a triangular region with a boundary ∂Ω (thick gray line), represet the parameter points
of those 120 input waveforms that are situated in the k = 0 plane section of the parameter
space Ω. In order to measure the accuracy of the ROM of waveforms, Eq. (2.34) is evaluated
at equidistant parameter points (yellow points) from their respective nearest basis-waveform
neighbours. Each background point in the coloured triangular region is assigned to a hue level
running from dark to light as the value of the integration run-time tint increases on a logarithmic
scale. tint increases exponentially with decreasing total mass M and grows asymptotically at
a signi�cantly faster rate with increasing mass disparity q̄. The dark blue `basin', where the
great majority of template waveforms are concentrated, represents the region where M and q
simultaneously lower the value of tint to its minimum. Isoclines (thin gray curves) running in
parallel are connecting points at which tint has the same value. A drift from the linear rise in
the curvature of isoclines occurs at the high-q region, where the in�uence of growing q becomes
comparable to and gradually greater than that of M .

evaluated at the same N equidistant frequency grid points {f−N/2, . . . , f0, . . . , fN/2−1}
considering that ROM construction, to be discussed in Sec. 2.4, will require a set of values
that reside in the same grid points over all the waveforms in the template bank.

1. This is achieved by having the length of all frequency series truncated to that of the
shortest waveform in time, denoted by

T = tN−1 − t0. (2.14)

This particular waveform is associated with the highest mass, lowest eccentricity
con�guration (i = imax, j = imax, k = 0) in the template bank and its position in
the parameter space, given by Eq. (2.9), is lshort = (imax + 3)imaxkmax/2 + 1.

2. Another possible way, used by [92, 117], to adjust the frequency series to the same
length is to make the shorter-length waveforms of su�cient length by extending
them with other templates such as TaylorF2.
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Figure 2.5: A schematic illustration of the method for building and evaluating the surrogate
model over a common frequency grid. The red dots show the selection of parameter points for
building the reduced basis, the blue dots show the associated empirical nodes in time from which
a waveform can be reconstructed by interpolation with high accuracy, and the blue lines indicate
a �t for the waveform's parametric dependence at each empirical time. (Original �gure, courtesy
of S. E. Field et al.. [102])

The Fourier coe�cients in Eq. (2.13), given by

h̃k(λl) ≡
N−1∑
n=0

hn(λl)e
−2πikn/N , k ∈ [0, N − 1], (2.15)

are complex-valued functions of the frequency fk which encodes both the amplitude and
the phase,

h̃
(A)
kl =

√
Re[h̃k(λl)]2 + Im[h̃k(λl)]2/N, h̃

(φ)
kl = −i ln

(
h̃k(λl)/|h̃k(λl)|

)
, (2.16)

respectively. In this interpretation, h̃k(λl) corresponds to the cross-correlation of the
time sequence hn(λl) and an N -periodic complex sinusoid e2πikn/N at a frequency point
fk ≡ k/N that represents k cycles of the sinusoid. Therefore, Eq. (2.15) acts in place
of a matched �lter for that frequency. (To read more about matched-�lters, please read
Sec. 4.5.2) Now, the sequence of frequency-domain waveforms (2.13) can be re-expressed
as `chirps' in a simple form

{h̃k(λl)} = {h̃(A)
kl exp(iΛh̃

(φ)
kl )} (2.17)

where the oscillation degree Λ is a large number. The behaviour of GWs in the late inspiral
phase is highly oscillatory, but the amplitude and the phase themselves are smoothly
varying functions of frequency. [118] It will thus be more expedient to perform high-
accuracy parametric �ts of the phase and amplitude given by (2.16) rather than of the
complex waveform (2.11) itself. The preprocessed amplitudes and phases are collected in
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the columns of separate template matrices {H(A), H(φ)} ∈ RN×L,

H = (h̃)kl ∈ CN×L (2.18)

where the amplitude or phase labels have been dropped for brevity and where L is the
total number of templates, and each template h̃l(fk) is given on a common freqency grid
of length N . I will represent the waveforms at a large number of frequency points so that
N & L. A schematic illustration of building templates over a common frequency grid is
shown in Fig. 2.5.
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Figure 2.6: The panels illustrate the inspiral evolution of equal-mass BBH/BNS systems (q̄ = 0)
starting at a Keplerian mean orbital frequency of 5 Hz at a distance D = µ. The four most
distinct template waveforms were generated by CBwaves at a uniform sampling frequency of
16.384 kHz with extreme values of total mass M = {2.15M�, 215M�} and initial eccentricity
e0 = {0.00, 0.95} in the investigated parameter space Ω. (See large red points on Fig. 2.4.) The
top inset panel presents the last N = 15, 000 points of the longest waveform (blue) projected
onto an equal number of points of the shortest waveform (red).

2.3.3 De�nition of a regularly spaced high-resolution frequency

grid

Provided that T in (2.14) is the longest time length, the time spacing is de�ned as

∆t = T/(N − 1) (2.19)

by Eqs. (2.12) and (2.14). The time spacing and the number of time steps N in the grid
(2.12) are chosen such that the FD waveforms (2.17) are sampled at a rate of fs and cover
a suitable and well-resolved frequency range [flow, fhigh].

1. The lower limit of the frequency range flow is speci�ed by the low-frequency cuto�
of the detector noise spectrum which is close fcuto� = 10 Hz for advanced detectors
design.
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2. The upper limit fhigh is determined to be at fISCO = 2.045 kHz by the ISCO fre-
quency (1.80) for the lowest total mass con�guration of interest M = 2.15M�.

The Nyquist criterion requires the sampling frequency to be at least twice the highest
frequency contained in the signal to avoid aliasing. Thus, the smallest su�cient sam-
pling frequency is fs = 4096 samples per second for being the �rst power of 2 to meet
the criterion. Note that the typical sampling rate being used by aLIGO and aVirgo
observatories in ongoing searches for GWs is at 2048 Hz. [119] Instead, an equidistant
grid with N = 4000 grid points is sampled at fs = 16.384 kHz in the frequency band
Mf ∈ [0.0001, 0.0216] in geometrized units (G = c = 1). The conversion factors for
`geometrized' units into SI units are listed in Table A.1. The total mass M is expressed
in units of geometrized solar mass by M�[s] = G/c3 ×M�[kg] ≈ 4.93× 10−6 sec. At the
time resolution ∆t = 1/fs ≈ 4.59M which corresponds to a Nyquist frequency

fNy = fs/2 ≈ 2.03× 10−32M−1, (2.20)

a waveform long enough for the BNS system of total mass M = 2.15M� down to flow =
2.48× 10−35M−1 is given and is about T = (N − 1)∆t ≈ 1.83× 104M long in time. The
spacing in frequency domain is

∆f = 2fNy/N, (2.21)

so the power will be either in positive or negative frequencies, depending on conventions
and only half of the FFT should be considered. Combining this with the relations (2.19�
2.20), one has

∆f =
N − 1

N

1

T
≈ 5.45× 10−5M−1. (2.22)

Only half of the points in the FFT spectrum are unique, the rest are symmetrically
redundant. Thus, the points of negative frequencies contain no new information on the
periodicity of the random number sequence. Which amounts to swapping the left and
right half of the result of the transform.

2.4 SVD-based reduced-order surrogate model building

In this section I summarize some of the characteristic features of SVD that are especially
useful for reduced-order modeling and discuss my approach to construct a compressed
approximate representation of a collection of �ducial waveforms at the cost of trunca-
tion error. Next, projection coe�cients of the waveforms are determined in terms of
the reduced basis. In conclusion, the ROM is assembled from the reduced basis and
projection coe�cients interpolated over the parameter space. My procedure follows the
well-established strategy that has been pursued by P�urrer and by Cannon for building
frequency-domain ROMs. [92, 105, 106, 117]

2.4.1 Singular values and truncation error

Formally, the decomposition of the template matrix H ∈ CN×L in Eq. (2.18) is expressed
by a factorization of the form

H = V ΣU †, (2.23)
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Figure 2.7: Illustration of the multilinear SVD of a multilinear rank-(R1, R2, R3) tensor of a
3-mode and the di�erent spaces.

where the complex unitary matrices

V = [v1| . . . |vL] ∈ RL×L, U = [u1| . . . |uN ] ∈ RN×N (2.24)

are orthogonal sets of non-zero eigenvectors of the non-negative self-adjoint operators
H†H and HH† so that U †U = I and V †V = I. The illustration of SVD of multilinear
tensor is shown in Fig. 2.7. The rank�nullity theorem states that the SVD (2.23) pro-
vides a decomposition of the range of H. [117] Accordingly, the left-singular vectors (or
eigensamples) {vi ∈ V } provide an orthonormal basis

range(H) = span{v1, . . . ,vR} (2.25)

for the range of H (columnn space) where the maximal number of linearly independent
columns of H is R ≡ rank(H) ≤ L. In a qualitative sense, each vi represents a typical
waveform pattern. The right-singular vectors (or eigenfeatures) {ui ∈ U} provide a basis
for the domain of H (row space) and represent the evolution of the magnitude of each
waveform along the frequency gridpoints. The diagonal entries of the rectangular matrix
Σ ∈ RN×L correspond to the non-negative real SV (Singular value)s σ1 ≥ . . . ≥ σs ≥ 0
where s = min(N,L). SVs are roots of eigenvalues of H†H (and of HH†) describing the
spectrum of the template matrix H, arranged in monotonically decreasing order (cf. Fig.
2.8). If the number of frequency points is signi�cantly larger than the number of waveforms
(i.e. L � N), then a thin SVD is a more compact and `economical' factorization of Eq.
(2.23) than the full-rank SVD that comprizes all R eigensamples. In practice, low-rank
matrices are often contaminated by errors, and for that reason they feature an e�ective
rank Re� smaller than its exact rank R. The reduced-rank approximation of the template
matrix H is expressed by

Hr =
r∑
i=1

σivi ⊗ uTi , (2.26)

which comprises only those r < R singular vectors which correspond to singular values of
a signi�cant magnitude. The approximated representation (2.26) of the �ducial template
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bank H is the r-th partial sum of the outer-product expansion of the expression (2.23),
where r denotes the desired target rank. The Eckart�Young theorem [120] implies that the
low-rank SVD in Eq. (2.26) provides the optimal rank-r reconstruction of the template
matrix

Hr ≡ argmin
rank(H′

r)=r

‖ H −H′r ‖ (2.27)

in the least-square sense, where the truncation error of approximated representation (2.26)
in both the spectral and Frobenius norm is given by

‖ H −Hr ‖2= σr+1(H), ‖ H −Hr ‖F=

√√√√min(N,L)∑
i=r+1

σ2
i (H), (2.28)

respectively.
Fig. 2.8 shows σ̂i ≡ σi/σ1 on logarithmic scale as a function of the number of

SVD components i = {1, . . . , R} involved in the approximated representation. Each
σ̂i, which describes the relative magnitudes of the corresponding eigenfeatures, is com-
puted from the truncated SVD (2.26) of template matrices with three distinct full-ranks
R = {550, 936, 1800} (i.e. total number of templates). The truncation error in the
approximation, in accordance with Eq. (2.28), decreases with the number of SVD com-
ponents retained. The ultimate accuracy (or minimal error) achievable is limited by the
total number of templates L that the original template matrix H contains. The grow-
ing rate of decay in the SV spectrum demonstrates that the individual SVD components
gradually lose their relevance for being included in the approximation. In this respect,
the spectrum has three clearly distinctive regions characterized by the rate at which SVs
decrease:

1. Overreduced SVD (k . 400) retain insu�cient amount of information to construct
a representation by the orthonormalization (2.25) with less than relative error of
10−5−10−6. The initial steep exponential fall attests that the information contained
in the corresponding eigenfeatures is predominantly relevant. In fact, the �rst few
components shown on Fig. 2.9 contain roughly 90% of all the information on the
input waveforms, regardless of rank(H). Then, SVs decrease at a much lower, yet a
slowly increasing rate, practically indistinguishable for di�erent values of full rank
R.

2. Su�ciently reduced SVDs (400 . k . 500 − 600) e�ciently select the relevant
information, so that the relative error of representation (2.39) is kept well-suppressed
while the number of SVD components stored in the reduced-rank template matrix is
signi�cantly lower than that of the full-rank. The larger the full-rank R is, the more
SVD components have to be kept to achieve the same accuracy of representation.

3. Underreduced SVDs (k & 500 − 600) admit the lowest possible truncation errors,
limited only by the numerical errors of the FOM or full-rank approximation itelf.
However, the accuracy of reconstructed waveform representation improves at a rate
much lower than in the preceding regions. The loss of relevant information content
due to the reduction of the number of SVD components is ine�ciently low compared
to the improvement of accuracy.
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Choosing an optimal target rank r is highly dependent on the objective. One either
desires a highly accurate reconstruction of the �ducial waveform templates, or a very low
dimensional representation of the fundamental features in the templates. In the former
case r should be chosen close to the e�ective rank, while in the latter case r might be
chosen to be much smaller. Fig. 2.8 demonstrates that choosing a target rank r = 456
for the smallest among �ducial template matrices will result in a truncation error related
to σ̂ = 2.66× 10−15 at r = 456.
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Figure 2.8: Normalized singular-value spectra of the template matrix for full ranks R =
{550, 936, 1800} are illustrated by blue, orange and green colour, respectively. The horizontal
axis represents the index of SVs, while the vertical axis represents the relative variance of SVs.
The main panel displays the relative variance of σ̂i of the matrix H(A) which encodes the am-
plitude part of waveform templates while the corresponding relative variance of σ̂i for the phase
is shown in the top inset. At r = R − 1 its in�mum, σ̂r, falls onto a dotted black line given by
log σ̂r − log σ1 ≈ −34.8877− 0.00204394R. The rate at which the ratio decreases is signi�cantly
lower under the dashed black line given by −6.23703− 0.0250683R. Excluding waveforms in the
lower section causes less errors by a magnitude much smaller than in the upper section.

2.4.2 Assembly of the surrogate model

The basis for the amplitude or phase space is given in the columns Bi of the matrix

B ≡

{
VL ∈ RN×L, if N > L

V ∈ RN×N , if N ≤ L
(2.29)

and a full-rank basis is desired. If N < L, then the information from L waveforms at N
grid points is contained in a basis of dimension N . The reduced basis waveforms only
resemble the physical behaviour of frequency domain amplitudes and phases for the �rst
basis function, the higher basis functions are oscillatory (cf. Fig. 2.9). To compress the
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(a) Basis functions for the amplitude modes.
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(b) Basis functions for the phase modes.

Figure 2.9: Reduced basis functions for the �rst 5 amplitude and phase SVD modes are repre-
sented at N = 4000 grid points in the frequency domain. The basis functions become increasingly
oscillatory as their index i increases.

model, a reduced basis of rank r is selected from the FOM or full-rank basis (2.25) in the
form

Br = Vr = [v1| . . . |vr] ∈ RN×r for r < R ≤ N. (2.30)

For any r the columns of Vr are optimal orthonormal basis for the starting waveforms.
Notice that Br ⊂ Br+1, which demonstrates the underlying hierarchical nature of the
generated template banks. [117] Fig. 2.10 may serve as an illustration of the underlying
sparsity of the selected basis in the parameter space. The identi�cation of parameter
values associated with the basis waveforms selected by SVD from the FOM is not that
straightforward as a greedy algorithm would pick values that parameters take. Neverthe-
less, it may safely be said that a very small part of the parameter space volume is covered;
the parameter points are heavily concentrated at low-mass and low-eccentricity values.

Hereafter the label r on the rank-r reduced basis will be dropped for brevity. The
projection coe�cient vectors ~µ are computed from the reduced bases B(A) and B(φ) for
any given input waveform h̃ ∈ RN as follows

~µ(h̃) ≡ BT h̃ ∈ Rr, (2.31)

where the labels referring to amplitude or phase were dropped for brevity. The projection
coe�cient vectors for all waveform templates are packed in the matricesM(A) andM(φ)

with entries
Mkl = µk(h̃l) = (BTH)kl ∈ Rr×L. (2.32)

By the comparison with Eq. (2.23), one may concede that M = BTH = −ΣUT for a
full-rank basis B = V . It follows that the projection coe�cient matrices are ordered in
the same way as the individual waveforms in H. To undo the packing of the waveforms
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in the matricesM I partition the linear index l that enumerates the waveforms in H and
obtain a tensor

Mk,lq ,le = µk(h̃(lq ,le)) ∈ Rr×Lq×Le . (2.33)

To complete the model the projection coe�cient vectors are de�ned at any position in
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Figure 2.10: The SVD-based reduced-basis parameter choices in the 3-dimensional parameter
space (m1, m2, e0). Comparing the positions of the retained r = 600 templates to the placement
of the original R = 1800 template shown in Fig. 2.4, it becomes clear that primarily those
parameters are selected that are associated with low-mass and low-eccentricity systems. Only a
small fraction of the whole volume of the parameter space is covered.

the chosen parameter space by suitable interpolants I[M](λ) ∈ Rr for the amplitude and
phase coe�cient tensorsM(A),M(φ). For each input waveform one has two corresponding
r-vectors of projection coe�cients (for amplitude and phase) that are interpolated over
the parameter space. The frequency-domain ROM representation of waveform templates
is then constructed in the form

h̃S(λ; f)≡A0(λ)If [B(A) · I[M(A)](λ)] exp{iIf [B(Φ) · I[M(Φ)](λ)]}, (2.34)

where · denotes matrix multiplication, If [·] interpolates vectors in frequency on a suitable
grid, and A0(λ) is an amplitude prefactor which is stored before the SVD takes place and
an interpolant is computed over the parameter space.

2.5 Accuracy and speedup for surrogate model predic-

tions

Once a ROM is built, any surrogate waveform can be evaluated as a sum of reduced basis
elements with incremental errors within the parameter range covered in the particular
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model. The main criteria for a successful ROM are that it facilitates data analysis ap-
plications that were infeasible with the �ducial waveform model and that it represents
waveforms accurately. [92] This section is dedicated to appraise the overall performance
of the ROM building discussed in Sec. 2.4. The �rst part of this section assesses the ac-
curacy of surrogate model predictions in terms of the match between the surrogate model
and the �ducial model. In the second part an overview of the computational e�ciency of
the ROM is provided with respect to computational complexity and cost relative to the
cost of the �ducial model.
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Figure 2.11: The linear trend in the change of surrogate error (2.37) as a function of the
resolution of the frequency grid. Higher resolution of sampling times (i.e. lower resolution
for sampling frequencies) result lesser uncertainty in estimating the amplitudes and phases.
Surrogate error ∆h̃2 = 1.98× 10−7 is marked with an orange point for a frequency-grid spacing
∆f = 5.45×10−5M−1 which was obtained in Eq. (2.22). The value of surrogate error corresponds
to the mean relative error of the amplitude ∆h̃(A) ≈ 4× 10−14 shown in Fig. 2.12.

