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The presented doctoral dissertation covers a range of actively sought fields of research in
gravitational-wave astrophysics, divided into three broad topics. With the advent of the era
of multi-channel astronomy, the demand both for fast and accurate prediction of theoretical
waveforms and for improving models of plausible astrophysical sources has renewed significantly.

I first address the issue of computationally efficient generation of predicted waveform tem-
plates. A large number of theoretically predicted waveforms are required by matched-filtering
searches for the gravitational-wave signals produced by compact binary coalescence. In order
to substantially alleviate the computational burden in gravitational-wave searches and param-
eter estimation, I propose a novel reduced-order model approach for inspiral waveforms of
non-spinning compact binaries that evolve on eccentric orbits. Inspiral waveform templates
for spinning compact binaries produced by such a method have proved highly effective and
are already available in the LIGO Scientific Collaboration’s Algorithms Library (LAL). The
inspiral evolution is adequately described by using third-and-a-half post-Newtonian (3.5PN)
accurate equations of motion of the binary while the far-zone radiation field is determined by
a simultaneous evaluation of analytic waveforms, involving all high-order relativistic contribu-
tions up to second-and-a-half (2.5PN) post-Newtonian order beyond the Newtonian order. I
provide a singular value decomposition-based reduced-order method in the frequency domain
to represent any waveform within the parameter range of the model with optimal accuracy
and precision. I construct efficient reduced bases comprized of a relatively small number of
the most relevant waveforms over 3-dimensional parameter-space covered by the template bank
(total mass 2.15M, < M < 215M,, mass ratio 0.01 < ¢ < 1, and initial orbital eccentricity
0 < ey <0.95). The ROM is designed to predict signals in the frequency band from 10 Hz to
2 kHz for aLIGO and aVirgo design sensitivity. Beside moderating the data reduction, finer
sampling of fiducial templates improves the accuracy of surrogates. Considerable increase in
the speedup from several hundreds to thousands can be achieved by evaluating surrogates for
low-mass systems especially when combined with high-eccentricity.

Binary neutron-star mergers are among the most promising sources of multi-channel as-
tronomy. For this reason, events accompanying oscillations of neutron stars provide invaluable
insight into the inner structure of neutron stars. Energetic explosive events associated with
gamma-ray bursts or X-ray radiation perturb these stars, and the resulting dynamical be-
haviour may eventually be deduced from both electromagnetic and gravitational observations.
Observations from the current and future missions of space-based radio telescopes will impose
stricter constraints on plausible equation of states by yielding the mass and radius of a few
stars to ~ 5% precision. Therefrom, the next chapter is dedicated to presenting my variational
formulation of the linearized dynamical equations governing small adiabatic radial oscillations
of neutron stars. The interior structure, that relies on accurate stellar models, may be probed
by the frequency spectrum of neutrons-star oscillations. These oscillations occur when a star is
perturbed away from its dynamical equilibrium and a restoring force tries to return it back to
that equilibrium state. The dynamical equations are derived by taking into consideration those
effects of viscosity and thermal conductivity of neutron-star matter which directly determine
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the minimum period of observable pulsars. The period of stellar oscillations for non-relativistic
stars is in the range of minutes, whilst for neutron stars the periods are much shorter, typically
range from 0.2 to about 0.9 milliseconds. A variational principle is applied to determine the
eigenfunctions with a discrete set of complex eigenvalues. The real and imaginary parts of
eigenvalues represent the squared natural frequencies and relaxation time of radial oscillations
of non-rotating neutron stars, respectively. Moreover, I provide a suitable framework which
may be supplemented with various potential species of cold-nuclear-matter models to compute
the spectra of the normalized eigenfrequencies with a certain numerical precision. I provide a
qualitative estimation of the rate at which viscosity and thermal conductivity drain the kinetic
energy of radial oscillation mode in reasonably homogeneous neutron stars, without relying on
explicit numerical computations.

Potentially detectable gravitational-wave signals are expected to be of extragalactic origin.
Therefore, their sources are likely to be obscured by dust or gas in addition to the Milky Way’s
stellar halo through which the gravitational waves have to pass on their way to our ground-
based detectors. The improving sensitivity of second-generation laser-interferometric detectors
and envisaged plans for even more sophisticated instruments have inspired me to investigate
the propagation of locally plane, small-amplitude, monochromatic gravitational waves through
cold compressible interstellar gas, in order to provide a more accurate picture of expected
waveforms for direct detection. The quasi-isothermal gas is concentrated in a giant molecular
cloud held together by self-gravitation. Gravitational waves can be treated as linearized per-
turbations on the background spacetime. The perturbated field equations that govern the gas
dynamics and describe the gravitational-wave-matter interaction are decoupled asymptotically
for monochromatic high-frequency waves to a set of partial differential equations of different
orders through a second-order Wentzel-Kramers—Brillouin method. Three distinct degenerate
modes of polarization are revealed, corresponding to gravitational and sound waves propagating
along null geodesics of the background spacetime and a zero-frequency mode that corresponds
to non-propagating density and vorticity perturbations of the dispersive medium. I have shown
that the transport equation for the gravitational-wave amplitudes in post-geometrical optics
provides numerical solutions for the frequency shift of gravitational waves that are expressed by
varying sinusoidal components of Fourier series. The decrease in frequency is driven by energy
dissipation via interaction of gravitational waves with interstellar matter. The decrease is signif-
icantly smaller than the magnitude of the original frequency and too small to be detectable by
present second- and planned third-generation detectors. The frequency-shift exhibits a power-
law relationship between original and decreased frequencies and I examined it particularly for
the transient signal GW150914.
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A doktori értekezés a gravitdcidshullam-asztrofizika aktivan kutatott teriiletei koziil hdrom
atfogo témakort olel fel. A tobbesatornds csillagaszat korszakanak kezdetével jelentGsen megnétt
az igény mind az elméleti hullaimformdk gyors és pontos elGéllitasa, mind pedig a valészintisithetd
asztrofizikai forrasok modelljeinek tovabbfejlesztése irdnt.