2.5.1 Reconstruction errors

The overlap integral of two normalized waveforms, say, of a �ducial CBwaves waveform
hCB and its surrogate model prediction hS, is given by the mismatch (or unfaithfulness)
between the two waveforms and is de�ned as the normalized inner product (2.36) maxi-
mized over time and phase shifts

M≡ 1−max
t0,φ0

〈hCB, hS〉
‖hCB‖‖hS‖

(2.35)

with an inherited norm given by ‖h‖2 ≡ 〈h, h〉. A natural inner product between the two
waveforms is given by the complex scalar product

〈h̃CB, h̃S〉 ≡ 4 Re

∫ fhigh

flow

h̃CB(f), h̃∗S(f)

Sh̃(f)
df (2.36)

where the tilde denotes Fourier transformation given in Eq. (2.13), h̃∗S(f) is the complex
conjugate of h̃S(f), Sh̃(f) is the one-sided PSD (Power spectral density) of the detector
noise and flow, fhigh are suitable cuto� frequencies for detector sensitivity. The low-
frequency cuto� depends on the PSD and is at 10 Hz for advanced detectors design. The
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high-frequency cuto� is at 2.045 kHz, which is the ISCO frequency of the lowest total-mass
con�guration in my �ducial model, discussed in Sec. 2.3.3.
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Figure 2.12: Top panel: The amplitude and the phase part of the waveform associated with
l = 1. There is visual agreement among the �ducial CBwaves waveform and its surrogate
prediction throughout the entire frequency range. Bottom panel: The relative errors (2.39) with
moving average of 50 points, de�ned by Eq. (2.39), in the amplitude and the phase di�erence
between the �ducial waveform and its surrogate model prediction. The di�erences are smaller
than the errors intrinsic to the surrogate model itself, as well as those of state-of-the-art NR
simulations.

A discrete version of the normed di�erence between a �ducial waveform and its sur-
rogate is what one may actually measure:

∆h̃2(λ) = fs

N−1∑
k=0

∣∣∣|h̃CB(fk;λ)− h̃S(fk;λ)
∣∣∣2 , (2.37)

where fs is the sampling frequency discussed in Sec. 2.3.3. The square of the normed
di�erence between two waveforms, referred to as the surrogate error, is directly related
to their overlap (2.36). It is the dominant source of error in the surrogate model that
translates directly into errors in the �ts of the parameters for building the surrogate.
[102] Fig. 2.11 shows the linear correlation of the surrogate error in Eq. (2.37) with the
time spacing ∆f in the regularly spaced grids (2.12�2.13). The surrogate model gradually
converges to the �ducial one at �ner time scales (i.e. larger sampling frequencies). Other
errors of interest are the pointwise ones (separately for the amplitude and phase). They
are encoded in the lth surrogate model prediction (2.34) as

h̃
(A)
S (fk;λl) ≡ If [B(A) · I[M(A)](λl)], h̃

(φ)
S (fk;λl) ≡ If [B(Φ) · I[M(Φ)](λl)], (2.38)
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respectively. The relative errors in approximating the amplitude and phase of a �ducial
waveform by its surrogate model prediction is then expressed by

∆h̃(A)(fk;λl) =
∣∣∣1− h̃(A)

S (fk;λl)/h̃
(A)
CB(fk;λl)

∣∣∣ , ∆h̃(φ)(fk;λl)=
∣∣∣1− h̃(φ)

S (fk;λl)/h̃
(φ)
CB(fk;λl)

∣∣∣ ,
(2.39)

where the amplitude and phase parts of �ducial waveforms, h̃
(A)
CB(fk;λl) and h̃

(φ)
CB(fk;λl),

respectively, are given by Eq. (2.16) on N discrete frequency points fk.

Fig. 2.12 shows a comparison between the surrogate and �ducial model, using the
template assigned to l = 1. The top panel shows that the �ducial and surrogate waveforms
are visually indistinguishable. The bottom panel demonstrates that both amplitude and
phase pointwise errors (2.39) increase with frequency. Nevertheless, the errors are indeed
as small as predicted on Fig. 2.8. A moving average of 50 points was used to smooth out
short-term �uctuations in the error and highlight longer-term trends. Fig. 2.5 shows a
schematic illustration of building surrogate models over a common frequency grid.

2.5.2 Computational cost and speedup for surrogate model pre-

dictions

Apart from the requirements for accuracy or reliability, a ROM building is considered
e�cient if it generates cost-e�cient surrogate models. The major advantage of using
surrogate model predictions in lieu of actual waveform evaluations is their signi�cantly
reduced resource consumption. Now I discuss the computational cost, in terms of opera-
tion counts and run-time, of ROM building and present the desired speedup that can be
achieved when evaluating surrogate models.

As described in Sec. 2.4.2, the complete surrogate model (2.34) is assembled with
the evaluation of r projection coe�cients µl(f) given in (2.31) and 2r �tting functions

{h̃(A)
l (λ)}rl=1 and {h̃

(φ)
l (λ)}rl=1 given in (2.38). In order to construct a surrogate model for

some parameter λ, one only needs to evaluate each of those 2r �tting functions at λ0,
recover the r complex values {h̃(A)

l (λ0) exp[−ih̃(φ)
l (λ0)]}rl=1, and perform the summation

over the index l. Each µl(f) is a complex-valued frequency series with N samples. There-
fore, the total operation count to evaluate the surrogate model at each λ0 is (2r − 1)N
plus the cost to evaluate the �tting functions. [102] The entire process of constructing
a small, e�cient ROM which is comprized of only r = 550 waveform templates sampled
at N = 4000 grid points requires the execution of approximately 4.4 × 106 operations
(excluding the cost of evaluating the �tting functions).

The notion of `speedup', in this terminology, is the number that evaluates the relative
performance of generating the same waveforms on the same processor by the execution
of CBwaves code and of the surrogate model. More speci�cally, I test the acceleration
of waveform generation by measures on the length of time required to perform each
computational process. Let as note that the time which was denoted by tint and was
referred to as `integration run-time' in Sec. 2.2.1 is actually the execution time during
which the processor is actively working on my computations. It is referred to as CPU
time (or run-time) and will be denoted by tCPU. In contrast, the actual elapsed real
time accounts for the whole duration from when the computational process was started
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Figure 2.13: Top panel: Computational time tCPU to generate �ducial waveforms by CBwaves
code (dots; connected by solid lines) against the cost of evaluating corresponding surrogates by
ROM (rectangles; connected by dashed lines). The computational time was measured for three
di�erent initial eccentricities of equal-mass con�gurations, each associated with di�erent colours.
Bottom panel: The speedup in evaluating the surrogate model is several thousand times faster
around 10−50 M� than generating CBwaves waveforms. For high total mass the speedup falls o�
to several hundreds. The speedup is roughly twice as great for con�gurations having extremely
high initial eccentricity at e0 = 0.98 (blue line) as for circular ones at e0 = 0 (green line).

until the time it terminated. The di�erence between the two can arise from architecture
and run-time dependent factors such as waiting for input/output operations (e.g. saving
waveform templates). Consequently, the elapsed real time is greater than or equal to the
CPU time.

Fig. 2.13 shows (on top) the computation time or CPU time for CBwaves waveforms
(solid lines) against corresponding surrogate waveforms (dashed lines) as a function of to-
tal mass of the binary system. The total mass M is measured in the same 11 points as in
Fig. 2.2 for three di�erent initial eccentricities (e0 = {0.98, 0.6, 0}) of equal-mass con�gu-
rations, each associated with di�erent colours. The computation time tCPU for surrogates
is multiplied by a factor of 300 in order to shift the curves close to their respective CB-
waves counterparts and enable visual comparison. The bottom panel demonstrates that
surrogates are several thousand times faster around 10− 50 M� to evaluate as compared
to the cost of generating CBwaves waveforms. The speedup falls o� to several hundreds
as the total mass increases. Moreover, the speedup grows when the initial eccentricity e0

is increased in much the same way as with the mass disparity q̄ (cf. Fig. 6 in [92]). The
speedup is roughly twice as great for con�gurations having extremely high initial eccen-
tricity (e0 = 0.98) as for circular ones (e0 = 0). The resemblance of the in�uence of e0 and
q̄ on the speedup can be attributed to their asymptotical nature as it had been pointed
out earlier in Sec. 2.2.1. It is also evident that the speedup culminates when waveforms
for con�gurations of very low total mass and very high eccentricity are generated. Such
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waveforms are prohibitively expensive to generate with CBwaves in contrast to surrogates
that are generated at the same cost, regardless of the parameters of the con�guration.

Let us note that successive versions of SEOBNR (aligned-Spin E�ective-One-Body
Numerical Relativity) ROMs have been developed and put to use within LAL (LSC Algo-
rithms Library) (LSC Algorithms Library) to shorten data analysis applications carried
out since the �rst observation runs have begun. [121] It has been shown in [102, 103] that
the cost of evaluating the surrogate model is linear in the number of samples N (cf. Fig.
2.11 where the surrogate error depends on the sampling rate). Depending on the sampling
rate, the speedup is between 2 and almost 4 orders of magnitude. The speedup in eval-
uating surrogate models compared to generating NR waveforms with the LAL analysis
routines is crucial for searches and theoretical parameter estimations. SEOBNR (aligned-
Spin E�ective-One-Body Numerical Relativity), IMRPhenomD (IMR Phenomenological
Model `D') and PhenSpinTaylorRD waveform approximants are among the best available
GW models for generic spinning, compact binaries. In comparison with my results, the
speedup achieved at the typical rate of 2.048 kHz used by aLIGO and aVirgo observatories
is roughly 2300. [119]

2.6 Summary of ROM-based predictions, limitations

and an outlook

The primary goals of the present research have been to propose a potential extension
of the ROM techniques to alleviate the computational burden of constructing waveform
templates for coalescing compact binaries with any residual orbital eccentricity and to val-
idate the applicability of ROMs to this particular family of waveforms. ROMs have been
applied to several waveform families (SEOBNR, IMRPhenomP and PhenSpinTaylorRD)
in LAL routines for gravitational-wave data analysis. [103�109] The aforementioned wave-
form families provide e�cient descriptions of gravitational waves emitted during the late
IMR stages of compact binary systems, but only in the zero-eccentricity limit. The major
motivation for extending the scope of application beyond the zero-eccentricity limit is
based on the ground, referred to in Sec. 2.1, that the great majority of compact objects
formed in dense stellar environments retain some non-negligible eccentricity when enter-
ing the frequency band of ground-based GW detectors [18, 19], as well as the impact of
eccentricity on the accuracy of parameter estimation for BNSs [30].

My approach to construct frequency-domain ROMs has been predominantly based
on the method outlined in Refs. [92, 117] (cf. Sec. 2.4). Input waveforms comprised
in the ROM are Fourier transformed and split into their amplitude and phase parts (cf.
Sec. 2.3.2). These functions are accuretely represented on a common, �nely sampled and
regularly spaced frequency grid de�ned in Sec. 2.3.3 with only N = 4000 equidistant
nodes, with a sampling frequency recorded well above the required Nyquist frequency, at
fs = 16.384 kHz. Fig. 2.11 demonstrates that, beside the degree of model order reduction,
the accuracy of surrogate-waveform representation relies on the sampling frequency. The
upper and lower limits of frequency contained in the grid are determined from the ISCO
frequency for the lowest total-mass con�guration of interest (which is roughly 2 kHz in
this study) and the low-frequency cuto� of the detector noise spectrum (which is close to
10 Hz for aLIGO design). The ROM is designed to be capable of producing surrogates
for GWs from CBCs of total mass between 2.15M� and 215M�, thereby covering the
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entire total-mass range of stellar-mass BBH/BNS systems of interest for ground-based
GW detectors. The mass ratio is allowed to range between equal mass at q = 1 and
relatively high mass-ratio at q ≈ 0.01 while the initial orbital eccentricity changes over
a relatively wide range of values from e0 = 0 (circular orbits) up to e0 = 0.95 (highly
eccentric orbits). Con�gurations with both low total-mass and high mass-ratio would
imply component masses well below 1M�, which, of course, are excluded as inconceivable
astrophysical sources. Despite the fact that the investigation has been restricted to a
feasible 3-dimensional subset of the full 8-dimensional parameter space of GW signals (cf.
Fig. 2.4), the conclusions of Sec. 2.4, in agreement with that of Refs. [92, 102�104, 117],
suggest that a full representation of the 8-parameter space might actually be achievable
with a relatively compact reduced basis (cf. Ref. [102]). Template placement algorithms
based on template-space metric (such as in Ref. [115, 116]) make admittedly far more
e�ective coverage of the parameter space than the uniform spacings used in this study.
As a matter of fact, Fig. 2.10 illustrates that the large majority of parameters of the
selected templates constituting the reduced basis are concentrated along the axes of the
parameter space.

The reduced bases were built separately for the input amplitude and phase (cf. Fig.
2.9) by the decomposition of template matrices that comprise 550, 936, and 1800 input
waveforms, respectively. The projection coe�cients for corresponding input waveforms
projected onto their reduced bases were calculated as functions of the model parameters
(M, q, e0) and were interpolated by tensor product cubic lines over the parameter space.
Finally, the ROM which preserves fundamental features of the original FOM is assembled
from its constituent parts. Fig. 2.8 demonstrates the underlying hierarchical nature of
the generated template banks and indicates that the truncation error in the approximated
representation of surrogates decreases with the number of SVD components retained,
characterized by a rate at which SVs decrease. Extremely little (r . 400) or large number
(r & 500−600) of SVD components retained are equally poor choices because the amount
of information is either insu�cient to construct accurate representations or excessively
large compared to the achieved accuracy. An e�ective rank is chosen preferentially from
a ROM which posess the lowest SV with the smallest possible number of components
retained (in the presented case r = 456). The �rst part of Sec. 2.5 assess the error of
surrogate model predictions for waveforms that were originally not present in the original
template bank, with special regard to the impact of frequency on the reconstruction
error. To that end, reference waveforms were generated by CBwaves in all the intersection
points right between the grid poinst of the original template bank (cf. the yellow in Fig.
2.4). Finally, the surrogates were evaluated in the corresponding parameter-space points
for comparison and the relative error was measured along all the N = 4000 frequency
points. The bottom panel of Fig. 2.12 attests that the relative error of the approximated
representation is consistent with the error estimates derived from the singular values
(∆h̃(A) ≈ 10−15, ∆h̃(φ) ≈ 10−13) over a large portion of the frequency range, but larger
than expected at around the starting frequency (∆h̃(A) ≈ 10−13, ∆h̃(φ) ≈ 10−13). The
�gure indicates that the relative error of the amplitude and phase increases with the
frequency. My results provide clear examples of the construction and use of ROMs for
eccentric inspiral waveforms.

My results also provide strong evidence that large increases in the speed of compu-
tation are obtained through the use of ROMs. Fig. 2.2 has exposed that the cost of

53



computing input waveforms increases exponentially as the total mass decreases, but rises
asymptotically at an even faster rate than the initial eccentricity or mass disparity in-
crease. In contrast to the cost of EOB waveform (complete IMR) generation that rises
steeply as the starting frequency is decreased (cf. Ref. [92]), the cost of CBwaves waveform
(inspiral-only) generation rises more gradually. The cost of input waveform generation
varies considerably in the region of parameter space (M, q, e0) explored and depicted in
Fig. 2.4, but Fig. 2.3 has revealed that only a surprisingly small fraction of waveforms
of high-eccentricity and high-mass-disparity con�gurations are actually responsible for
the prohibitively large time-consumption of integrating a large number of 3PN-accurate
equation of motion over the investigated range of parameters. As discussed in the second
part of Sec. 2.5 (based on Ref. [117]), the cost of generating surrogate waveforms (shown
in the top panel of Fig. 2.13) comprises a constant cost of the spline interpolation at each
frequency point and a cost of performing the interpolations of coe�cients over the param-
eter space. The speedup in evaluating the surrogate model, shown in the bottom panel
of Fig. 2.13, is 2�3 orders of magnitude faster than generating corresponding CBwaves
waveforms overall, reaching a factor of several thousand around 10�50 M�.

Finally, the method presented in this chapter is limited to building surrogate models
of inspiral-only PN input waveforms for the reason that eccentric binaries circularize
in the last few cycles before the merger. Nevertheless, composite waveforms that fully
cover all the IMR phases can be constructed as prescribed in Ref. [92, 117] by matching
the inspiral and NR waveforms of merger stages in either the time or frequency domain
and then �tting this `hybrid' waveform to the ring-down part, described by damped
exponentials. The gap between the initial part of the waveform and its �nal ring-down
part, described by damped exponentials, is bridged by a phenomenological phase. The
practical implementations of `hybrid' waveforms that comprise eccentric inspirals will be
left for future work. I anticipate substantial speedup factors to come for predicting NR
waveforms with a surrogate model compared to the expensive NR simulations for the same
parameters. Developing an e�cient template placement technique (such as in Ref. [115,
116]) for better coverage of the parameter space and an adaptive sampling technique in
the frequency domain are critical factors in the operational e�ciency of ROMs and have
been left for future work. All these ultimately leading to computationally feasible and
successful exploration of the full 8-dimensional parameter space of GW signals.
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Chapter 3

Radial pulsations of relativistic stellar

models for dissipative �uids

This chapter is dedicated to present my results of my latest papers [4, 5] on the radial oscil-
lations of neutron stars a�ected by the viscosity and thermal conductivity of neutron-star
matter. Here, in addition to providing a comprehensive review of the basic theory of rel-
ativistic stellar pulsations, I present an analytical formulation of the dynamical equations
that governs the radial mode of linear adiabatic stellar oscillations through a perturba-
tion scheme. I prove that, similarly to the non-dissipative case, the pulsation equation
expressed by a set of e�ective variables which involve dissipative terms, can be recast in a
self-adjoint form. In contrast to the common non-dissipative case, the associated SLEVP
(Sturm�Liouville eigenvalue problem) is generalized for a discrete set of eigenfunctions
with complex eigenvalues which correspond to the squared frequencies of the oscillation
modes and the imaginary part corresponds to the damped solution. However, the main
novelty of this approach is the ability to directly relate the damping ratio of oscillations to
the expressions S1 and S2, which stem from the viscous and heat-conductive contributions
to the stress�energy tensor, without relying on explicit NR computations. The scale of
relaxation time, directly related to the damping ratio, is identical to approximate solution
for the time-scale of energy dissipation given by [122] in an alternative way. The usefulness
of my analytical approximation method is evidently restricted to providing qualitative and
`order-of-magnitude' information about the dissipative time-scales in (3.104) rather than
a precise one.