El6szor az elméleti hullamformasablonok szamitdsi szempontbdl hatékony elGéllitdasdnak
kérdésével foglalkozom. A kompakt kettSs rendszerek 6sszeolvaddsdbdl szarmazoé gravitacios-
hulldm-jelek célzott keresése és a rendszer asztrofizikai paramétereinek becslése sordn nagyszamu
elméleti hullamforma sziir6ként torténé haszndlatara van sziikség. Annak érdekében, hogy a
szamitégépes erdforrdasok igénybevételét jelentGsen csokkentsem a jelkeresés és paraméterbecslés
sordn, un. ,csokkentett rendd modelleket” (ROM: reduced-order model) alkalmazok elliptikus
palyan kerings kompakt kettds rendszerek altal sugdrzott gravitdcios hullimok elGéllitdsdra.
Ezek a modellek rendkiviil hatékonynak bizonyultak gyorsan forgé komponensekbdl &ll6 kom-
pakt kettds rendszerek hullamformainak elGéllitasara és elérhetGek a LIGO Tudomédnyos Egyiitt-
miikodés adatelemzési algoritmusainak gytjteményében (LAL). A befelé spirdlozé kompakt
kettds rendszerek fejlédésének megfelels leirasara egy negyedfél rendi poszt-newtoni kozelitésben
(3,5 PN) megadott mozgdsegyenleteket haszndlok, amivel egyidejiileg torténik a sugdrzési tér
meghatdrozasa analitikus hullamformdak segitségével, melyek a Newton-féle rendet kovetd har-
madfél rendig (2,5 PN) megjelend minden relativisztikus jarulékot tartalmaznak. Egy szin-
guldris értékek szerinti felbontdson (SVD) alapulé dimenziécsokkentési vagy jellemzdszelekeios
eljarast (ROM) mutatok be, amivel a frekvenciatérben abrézolt hullimforma-gytijtemény sok-
dimenzids cimkézett adatpontjait igy transzforméljuk egy alacsonyabb dimenzids altér tenge-
lyeire, hogy nagy pontossdggal reprezentdlhaté marad az eredeti adat (kiindulé hulldmformak
adatmédtrixa) és barmely mds hulldimforma alacsonyabb rangu kozelitése a gytjtemény &ltal
lefedett paramétertartoméanyban. Az adat variancidjdt legjobban megérzé alacsonyabb dimen-
zi6s projekciét gy kapjuk, hogy a projekciés maétrixot a legnagyobb sajatértékhez tartozo
sajatvektorbol képezziik (a kozelités eltérését Frobenius-normaban mérjiik), és hogy az eltérs
osztdlyd pontok minél kevésbé keveredjenek az 1j altérben. A redukdlt bazist viszonylag kis-
szamu leglényegesebb hullamformabdl képzem. A vizsgdlat az aLIGO és aVirgo masodik ge-
nerécios foldi interferometrikus gravitaciéshullam-detektorok érzékenysége szempontjabdl 1énye-
ges 10 Hz és 2 kHz frekvenciatartomédnyba es§ 2.15M, < M < 215M Ossztomegt; 0.01 <
q < 1 tomegaranyi; és 0 < eg < 0.95 kezdeti pédlyaexcentricitdssal rendelkezé konfiguraciok
hdaromdimenziés paraméterterét fedte le. A helyettesité hullamformamodellek pontossagat
novelheti a mérsékeltebb adatcsokkentés mellett a kiinduldsi hulldimformasablonok finomabb
mintavételezése (finomabb frekvenciafelbontds). JelentGs gyorsulds érhetd el a hulldimforma-
szamitds sordn, amely néhany szaztol tobb ezerszeres mértéki is lehet, kiilondsen alacsony
tomegl és magas palyaexcentricitdsi kompakt kettds rendszerek helyettesité hullamformainak
kiértékelése soran.

Az 6sszeolvadd neutroncsillagok a tobbcesatornads csillagaszat legigéretesebb forrdasai kozé tar-
toznak. Fzért a neutroncsillagok rezgéseit kiséré események felbecsiilhetetlen értékii betekintést
engednek a neutroncsillagok belsé szerkezetébe. A gamma-kitorésekhez vagy rontgensugédrzashoz
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kapcsol6dé nagyenergidji események zavarokat okoznak ezekben a csillagokban, és az ebbdl
adédé dinamikus viselkedés mind elektromdagneses, mind gravitdciés megfigyelésekbdl kinyer-
hets. A jelenleg miikods és tervezett rdadidesillagdszati trtdavesovek megfigyelései szigoribb
korldtozdsokat fognak kiszabni az elképzelhets dllapotegyenletekre azaltal, hogy néhany neut-
roncsillag tomegét és sugarat ~ 5%-os pontossdggal meghatdrozzak. A kovetkezs fejezetet tehdt
a linearizalt dinamikai egyenletek varidciés modszerek segitségével torténd hatdrozdsanak szen-
teltem. Ezek az egyenletek szabdlyozzak a neutroncsillagok adiabatikus radidlis pulzaciojat
(melyet azonban nemadiabatikus folyamatok gerjesztenek). A neutroncsillag belss szerkeze-
te, amelyet pontosan megadott csillagmodellek hatdroznak meg, az alaprezgéseinek frekven-
ciaspektruméan keresztiil feltérképezhetové vilik. Ezek a csillagrezgések akkor fordulnak eld,
amikor egy zavar kimozditja a csillagot dinamikus egyensilydbdl, egy visszatérit§ erd pedig
megprobélja helyredllitani az egyensiilyi dllapotot. A dinamikai egyenleteket a neutroncsillag
anyagénak transzportjelenségeinek (viszkozitds és hovezetés) figyelembevételével hatdrozzuk
meg; ezek kozvetleniil meghatdrozzdak a megfigyelhetd pulzarok minimaélis periddusdt. A nem-
relativisztikus csillagok rezgésének periédusideje perces nagysdagrendi. Ezzel szemben a ne-
utroncsillagoknal sokkal rovidebb, jellemzden 0,2 és 0,9 milliszekundum ko6zé esé periédusidé
mérhets. A sajdatértékek valos és képzetes része a nemforgé neutroncsillagok radidlis rezgéseit
jellemz6 csillapitatlan sajatfrekvencidk négyzetének, illetve relaxacios id6 inverz négyzetének fe-
lel meg. Konzisztens elméleti keretet biztositok, amely a hideg stirti maganyagot leiré kiilénféle
potencidlis modellekkel kiegészitve lehet6vé teszi az egyes modellekhez tartozé normalizalt
sajatfrekvencidk spektrumanak adott numerikus pontossagu kiszamitasat. Azonfelill nagysag-
rendi becslést adok arra, hogy meglehetésen homogén anyag esetén a neutroncsillag anyaganak
viszkozitdasa és hévezetése milyen mértékben csapolja meg a radidlis rezgés energidjat anélkiil,
hogy explicit numerikus szémitdsokra tamaszkodnék.

A potencidlisan észlelhet§ gravitdacidshullam-jelek varhatéan extragalaktikus eredettiek. Ezért
valoszintileg forrasaikat a csillagkozi por és géz fedi el, ezenfeliil a Tejut haldjén dthaladva a
hullamok hosszi utat tesznek meg a f6ldi detektorokig. A médsodik generacios lézer-interferomet-
rikus detektorok érzékenységének javuldsa és a kilatdsba helyezett még fejlettebb miiszerek arra
0sztonoztek, hogy vizsgdljam meg a lokalisan sik, kis amplitidéji, monokromatikus gravitacios
hulldmok terjedését hideg Gsszenyomhaté csillagkozi gazban annak érdekében, hogy pontosabb
képet kapjunk a kozvetlen detektdldsra varhaté hullamformékrol. A kvézi-izotermikus gdz egy
6rids molekuldris felh6ben koncentralédik, amelyet a sajat gravitacidja tart 6ssze. A gravitdcids
hulldmok az 6rids molekularis felh§ altal kialakitott ,hattér” térids linearizalt perturbacidiként
kezelhetGek. A médsodrendd Wentzel-Kramers—Brillouin-eljaras aszimptotikusan rendenként
szétcsatolja a perturbdlt téregyenleteket — amelyek irdanyitjak a gdz dinamikajat és leirjak a
gravitdciés hullim—anyag kolcsonhatdast — monokromatikus magasfrekvencids hulldmok parcidlis
differencidlegyenletek rendszerére. Harom kiilonféle degeneralt polarizdciés mod jelenik meg,
amelyek a ,hdttér” térid6é fényszerd geodetikus gorbék mentén terjeds gravitdcids és hang-
hullamoknak, valamint az anyagi kézeg nullfrekvencids siirtiség- és drvényességperturbédcidinak
felelnek meg. Megmutattam, hogy a gravitdciés hullam amplitidéinak transzportegyenlete
posztgeometriai optikai kozelitésben megoldédsokat biztosit a Fourier-sorba fejtett gravitacios
hullam komponenseinek frekvenciaeltoléddsdra. A frekvenciacsokkenés a gravitdciés hullamok
csillagkozi anyaggal torténd kolcsonhatasa soran felléps energiaveszteség kovetkezménye. A
csOkkenés lényegesen kisebb az eredeti frekvencia nagysdgrendjénél; tul kicsi ahhoz, hogy a
jelenleg miikodd masodik, valamint tervezett harmadik generaciés detektorokkal kimutathato
legyen. A frekvenciaeltolédds hatvanyfiiggést mutat az eredeti frekvencidkkal, és ezt meg-
vizsgaltam specidlisan a GW150914 tranziens jelre.
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Preface