Conversely, the numerical solution of the eigenvalue problem has yet to be published
in my next paper [5]. There SLEVP for the radial oscillation modes of stars is converted
to a system of �nite di�erence equations where I implement a second-order accurate
di�erencing scheme so the resulting system of �nite di�erence equations emerges as a
tridiagonal matrix eigenvalue problem. In a manner similar to the approach of Kokkotas
and Ruo� [123], I compute the four lowest-frequency radial-oscillation modes of neutron
stars constructed from various potential EOSs of cold-nuclear-matter considered by �Ozel
and Freire [124]. The algorithm yields zero-frequency modes at the maxima and minima
of the mass curves while the equilibrium adiabatic index characterizes the sti�ness of
the EOS at a given density. Finally, I evaluate the rate at which viscosity and thermal
conductivity drain energy from the radial oscillation mode.
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3.1 Context of relativistic asteroseismology

3.1.1 Astrophysical motivation for relativistic stellar oscillations

Neutron stars provide us with unique insights into the physics of the extremely dense
and cold nuclear matter, which cannot be reached in terrestrial experiments. The cen-
tral density of a neutron star is expected to reach up to several times of the nuclear
saturation density (n0 ' 0.16 fm−3). The constraints on the properties of matter at su-
pernuclear densities (cf. [125] and references therein) and relatively low temperatures
(compared to particle collisions producing comparable energy densities) rely heavily on
observations of macroscopic equilibrium parameters (masses, radii, moments of inertia,
etc.) of NSs. Attention has focused especially on measurements of the stellar mass M
and circumferential radius R of these stars which depend signi�cantly on their respective
EOS (e.g., the relation between the pressure and the total energy density). [124, 126,
127] The recent discovery of NS with mass as high asM ≈ 2.01M� (e.g., PSR J1614-2230
has M = 1.927 ± 0.017M� [128] and PSR J0348+0432 with mass M = 2.01 ± 0.04M�
[129] has ruled out several EOSs, as shown in Fig 3.3. Due to the tremendous advances
in the measurements, precise masses for ∼ 35 currently known NSs range from 1.17 to
2.01 M�. Also more than a dozen radii are known in the 9.9-11.2 km range, but current
estimates for radii are still dominated by systematic errors [130, 131]. One major class of
EM observations comprises X-ray and γ-ray burst phenomena. These events are clearly
explosive in nature and have been generally associated with neutron stars by many au-
thors (cf. e.g., [7]). These explosive events perturb the associated neutron stars, and the
resulting dynamical behaviour may eventually be deduced from such observations. X-ray
observations from the recently launched NICER mission ([11]) and from the upcoming
LOFT mission [12, 132] will impose stricter constraints on plausible EOSs by yielding the
mass and radius of a few stars to ∼ 5% precision. EOS predictions as well have become
more reliable due to precision measurements of nucleon-nucleon interactions, detailed
calculations of binding energies of light nuclei and cold nuclear matter which constrain
three-body forces, inclusion of relativistic e�ects, improved many-body and Monte Carlo
methods. [133]

The interior structure of stars is probed by asteroseismology using the frequency of
seismic waves rippling throughout the star. The frequencies of NS oscillations that relies
on accurate stellar models are matched to the observed frequencies. The period of stellar
oscillations for non-relativistic stars are in the range of minutes, whilst for neutron stars
the periods are much shorter, typically range from 0.2 to about 0.9 milliseconds. [15] These
oscillations occur when a star is perturbed away from its dynamical equilibrium and a
restoring force tries to return it back to that equilibrium state. Among the various types
of oscillation modes, I focus on the fundamental modes (f-modes) of non-rotating NSs
where the pressure provides the dominant restoring force that produces radial oscillations.
Pulsation in radial modes are the simplest and generally the largest amplitude stellar
pulsations, where the displacement is purely radial and spherically symmetric. Provided
that there is no stationary surface between the centre and the surface of the star, an
oscillation can be called the fundamental radial mode. [134, p. 55] Moreover, knowledge
of f-modes of non-rotating stars also provides estimates for the f-mode properties of slowly
rotating stars, for the case of uniform rotation [135] and also for di�erential rotation [136].
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3.1.2 Theoretical development in relativistic stellar oscillations

Theoretical interest in the dynamical stability of relativistic stars has arisen since 1964
from the seminal works of S. Chandrasekhar, R.F. Tooper and J.M. Bardeen [137�141]
and a general stability criterion was formalized in the 1970s by J. L. Friedman and B.
F. Schutz [142]. The stability of spherically symmetric stars under radial adiabatic per-
turbations has been extensively studied and reported in the literature (e.g [8, 9, 143�
145]). Induced by the small radial perturbations, dynamical instability will intervene by
radial oscillation before the star contracts. Several techniques for obtaining spectra of
oscillation modes have been developed for various stellar equilibrium models, mostly with
zero-temperature EOS. Although, these studies mostly investigated for zero-temperature
EOS stellar models, proto-NS with �nite-temperature EOS [146] and strange stars [145,
147] were also studied. I have applied Chandrasekhar's linear varational method [137,
138] to formulate the variational principle which forms the basis for determining the
characteristic eigenfrequencies and relaxation times of radial oscillations.

The �rst exhaustive compilation of radial modes for various zero-temperature EOS
was presented by Glass & Lindblom in [8]. Although their equations were correct, the
numerical results for the oscillation frequencies were �awed as it was later pointed out by
V�ath & Chanmugam in [145]. V�ath & Chanmugam computed the frequencies of radial
oscillation for six EOSs and veri�ed their own results invoking the argument [143] that
a correct NR algorithm must yield a zero-frequency mode at that speci�c central density
that corresponds to the maximal-mass con�guration for the particular EOS. Stars on
the high-density side of this maximal-mass instability point are unstable and eventually
collapse. Kokkotas & Ruo� emphasized in [123] that the above mentioned test is only
applicable when a constant local adiabatic index is used both in the equilibrium stellar
model and its perturbation equations. In general, a variable adiabatic index can be
employed that depends on the dynamical regime regulated by a more complicated EOS.
Kokkotas & Ruo� re-examined earlier studies of radial oscillation modes for the most
common EOSs and corrected the values of eigenfrequencies found by Glass & Lindblom
in [8]. Moreover, their survey included six additional EOSs that were more recent at the
time (cf. [123] and references therein).

Concurrently, the conversion of kinetic energy into heat and e�ects of viscosity on
stellar pulsations in general has been addressed �rst by [148�150]. Properties of transport
coe�cients (bulk viscosity, shear viscosity, thermal conductivity) in neutron stars have
been studied more in detail by a number of recent of works [151�154]. The density
and temperature dependence of shear viscosity and of bulk viscosity in the crust and in
the core, respectively, have been described for di�erent EOSs of neutron stars by [151].
Thermal conductivity and shear viscosity of nuclear matter arising from nucleon-nucleon
interaction in non-super�uid neutron-star cores were considered by [152], whereas those
arising from the collisions among phonons in super�uid neutron stars were considered
by [154]. An extension of [152] for di�erent nucleon-nucleon potentials and di�erent
three-body forces in [153] found that the nucleon contribution dominates the thermal
conductivity, but the shear viscosity is dominated by leptons. The most up-to-date review
of the transport properties and the underlying reaction rates of dense hadronic and quark
matter in the crust and the core of neutron stars is found in [155].
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3.2 Equation of state and chosen models

Internal structure and macroscopic properties of NSs are strongly correlated with the EOS
of dense matter, even though the exact EOS remains exceedingly uncertain especially at
high densities. Although, the latest discovery of high-mass NSs PSR J1614-2230 [128] and
PSR J0348+0432 [129] has ruled out several EOSs, suggesting that the maximal mass for
NSs has to be larger thanM ∼ 2M� for a given EOS, but the number of candidate models
with maximal mass below this limit is still considerably large.

In NS cores, the temperature of matter is far below the Fermi energy of its constituent
particles and its particular thermodynamic state at T ' 0 is accurately described by the
isentropic one-parameter EOS

p = p(ρ), ε = ε(ρ), (3.1)

relating the pressure p and energy density ε to the rest-mass density ρ which exceeds
nuclear density [156]

ρnuc ' 2.3× 1014 g/cm3. (3.2)

In fact, densities in the cores are expected to be as large as ρ ∼ 5−10ρ0, where the nuclear
matter at saturation (i.e. at the minimum of the energy per nucleon) has the density
ρ0 ' 2.8 × 1014 g/cm3 or n0 ' 0.16 fm−3, where the baryon-number density is related
to the baryon-mass density as nB = ρB/mu and mu = 931.494 MeV is the atomic mass
unit. Given that neutrons geometrically overlap at ρ ∼ 4ρ0 and with increasing overlap
between nucleons, transitions to non-nucleonic states of matter are expected. [124] It is
possible for ultra-dense matter to contain hyperon, pion or kaon condensates. [157] Some
of the possibilities considered to date also include free quarks or colour superconducting
phases. [158]

3.2.1 Tabulated nuclear-theory-based EOS models

With the intention of covering a wide range of potential types of representative EOSs
and generation methods, here I consider four EOSs of cold nucleonic matter (i.e. the
hypothetical components composed of neutrons, protons, electrons, and muons) and I
follow the widespread naming convention of Refs. [124, 126, 127]:

• APR4 was derived of a variational method with modern nuclear potentials [159];

• MPA1 was derived of a relativistic Brueckner�Hartree�Fock theory [160];

• MS1 was derived of a relativistic mean-�eld theory [161];

• SLy was derived of a potential method [162].

and I also include three EOS of non-nucleonic state (i.e. the hypothetical components
composed of hybrid nucleon�hyperon�quark matter):

• H4 was derived of a relativistic mean-�eld theory including e�ects of hyperons [157];

• ALF1 is a hybrid EOS which describes a APR4 nuclear matter for a low density and
a colour��avor-locked quark matter for a high density with the transition density is
3ρ0 where ρ0 ' 2.8× 1014 g/cm3. [158];
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Abbr. Constituents Mmax/M� R1.4/km Ref.

APR4 Nucleons 2.22 11.13 [160]
MPA1 Nucleons 2.47 12.08 [160]
MS1 Nucleons 2.78 14.77 [161]
SLy Nucleons 2.06 11.45 [162]
H4 Nuc., Σ, Λ 2.04 13.57 [157]

ALF1 u, d, s quarks 1.50 9.63 [158]
SQM1 Nuc., s quarks 1.56 8.89 [163]

Table 3.1: Nucleonic and hybrid nucleon�hyperon�quark matter models based on di�erent
microphysics. The upper 4 models correspond to nucleonic, the lower 3 models involve non-
nucleonic states of matter, such as kaon condensates or hyperons. Mmax and R1.4 are the maximal
mass of spherical NSs in units of M� (also marked in Fig. 3.3 by the symbols �) and the
circumferential radius of 1.4M� NSs in units of km for a given EOS, respectively.

• SQM1 is a hybrid EOS which describes relativistic non-interacting gas mixed with
strange quark matter [163].

Provided that the above considered EOSs is described by piecewise-polytropes with
n = 3 pieces as in Sec 3.2.2, the following densities are determined at the boundary of two
neighbouring pieces: ρ1 ' 1014 g/cm3, ρ2 ' 5.012×1014 g/cm3, ρ3 ' ×1015 g/cm3. ALF1
has the lowest pressure among the above considered EOSs and, thus, making it the softest
one. APR4, MPA1 and Sly have also relatively small pressure as in the case of ALF1 for
a low-density region ρ1 ≤ ρ ≤ ρ3, but for ρ2 . ρ ≤ ρ3, the pressure is higher than that
for ALF1. Thus, for ρ < ρ3, which NSs of canonical mass 1.3 � 1.4M� have, these EOSs
are soft as far as the canonical neutron stars are concerned. It is worthy of note that for
a relatively small value of p2, the adiabatic index, as illustrated in Fig. 3.2, is as large
as Γ2 ∼ 3, owing to that the maximal mass of NS has to be Mmax . 2M� for a given
EOS. Thus, an EOS that is soft at ρ = ρ2 has to be in general sti� for ρ & ρ3. Although
MPA1 has pressure that even exceeds that of H4 for a high-density region ρ & ρ3. By
contrast, H4 and MS1 have pressure higher than the rest for ρ . ρ3, although the EOSs
become softer for a high-density region ρ & ρ3. In particular, MS1 has extremely high
pressure among many other EOSs for ρ . ρ3, and on that account, it is the sti�est EOS.
All the distinguishing feature mentioned above are re�ected in Fig. 3.1, which display
the pressure in NS as a function of the baryon-number density or of rest-mass density.
Table 3.1 lists the constituent particles, the maximal mass and circumferential radius of
neutron stars of total mass 1.4M�, associated with the representative EOS, respectively.

3.2.2 One-piece and piecewise-polytropic EOS

Although the tabulated EOSs listed in Table (3.1) are more realistic, they are too com-
plicated to illustrate some fundamental features. A very common closed-form EOS is the
polytropic one,

p = KρΓ, (3.3)

which describes a non-interacting, degenerate matter. In general, the `polytropic constant'
K = K(s) depends on the entropy, however, the degenerated matter dynamics in zero-
temperature approximation can be modeled as an adiabatic �ow with a constant K.
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Figure 3.1: Pressure in compact stars as a function of the baryon-number density or of rest-
mass density for some nucleonic and hybrid nucleon�hyperon�quark matter models based on
di�erent microphysics. The nuclear saturation density n0 ' 0.16 fm−3 is denoted by a shaded
gray line. The range of pressures at n0 is approximately a factor of 1 to 3 MeV fm−3. The
pressures and number density series were reproduced from Ref. [124].

(For more details on K, cf. A.11.) The internal energy is given by the �rst law of
thermodinamics for adiabatic process (δQ = 0), which can be integrated to obtain

ε = ρ+
1

Γ− 1
KρΓ = ρ+

1

Γ− 1
p, (3.4)

where lim
ρ→0

ε/ρ = 1 was imposed. [139] With the adiabatic assumption, eqs. (3.3�3.4)

represent a barotropic �uid where the pressure is just a function of ρ. The adiabatic
index Γ1, de�ned by

Γ1 =
d log p

d log ρ
=
ε+ p

p

dp

dε
, (3.5)

is an important dimensionless parameter characterizing the sti�ness of the EOS (3.3) at
a given density. [164, p. 190] For instance, a non-relativistic degenerate Fermi gas is
reasonably well described by a polytropic EOS that scales as p ∝ ρ5/3, and for highly
relativistic degenerate Fermi gases, p ∝ ρ4/3. Generally, Γ1 depends on the dynamical
regime given by ρ and ε as shown in Fig. 3.2 for the EOSs listed in Table 3.1. The
EOS (3.3) must satisfy the following two conditions. The �rst, thermodynamic stability,
requires the EOS be monotonic (dp/dρ ≥ 0 and dp/dε ≥ 0), and therefore Γ must be
positive. The second, causality requires the speed of sound cs be less than the speed of
light:

c2
s =

dp

dε

∣∣∣∣
s

≤ 1. (3.6)
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Figure 3.2: The e�ective adiabatic index Γ(ε) function of the energy density ε (including the
rest-mass density ρ contribution) for the set of candidate EOS models considered in Table 3.1.
The average value of the exponent Γ1 = d log p/d log nB ' 2 holds for nucleonic EOSs in the
vicinity of nuclear saturation density n0 ' 0.16 fm−3, denoted by a shaded gray line.

Therefore, eqs. (3.5�3.6) bound the average value of adiabatic index as

Γ̄1 =
ε+ p

p
c2
s ≥

4

3
(3.7)

within a dynamically stable star. [165] For spherical stars in Newtonian gravity, Γ1 < 4/3
is a su�cient condition for dynamical stability, however, in the stronger gravity of general
relativity, even models with the sti�est EOS become unstable for some value R/M > 9/8.
The more rigorous constrain on Γ1 for a star to be stable against radial perturbation

Γ1 <
4

3
+K

4M

R
, (3.8)

where K is positive and of order of unity. For dynamical oscillations of neutron stars, the
adiabatic index Γ1 does not coincide with the polytropic one Γ.

Read et al. [127] demonstrated that a piecewise-polytropic EOS with three pieces
(n = 3) above the nuclear density approximately reproduces most properties of the rep-
resentative EOS listed in Table 3.1. These nuclear-theory-based EOSs at high density
are modeled with a small number of parameters and the expression for pressure (3.3) is
written in a parameterized form as

p(ρ) = Kiρ
Γi for ρi ≤ ρ < ρi+1 (0 ≤ i ≤ n), (3.9)

where n is the number of the pieces used to parameterize a EOS at high-density, ρi is
the rest-mass density at the boundary of two neighbouring (i− 1)-th and i-th pieces, Ki

is the polytropic constant for the i-th piece, and Γi is the adiabatic index for the i-th
piece. Here, ρ0 = 0, ρ1 denotes a nuclear density evaluated in eq. (3.2), and ρn+1 → ∞.
Other parameters (ρi; Ki; Γi) are determined by �tting with a nuclear-theory-based EOS.
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Requiring the continuity of the pressure at each ρi, 2n free parameters, say (Ki; Γi),
determine the EOS completely.

Hotokezaka et al. [166] showed the free parameters the free parameters can be de-
termined the following way: First, the EOS below the nuclear density ρ1 is �xed by
the parameters Γ0 = 1.35692395 and K0/c

2 = 3.99873692 × 10−8 (g/cm3)1−Γ0 . The
EOS for the nuclear matter was determined in [127] as follows: ρ2 was �xed to be
ρ2 ' 5.012× 1014 g/cm3, and p2 at ρ = ρ2 was chosen as a free parameter. The reason is
that p2 is closely related to the radius and deformability of neutron stars [126]. Namely, p2

primarily determines the sti�ness of an EOS. Second, ρ3 was �xed to be ρ3 ' ×1015 g/cm3.
With these choices, the set of free parameters becomes (p2; Γ1; Γ2; Γ3). These four pa-
rameters are determined by a �tting procedure (cf. [127]). With the given set of values
(ρ1; K1; Γ1; p2) are subsequently determined by

K1 = p2ρ
−Γ1
2 and ρ1 = (K0/K1)1/(Γ1−Γ0). (3.10)

By the same method, K2 and K3 are determined from

K2ρ
Γ2
2 = K1ρ

Γ1
2 ; K3ρ

Γ3
3 = K2ρ

Γ2
3 . (3.11)

3.2.3 Hybrid EOS for heating and cooling processes

One of the most serious drawbacks of the polytropic EOS is that, although (3.3) is a good
approximation for a `cold' star, there are extremely energetic processes, like the merger
of stars or accretion from a disk, which can increase enormously the temperature and a
simple polytrope will not provide a physical description. A more realistic EOS in closed
form can be obtained by a combination of the polytripic EOS to describe the cold part
and an ideal EOS for the thermal one, allowing for �uid heating due to shocks. Thy
hybrid EOS is given by

p = KρΓ + (Γth − 1)ρεth (3.12)

with an adiabatic thermal index Γth that can be di�erent from the adiabatic cold index
Γ. The internal energy can be split into a thermal and a cold part,

ε = εth + εcold. (3.13)

The total internal energy density ε can be obtained from the evolution of the conserved
quantities, whilst the cold part is described by (3.4), leading to the explicit expression

p = K
Γ− Γth

Γ− 1
ρΓ + (Γth − 1)ρεth. (3.14)

It is possible to extend this approach by using a collection of continous piecewise-polytropes
(3.9) in hybrid EOSs, which in turn allows an accurate match with any tabulated nuclear-
theory-based EOSs at high density.