The first direct detection of gravitational waves (designated ‘GW150914’), made on Septem-
ber 14, 2015 by LIGO (Laser Interferometer Gravitational-Wave Observatory), was a sig-
nificant milestone in the history of astrophysics, which led to the birth of an entirely new
field of observational astronomy; the gravitational-wave astronomy. Gravitational-wave
detections provides astronomy with a revolutionary new tool for probing the universe
through ripples in spacetime, in addition to more conventional means of observation of
EM (Electromagnetic) radiation. The increased sensitivity of second-generation laser-
interferometric detectors operated by the Europe-based aVirgo (Advanced Virgo) and
the US-based aLIGO (Advanced LIGO) provided us the much-anticipated joint detec-
tion of a GW signal (GW170817) and EM radiation (GRB 170817A) from a binary of
colliding neutron stars for the first time. The brief gamma-ray burst from the collisions
was recorded on August 17, 2017 by ESA’s INTEGRAL and NASA’s FERMI gamma-ray
satellites only 1.7 sec after the LIGO. Due to the tremendous technological advances,
the number of observed events is exploding. The first catalogue of GW transient events
(GWTC-1), released on Dec 1, 2018, contains the properties of a total of 11 confirmed
events discovered during the first and second observing runs of the global network of
advanced gravitational-wave detectors.

Our fundamental understanding of the Universe has predominantly been relying on
observations of EM radiation, emitted by various types of astrophysical sources across the
EM spectrum. The early second half of the 20th century was marked by the emergence
of new types of astronomy (radio, infrared, X-ray and gamma-ray) by which astronomy
was transformed from a purely optical science to a multi-wavelength discipline. Pulsars
and quasars were discovered in the 1960s to be strong sources of radio waves, and in
1964 the accidental discovery of the CMB (Cosmic microwave background) in microwave
region of the radio spectrum implied a compelling evidence of the Big Bang origin of
the universe. In infrared band, spectral lines and features of cold dust in the interstellar
medium of galaxies are most prominent. Higher energy or shorter wavelength photons
are studied by ultraviolet (for hot young stars and evolution of galaxies), X-ray (for AGN
(Active galactic nucleus)s, supernova remnants) and gamma-ray astronomy (for distant
high-energy objects, blazars, hypernovae). The following decades witnessed humanity’s
first space exploration and the technological advances enabled both ground- and space-
based experiments of improved precision measurements, such as the measurements of
CMB anisotropies by COBE (Cosmic Background Explorer) and WMAP (Wilkinson Mi-
crowave Anisotropy Probe), and the high-precision estimation of Hubble’s constant using
photometric redshift catalogues based on SDSS (Sloan Digital Sky Survey). Therefore,
neutron star oscillations may impact on a range of observations, involving in particular
radio and X-ray timing and gravitational waves. The possibility that radial oscillations
of neutron stars give rise to oscillations observed within radio subpulses of pulsars was
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proposed by V. Boriakoff [6] in 1976. X-ray and 7-ray burst events have been generally
associated with neutron stars by many authors e.g. |7]. Periodicities have been observed
in X-ray bursts, which has raised considerable interest in radial [8] and other types [9]
of neutron-star oscillations since the early 1980s. Bursters exhibit periodic and rapid
increases in luminosity (typically a factor of 10 or greater) when an enormous amount of
energy deposited in oscillation modes is released in a short period of time through heat
outflow via neutrino emission. [10] Physically, some mass from the stellar interior is drawn
toward the surface where the hydrogen fuses to helium which accumulates until it fuses
in a burst, producing X-rays. After the subsequent emission of thermal photon from the
surface, the crust thermally relaxes toward equilibrium with the core. X-ray observations
from the recently lunched NICER (Neutron Star Interior Composition Explorer) mission
[11] and from the upcoming LOFT (Large Observatory for X-ray Timing) mission [12] will
yield the mass and radius of a few stars up to ~ 5% precision. The observations of CBC
(Compact binary coalescence) events by gravitational-wave detectors such as the tran-
sient signal GW170817 will also dramatically improve our understanding of ultra-dense
matter in neutron stars. Further interest in the study has been stimulated by [13], where
~v-ray bursts were assumed to originate as results of collisions between strange stars at
cosmological distances. Even though radial oscillations of strange stars are expected to
be damped rapidly [14], such strange stars during their short time-scales are likely to be
promising targets for multi-messenger observations. For most stellar models, the periods
(typically ranging from 0.2 to about 0.9 milliseconds) depend on the stellar model and
its central density [15|, while the relaxation time is in the range of 0.1 — 0.3 seconds.
Therefore, the study of oscillation spectra and relaxation times of neutron stars could be
very valuable as their dynamical behaviour may eventually be deduced from observations.

CBCs such as stellar-mass BBH (Binary black hole)s and BNS (Binary neutron star)s,
are among the most promising GWs sources for ground-based GW detectors. [16]. Bi-
naries that evolved through typical main sequence evolution |17] are expected to shed
their formation eccentricities over time due to gravitational radiation reaction. For this
reason, isolated compact binaries are commonly assumed to move on quasicircular orbits
by the time they spiral into the sensitive frequency band of terrestrial GW observatories.
[18, 19] Some relatively young sources, nevertheless, which had too short time for the
gravitational radiation reaction to completely circularize their orbits retain some residual
eccentricity. [20] Therefore, CBC inspirals with non-negligible orbital eccentricities are
plausible sources. [18] Some results [21, 22| support the qualitative conclusion that ne-
glecting residual orbital eccentricities (even small ones) in CBCs may seriously deteriorate
matched-filter detection performance. A number of possible astrophysical scenarios and
mechanisms allow the formation of observationally relevant eccentric ultracompact bina-
ries (cf. [23-25]). Short-period CBCs may form by dynamical capture in dense stellar
enviroments, present in both galactic central regions and globular clusters, or by tidal
capture of compact object by NS (Neutron star)s; this phenomenon is described in great
detail in [26-28]. Stable hierarchical triple star-systems may form in globular clusters
where multi-body interactions are involved. It has been estimated that ~ 30% of binaries
formed in systems where the Kozai resonance increased the eccentricity of the inner bi-
nary will have initial eccentricities ey > 0.1 when they enter the frequency window of the
aLIGO. [29] The great majority (~ 90%) of stellar-mass BH (Black hole) binaries formed
by scattering in AGN containing a supermassive BH have eq > 0.9, where ¢y denotes the
initial eccentricity of the binary by the time it enters the lower part of the frequency band
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of detectors. |27] Roughly 0.1 — 10 eccentric inspiral events per year up to redshift z ~ 0.2
are anticipated to be discovered by LIGO-type observatories. [23] One of the key goals of
GW observatories is to measure the intrinsic parameters of coalescing BNSs. Moreover,
Favata (2014) pointed out that neglecting initial eccentricities ey = 0.002 causes system-
atic errors that exceed statistical errors in aLIGO measurements. [30] Since the phasing of
the GW signal is significantly more important for parameter estimation, and eccentricity
modifies the phasing beginning at 1.5PN (Post-Newtonian) orders, eccentricity corrections
to the PN phase have to be included at leading order.

Motivation and academic engagement

On the advent of the multi-channel astronomy, the demand both for computationally ef-
ficient generation of predicted waveforms (in Chapter 2) and for theoretical investigation
of plausible astrophysical sources, such as BNS or BH-NS systems, has renewed signif-
icantly. The potential to observe BNS and BH-NS coalescence events motivated us to
study the NS oscillations (in Chapter 3) and investigate their thermal relaxation at the
neutrino cooling stage that directly determine a minimum period of observable pulsars.
They provide us with unique insights into the physics of the extremely dense and cold
nuclear matter, which cannot be reached in terrestrial experiments. The ever-increasing
sensitivity of instruments prompts us to discover, gradually reduce and eventually elimi-
nate potential new effects that may lead to the degradation of signal detectability, such
as interaction of gravitational waves with matter (in Chapter 4). The presented doctoral
dissertation covers a wide range of actively sought fields of research which can be divided
into three major topics, accordingly.

The pieces of academic research set out in the doctoral dissertation were conducted at
Wigner Research Centre for Physics in the position of junior research fellow from 2013,
then as assistant research fellow since 2016. I was enrolled in the Particle Physics and
Astronomy Doctoral Program of the Doctoral School of Physics at E6tvos Lordand Univer-
sity from 2013 to 2016. The Gravitational Physics Research Group, led by my supervisor,
Dr. Méatyas Vasiith, is dedicated to the study of gravitational phenomena in nature, cov-
ering a wide range of subjects in numerical and post-Newtonian general relativity, and
as a member of Virgo Collaboration it is engaged in gravitational-wave experiments and
developing related algorithms. T have also got involved in the collaborative effort of the
broader gravitational-wave science community to pursue groundbreaking discoveries in the
field of gravitational-wave astrophysics. In the autumn of 2015, the Virgo Membership
Committee approved my nomination for addition to the author list of joint LSC-Virgo
publications, which consists of a narrower group of members (currently about 1,200 peo-
ple). In behalf of my membership, I have appeared as co-author on over 70 peer-reviewed
research articles as of today. In 2016, together with the entire discovery team from LIGO
Scientific Collaboration and Virgo Collaboration, as one of the authors of the GW150914
announcement paper, I was awarded with the Special Breakthrough Prize in Fundamental
Physics and the Gruber Prize in Cosmology for the first detection of gravitational waves.