3.3 Stress�energy tensor and equations of thermal evo-

lution

The general-relativistic hydrodynamic equations for a generic �uid involve the equations
of motion that are given by the conservation of rest mass and by the conservation of
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energy and momentum:
∇µJ

µ = 0, (3.15)

∇µT
µν = 0, (3.16)

respectively, and the second law of thermodynamics

∇µS
µ ≥ 0 (3.17)

that are relativistically consistent. Although the perfect-�uid approximation disregards
scenarios when dissipation and energy �uxes are present, it works well for most �uids
under generic conditions. However, it loses its validity when thermodynamic (i.e micro-
scopic) time-scales are comparable to the dynamic (i.e. macroscopic) ones and thus when
assumption of local thermodynamic equilibrium breaks down. The requisite extension
of perfect-�uid description that accounts for dissipative terms and energy �uxes is non-
perfect �uid. In general, one can assume the rest-mass density current and stress�energy
tensor as the linear combination of two contributions:

Jµ = JµPF + JµNPF, T µν = T µνPF + T µνNPF, (3.18)

where the indices "PF" and "NPF" refer to the perfect and non-perfect �uid contributions,
respectively.

3.3.1 Stress�energy tensor for perfect �uids

For a system which consists of perfect �uid with total-energy density ε, isotropic pressure
p and covariant metric elements gµν corresponding to the antecedent line element (4.24),
one shall have

JPFµ = ρuµ, TPF
µν = (ε+ p)uµuν − pgµν , (3.19)

where the spatial components of �uid four-velocity uµ are zeros. Normalized to uµuµ = 1,
it becomes

uµ = (eν/2, 0, 0, 0). (3.20)

By construction, the quantity ε introduced above in eq. (3.19) represents the total-energy
density of the �uid, given by

ε = ρ(1 + ε), (3.21)

which consists of both the rest-mass density of the �uid ρ and the speci�c internal-energy
density ε, internal-energy density per unit rest mass or which in this case represents the
thermal motion of the constituent �uid particles. [167, p. 98] Finally, the speci�c enthalpy
h is de�ned by

h =
p+ ε

ρ
= 1 + ε+

p

ρ
. (3.22)

Now, recognizing that in a non-relativistic regime ε � c2 (i.e., the energy density of the
�uid is essentially given by the rest-mass density) and p/ρ� c2 (i.e., the pressure contri-
bution to the energy density is negligible), the Newtonian limit of the speci�c enthalpy is
given by

h = 1 + ε+
p

ρ
→ 1. (3.23)

Note that there are two natural ways to de�ne four-velocity uµ. One option, given by
Eckart, uses a unit timelike vector uN parallel to J , whereas the other, suggested by
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Landau, de�nes a unit timelike vector uE parallel to T · uE. However, these two vectors
are identical for a perfect �uid and parallel to entropy current S . The (maximum) entropy
principle (3.17) implies a strict equality for perfect �uids, whose entropy current is then
given simply as Sµ = sρuµ. However, for relation (3.17) to be strictly non-zero, the
entropy current must have an additional contribution from dissipative parts (�rst-order
theories) with non-zero divergence such that

Sµ = sρuµ +Qµ/T, (3.24)

where the temperature T , deduced from the �rst law of thermodynamics, is given by

T =
1

ρ

(
∂ε

∂s

)
ρ

(3.25)

and [Qµ] = [0, ~Q] are the components of the heat-�ux four-vector (3.32) that describes
the rate of energy �ow per unit area along each spatial coordinate axis within the Eckart
frame.

3.3.2 Stress�energy tensor for dissipative �uids

Neutrino emission processes are supposed to be the main sources of energy loss in the
stellar core in the later stages of stellar evolution. For this reason, the equations of
relativistic �uid dynamics to describe energy�momentum conservation are written as

Tαβ;β = −Qνu
α, (3.26)

where Qν is the total neutrino emissivity of all processes outlined in Table 3.2, and Tαβ

is the full stress�energy tensor for dissipative �uids. It is possible to write the dissipative
contributions T µνNPF to the full stress�energy tensor as the sum of a viscous stress tensor Tαβvisc
and a heat-�ow tensor Tαβheat that accounts for the generation of energy �uxes. Therefore,
the full stress�energy tensor can be further decomposed into the form of

Tαβ = TαβPF + Tαβvisc + Tαβheat, (3.27)

where
TαβPF = (ε+ p)uαuβ + phαβ,

Tαβheat = Qαuβ +Qβuα,

Tαβvisc = −ζΘhαβ − 2ησαβ

(3.28)

are the perfect �uid, heat-�ux and viscosity stress�energy tensors, respectively. [168]
Note that despite its causality and stability problems [169], the above description of
stress�energy tensor has been widely used in Eckart's theory of relativistic irreversible
thermodynamics [170]. The p and ε are the isotropic pressure and energy density, ap-
pearing in eq. (3.1), as measured by a comoving observer with velocity uα which satis�es
uαuα = 1 with u0 > 0, and

hαβ = gαβ + uαuβ (3.29)

is the standard projection tensor onto 3-space normal to �ow. The symmetric trace-free
spatial shear tensor is de�ned as

σαβ =
1

2

(
uα;µh

µβ + uβ;µh
µα
)
− 1

3
Θhαβ (3.30)
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and expansion scalar (or dilatation rate)

Θ = uα;α (3.31)

is associated with the convergence (or divergence) of the �uid world lines. The heat-�ux
density in eqs. (3.26�3.28) written as

Qα = −κhαβ (T,β − Taβ) (3.32)

is a spacelike vector, Qαuα = 0, which describes the �ow of thermal energy per unit
of area along spatial coordinate axis xα per unit of time. The �rst term in eq. (3.32)
corresponds to the non-relativistic Fourier's law of heat conduction, the second term takes
into account the relativistic e�ect of isothermal heat �ux due to the inertia of energy with
aβ = uγuβ;γ being the acceleration of �uid. The negative sign indicates that heat �ows
from higher to lower temperature regions.

In eqs. (3.28) and (3.32), η, ζ, and κ are collectively called transport coe�cients
(or dissipation coe�cients). The bulk viscosity coe�cient ζ de�nes the resistance of the
medium to gradual uniform compression or expansion; and κ is non-negative and accounts
for the thermal conductivity, respectively. [167] The shear (also called as `common' or
`dynamic') viscosity coe�cient η describes the �uid's resistance to gradual shear defor-
mation and it is assumed to be equal to the electron shear viscosity ηe in the stellar core.
The shear viscosity of neutrons and of protons (which is even smaller cf. [171]) can be
neglected for the reason that it depends strongly on the nuclear interaction model and
the many-body theory. [151]

3.3.3 Equations of thermal evolution of neutron stars

The thermal balance equation for a pulsating neutron star will be derived taking into
account three dissipation mechanisms: the shear viscosity in the core, the non-equilibrium
beta-processes in the core and heat conduction. The internal structure of neutron stars
can be regarded as temperature-independent. After thermal relaxation, the redshifted
temperature T̃ (t) ≡ T (r, t)eν/2 becomes constant throughout the interior. The relativistic
equations of thermal evolution include the �ux and energy equations [172]:

Lr
4πr2

= −κ
√

1− 2m

r
eν/2

∂

∂r
(Teν/2),

1

4πr2eν

√
1− 2m

r

∂

∂r
(Lre

ν) = −Qν −
Cv
eν/2

∂T

∂t
,

(3.33)

where the gravitational mass m(r) and the metric function ν(r) are determined by the
equilibrium stellar model (3.37). Cv is the speci�c heat capacity, κ is the thermal conduc-
tivity, T is the local temperature. The �rst equation is the general relativistic de�nition of
the local photon luminosity Lr, due to the non-neutrino heat �ux Qγ transported through
a sphere of radius r. The second equation expresses how the photon luminosity varies
with the neutrino emissivity Qν .
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Process Reaction
Heat �ux

[erg cm−3s−1]
Local luminosity

[erg s−1]

Direct Urca
n→ p+ e+ ν̄e
p+ e→ n+ νe

Q ∼ 3× 1027T 8
9 Lν ∼ 1046T 8

9

Modi�ed Urca
n+N → p+ e+N + ν̄e

p+ e+N → n+ e+N + νe
Q ∼ 1020−22T 8

9 Lν ∼ 1038−40T 8
9

Bresmmstrahlung N +N → N +N + ν + ν̄ Q ∼ 1018−20T 8
9 Lν ∼ 1036−38T 8

9

Table 3.2: Possible mechanisms of neutron star cooling by various neutrino-emission processes
due to nucleon-nucleon collisions assumed to take part in the core. The modi�ed Urca process
has the neutron and the proton branch, each including a direct and an inverse where N = n or
p, respectively. (Original table, courtesy of Y. Lim. [173])

3.4 Equilibrium stellar model and quasistatic approxi-

mation

Let us consider a static spherically symmetric star, described by the Schwarzschild metric

ds2 = eνdt2 − eλdr2 − r2dΩ2, (3.34)

where t and r are the time and radial coordinates, dΩ is a solid angle element in a spherical
frame with the origin at the stellar centre and

ν = ν(t, r), λ = λ(t, r) (3.35)

are the metric functions which depend only on the temporal and radial coordinates (t, r).
The later function is often replaced by the expression

eλ = (1− 2m/r)−1 , (3.36)

where the m is the gravitational mass contained within the radius r. It is convenient
to replace the physical variables for energy density ε and for isotropic pressure p by
corresponding e�ective variables

ε̄ = ε+ (TNPF
1 )0

0, p̄ = p− (TNPF
1 )1

1 (3.37)

that incorporate time-dependent dissipative contributions of the stress�energy tensor
(3.28). So that Einstein �eld equations

Gν
µ = 8πT νµ, (3.38)

upon satisfying the metric (3.34), provide �ve PDEs for each of the non-vanishing mixed-
variance components of the stress�energy tensor, of which the four distinct ones are

8πε̄ = e−λ
(
λ′

r
− 1

r2

)
+

1

r2
(3.39a)

8πp̄ = e−λ
(
ν ′

r
+

1

r2

)
− 1

r2
(3.39b)

8πp̃ = e−λ
(
ν ′′

2
− λ′ν ′

4
+
ν ′2

4
+
ν ′ − λ′

2r

)
+
e−ν

4

(
2λ̈+ λ̇(λ̇− ν̇)

)
(3.39c)

8πT 1
0 = e−λλ̇/r, (3.39d)
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where p̃ = p̄−TNPF1
1 +TNPF

2
2 and overdots and primes denote partial di�erentiation with

respect to t and r, respectively. Another equation is proportional to (3.39c), thus it is
needless to consider it separately. The e�ective variables (ρ̄, p̄) satisfy the same Einstein
�eld equations in the quasi-static regime as the corresponding physical variables (ρ, p)
that take account of the contribution of T µνNPF to p and ε in eq. (3.21). Therefore, the
e�ective and physical variables share the same radial dependence. [174] Owing to the fact
that (3.39a) involves only λ and ρ, it becomes

m′ = 4πr2ρ, (3.40)

once the new radial-dependent variable m(r) from (3.36) has been introduced. Similarly,

ν = ν0 +

∫ R

0

2(4πr3p+m)

r(r − 2m)
dr. (3.41)

Suppose that the radius extends to R, from (3.40) it is evident that the integral of the
e�ective rest-mass density over the stellar interior

m(R) = 4π

∫ R

0

ρ(r)r2dr (3.42)

can be interpreted as the `gravitational mass' of the system which includes all contribu-
tions to the relativistic mass (rest mass, internal energy, and the negative gravitational
binding energy). However, integrating the total energy-density over the proper volume

dV0 =
√

det(γij)dx
3 = 4πeλ/2r2dr, (3.43)

where the curvature of 3-space has been taken account of through λ, one obtains the mass

m̄(R) = 4π

∫ R

0

ρ(r)eλ/2r2dr (3.44)

that represents the sum of rest mass and internal energy. The di�erence between the two
arises as a result of the mutual attraction of the �uid elements, called the binding energy,
which is given by

EB = m̄(R)−m(R) > 0 (3.45)

and exhibits the amount of energy required to disassemble a whole system into separate
elements.

It is convenient not to use eq. (3.39c) directly, but instead substracting it from (3.39b).
It can be replaced by the �rst-order ODE

p̄′ + 1
2
(ρ̄+ p̄)ν ′ =

2(TNPF
1
1 − TNPF2

2)

r
+
e−ν

16π

(
2λ̈+ λ̇(λ̇− ν̇)

)
, (3.46)

which stands for the condition for hydrostatic equilibrium, provided that the right-hand
side of the equation is zero (cf. (3.59)). The �rst term on the right-hand side recovered
from eq. (3.27) is simply the result of

(g11T
11
NPF − g22T

22
NPF) =

1

4
ηe−ν/2rλ̇ (3.47)
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Figure 3.3: Typical M�R relations for non-spinning neutron-star models corresponding to the
realistic EOSs displayed on p�n plane in Fig. 3.1. M�R curves for typical nucleonic EOSs (AP4,
MPA1, MS1, SLy) are shown as light-coloured curves, blue curves refer to self-bound quark stars
(ALF1, SQM1), and the green line to a strange star model (H4). The symbols �mark the maximal
mass models. Most EOSs involving non-nucleonic matter, such as kaon condensates or hyperons,
tend to predict an upper limit around 2.01M� for the maximal mass of neutron stars. The purple
and the green bands indicate the rapidly rotating neutron stars in millisecond pulsars, catalogued
as PSR J1614-2230 [128] and J0348+0432 [129], with the highest-known mass of 1.97± 0.04 M�
and 2.01±0.04 M�, respectively. The light red band shows the interval of total binary NS masses
inferred from gravitational-wave signal GW170817 (cf. Sec. 1.3.2). The dashed gray lines refer to
stars whose central density ρc is double or triple of the nuclear saturation density ρ0, respectively.
The upper left areas of di�erent shades of grayscale refer to regions of the M�R plane excluded
by general relativity (GR) constraint for R > 2GM/c2, by �nite pressure for R > 2.25GM/c2,
and by causality for R > 2.9GM/c2. The lower shaded area indicates the region bounded by
the realistic mass-shedding limit R/10 km < C2/3(M/M�)1/3(fK/1 kHz) for the highest-known
Keplerian frequency, fK w 716 Hz, for the uniformly rotating neutron star PSR J1748-2446ad.
The deviation of C from its Newtonian value of 1.838 depends, in GR, (as computed by [175]) on
the neutron star interior mass distribution. For a hadronic EOS, C = 1.08, whilst for a strange
star with a crust, C w 1.15.
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recovered from eq. (3.27). After the elimination of ν ′, one obtains the generalized Tolman�
Oppenheimer�Volko� (TOV) equation

p̄′ +
(ρ̄+ p̄)(4πr3p̄+m)

r(r − 2m)
=
e−ν

16π

(
2λ̈+ λ̇(λ̇− ν̇ + 8πeν/2η)

)
(3.48)

for non-perfect �uids. Let us note that the non-zero terms on the left-hand side of eq.
(3.48) are not contradictory to conservation of energy and momentum in (3.15�3.16).
It will be shown that a set of two equations (3.59) takes over its role; one describing
the hydrostatic equilibrium and another describing the perturbation-induced departure
from the equilibrium con�guration. When supplemented with an EOS (3.1), relating
some fundamental thermodynamical quantities such as ε̄ and p̄, eq. (3.48) completely
determines the structure of spherically symmetric stars of isotropic material in equilibrium
as shown in Fig. 3.3.

3.5 In�nitesimal radial oscillations

Let us suppose an equilibrium con�guration of non-perfect �uid governed by the eqs.
(3.39) is subject to a small linear perturbation that does not violate its spherical symme-
try. Let δ hereafter denote a small ratio between the scale of variation of the perturbed
variables and the correspondig ones in unperturbed con�guration. Any quantity asso-
ciated with the unperturbed equilibrium state is denoted by the subscript `0', whereas
those that represent perturbations are equipped with the subscript `1'. In respect to
such a perturbation, motions in the radial directions arise. While formulating the equa-
tions governing the perturbed state, I shall ignore all quantities which are of the second
or higher orders in motions. Consequently, the four-velocity of a �uid element will be
expressed as

uµ = (−eν0/2, eλ0−ν0/2δv1, 0, 0), (3.49)

where
δv1 = dr/dt (3.50)

is the radial velocity with respect to the time coordinate t.