In April 2014, T carried out a short-term scientific mission (STSM) at Cardiff Uni-
versity, United Kingdom in the framework of NEWCOMPSTAR program (COST Action
MP1304), where Prof. Bangalore Sathyaprakash and Dr. Michael Piirrer with exper-
tise on reduced-order models, have assisted me on constructing computationally efficient
waveform templates. In April 2018, T was supported by PHAROS program (COST Ac-



tion CA16214) to undertake a study aimed at investigating radial pulsations of neutron
stars under the supervision of Prof. Kostas Kokkotas, Director of Institute for Astron-
omy and Astrophysics at University of Tiibingen, Germany. In 2019, T was awarded two
research grants within the framework of OZGRAV INTERNATIONAL VISITOR FUNDING
PROGRAM and of the NATIONAL TALENT SCHOLARSHIP (“Nemzeti Tehetség Program
— Nemzet Fiatal Tehetségeiért Osztondij” in Hungarian, NTP—NFTC)—lS), supported by
the Australian Research Council and by the Hungarian Ministry of Human Capacities,
respectively. They provided me with the opportunity to carry out a research at Monash
University, Australia, to assess the utilization of phenomenological waveforms that include
very late IMR (Inspiral-merger-ringdown) phases of the CBCs. Dr. Eric Thrane, Data
Theme Leader for OzGrav who supervised my work at Monash University supported my
membership in LSC (LIGO Scientific Collaboration) and in the ARC Centre of Excellence
for Gravitational Wave Discovery (OzGrav).

Structure and components of the dissertation

The body of my dissertation is divided into four chapters, according to their respective
subjects. These main chapters are preceded by a preface which explains the underly-
ing motivation for each subject and highlights the links between them in the context of
contemporary gravitational-wave research.

Chapter 1 is intended to provide a brief overview of the essential scientific background
and basic concepts that are required for the understanding of the pieces of academic re-
search set out in the presented doctoral dissertation. In Sec. 1.1, T begin with a brief
account of major historical milestones of the combined theoretical and technological de-
velopment in gravitational-wave research that led to the discovery of gravitational waves.
The discussion in Sec. 1.2 provides a brief overview of the development of Weber-type
resonant-mass detectors and type of LIGO-type laser-interferometric detectors. It is in-
tended to cover the most relevant issues of instrumentation, noise sources, strain sensitivi-
ties and mission development, including the status of currently operational and upcoming
gravitational-wave detectors across the globe. Sec. 1.3 summarizes observations of gravi-
tational waves, including the first indirect evidence presented by PSR B1913+16, followed
by direct observations of gravitational waves which constitute part of the first GWTC-1
(Ist GW-transient catalogue of compact binary mergers). After reviewing mathematical
notation and conventions in Sec. 1.4, the necessary mathematical preliminaries of pseudo-
Riemannian geometry are presented which lay the conceptual foundations for clear and
intuitive discussion of my own research discussed in the following chapters. The linearized
weak-field equations and the corresponding linear plane-waves solution in the transverse-
traceless gauge are then derived in Sec. 1.5.

Chapter 2 focuses on the issue of generating gravitational waveforms for non-spinning
eccentric compact binaries with reduced computational cost. Sec. 2.1 reviews the devel-
opment of ROM-based models in GW data analysis. Sec. 2.2 starts with the description
of the procedure for generating fiducial PN waveforms by CBwaves, with respect to the
statistics of the cost of computing individual waveforms to estimate the total cost of build-
ing template banks. Sec. 2.3 proposes the simplest strategy (regular spacing) for template
placement in the intrinsic parameter space, followed by the representation of the fiducial
waveform templates on a common, finely sampled and regularly spaced frequency grid.
Sec. 2.4 gives a general description of my approach to construct efficient ROM assembled
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from the reduced bases and their characteristic features, particularly the truncation error.
Sec. 2.5 is dedicated to assessing the overall performance of ROM building, including the
accuracy of the surrogate model and its computational cost relative to that of the fiducial
model. Sec. 2.6 contains the summary of this chapter, including the limitations of the
research and an outlook for future development.

Chapter 3 is dedicated to discourse radial pulsations of relativistic stellar models for
dissipative fluids. Sec. 3.1 places the subject of relativistic stellar oscillations in context.
Sec. 3.2 presents a collection of tabulated EOS (Equation of state)s for four nucleonic and
three non-nucleonic matter models I examined. Then one-piece and piecewise-polytropic
EOSs are discussed, together with hybrid models that extend the validity of polytropic
description to heating and cooling processes. Sec. 3.3 presents the basic equations of
hydrodynamics of perfect fluids and of dissipative fluids in Eckart frame where the equa-
tions of thermal evolution of pulsating neutron stars include radiative transfer. In Sec.
3.4, the Einstein field equations and the generalized Tolman—Oppenheimer—Volkoft equa-
tion are expressed through a pair of effective variables that incorporate time-dependent
dissipative contributions of the neutron-star matter. In Sec. 3.5, I present a variational
method to formulate a lowest-order asymptotic approximation of infinitesimal adiabatic
radial oscillations. Sec. 3.5.3 outlines equilibrium stellar models through a local adia-
batic index which may be regarded as constant near the centre, but in general, varies,
depending on the dynamical regime. Sec. 3.6 deals with the second-order linear ODE
(Ordinary differential equation) of radial pulsations that were derived from the perturba-
tion equations. Sec. 3.6.1 discusses the regular Sturm-Liouville eigenvalue problem for
the natural frequencies of oscillation, imposed by the aforementioned pulsation equation.
Sec. 3.6.2 addresses the characteristic time-scale for the relaxation of dissipation-damped
radial oscillations. Lastly, the principal results established in this paper are summarized
in Sec. 3.7.

Chapter 4 addresses the issue of the interaction of gravitational waves with interstel-
lar matter, in order to provide a more accurate picture of expected waveforms for direct
detection. Sec. 4.1 presents a brief review of previously published studies in the literature
that were engaged in studying the propagation of gravitational waves through interstellar
matter. Sec. 4.2 first discusses the background with physical properties of typical giant
molecular clouds, then its perturbations in detail. In Sec. 4.3 these perturbed quanti-
ties yield the field equations governing the gas dynamics and express the interaction of
GWs with matter. Sec. 4.4 presents the Wentzel-Kramers—Brillouin method for finding
approximate solutions to the perturbed field equations. In this context, in Sec. 4.4.1, the
field equations decoupled asymptotically for locally plane high-frequency monochromatic
waves to a set of second-order homogeneous linear PDE (Partial differential equations)s
of different orders of magnitude. In Sec. 4.4.2 the transport equation for the first-order
secondary amplitudes which depend on the density in geometrical-optics limit are formu-
lated, and subsequently solved in Sec. 4.5.1 for varying sinusoidal components of Fourier
series. In Sec. 4.5.2 first a match-filtering technique is used to correlate the transient GW
signal ‘GW150914" with the corresponding signal affected by the interaction with mat-
ter. Then I bring to light for what kind of possible GW-sources the effect of interaction
is expected to be powerful enough to be taken into consideration in GW data analysis.
Conclusions, remarks and limitations are given in Sec. 4.6.
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Chapter 1

Introduction to gravitational-wave
astronomy

This chapter is intended to provide readers with a review of the essential scientific back-
ground and basic concepts needed to understand the pieces of academic research set out in
the presented doctoral dissertation. In Sec. 1.1, mostly based on [31], I begin with a brief
account, of major historical milestones of the combined theoretical and technological de-
velopment in gravitational-wave research that led to the discovery of gravitational waves.
The discussion in Sec. 1.2 provides a brief overview of the development of Weber-type
resonant-mass detectors and type of LIGO-type laser-interferometric detectors. It is in-
tended to cover the most relevant issues of instrumentation, noise sources, strain sensitivi-
ties and mission development, including the status of currently operational and upcoming
gravitational-wave detectors across the globe. Sec. 1.3 summarizes observations of gravi-
tational waves including first indirect evidence presented by PSR B1913+-16, followed by
direct observations of gravitational waves which constitute part of the GWTC-1. After
reviewing mathematical notation and conventions in Sec. 1.4, the necessary mathemati-
cal preliminaries of pseudo-Riemannian geometry are presented which lay the conceptual
foundations for clear and intuitive discussion of my own research discussed in the following
chapters. The linearized weak-field equations and the corresponding linear plane-waves
solution in the transverse-traceless gauge are then derived in Sec. 1.5. The discourse
of Sections 1.4 and 1.5 is mostly based on the content of comprehensive introductory
textbooks [32-34].

1.1 A brief history of gravitational-wave research

The way for Albert Einstein’s special theory of relativity was paved by Hendrik Antoon
Lorentz [35], who postulated the concept of so-called Lorentz transformation (1.14) in 1904
to explain the invariance of the source-free Maxwell equations under such transformations.
In 1905, Henri Poincaré [36] explicitly formulated that the new spacetime transformation
emitted by Lorentz applies not only to the electromagnetic, but all forces in nature. The
existence of gravitational waves was first proposed by Henri Poincaré as early as June
5, 1905 and subsequently predicted in 1916 by Albert Einstein [37] on the basis of his
gravitational-field equations (1.24) in a weak-field approximation (cf. the linearization
in more detail in Sec. 1.5). The first attempt to define a solution for polarized plane
gravitational waves (1.53) not only in the linearized Einstein theory, but in the full theory



was made by Albert Einstein and Nathan Rosen [38] in 1937, who, however, argued
that such waves could not exist because the metric would have to contain certain physical
singularities.! Tn 1952 Yvonne Choquet-Bruhat [39] provided a proof of the well-posedness
of the Cauchy problem for the Einstein equations, but until 1957 broad consensus has not
been reached among the scientific community about the physical reality of gravitational
waves.