3.5.1 Perturbation equations for stellar oscillations

One way to describe perturbations is the `microscopic' point of view where the observer
follows individual �uid particles as they move through space and time. [176] It is conve-
nient to introduce a displacement �eld ξ1 (in our case, a scalar �eld) in the Lagrangian
representation de�ned by

∂ξ1

∂t
= v1 +

(TNPF
1 )1

0

p̄0 + ε̄0
, (3.51)

which connects �uid elements in the equilibrium with corresponding ones in the perturbed
con�gration. There is yet another, `macroscopic' way of looking at the perturbations. [177]
In the Eulerian representation of �uid motion, I simply consider changes in the variables
(λ, ν, ε, p) at a �uid element �xed in space and time. [178] This means that

λ = λ0 + δλ1, ν = ν0 + δν1, ε = ε0 + δε1, p = p0 + δp1, (3.52)
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where the linear perturbations (δλ1, δν1, δε1, δp1) are Euler changes. In this manner, I
retain only those terms of the full stress�energy tensor (3.27) that do not involve second
or higher orders in δ. The PF and NPF parts of the tensor assume the form of

(TPF)µν =


ε0 + δε1 (p0 + ε0)δv1 0 0

−eλ0−ν0(p0 + ε0)δv1 −p0 − δp1 0 0
0 0 −p0 − δp1 0
0 0 0 −p0 − δp1

 (3.53a)

(TNPF)µν =


δ(TNPF

1 )0
0 (TNPF

0 )1
0 + δ(TNPF

1 )1
0 0 0

(TNPF
0 )0

1 + δ(TNPF
1 )0

1 δ(TNPF
1 )1

1 0 0
0 0 δ(TNPF

1 )2
2 0

0 0 0 δ(TNPF
1 )3

3

 , (3.53b)

respectively. Notice that in eq. (3.53a), the o�-diagonal elements are the only elements
where the leading-order terms are absent, whereas in eq. (3.53b) the leading-order terms
are present only in these very same elements (cf. Appendix). In view of the above, �eld
equations (3.39a) and (3.39b) hold true if the pair of static metric potentials (λ0, ν0) is
replaced by (λ, ν). The corresponding linearized equations governing the perturbations
are, thus,

∂

∂r

(
re−λ0δλ1

)
= −8πr2δε̄1 (3.54)

and
∂

∂r
δν1 +

dν0

dr
δλ1 = δλ1 − 8πeλ0r3δp̄1. (3.55)

The appropriately linearized form of eqs. (3.39d) and (3.16), respectively,

∂

∂t
δλ1 = 8πeλ0r

[
(p0 + ε0)δv1 + δ(TNPF

1 )1
0

]
(3.56)

and

p′0 + 1
2
(p0 + ε0)ν ′0 + eλ0−ν0(p0 + ε0)δv̇1 + (δp1 − δ(TNPF

1 )1
1)′ + 1

2
(p0 + ε0)δν ′1

+1
2

(
δp1 + δε1 + δ(TNPF

1 )0
0 − δ(TNPF

1 )1
1

)
ν ′0 − 1

2
(TNPF

0 )0
1(δλ̇1 + δν̇1)

−δ(ṪNPF
1 )0

1 + (δ(TNPF
1 )2

2 + δ(TNPF
1 )3

3 − 2δ(TNPF
1 )1

1)/r = 0

(3.57)

shall serve in place of the remaining two �eld equations. At this point one may recall the
de�nitions (3.37) for the e�ective variables (ε̄, p̄) and introduce their respective linearized
forms (ε̄0 +δε̄1, p̄0 +δp̄1). Eqs. (3.52�3.53) enable us to identify these new variables easily:

ε̄0 = ε0, ε̄1 = ε1 + (TNPF
1 )0

0

p̄0 = p0, p̄1 = p1 − (TNPF
1 )1

1.
(3.58)

Consequently, expressed in these more suitable variables, eq. (3.57) decomposes into a
set of two equations

p̄′0 +
p̄0 + ε̄0

2
ν ′0 = 0, (p̄0 + ε̄0)

(
eλ0−ν0 v̇1 +

ν ′1
2

)
+ p̄′1 +

p̄1 + ε̄1
2

ν ′0 = T , (3.59)

where the �rst equation assumes the role of the constraint (3.48) for hydrostatic equi-
librium while the second one governs the dynamics of perturbation-induced departure
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from the equilibrium con�guration. As will be shown later on in Sec. 3.6, �uctuations of
the stellar radius exhibit oscillatory behaviour: expansions and contractions in the outer
layers as a star pursues to maintain equilibrium. The remaining NPF contributions are
gathered on the right-hand side to form the source term

T =
1

2
(TNPF

0 )0
1(λ̇1 + ν̇1) + (ṪNPF

1 )0
1 −

(TNPF
1 )2

2 + (TNPF
1 )3

3 − 2(TNPF
1 )1

1

r
, (3.60)

which stems from frictional forces in the �uid itself. As such, it is responsible for expo-
nential growth or damping, depending on the friction coe�cient.

Now, in the sense of the de�nition (3.51), the integration of eq. (3.56) yields

e−λ0

r
δλ1 = 8π(p̄0 + ε̄0)δξ1 (3.61)

or in consideration of the �rst eq. of (3.59),

δλ1 = δξ1
d

dr
(λ0 + ν0). (3.62)

Eqs. (3.54) and (3.61) provide

δε̄1 = −δξ1
dε̄0
dr
− δξ1

dp̄0

dr
− 1

r2

∂(r2δξ1)

∂r
(p̄0 + ε̄0). (3.63)

Substituting for dp̄0/dr in the last equation from the �rst eq. of (3.59), one may also
write

δε̄1 = −δξ1
dε̄0
dr
− eλ0/2

r2

∂(r2e−λ0/2δξ1)

∂r
(p̄0 + ε̄0). (3.64)

Considering next equation (3.55) and substituting for δλ1 in accordance with eq. (3.61),
one obtains

e−λ0

r

∂

∂r
δν1 = 8π

[
δp̄1 + (p̄0 + ε̄0)

(
dν0

dr
+

1

r

)
δξ1

]
(3.65)

or in view of the �rst eq. of (3.59),

(p̄0 + ε̄0)
∂

∂r
δν1 =

[
δp̄1 + (p̄0 + ε̄0)

(
dν0

dr
+

1

r

)
δξ1

]
d

dr
(λ0 + ν0). (3.66)

3.5.2 Damping of stellar oscillations

Suppose that for normal modes of the �uid perturbations (δλ1, δν1, δε̄1, δp̄1) possess a
harmonic time-dependence of the form exp(iΩt) where

iΩ = −1/τ + iωd (3.67)

is a complex characteristic frequency to be determined in Sec. 3.6. Being subject to the
damping e�ect of the dissipative forces, the �uid perturbations oscillate with a damped
angular frequency (sometimes called pseudo-frequency)

ωd = ωn
√

1− ζ2, (3.68)
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related to ωn which is the natural frequency (or resonant frequency) of the undamped
system. The rate at which the normal modes of radial oscillations are damped is charac-
terized by the relaxation time (or damping time)

τ = −1/ωnζ (3.69)

and can be determined from energy-dissipation eq. (3.102). [133] Expressed by the damp-
ing ratio ζ, a dimensionless non-negative parameter, the complex characteristic frequency
is

iΩ = −ωn(ζ − i
√

1− ζ2). (3.70)

The value of ζ prescribes the frequency response and critically determines the dynamical
behaviour. The oscillation is undamped (ζ = 0), if the star oscillates with its natural
angular frequency ωn. It is underdamped (ζ < 1) if the star oscillates with a damped
frequency ωd and with the amplitude gradually decreasing with the rate of decay 1/τ .
It is critically damped (ζ = 1) if the star returns to steady state as quickly as possible
without any oscillation.

With the harmonic time-dependence, one may rewrite the second equation of (3.59)
in the form

Ω2eλ0−ν0(p̄0 + ε̄0)ξ1 = p̄′1 +

(
λ′0
2

+ ν ′0

)
+
ε̄1ν
′
0

2
− p̄0 + ε̄0

2

(
ν ′0 +

1

r

)
(λ′0 + ν ′0)ξ1 + iΩS1,

(3.71)
where, in accordance with eq. (3.66), (p̄0 + ε̄0)ν ′1 was substituted for. Also, one may
recall that ε̄1 is expressed in terms of ξ1 and the perturbed variables by eq. (3.63). The
additional term S1 is given by the expression (A.6).

3.5.3 The conservation of baryon number

The continuity equation (3.15) of the rest-mass-density current given as in (3.19) involves
the conservation of the baryon number, represented by the condition

∇µ(Nuµ) = 0, (3.72)

provided that N is the number of constituent baryons per unit volume. Let the covariant
derivative be written di�erently, in the form

∂

∂xµ
(Nuµ) + (Nuµ)

∂

∂xµ
log
√
−g = 0 (3.73)

with the expression ∂(log
√
−g)/∂xµ being put in the place of the Christo�el symbols

corresponding to the metric given in eq. (3.34) and

g = eλ+νr4 sin2 θ (3.74)

being the determinant of the metric tensor. In the framework of the present linearized
theory, it is quite reasonable to de�ne the baryon number by

N = N0 + δN1, (3.75)
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so that eq. (3.73) endowed with the non-vanishing components of the four-velocity (3.49)
emerges as

e−ν0/2
∂

∂t
δN1+

1

r2

∂

∂r

(
N0r

2e−ν0/2δv1

)
+

1

2
N0e

−ν0/2
(
∂

∂t
δλ1 + δv1

d

dr
(λ0 + ν0)

)
= 0. (3.76)

With v1 replaced by the Lagrangian displacement ξ1 de�ned in eq. (3.51), the last equation
brings about �uctuations in the baryon number:

δN1 +
eν0/2

r2

∂

∂r

(
N0r

2e−ν0/2δξ1

)
+

1

2
N0

(
δλ1 + δξ1

d

dr
(λ0 + ν0)

)
= iΩ−1N , (3.77)

where the second term on the right-hand side vanishes on account of eq. (3.62) and

N =
1

r2
eλ0+2ν0

∂

∂r

(
r2e−(λ0+2ν0)/2N0

(TNPF
1 )1

0

p̄0 + ε̄0

)
(3.78)

represents the e�ect of dissipative terms on the baryon-number perturbation. Subse-
quently, eq. (3.77) reduced signi�cantly and one obtains

δN1 = −dN0

dr
δξ1 −N0

eν0

r2

∂

∂r

(
r2e−ν0δξ1

)
− iΩ−1N . (3.79)

Provided that N ≡ N(ε, p) is an EOS that corresponds to (3.1), small linear perturbations
in the energy density or pressure treated as variation are expected to induce baryon-
number perturbations given by

δN̄1 =
∂N̄1

∂ε̄1
δε̄1 +

∂N̄1

∂p̄1

δp̄1, (3.80)

which in turn yields

δp̄1 =

(
∂N̄0

∂p̄0

)−1(
δN̄1 −

∂N̄0

∂ε̄0
δε̄1

)
, (3.81)

under the assumption that variables in the perturbed state relate to each other roughly
the same way as the corresponding variables in equilibrium, that is ∂N̄1/∂ε̄1 ≈ ∂N̄0/∂ε̄0
and ∂N̄1/∂p̄1 ≈ ∂N̄0/∂p̄0. With δε̄1 and δN̄1 given by eqs. (3.63) and (3.79), respectively,
eq. (3.81) comes to be

δp̄1 = −dp̄0

dr
δξ1 − Γ1p̄0

eν0

r2

∂

∂r

(
r2e−ν0/2δξ1

)
− iΩ−1

(
∂N̄0

∂p̄0

)−1

S2, (3.82)

where the dimensionless parameter Γ1, given by

Γ1 =

(
p̄0
∂N̄0

∂r

)−1(
N̄0 − (p̄0 + ε̄0)

∂N̄0

∂ε̄0

)
, (3.83)

is identi�ed with the adiabatic index (3.5) that characterize the sti�ness of the EOS at a
given density. The average value for the adiabatic index is determined by eq. (3.7) to be
greater than or equal to 4/3 within a star that is dynamically stable against in�nitesimal
radial adiabatic perturbations.
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3.6 The pulsation equation and eigenvalue problem

With elimination of ε̄1 and p̄1 from eq. (3.71), through eqs. (3.63) and (3.82), eq. (3.71)
may be written as

Ω2eλ0−ν0(p̄0 + ε̄0)ξ1 =
d

dr
(ξ1p̄

′
0)−

(
1

2
λ′0 + ν ′0

)
ξ1p̄
′
0 −

1

2
(p̄0 + ε̄0)

(
ν ′0 +

1

r

)
(λ′0 + ν ′0)

+
ν ′0
2r2

d

dr

[
r2(p̄0 + ε̄0)ξ1

]
− e−(λ0+2ν0)/2 d

dr

[
e(λ0+3ν0)/2 Γ1p̄0

r2

d

dr

(
r2e−ν0/2ξ1

)]
+ i(ΩS1 − Ω−1S2),

(3.84)
where the third and forth terms on the right-hand side are the result of the transformation
df
dr

+ f dg
dr

= exp(−g) d
dr

[f exp(g)], which applies to any two functions (f, g) of the variable
r and S2 is written out in eq. (A.8) in appendix.

Substituting for p̄′0 from the �rst eq. of (3.59) and applying the same transformation
for the �rst two terms on the right-hand side of eq. (3.84) allow us to merge them with
the next two terms in the expression

1

2
(p̄0 + ε̄0)

(
ν ′′0 −

1

2
λ′0ν

′
0 −

1

2
λ′0 −

3

r
ν ′0

)
ξ1, (3.85)

which (cf. (56) in [137]), in turn, compared with the �eld equation (3.39c) restricted by
equilibrium conditions,

8πp̄0 = e−λ
(
ν ′′0
2
− λ′0ν

′
0

4
+
ν ′0

2

4
+
ν ′0 − λ′0

2r

)
, (3.86)

is reduced to three terms. Making use of the �rst eq. of (3.59) once again, the relation
(3.84) appreciably reduces to give the pulsation equation

Ω2eλ0−ν0(p̄0 + ε̄0)ξ1 =

(
4

r

dp̄0

dr
+ 8πeλ0 p̄0(p̄0 + ε̄0)− 1

p̄0 + ε̄0

[
dp̄0

dr

]2
)
ξ1

−e−(λ0+2ν0)/2 d

dr

(
e(λ0+3ν0)/2 Γ1p̄0

r2

d

dr

[
r2e−ν0/2ξ1

])
+ i(ΩS1 − Ω−1S2)

(3.87)

associated to the class of second-order linear ODEs. Besides this, the de�nitions (3.67�
3.70) make possible the separation of real and imaginary parts of the complex frequency
squared:

Ω2 = ω2
n(1− 2ζ2) + 2iω2

nζ
√

1− ζ2, (3.88)

thus the last term of the right-hand side:

i(ΩS1 − Ω−1S2) = −ζ
(
ωnS1 + ω−1

n S2

)
+ i
√

1− ζ2
(
ωnS1 − ω−1

n S2

)
. (3.89)

For positive Ω2, the characteristic frequency Ω is real and thus, the solution is purely
oscillatory. However, for Ω2 < 0, Ω contains an imaginary part, which corresponds to
a damped solution. Since the general solution is a superposition of damped modes, the
occurrence of a negative value of Ω2 corresponds to a secular instability whose growth time
is long compared to the dynamical time of radial oscillations. The Harrison�Zel'dovich�
Novikov criterion [143] for static stability of compact stars states that the total mass of
such stars increases with the central density ρ0, which implies that dM(ρ0)/dρ0 ≥ 0 for
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the stable region whereM(ρ0) is the function of total mass in terms of the central density.
For neutron stars this will, indeed, happen for ρ0 larger than the critical central density
ρcrit at which the stellar mass M(ρ0) as a function of ρ0 has its maximum. In this case
the star will ultimately collapse to a black hole. For ρ0 = ρcrit there must be a neutral
mode with the corresponding eigenvalue ω2 = 0. [165]

3.6.1 Eigenfrequencies of radial pulsation

The real part of left-hand side of eq. (3.87) can be equated to the real part of right-hand
side, comparably to the imaginary parts. Intrinsically, one can recast it in the so-called
homogeneous Sturm�Liouville form

d

dr

[
P dχ

dr

]
+ [Q+ ΛnR]χ = 0 (3.90)

with a free parameter
Λn ≡ (1− 2ζ2)ω2

n (3.91)

that denotes the eigenvalues and with a set of coe�cient functions

P(r) = r−2e(λ0+3ν0)/2Γ1p̄0

Q(r) = r−2e(λ0+3ν0)/2

[(
p̄′0

p̄0 + ε̄0
− 4

r

)
p̄′0 + 8πe(λ0+3ν0)/2p̄0(p̄0 + ε̄0)

]
R(r) = r−2e(3λ0+ν0)/2(p̄0 + ε̄0)

(3.92)

which hail from eq. (3.87), are speci�ed at the outset. The function R(r) is referred to
as weighting function. The normalized Lagrangian displacement de�ned by

χ ≡ r2e−ν0ξ1 (3.93)

is a scalar-valued function of the variables (t, r). Provided that χ satis�es eq. (3.90), it
is called a solution. Solutions of (3.90) are subject to the boundary conditions

χ = 0 at r = 0 and δp = 0 at r = R. (3.94)

Together with the boundary condition (3.94), the pulsation equation (3.90) imposes a
Sturm�Liouville eigenvalue problem (SLEVP), which seeks non-trivial solutions only for
a countable set of real eigenvalues {Λ1,Λ2, . . . ,Λn}. The SLEVP is said to be regular if
P > 0 and R > 0 for any r ∈ [0, R], the functions (P , P ′, Q, R, S) are continuous over
the �nite interval [0, R], and the problem has separated boundary conditions of the form

α1χ(0) + α2χ
′(0) = 0 for α2

1 + α2
2 > 0 (3.95a)

β1χ(R) + β2χ
′(R) = 0 for β2

1 + β2
2 > 0. (3.95b)

The Sturm�Liouville theory states that the eigenvalues of the regular SLEVP are real and
can be arranged in ascending order such that

Λ1 < Λ2 < Λ3 < . . . < Λn < . . . where lim
n→∞

Λn = +∞. (3.96)
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Corresponding to each eigenvalue Λn is a unique (up to a normalization constant) eigen-
function χn(r) which has exactly n − 1 zeros in (0, R). Moreover, the normalized eigen-
functions form an orthonormal basis∫ 0

R

χn(r)χm(r)R(r)dr = δmn, (3.97)

where δmn is the Kronecker delta and to each Λn is associated with a single eigenfunction
χn.

3.6.2 Characteristic relaxation time of radial pulsation

In the Newtonian limit, the kinetic energy contained in these oscillations is given by

Ek =
1

2

∫
ρδv1δv

∗
1dV0, (3.98)

an integral over an element of proper volume of �uid dV0 (cf. eq. (3.43)), where δv∗1
is the complex conjugate of the velocity perturbation δv1. Associated with the radial
displacement δξ1 = δr/r, the later is given for radial oscillations by eq. (3.51) as

δv1 = iΩ

(
δξ1 −

exp(−ν0/2)

p̄0 + ε̄0

[
3ην ′0δν1 −

(
η − 1

4
κT

)
δν ′1

])
, (3.99)

where, in accordance with second expression of (A.2), (δTNPF
1 )1

0 was substituted for.
The total energy in an oscillating star consists of kinetic and potential energy which are
supposed to equally contribute to the total energy of harmonic oscillations, thus given by
E = 2Ek. On account of the density, ρ, is reasonably uniform in neutron stars [122], the
total energy contained in the oscillation is given as

E = ρ̄ωnε
2R5 (3.100)

by evaluating the integral (3.98) explicitly for an average density ρ̄ = 3M/4πR3. Be-
ing bilinear in the �uid perturbations, E has a time-dependence exp[−2 Im(Ω)t]. [133]
Subsequently, its time derivative implies that

dE

dt
= −2 Im(Ω)E, (3.101)

which together with the energy-dissipation rate for the stress�energy tensor (3.27) as

− dE

dt
= −

∫ (
2ηδσµνδσ∗µν + ζ(δΘ)2 +

κ

T
∇µδT∇µδT ∗

)
dV0, (3.102)

directly determines the dissipative time-scale of small perturbations of the �uid away from
the equilibrium state as

τ = −2E/Ė. (3.103)

An approximate formula for each dissipative time-scales can be given by evaluating the
corresponding dissipation integral (3.102). Cutler & Lindblom [122] have found that the
following propotionalities hold for the dissipative time-scales:

1

τη
∼ η

ρR2
,

1

τζ
∼ η

ρR2
,

1

τκ
∼ κT

ρ2R4
, (3.104)
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which reveals that the time-scale of shear viscosity is much shorter than either that of bulk
viscosity or thermal conductivity. The imaginary part of the pulsation equation (3.87),
together with eqs. (3.88�3.89), yields

ζn =
S2 − ω2

nS1

2ω3
n(p̄0 + ε̄0)ξ1

eν0−λ0 (3.105)

which implies that a unique damping ratio ζn corresponds to each eigenfrequency ωn
computed for undamped oscillations. From (3.105), it is evident that higher frequency
components die out �rst. These damping ratios are identical with those associated with
the dissipative time-scales (3.104) which, according with (3.69), are obtained from ζn =
τnωn.

3.7 Summary of dissipation-damped stellar oscillations

A generic formulation of the dynamical equations governing small adiabatic radial oscilla-
tions of pulsating relativistic stars has been proposed in this paper through a perturbation
scheme that, combined with the equations of viscous thermally-conductive �uids, consti-
tutes an extension of radially pulsating perfect-�uid stellar models. I have proved that,
similarly to the regular perfect-�uid case, the stellar pulsation equation (3.87) expressed
by a set of e�ective variables (3.37) which involve dissipative terms, can be recast in a
homogenous Sturm�Liouville form (3.90) with separated boundary conditions (3.95). In
contrast to the regular perfect-�uid case, the associated eigenvalue problem is generalized
for a discrete set of eigenfunctions with complex eigenvalues where the real and imagi-
nary parts of the eigenvalues represent the squared natural frequency and relaxation time
(or decay rate) of the oscillation, respectively. In the absence of dissipation, the discrete
spectrum consists of real eigenvalues that form a complete set.

The main novelty of this approach is the ability to directly relate the damping ratio
of oscillations to the expressions S1 and S2 in (A.7�A.8), which stem from the viscous
and heat-conductive contributions to the stress�energy tensor, without relying on explicit
NR computations. An illustrative example set by [122] for neutron stars with uniform
density, allowed us in this paper to estimate the rate at which the viscosity and thermal
conductivity of the nuclear matter drains energy from the oscillations. In accordance
with the literature, the time-scale of shear viscosity is much shorter than either that of
bulk viscosity or thermal conductivity and the imaginary part of the pulsation equation
indicate that higher components vanish �rst from the frequency spectrum. The usefulness
of my analytical approximation method is evidently restricted to providing qualitative and
`order-of-magnitude' information about the dissipative time-scales in (3.104) rather than
a precise one.
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Chapter 4

Interaction of gravitational waves with

matter

The present piece of research is the result of a comprehensive study that aimed at inves-
tigating the dispersion of gravitational waves in interstellar medium. It is dedicated to
explore the dumping e�ect of GMC (Giant molecular cloud)s on GWs, and to provide
a more accurate picture of expected waveforms for direct detection. Most papers � re-
ferring to the weak interaction � neglect the dispersive character of GWs in a medium
as most of the estimates for detection are made under the assumption of GWs following
null geodesics even in the presence of matter. The interaction is weak indeed, moreover
even the densest nebulæ are extremely thin. Nonetheless, the currently detectable GWs
are expected to be of extragalactic origin, their sources are likely to be obscured by dust
or gas in addition to the Milky Way's stellar halo through which the gravitational waves
have to pass on their way to our ground-based detectors. Following the discovery of a
total of 11 con�rmed GW transient events (cf. Sec. 1.3.2) during observation runs O1 and
O2 (between 2015 and 2017), and a long list of candidate events during O3 in 2019, we
witness a progressively dedicated search for new events from various astrophysical sources
where the interaction may prove to be relevant.

4.1 Chasing waves and their dispersive nature for half

a century

For half a century after Einstein predicted the existence of GWs in 1915, a thorough
examination of their dispersive nature seemed to be inconvenient and pointless for the
strong reasons above. In their pioneering 1966 papers [179, 180], Steven Hawking and
Steven Weinberg investigated the rate at which GWs are damped by a dissipative �uid in
the case of a Robertson�Walker background spacetime. They found that the amplitude
of a high-frequency gravitational wave is damped in a characteristic time η−1, where η is
the �uid's shear viscosity. Although Isaacson [181] dealt with the high-frequency limit of
GWs, this work has been of great importance and motivated numerous researches.

In the 1970s several authors (cf. [180, 182�192]) were engaged in studying the propaga-
tion of GWs through matter under various simplifying assumptions with di�erent methods
of approximations. Their primary concern was not the possible damping in�uence on the
amplitude, but the modi�cation of dispersion relation. The most commonly used two
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distinct models were a medium composed of deformable molecules with internal structure
giving rise to anisotropic pressures or free particles with rare collisions described by ki-
netic theory. To describe the damping in kinetic theory, the rate of particle collisions has
to be addressed giving rise to the imaginary part of the complex index of refraction. The
refractive index turned out to be related to the viscosity response function in �uids and
crystals. [193] Anile & Breuer provided a formalism for a more accurate description of the
transfer equation [188] for polarized gravitational radiation in terms of the Stokes param-
eters. Anile & Pirronello obtained the transport equation for the amplitude of a GW in a
dispersive medium using high-frequency approximation [190]. Additionally, the design of
Weber bars and subsequent resonant-mass detectors was an engineering problem of con-
siderable importance since they were thought to be sensitive enough to measure the metric
deviations. This problem inspired many to focus on GW refraction in condensed matters.
The behaviour of an elastic medium under the in�uence of GWs was derived �rstly in a
gauge-independent way in terms of relative strains, and secondly in terms of displacements
[189]. However, some authors like Gayer & Kennel in the case of Landau damping reached
contradictory conclusions, particularly with respect to the dispersion relation [191]. In the
case of a parabolic Friedmann background, Sacchetti & Trevese showed that the presence
of matter does not a�ect the GW propagation at low temperature in the geometrical-
optics limit O(η), however a second-order WKB (Wentzel�Kramers�Brillouin) � so-called
`post-geometrical optics' � approximation revealed a plasmalike dispersion relation in the
O(η2), where η was a small parameter [192]. The geometrical-optics description in this
chapter is based on that of Thorne who has shown [194] that in realistic astrophysical
situations the vacuum approximation to wave propagation is appropriate. He specialized
the geometrical-optics laws to propagation through vacuum for simplicity, but a propaga-
tion equation that describes the interaction of the waves with matter and with EM �elds
was also derived. Recently, a study [195] of perfect-�uid perturbations of Kantowski�
Sachs models with a positive cosmological constant has concluded that in contrast with
the Friedmann case, one of the two gravitational degrees of freedom is coupled to the
matter density perturbations, and decouples only in the geometrical optics limit. There,
the dynamics is encompassed in six evolution equations, representing forced oscillations
and two uncoupled damped oscillator equations.

The most useful papers for the piece of research presentend in this chapter are a series
of studies [196�198] published by Ehlers, Prasanna and Breuer either in collaboration or
on their own. The �rst of these works which in some ways reviewed the results of [188], re-
vealed two degenerate modes of polarization (one represented GWs, whereas another one
described non-propagating density and vorticity perturbations) by the dispersion relation
for small-wavelength, small-amplitude GWs propagating through an arbitrary background
dust spacetime. The following paper [197] generalized the background to perfect �uids,
through which one more mode for sound waves was identi�ed; all modes, but the doubly
degenerate zero-frequency matter mode exhibited propagation along the null geodesics of
the background. The work was further extended by Prasanna [198] to include dissipative
terms of shear and bulk viscosity in the stress�energy tensor. In order to avoid loss of
generality, assumption on symmetry of background had never been initiated. Generality
however also entails several disadvantages: due to the lack of speci�cally detailed back-
ground, alterations in the wave's amplitude and frequency cannot be determined. The
procedure developed in [196�198] was generalized to curved backgrounds and is largely
similar to that of Sv��tek's approach to the damping of GWs in dust cloud [199]. There the
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geodesic deviation equation stemmed from the periodic oscillations produced within the
molecules by the incoming waves. The oscillations themselves produce GWs that were
composed with the original waves propagating through the GMC from a distant source.

4.2 Equilibrium con�guration of interstellar clouds

Let us consider an isolated interstellar nebula remote from any other matter, and assume
that the hydrostatic pressure is balanced by the GMC's self-gravitation. As seen in eq.
(3.42), the `gravitational mass' of the nebula within a distance r from its centre is given
by

m(r) = 4π

∫ r

0

r′2ρ(r′)dr′, (4.1)

where ρ denotes the rest-mass density. The most dense and heavy of among nebulae are
the GMCs composed by mostly gas and some dust. The typical physical values of cold
GMCs are listed in Table 4.1. For the sake of simplicity, assume that the considered
medium consists only of cold neutral gas. In this case collisions between these low-energy
particles are rare and weak, and have no signi�cant e�ect on the system. Hence the
medium of nebula can be realistically regarded to be composed of an ideal gas. Since
the temperature is very small and nearly constant (10 − 20 K for a typical GMC), the
polytropic EOS (3.3) reduces to a linear relation of pressure p and density ρ, given by

p = c2
sρ. (4.2)

As I stated after eq. (3.3), `polytropic constant' K for the degenerated matter may be
regarded as constant and it corresponds to c2

s, the squared isothermal speed of sound (3.6)
within the gaseous medium, and the adiabatic index Γ1 corresponds to 1. On the basis of
the isothermal EOS (4.2) and (4.1), the total mass of the GMC MR is expressed by the
average pressure p̄. By the comparsion of these with a given radial pressure distribution
p(r), the value of average pressure can be written as

p̄ =
R3

3

∫ R

0

p(r)r2dr. (4.3)

It is important to state that the following criteria must be met for real physical systems:

Composition: neutral H2

Radius: R = 70 pc
Constant temperature: T = 10 K
Average density: ρ̄ = 3.3475× 10−15 kg/m3

Radius: R = 70 pc
Total mass: M = 0.5433× 1023 M�

Table 4.1: Typical physical properties of cold GMCs, based on K. Ferri�ere's results [200].

1. MR ≤MBE whereMBE refers to the Bonnor�Ebert mass given byMBE = cBEc
4
sp
−1/2,

where cBE ' 1.18 is a dimensionless constant (cf. in [201]). This is the largest mass
that an isothermal gas sphere embedded in a pressurized medium can have while
still remaining in hydrostatic equilibrium.
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2. ρ(r), p(r) > 0 and dρ/dr, dp/dr < 0 everywhere in the GMC, the maximum of
the density and pressure are ρ0 and p0 in r = 0. On the border of the nebula, the
density and pressure distributions must satisfy the boundary conditions

lim
r→R

ρ(r) = lim
r→R

p(r) = lim
r→R

dρ

dr
= lim

r→R

dp

dr
= 0. (4.4)

These conditions can be easily justi�ed: the �rst one expresses the simple fact that
the density and pressure disappear, the second one says that they do not change on
the border of the GMC. So the matter does not suddenly vanish on the border, but
steadily aligns into the environment.

3. As seen in the causal requirement (3.6), the speed of sound cs in the medium must
be at most the speed of light, that is

c2
s =

dp

dρ
≤ 1. (4.5)

4.2.1 Field equations for the spherically symmetric static cloud

Let us recall the line element (4.24) for stationary spherically symmetric con�gurations
given by

ds2 = −eνdt2 + eλdr2 + r2(dϑ2 + sin2 ϑdϕ2), (4.6)

where the metric functions ν and λ were de�ned by (3.35). Let us consider a remote
and isolated GMC in a region of spacetime of metric tensor (4.6) which is �lled with cold
perfect �uid. The perfect �uid that constitutes the GMC is described by the stress�energy
tensor TαβPF from (3.28) and obeys the gravitational-�eld equations (1.24) that are written
in a form

Rµν = κ(ρ+ p)

(
uµuν +

1

2
gµν

)
− κpgµν , (4.7)

where ρ, p > 0 are the density and pressure respectively. The normalized 4-velocity of
�uid elements uµ, given in (4.35), satis�es the geodesic equation (1.19) of the form

uµ∇µu
ν = 0 (4.8)

along with the continuity equation

uµ∇µ(ρ+ p)uν + gµν∇µp = 0. (4.9)

The �eld equations (4.7) yield a set of three ODEs for the rest-mass density ρ, for the
radial pressure pr, and for the angular pressure pϑ as

8πr2ρ = e−λ(rλ′ − 1) + 1
8πr2pr = −e−λ(rν ′ + 1) + 1
32πrpϑ = −e−λ(2rν ′′ − rλ′ν ′ + rν ′2 + 2ν ′ − 2λ′),

(4.10)

where the prime denotates derivates with respect to the radial coordinate r. This set of
ODEs is the static limit of the more general, time-dependent the �eld equations (3.39).
Through the application and modi�cation of the method originally established by Ref.
[202], I have shown in Ref. [1] that it is possible to replace eqs. (4.10) by a set of algebraic
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equations where the integration of one metric function is required, but not of the physical
variables ρ and p.

Due to the isotropic con�guration, p ≡ pr = pϑ implies one can require one more �eld
equation

r(rν ′ + 2)
d

dr
e−λ + (2r2ν ′′ + r2ν ′2 − rν ′ − 4)e−λ + 4 = 0 (4.11)

by extracting the last equation from the second one. Regarding the coe�cient of de−λ/dr,
it turns out to be practical to introduce a pair of new variables

α = −λ′e−λβ2 and β =
rν ′

2
+ 1. (4.12)

Then the �eld equation (4.11) reduces to a second order algebric equation in β, namely

2(α + 1)β2 + (rα′ + 8α)β + 4α = 0. (4.13)

For any function α the quadratic equation (4.13) is solved by the real roots

β± =
8α− rα′ ±

√
(rα′ + 8α)2 − 32α(α + 1)

4(α + 1)
(4.14)

where the discriminant must be non-negative. The only physically relevant solution is β+,
since its non-positive counterpart always belongs to a non-positive, hence non-physical
mass density. The metric functions belonging to β are formally given by the de�nitions
(4.12) as

λ = ln

(
β2

α

)
and ν =

∫ r

0

2(β − 1)

r
dr + ν0, (4.15)

where the constant ν0 determines the scaling of the time coordinate t. One can also
calculate the pressure and density

ρ =
1− (rα/β2)′

8πr2
and p =

(2β − 1)α− β2

8πβ2r2
(4.16)

by substituting functions α and β into the �rst two �eld equations of Eq. (4.10). The
simple, but still realistic choice for the generating function α is the ratio of two polynomials
of the radial coordinate r. The lowest degree form which is physically valid for a compact
�uid or gaseous sphere is

α = 1 +
A2r2

1 +Br2
, (4.17)

where A and B are positive constants associated by inverse �rst and second power of
distance dimensions. It is advisable to introduce a further new non-negative real constant
C2 = 2B/A2 − 2 and use it in place of constant B. In order to eliminate the square root
appeared in Eq. (4.14) while expressing β, a new radial variable de�ned by

sinh ξ = 2C
1 +Br2

3 + 4Br2
(4.18)

will be introduced. Then the centre gets into ξc = arcsinh(2C/3), and the spatial in�nity
ξ∞ = arcsinh(C/2), and the new variable is restricted by 0 < ξ∞ ≤ ξ ≤ ξc. Through
(4.17), the generating functions α and β become

α =
(C2 − 4) sinh ξ + 4C

(C2 + 2) sinh ξ
, β =

C coth(ξ/2)− 2

1 + C tanh(ξ/2)
. (4.19)
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The equations (4.15) provide the metric functions and the inner Schwarzschild metrics
appears to be

ds2 = −eνdt2+
C2eλ cosh2 ξdξ2

4A2(C2 + 2)(2C − 3 sinh ξ)(2 sinh ξ − C)3
+

(2C − 3 sinh ξ)(dϑ2 + sin2 ϑdϕ2)

A2(C2 + 2)(2 sinh ξ − C)
(4.20)

by using the charasteric ξ as radial coordinate. The constant A corresponds to a constant
conformal transformation of the metrics. From eq. (4.10), both the density and the
pressure are expressable by a ratio of two polynomials of hyperbolic function of the radial
coordinate ξ.

Moving away from the centre of the GMC due to the conditions (4.4), the pressure
monotonously tends to zero at r = R, on the border of the GMC. Any choice of constants
A and C satis�es the restriction (4.5) on the speed of sound in the medium. One takes
C2 = 2B/A2 − 2 into consideration and assumes B � 1 � C, then p and ρ vanish
simultaneously at r = R if and only if B = 4/R2. This restriction implies A = 8c2

s/R. By
eliminating the variable ξ via the transformation (4.18), one can formulate the functions
of state

ρ =
8Br2 − 3

4πC(4Br2 − 1)−1
, p =

2Br2 − 1

4πC2(4Br2 − 1)−1
(4.21)

in terms of polynomials of the natural radial coordinate r, cf. Fig. 4.1a. As it was
required, if B � 1� C then the EOS is nearly linear for every r ≤ R, therefore

dp

dρ
=

1

2C

(
1 +

1

5− 16Br2

)
= c2

s < 1 (4.22)

�xes the last constant as C = 4/c2
s. Consequently, they di�er from one another only by a

constant factor, thus verifying the legitimacy of the isothermal EOS (4.2). In accordance
with the literature (cf. Fig. 6. in [203] and [204]), the density and pressure pro�le is
expressed by

p = c2
sρ, ρ(r) =

3c2
s

16π

(
16r2

R2
− 1

)(
8r2

3R2
− 1

)
. (4.23)

Similarly, the metric functions ν and λ, shown in Fig. 4.1b, that are consistent with this
pro�le, are expressed as functions of the radial coordinate r. The line element

ds2 = −c
2
s

4

(
1 +

c2
s

4

r2

R2

)
dt2 + exp

(
−c

2
s

2

r2

R2

)
dr2 + r2(dϑ2 + sin2 ϑdϕ2) (4.24)

is immediately obtaind by the insertion of the metric functions into the general form of
Schwarzschild metrics (4.6).

4.2.2 Lagrangian function and geodesics of the particles

In the following subsections, the behaviour of massive particles and photons in the
Schwarzschild geometry will be brie�y reviewed, based on [34]). For the Schwarzschild
metrics (4.24) the relativistic Lagrangian function L = gµν ẋ

µẋν of the particles in the
investigated nebula is

L = −eν ṫ2 + eλṙ2 + r2(ϑ̇2 + sin2 ϑϕ̇2) (4.25)
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(a) The pressure and density pro�le in the inter-
val 0 < r/R < 1, normalized to the central values
pc and ρc.

(b) The evolution of the normalized metric func-
tions expλ and exp ν within the interval 0 <
r/R < 1.

Figure 4.1: The pro�les of pressure and density consistent with the metric functions expλ+

and exp ν+ within the nebula.

where the dot denotates derivates with respect to the proper time coordinate τ . By

substituting this form for L into the Euler�Lagrange equations
d

dτ

(
∂L

∂ẋµ

)
− ∂L

∂xµ
= 0,

result the geodesics equations. Since the eqation for µ = 3 is satis�ed by ϑ = π/2, it is
su�cient to keep only the set of three equations independent of ϑ:

eν ṫ = Lt

r̈ +
1

2

dλ

dr
ṙ2 +

1

2

dν

dr
eν−λṫ2 − re−λϕ̇2 = 0

r2ϕ̇ = Lϕ

(4.26)

The two simplest equations are derived immediately since the Lagrangian is not an explicit
function of t or ϕ. The appearing constants Lt and Lϕ proportional to the total energy
and the angular momentum of the particles. It is expedient to replace the complicated
second equation of Eq. (4.26) by the �rst integral gµν ẋ

µẋν = −1 of the geodesics equations
(1.19), since the worldline of a massive partice is timelike. In this case, it takes the form

− eν ṫ2 + eλṙ2 +
1

2
r2ϕ̇2 = −1. (4.27)

By substituting the two original expressions of (4.26) into (4.27), one obtain the combined
energy equation

ṙ2 +
L2
ϕ

r2
e−λ =

(
L2
t e
−ν − 1

)
e−λ (4.28)

for the radial coordinate valid inside the GMC. Outside of the GMC the customary
equation ṙ2 + (1− 2M/r)L2

ϕ/r
2− 2M/r = (L2

t − 1) governs the motion of particles. Note
that the right-hand side is a constant of motion, Lt ∝ E as previously stated. The
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constant of proportionality is �xed by requiring E = m0 for a particle at rest at r = ∞
where m0 denotes the mass of the particle at rest. Letting r → ∞ and ṙ = 0 in the
equation, L2

t = 1 thus is required. Hence, one must has Lt = E/m0, where E is the total
energy of the particle in its orbit.

The shape of a particle orbit is given by using the last equation of Eq. (4.26) to express
ṙ in the (4.28) as

dr

dτ
=

dr

dϕ

dϕ

dτ
=
Lϕ
r2

dr

dϕ
. (4.29)

Furthermore, if one parametrizes Eq. (4.27) by r̃ ≡ 1/r, one obtains

(
dr̃

dϕ

)2

+ r̃2e−λ =

1

L2
ϕ

(
L2
t e
−ν − 1

)
e−λ. Finally, the di�erentiation with respect to ϕ provides the orbits

d2r̃

dϕ2
+ r̃e−λ =

L2
t (ν
′ + λ′)e−ν − λ′

2L2
ϕr̃

2
e−λ − λ′

2
e−λ (4.30)

for a particle in the equatorial plane ϑ = π/2 where the prime denotes derivates with
respect to the radial coordinate r. The particle orbits have two special cases, namely the
radial motion where ϕ̇ = 0 and the circular motion where ṙ = 0. Since the density of the
nebula is constant in time, one might ignore the radial motion and focus on investigating
the latter motion.

4.2.3 Circular motion on bounded and stabil orbits, velocity of

the gas particles

In the equatorial plain for circular motion, one has r = constant, and thus ṙ = r̈ = 0.
This restriction in accordance of (4.29) imposes r̃′ = ˙̃r/Lϕr̃

2 = 0; consequently r̃′′ is
zero too. Setting r̃ = 1/r = constant in the equation of orbits (4.30), one has L2

ϕ =
1

2
r3L2

t (ν
′ + λ′)ν ′e−ν . Beside replacing the di�erentials of the metrics functions of Eq.

(4.24)

dλ

dr
= −c

2
sr

R2
and

dν

dr
=

c2
sr

2R2

(
1 +

c2
s

4

r2

R2

)−1

(4.31)

in the energy equation (4.28) in addition to the condition ṙ = 0, one can identify the
constants of motion as

Lt =
cs
2

(
1 +

c2
sr

2

4R2

)
and Lϕ =

cs
2

r2

R
. (4.32)

It has been shown that E = Ltm0 is the total energy of a particle of rest mass m0 in a
circular of radius r. Subsequently one can circumscribe the bounded orbits by requiring
E < m0, so as long as Lt = 1. The limits on r for the orbit to be bound is given by

1 =
cs
2

(
1 +

c2
sr

2

4R2

)
, which is satis�ed when

r =
2R

cs

√
2

cs
− 1. (4.33)
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The �rst and third geodesics equations in Eq. (4.26) immediately show that the compo-
nents of 4-velocity of a particle are simply

[uµ] =

[
2

cs
, 0, 0, cs

r

2R
sinϑ

]
(4.34)

in the coordinate system (t, r, ϑ, ϕ). The geodesics equations specify the circular trajectory
ϕ(τ) and the orbital period T = 2π/ϕ̇, which according to (4.32) is T = 4πR/cs by
substituting Lϕ from (4.32). Although r is not the radius of the orbit, it is readily
conceivable that the spatial distance travelled in one complete revolution is 2πr, just as in
the Newtonian case. Instead of parametrizing ϕ in the proper time, one can alternatively
describe it by dϕ/dt = c2

s/4R in terms of coordinate time t. The components of 4-velocity
of a particle in the equatorial plain ϑ = π/2 are thus given by

[uµ] =

[
1, 0, 0,

c2
s

4

r

R
sinϑ

]
(4.35)

in the coordinate system (t, r, ϑ, ϕ) where ϑ = π/2 in the equatorial plane. The continuity
equation (4.9) requires that

uµu
µ = −c

2
s

4
+O(c4

s/c
2) ≡ −c2

∗, (4.36)

where it is su�cient to keep only the leading order term. Due to symmetry, the connection
has only four non-zero components

Γ0
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c2
s

4c2

r2

R2

)−1
c2
s

4c2

r

R2
, Γ1

00 =
c4
s

16c4

r

R2
exp

(
c2
s

2c2

r2

R2

)
, Γ1

11 = − c2
s

2c2

r

R2
, Γ2

12 =
1

r
.

(4.37)

4.3 Linear perturbation of equilibrium con�guration

Let some smooth, non-degenerate, symmetrical metric tensor gµν , associated with the line
element (4.24), be given on some di�erentiable mainfoldM which existed before the train
of GWs came. Let the `background' �eld variables (gµν , u

µ, ρ, p), as described above, be
disturbed by small linear perturbations, denoted with overhead hat as (ĝµν , û

µ, ρ̂, p̂).
According to linearization stability, (gµν +εĝµν , u

µ+εûµ, ρ+ερ̂, p+εp̂) will approximate
a solution of the linearized equations (4.7�4.8) at the background �eld. At least in a
compact part of spacetime, provided the constant numerical factor ε � 1 is su�ciently
small.[2] Let ε denote a small ratio between the scale of variation of the perturbed variables
and that of the background. Let us associate the strain amplitude of the radiation in with
a small linear perturbation εĝµν .

Consequently, the contravariant notions of perturbed quantities of di�erent tensorial
order are

ĝαβ = gαρgβσĝρσ, ûα = gαβûβ + ĝαβuβ. (4.38)

Let ∇ be the covariant derivative associated with some torsionless and metric-compatible
connection Γκµν , then the perturbation of this connection is a tensor Γ̂κµν given by

Γ̂γαβ =
1

2
gγδ(∇β ĝδα +∇αĝδβ −∇δĝαβ). (4.39)
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Based on this scheme of work, the Ricci identity implies

R̂αβ =
1

2

(
∇γ
αĝβδ +∇δ

β ĝαδ −∇δ
δĝαβ −∇αβ ĝδγg

δγ
)
. (4.40)

Likewise, by retaining only terms of the �rst order in the linear approximations of eqs.
(4.7) and (4.36), one obtains

R̂αβ = κ(ρ̂+ p̂)

(
uαuβ +

1

2
gαβ

)
− κp̂gαβ + κ(ρ+ p)

(
2u(αûβ) +

1

2
ĝαβ

)
(4.41)

and
2uαûα = ĝαβu

αuβ, (4.42)

respectively. From these last two equations the perturbation of the remaining quantities
can be expressed as

ρ̂+ p̂ = −
(

2κ−1R̂αβ + (ρ+ p)ĝαβ

)
c−2
∗ u

αuβ (4.43)

and

ûα =
1

2

(
ĝαγ −

2R̂βγ + κ(ρ− p)ĝβγ
κc4
∗(ρ+ p)

Pβα

)
uγ. (4.44)

Up to this point, my results entirely corresponded to that of Refs. [196, 197]. Now,
however, I shall de�ne not a single, but a pair of appropriate tensors

Pβα ≡ c2
∗g
β
α + uαu

β, Qβα ≡ c2
∗g
β
α − uαuβ (4.45)

which signi�cantly simplify expressions to appear later on. P projects onto the subspaces
of the tangent spaces that are orthogonal to uα whilst to the auxiliary tensor Q may
not carry such evident geometrical meaning. The set of eqs. (4.41�4.44) yields the key
equation that drives the spatio-temporal evolution of linearized perturbations. Making
use of the preceding notation (4.45), it can be appreciably simpli�ed to

[
PγαPδβ −Qαβuγuδ

] [
R̂γδ +

1

2
κ(ρ− p)ĝγδ

]
= κc4

∗(c
2ρ− 3p)ĝαβ + 2κ(c2

∗pu
γûγ − p̂)gαβ.

(4.46)
It is important to highlight two noteworthy details about the equation:

1. In �at spacetime c∗ is equal to 1, thus the last term in the right-hand side would
perish.

2. If the GMC is assumed to be made of only dust, such terms would vanish just as
well where the pressure or its perturbation appear.

In consequence, my result in the �at dust-�lled spacetime limit would be identical to the
formula (21) in [196]. By its very nature, eq. (4.46) inherently satis�es the conditions
(4.8�4.9). However, in deriving (4.46), no restriction on the perturbations has been im-
posed. In order to eliminate redundant components, one can take the liberty to impose a
gauge condition. Conventionally, either the `de Donder gauge' (as in [192]) or the `Landau
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gauge' (as in [196]) have been favoured. The former � also known as harmonic coordi-
nate condition � ultimately requires the product Γβγγ ĝαβ to vanish whereas the latter one
imposes

ĝαβu
β = 0. (4.47)

This latter gauge condition is particularly suitable for the fact that the metric perturbation
contracts to the unperturbed 4-velocity in several terms of the perturbed �eld equation.
By requiring (4.47) to hold, (4.46) reduces to the form[
PγαPδβ −Qαβuγuδ

] [
gµ(γ∇

ν
δ) − g

µ
γg

ν
δ∇λ

λ − gµν∇γδ

]
ĝµν = κc4

∗(ρ−5p)ĝαβ−4κc4
∗p̂gαβ, (4.48)

where the operator on the left-hand side of this formula maps the space of symmetric `spa-
tial' tensor �eld into itself. This basic equation restricted by (4.47) is an unconstrained
system of six coupled ODEs of second order for six unknown variables. A solution is
therefore speci�ed by twelve functions of three variables. Since the restricted gauge free-
dom consists of four functions, the intrinsic freedom of the perturbation amounts to eight
functions corresponding to four degrees of freedom.

4.4 WKB expansions of geometrical optics

4.4.1 WKB approximation for monochromatic high-frequency �eld

perturbations

The set of �eld equations (4.48) for metric perturbations results a system of coupled
linear �rst-order PDEs. A strategy for �nding a unique closed-form analytical solution
for arbitrary initial data is based on decoupling the set order by order by small parameter
ε. Let a linear parabolic PDE

D(x,∇)ĝµν = (Dαβ2 (x)∇αβ +Dα1 (x)∇α +D0(x))ĝµν = 0 (4.49)

in x ≡ (t, ~x) be given for some function ĝµν : Rn×n → Rm×m, where D2,D1,D0 ∈ Rm×m

are matrix-valued, smooth functions with real entries which act on the six-dimensional
space of metric perturbations. [2] Geometrical optics emerges as a short-wavelength limit
for solutions to the PDE (4.49). Accordingly, let us specialize metric perturbations ĝµν
to locally plane, monochromatic, high-frequency �elds. Assuming formal solutions can be
locally approximated in a successive procedure by plane wave

ĝµν(x, ε) = Aµν(x, ε) exp[iε−1ψ(x, ε)], (4.50)

a WKB ansatz can be constructed, provided that for any n ∈ N, amplitude Aµν and phase
ε−1ψ take the form of asymptotic series expansions

Aµν(x, ε) ∼
∞∑
n=0

(ε
i

)n
A(n)
µν (x)

ψ(x, ε) ∼
∞∑
n=0

εnψ(n)(x)

(4.51)
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in the limit ε→ 0. It is evidently expressed that as long as the parameter ε is small, the
amplitude varies slowly in comparison with the rapid oscillation of the phase. On account
of the gauge-�xing condition (4.47)

A(n)
µν u

ν = 0 (4.52)

is required to hold for any non-negative n; in other words, any n-order wave amplitude
is transversal to the direction of propagation. The wave covector is de�ned to be ε−1lµ,
where

lµ ≡ ∇µψ, kµ = Pµνlν (4.53)

and the angular frequency relative to the unperturbed matter �ow is −ε−1uµlµ which
itself would be denoted by

ω ≡ 2πf ≡ −uµlµ = −k0. (4.54)

One may re-arrange the expression D (Aµν exp[iψ/ε]) after having the ansatz (4.50�4.51)
inserted into (4.48) and taken into account the choice of gauge (4.52) by requiring the
terms of order 1, ε, ε2, . . . of the resulting formal series(

L(0)αβ
µν +

ε

i
L(1)αβ

µν +
(ε
i

)2

L(2)αβ
µν

)(
A

(0)
αβ +

ε

i
A

(1)
αβ + . . .

)
= 0 (4.55)

to vanish separately. The L(j) linear di�erential operators of order j, called the symbols
of D are given by the �eld equations (4.48) and eq. (4.49) as

L(0)αβ
µν ≡ −2Pα(µl

βkν) + PαµPβν l2 + gαβ(kµkν − ω2Qµν)

L(1)αβ
µν ≡ −4Pγ(µP

(α
ν) (lβ)∇γ +∇β)lγ) + 2P(α

(µkν)∇β) + 2P(α
(µP

β)
ν) (∇l + θ/2)

+2ωQµν∇βuα − Pαβ
[
Pγ(µPδν)∇δlγ + Pγ(µkν)∇γ −Qµν(2ω∇u − uγ∇ulγ)

]
L(2)αβ

µν ≡ PγµPδν(2gαλg
β

(γ∇δ)∇λ + gαγ g
β
δ∇λ∇λ)− 4κc2

∗p̂g
α
µg

β
ν − κc4

∗(ρ− 5p)gαµg
β
ν

−gαβ(PγµPδν −Qµνuγuδ)∇γδ,
(4.56)

where, in addition to the abbreviations θ ≡ ∇µlµ,∇u ≡ uµ∇µ,∇l ≡ lµ∇µ, the identities
(4.53�4.54) were applied. The method of characteristics discovers characteristic curves
along which the PDEs in eq. (4.55) reduce to ODEs. Once the ODE for the respective

L(j) symbol is found, it can be solved for the corresponding amplitude A
(j)
αβ along the

characteristic curves and transformed into a solution for the original PDE.

4.4.2 Geometrical optics and transport equation for amplitudes

It has been shown by Thorne [194] that in realistic astrophysical situations the vacuum
approximation to wave propagation is appropriate. Here, the geometrical optics is for-
mulated in terms of ray tracing, i.e. an ODE model. Provided that lµ is smooth, it
corresponds to locally solving the eikonal equation through the method of bicharacter-
istics. Bicharacteristics of (4.48) or so-called rays along which the amplitudes A(0) are
transported are spacetime projections of the solutions of Hamilton's system of ODEs

ẋµ =
∂H
∂lµ

, l̇µ =
∂H
∂xµ

. (4.57)
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The method is discussed in great detail in Refs. [196, 197]. A lengthy calculation, which
I do not repeat here, �nally yields the zeroth-order amplitude that shall consist of the
following linear combinations of basis vectors eµν :

A(0)
µν =


a

(0)
+ e+

µν + a
(0)
× e
×
µν (Mode I: Gravitational wave)

b
(0)
1 (Qµν + e3

µν) (Mode II: Sound wave)

C(µe
3
ν) (Mode III: Pressure wave),

(4.58)

where Cµ = c
(0)
1 e1

µ + c
(0)
2 e2

µ + c
(0)
3 e3

µ. To put eq. (4.58) in context, one can recognize that
the �rst mode corresponds to an arbitrary plane-wave solution in the standard transverse
traceless (TT) gauge, where (a

(0)
+ , a

(0)
× ) are the amplitudes (polarization states) of the two

independent components with linear polarization, and (e+
µν , e

×
µν) are the corresponding

polarization tensors. The second mode partly, and the third mode fully are in the frame
orthogonal to uµ and kµ. They correspond to sound waves and pressure waves, respec-
tively. For the particular case of dust (p = 0) or in case cs = 0, there are no sound waves
and second mode degenerates into the longitudinal part of the third one. In case of sti�
matter (p = ρ), cs = 1, sound waves propagate with the speed of light.

The �rst-order WKB equation acquired from (4.55) imposes

L(0)αβ
µνA

(1)
αβ + L(1)αβ

µνA
(0)
αβ = 0 (4.59)

to hold for zeroth- and �rst-order amplitudes. Applying the expressions from (4.56), L(0)

is annulled upon being transvected with either one of polarization tensors given in (4.58).
After some manipulation, one gets the pair

(∇l + θ/2)a
(0)
+ + 1

2
eµν+ (a

(0)
+ ∇le

+
µν + a

(0)
× ∇le

×
µν) = 0

(∇l + θ/2)a
(0)
× + 1

2
eµν× (a

(0)
+ ∇le

+
µν + a

(0)
× ∇le

×
µν) = 0,

(4.60)

which assert that the pair of polarization states (a
(0)
+ , a

(0)
× ) are transported along rays

bended by the background �eld. Along each null geodesic ray xµ with tangent ẋµ = lµ

given in (4.57), the vectors lµ, uµ span a timelike two-plane, and basis vectors span its
spacelike orthogonal complement. Assuming the basis vectors (eµ1 , e

µ
2) are such that they

are transported quasi-parallel along the rays, the transport of the amplitudes will be
bounded by

(∇l + θ/2)

(
a

(0)
+

a
(0)
×

)
= 0, (4.61)

testifying that the change of complex vector (a
(0)
+ , a

(0)
× ) along the ray consists solely of

a rescaling the two `TT' polarization modes of GWs (1.63) travelling in empty space.
Making use of the expression for L(2) from (4.56), the transport equation for the �rst-
order amplitudes yields

(∇l + θ/2)a
(1)
+ =

1

2
κ(ρ− 5p)a

(0)
+ +

1

2
eαβ+

[
2(∇µ∇α +∇α∇µ)gνβ − gµαgνβ∇2

−c−2
∗ Pµν∇α∇β

]
[a

(0)
+ e+

µν + a
(0)
× e
×
µν ]

(4.62)

and a similar one for a
(1)
× .
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4.5 Numerical solution and application for data analy-

sis

In this section the transport equation is converted into a PDE which is numerically solved
and where the �rst-order amplitudes are assumed to change in a sinusoidal manner over
retarded time. However extremely small in value, the frequency shows a decreasing be-
haviour that can be traced back to the nature of dissipative interaction of the GW with
the surrounding matter. From the decomposition of any given signal into varying sinu-
soidal components by Fourier analysis, I construct the changes in frequency of all the
sinusoids for all the frequencies. I shall use the well-established concept of match-�ltering
technique to correlate the unaltered signal with the signal a�ected by crossing through
the medium. For its importance, the reconstructed time series of the transient GW signal
`GW150914' (cf. Sec. 1.3.2) as a known template is taken into examination. [69, 205] My
�rst priority is to measure the deviation of this signal by an overlap function. Secondly,
it is to bring to light in what types of possible GW-sources the e�ect of interaction is
expected to be powerful enough to be taken into account for future examination.

Figure 4.2: Retarded-time dependence of frequency shift ω̂ for plain waves of several discrete
values of initial frequency. Higher initial frequencies approach the limiting ω̂max exponentially
faster.

4.5.1 Numerical solution for the transport equation

Assuming the real part of the zeroth-order amplitude of the plane wave (4.50) travelling
in the equatorial plain ϑ = π/2 in z-direction to be

A(0)
µν = (a

(0)
+ e+

µν + a
(0)
× e
×
µν) sin[trω], (4.63)
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with the retarded time obtained from eq. (1.51) as

tr = −eν(z)t+ eλ(z)z/c, (4.64)

with the metric potentials eν , eλ correspond to the ones in the line element (4.24), the
transport equation (4.62) reduces to the form of(

[64C2ω̂
2 + C1ω − 2λ′]a

(0)
+ + C0ω̂a

(0)
×

)
cos (trω̂)

+
(

4[S2ω + S1]ω̂a
(0)
+ + 3λ′2a

(0)
×

)
sin (trω̂) = 2κ(ρ− 5p)e3λa

(0)
+ ,

(4.65)

where primes denote partial di�erentiation with respect to coordinate z and

C2 = e2λ(1 + zλ′)2 + t2e2νν ′2 − eλ+ν (1 + 2ν ′t [1 + zλ′])
C1 = e4λ[ν ′ + λ′(19 + 11zλ′ + zν ′) + 8zλ′′]
C0 = 24λ′

[
eλ(1 + zλ′)− tν ′eν

]
− 24te3λ+ν(3ν ′λ′ + 9ν ′2 + 8ν ′′)

S2 = e5λ(1 + zλ′)2 − 2te4λ+ν(1 + zλ′)ν ′ + e3λ+2ν(1 + t2ν ′2)
S1 = 16eλ(2λ+ zλ′2 + zλ′′)− 16teν(ν ′2 − ν ′′)

(4.66)

are functions of (t, z) alone. For the sake of the simpler representation of the following
results, the coordinate time t is to be replaced by the retarded time tr. The numerical
solution for ω̂ given by (4.65) for any possible values of (tr, ω) is expected to be nega-
tive, owing to the energy dissipation, and to be extremely small compared to the initial
frequency ω. Having the eqs. (4.24�4.23) applied for a nebula of radius R = 50 pc [1],
the maximal decrease in frequency is found to be ω̂max = −6.3956× 10−11 Hz. Here and
thereafter the order of magnitude of amplitudes (a

(0)
+ , a

(0)
× ) is set to O(10−21). All the

frequency components that constitute the waveform su�er a tiny, gradually decreasing
`redshift-like' change in frequency, denoted by ω̂, that depends on the initial frequency
and the position of wavefront. Fig. 4.2 displays the frequency shift ω̂ on a log scale for

Figure 4.3: Frequency shift in the low-frequency regime. The horizontal lines represent the
�rst three initial frequency values (32 Hz, 128 Hz, 512 Hz) shown in Fig. 4.2 with respective
colours.

several discrete values of initial frequency for an arbitrary plane wave (4.63) that lasts
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for tr = 2 sec. The �gure reveals a characteristic distinctive feature of self-similarity of
the frequency-shift curves for di�erent initial frequencies. A more detailed �gure, Fig. 4.3
demonstrates the frequency shifts that belong to any initial frequency in the (tr, ω) do-
main. For the gravitational-wave transient GW150914, the e�ect is the greatest in the
frequency range 100�250 Hz.

4.5.2 Matched �ltering techniques for gravitational-wave data

analysis

Putative frequency modulated GW signals (also known as `chirps ') from CBC inspirals will
be buried in the noisy data streams of the advanced detectors. Data analysis of targeted
search extract any possible signal from the white Gaussian noise by cross-correlating the
discrete-time sequences of the detector data against a large set of theoretical waveform
templates as �lters. [110] In signal processing, this technique allows us to e�ciently
extract faint gravitational-wave signals of known form from a noise-dominated data and
the matched �lter is obtained as the optimal linear �lter for maximizing the SNR in the
presence of additive stochastic noise. In a similar way, I investigate the correlation of a
theoretically given template waveform (h1) with the one that have been alterated (h2) by
the interaction with the medium. The technique is based on correlating the output of
detectors with waveform templates. The noise-weighted inner product of two time-domain
waveforms h1(t) and h2(t) is de�ned by

〈h1|h2〉 = 4<
fmax∫
fmin

h̃∗1(f)h̃2(f)

Sn(f)
df, (4.67)

where the limits of integration (fmin, fmax) correspond to the upper and lower sidebands
of the detector. The Sn(f) is the power-spectral density due to instrument noise[205] and
h̃∗(f) is the Fourier transform of the respective time series h(t). The expectation value
of the optimal matched �ltering to examine di�erences in waveforms is to measure their
overlap O, which is

O = max
t0,ψ0

〈h1|h2〉√
〈h1|h1〉〈h2|h2〉

≡ 1−M. (4.68)

The overlap is maximalized over the initial time t0 and phase ψ0 of the template wave-
form. It is also related to the mismatchM between signal and template. For a straight
forward derivation of eqs. (4.67�4.68) cf. [206]. The Sn(f) is the power-spectral density
due to instrument noise[205] and h̃∗(f) is the Fourier transform of the respective time
series h(t). The expectation value of the optimal linear �lter (or matched �lter) is by
measure the overlap (4.68) to examine di�erences in waveforms. The power-spectral den-
sity Sn(f) of the detector noise was taken from the average-measured strain-equivalent
noise, or sensitivity, of the aLIGO detectors at Hanford (H1) and Livingston (L1) sites
(within bandwidth 0.125�8192 Hz) at the time the gravitational-wave event designated
`GW150914' was observed. The template h1(f) represents the reconstructed time series of
the gravitational-wave transient signal that was released for event GW150914 by the LSC
and Virgo Collaboration [69, 205]. h2(f) ≡ h1(f + f̂) denotes the signal h1(f) altered by
the small frequency change f̂ , where f̂ ≡ ω̂/2π. The deviation of the altered frequency
f̃ ≡ f + f̂ from the original frequency f is most prominently observed in the interval
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Figure 4.4: The dashed blue line represents the identity map, whereas the solid orange line
shows the expected deviation in frequency for transient event GW150914 after it crossed the
medium. The frequency shift is very small for the speci�c system examined here, therefore f̂
was ampli�ed by a factor of 1012 to better illustrate the nature of this phenomenon.

of 110�380 Hz in the frequency domain, known as super-low frequency. The change of
frequency in the entire frequency band, speci�c for transient event GW150914 is shown
in Fig. 4.4. The change is very small for the speci�c system I examined, therefore f̂ was
ampli�ed by a factor of 1012 to better illustrate its nature in Fig. 4.4. The rapid growth
of f̃ starting at f = 110 Hz comes to a standstill at a major low peak at f = 220 Hz.
From that point on, f̃ approaches ω̂max/2π at a much slower rate. It also comes to one's
attention that in the kHz regime, the deviation is nearly comparable with the original
frequency f . Due to the non-linear change in frequency, the signal distortion exhibits a
complex behaviour. Fig. 4.5 shows the magnitude of the original and the altered signal
� where f̂ was ampli�ed by a factor of 1012 � from GW150914 (h1 and h2, respectively)
versus the frequency in the band 100�250 Hz.

To measure the actual di�erence between the original signal and the frequency-altered
counterpart, I calculated the overlap (4.68) for Hanford detector's PSD (due to its better
sensitivity in low-frequencies compared to L1). Consequently, the overlap is OH1 =
0.970995 for a signal h2(f) in which the contribution of f̂ was ampli�ed by a factor of
1012. Apart from demonstrational purposes (cf. Figs. 4.4, 4.5) the ampli�cation was
required to appropriately increase the numeric working precision which would not have
been large enough to suppress numerical errors otherwise. Fig. 4.6 shows the UPEs of
h1(f) and h2(f) (same as in Fig. 4.5) projected onto sensitivity curves of aLIGO detectors.

4.6 Summary of GW�matter interaction

In order to provide a more accurate picture of expected waveforms for direct detection,
I have carried out a general study on the interaction of gravitational waves with mat-
ter. I have considered the wave passing through a vast spherical assemblage of cold,
compressible gas, called a GMC. Gravitational waves were treated as linearized metric
perturbations embedded in an interior Schwarzschild spacetime that belongs to nebula.
The perturbed quantities lead to the �eld equations governing the gas dynamics and de-
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Figure 4.5: The upper peak envelope of the coincident signal in GW150914 h1(f) (dashed blue
line) and its frequency-altered counterpart h2(f) (solid orange line) in frequency regime above
100 Hz. As in Fig. 4.3, the frequency shift f̂ in the argument of h2 has been ampli�ed by 1012.
Both curves are �tted on maxima points by cubic spline interpolation.

scribe the interaction of gravitational waves with matter. The �eld equations decoupled
to a set of PDEs of di�erent orders of magnitude by WKB approximation, assuming the
GW-amplitude to relatively slowly vary compared to the rapid oscillation of the phase.
In the frame of WKB approximation, the dispersion relation indicates three distinct de-
generate modes of polarization. Two of them are regular and correspond to gravitational
and sound waves obeying the transport equations along rays (determined via Hamilton's
ODEs on characteristic hypersurfaces), whereas the zero-frequency one is singular and
represents non-propagating density and vorticity perturbations of the dispersive medium.
See corresponding result in Refs. [196�198]. In regular case, the primary amplitudes
follow null-characteristics (cf. Sec. 4.4.2), whereas the obtained transport equation of
secondary amplitudes depends upon gas density in geometrical-optics limit.

The principal result established in this chapter is the demonstration that in the frame-
work of post-geometrical optics, the transport equation of secondary amplitudes provides
numerical solutions for the frequency shift f̂ . On the grounds that the energy dissipating
process is responsible for decreasing frequency, f̂ is bound to be negative, yet extremely
small compared to the unaltered frequency f .

As an illustrative example, I considered a nebula with a mass assigned to an average-
sized GMC, namely 105 M� and a diameter of 100 parsecs (typically ranges 5�200 parsecs).
Whereas the average density in the solar vicinity is one particle per cubic centimeter, the
average density of a GMC is a hundred to a thousand times as great. (See, e.g. Table 1
and the Appendix of [207].) In fact, even in such a dense environment, for any unaltered
frequency that falls within the bandwidth of current advanced ground-based detectors
the frequency shift still remains so small (ca. 10−11 Hz) that its in�uence is practically
untraceable: the resulting mismatchM between measurement and expectation was barely
2.9005 × 10−14. Despite the fact that the frequency-shift pattern exhibits a power-law
relationship between f and f̂ , such small changes in the frequency will still remain far
below the frequency resolution of third-generation detectors.

For sources in the 1�2 kHz frequency range, the in�uence of the interaction on the
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Figure 4.6: The upper peak envelope of GW strain amplitude of the coincident signal in
GW150914 h1(f) (solid red line) and its frequency-altered counterpart h2(f) (solid green line)
are projected onto the sensitivity curve of LIGO detector at Hanford (thin light blue line) in the
full bandwidth of the detector. As in Figures 4.4 and 4.5, the frequency change f̂ ampli�ed by
1012 in the argument of h2.

signal may increase signi�cantly compared to that of the value on initial frequency of
100�200 Hz. Such high-frequency signals are expected to be emitted from the post-
merger phase of low-mass NS mergers such as the GW event GW170817, which originated
from a BNS system. [73] The dominant frequency of the post-merger signal from two
NSs (each with mass 1.2 M� and with the EOS LS220) was computed at 2.56 kHz by
relativistic simulations. [208] It is also noteworthy that mergers of the above-mentioned
sources are detectable over much greater distances than those of stellar-mass BBHs such
as GW150914, which was emitted from a BBH system of chirp mass M = 28.2+1.8

−1.7 M�
(cf. de�nition in (1.6)) at a luminosity distance dL = 440+160

−180 Mpc. Moreover, even higher
frequencies (3�4 kHz) of quasi-periodic signals are expected from the formation of the
hypermassive NSs. [68]

Another possibility to signi�cantly `boost' the e�ect is to increase the density of the
environment by taking AGN into consideration. Suppose that an event of dynamical
merger occurs in the central region of an AGN and it is observed over its dissipative ac-
cretion disk. In this extremely favorable but rare angular position, f̂ might be su�ciently
large to be measured.
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Appendix A

Appendix

A.1 Components of the stress�energy tensor for non-

perfect �uids

I will enumerate the non-vanishing components of the NPF stress�energy tensor (TNPF)µν
referred in eq. (3.53b). To explicitly evaluate them, the arithmetic operations in eqs.
(3.30�3.27) have to performed. The non-vanishing components of the zeroth-order are

(TNPF
0 )1

0 = −eλ0−ν0(TNPF
0 )0

1 =
1

4
e−ν0/2 [8κT ′ + (12η − κT ) ν ′0] , (A.1)

those of the �rst-order are

(TNPF
1 )2

2 + (TNPF
1 )3

3 − 2(TNPF
1 )1

1

r
=
e−ν0/2

r

(
A0v1 + ηλ̇1

)
(TNPF

1 )1
0 = −eλ0−ν0(TNPF

1 )0
1 = e−ν0/2

[
3ην ′0ν1 −

(
η − 1

4
κT

)
ν ′1

] (A.2)

with an only radial-dependent coe�cient

A0 = η

[(
1 + 3eν0−λ0

)
ν ′0 − 9λ′0 −

2

r
eλ0
]

+ κ [Tν ′0 − 8T ′] . (A.3)

In view of (A.2), it is evident that to abide by the nature of harmonic time-dependence,
a relation of the form

(ṪNPF
1 )1

0 = i
Ω

c
(TNPF

1 )1
0 (A.4)

is implied. According to the de�nition (3.51), this implication requires

v̇1 = −Ω2

c2
ξ1 − i

Ω

c

(TNPF
1 )1

0

p̄0 + ε̄0
(A.5)

to hold. In regard to to eq. (A.5), the expression eλ0−ν0(ṪNPF
1 )1

0 is combined with T given
by eq. (3.60) to compose

S1 = −1

2
(TNPF

0 )0
1(λ̇1 + ν̇1) +

(TNPF
1 )2

2 + (TNPF
1 )3

3 − 2(TNPF
1 )1

1

r
(A.6)
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which �rst appears in eq. (3.71). Substituted with the set of eqs. (A.1�A.5), the expres-
sion unfolds as

S1 =
e−ν0/2

r

(
ηλ1 + A0ξ1 − A0

(TNPF
1 )1

0

p̄0 + ε̄0

)
− 1

2
(TNPF

0 )1
0(λ1 + ν1). (A.7)

Next to the S1, another quantity, expressed by

S2 = e−(λ0+2ν0)/2 d

dr

[
eλ0+2ν0

r2

(
∂N̄0

∂p̄0

)−1
d

dr

(
r2e−(λ0+2ν0)/2N̄0

(TNPF
1 )1

0

p̄0 + ε̄0

)]
. (A.8)

appears in di�erent forms the pulsation equation, namely in eqs. (3.87) and (3.84).
Together, they constitute the expression i(ΩS1 − Ω−1S2) which represents the source of
inhomogenity of the SL equation.

A.2 Geometrized units

Throughout the dissertation, I adopt a system of so-called `geometrized' units, often used
in general relativity, in which the base physical units are chosen so that

the speed of light: c = 2.9979× 108 m/s,
the reduced Planck constant: ~ = 1.0546× 1034 J s,
the electric constant: ε0 = 8.8542× 1012 A2 s4 kg−1 m−3,
the Boltzmann constant: kB = 1.3806× 1023 J K−1

(A.9)

are all set equal to unity. In this system, every time interval is interpreted as the distance
travelled by light during that given time interval. Consequently, physical quantities such
as mass, energy, and momentum are identi�ed with the magnitude of a timelike vector
and acquire the geometric dimension of length, whereas velocity, force, and power are di-
mensionless. The desired SI unit of (kgα mβ sγ) can always be recovered from geometrized
units of (mα+β+γ) by multiplying with the conversion factor G−αc2α−γ. Table A.1 provides
conversion factors for some commonly used kinematical variables are listed below where
SI units are expressed in corresponding geometrized units.

Variable SI unit Geometrized unit Factor Geometrized unit → SI unit
mass kg m G−1c2 1 m → 1.3466× 1027 kg
length m m 1 1 m → 1 m
time s m c−1 1 m → 3.3356× 10−9 s
energy kg m2 s−2 m G−1c4 1 m → 1.2102× 1044 kg m2 s−2

energy density kg m−1 s−2 m−2 G−1c4 1 m−2 → 1.2102× 1044 kg m−1 s−2

momentum kg m s−1 m G−1c3 1 m → 4.0370× 1035 kg m s−1

angular momen. kg m2 s−1 m2 G−1c3 1 m2 → 4.037× 1035 kg m2 s−1

velocity m s−1 dimensionless c 1 → 2.9979× 108 m s−1

acceleration m s−2 m−1 c2 1 m−1 → 8.9875× 1016 m s−2

Table A.1: Geometrized units for some commonly used kinematical variables. To convert
geometrized unit to SI unit, multiply by the factor (G−αc2α−γ) with appropriate exponents to
obtain the units desired. And for the reverse conversion, from SI unit to geometrized unit, divide
by the same factor. (For reference, cf. Ref. [209])
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Fig. (3.3) exposes that the radius of neutron stars typically varies from about 10
to 14 kilometres. In fact, if kilometres are chosen as the characteristic length scale in
the discretized stellar structure models, the total mass, energy-density, and pressure of
neutron stars become comparable in geometrized units. For polytropic equations of state
(3.3) with arbitrarily chosen value of polytropic index

n = (Γ1 − 1)−1, (A.10)

the corresponding `polytropic constant' K is given by

K = 2× 1012GΓ1−1c4−2Γ1 (A.11)

in units of m2Γ1−2 where Γ1 is the adiabatic index 3.7. In particular, I evaluate models
for the following values of K and n: (n = 1, K = 100 km2), (n = 0.8, K = 700 km2.5),
(n = 0.5, , K = 2× 105 km4).
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