The decisive Conference on the Role of Gravitation in Physics held at Chapel Hill
on 18-23 January 1957 brought about a dramatic change of opinion. The discovery of a
singularity-free solution of a plane gravitational wave that carries energy was announced
by Bondi [40] in his Nature paper. In fact, the first attempt at giving a purely geometric
definition of GWs was made by Felix Pirani who submitted his paper [11] just a few
months before the Chapel Hill conference. He argued that a spacetime containing gravi-
tational radiation should be algebraically special and it should appear as a discontinuity
in the Riemann tensor. In Bondi’s earlier paper, and the subsequent paper written by
Bondi, Pirani, and Robinson [42], plane GWs were defined to be non-flat solutions of
the vacuum Einstein equations which admit as much symmetry as do plane electromag-
netic waves and inferred that such waves transport energy. Analogous to the changing
dipole moment of charge that is necessary for the emission of electromagnetic radiation,
gravitational radiation is emitted by time-varying mass quadrupole moment of the source
(1.77). But unlike EM radiation, the lowest order of gravitational radiation is quadrupolar
and the amplitudes of gravitational radiation from astrophysical sources were expected
to be prohibitively small, which questioned even the existence of gravitational waves for
decades.|43]| Polarized plane gravitational waves (1.53), represented by transverse waves
of spatial strain that propagate at speed of light, are perturbative vacuum solutions to the
linearized weak-field equations (1.46).? Shortly after, Robinson and Trautman [44] found
the first class of exact solutions of the full system of Einstein equations in 1962 which, as
demonstrated in [45], satisfies Trautman’s boundary for spatially confined gravitational
sources and thus describing GWs with closed fronts coming from confined sources. In con-
clusion, the Bondi-Pirani-Robinson papers [10-42] and the Trautman-Robinson papers
[44, 45], which were all published at the turn of the 1950s and 1960s, brought about an
unprecedented rate of development in the theory of gravitational radiation and provided
a firm theoretical foundation for further research and experiments.

The discovery of the first known binary pulsar system, designated PSR1913-+16, by
Hulse and Taylor [46] in 1974 and the subsequent observation of its pulse-arrival times by
Taylor and Weisberg [47] in 1982 provided the first firm observational evidence for the exis-
tence of gravitational waves. The groundbreaking discovery and analysis of PSR1913-+16
earned them the 1993 Nobel Prize in Physics and led to the recognition that direct ob-
servations of gravitational waves would offer the potential of new insight into some of the
most extreme, compact objects in the universe. For further details about PSR1913+16,
cf. Sec. 1.3.1. The developement of NR (Numerical relativity) methods begins with
linearized theory and the PN approximation (c¢f. 1.5.6). PN approximation (in first-
order) was first put into use by Einstein [37] for calculating relativistic corrections to the

1 Later, it was revealed by H. Robertson that the Rosen’s argument was invalid because the singularities
were induced by a wrong choice of coordinates and the solution may in fact be interpreted as a cylindrical
wave.

2The amount by which the ripples of the perturbation stretches and contracts measurements of space
is referred to as the ‘strain’.



perihelion precession of Mercury’s orbit in 1915. However, the systematic study of PN ap-
proximations was, infact, conducted in the 1960s by the seminal works of Chandrasekhar
[48] and co-workers. Numerical methods are used among other things, to predict the
gravitational waves emanating from CBCs (cf. Sec. 2.2.1).

1.2 Gravitational-wave observatories and data analysis

This section gives a brief overview of gravitational-wave observatories (or gravitational-
wave detectors) devised to measure the subtle effects of stretching and compressing of
space that are caused by passing gravitational waves. Sec. 1.2.1 draws the reader’s
attention to the earlier, Weber-type resonant-mass detectors which were only sensitive to
narrow ranges of frequencies and to a small portions of the sky, yet far less expensive than
interferometric ones. Sec. 1.2.2 first discusses the basic idea and implementation of using
laser interferometry for the measurement of gravitational radiation. Next, I give a brief
review of the development of LIGO-type ground-based laser-interferometric gravitational-
wave detectors, including the latest technological advancements and instrumental limit
of detection. The section is concluded with a presentation of currently operational laser-
interferometric gravitational-wave detectors across the globe and a plausible timeline for
future detectors over the coming years.
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Figure 1.1: A plausible timeline for the evolution of horizon distance for observing runs of
aLIGO, aVirgo and KAGRA (Kamioka Gravitational Wave Detector) detector over the coming
years. The coloured bars show the observing runs, with achieved sensitivities in O1, O2 and
03, and the expected sensitivities for future runs (as shown in Fig. 1.5). There is significant
uncertainty in the start and end times of the planned observing runs, especially for those further
in the future, and these could move forward or backwards relative to what is shown above.
Uncertainty in start or finish dates is represented by shading. The break between O3 and O4
will last at least 18 months. O3 is expected to finish by June 30, 2020 at the latest. The O4 run is
planned to last for one calendar year. I indicate a range of potential sensitivities for aLIGO during
04 depending on which upgrades and improvements are made after O3. The most significant
driver of the aLIGO range in O4 is from the implementation of frequency-dependent squeezing.
(Original figure, courtesy of the KAGRA Collaboration, the LIGO Scientific Collaboration, and
the Virgo Collaboration [49].)



1.2.1 Early measurements with resonant-mass detectors

The experimental search for gravitational waves began in the 1960s with Joseph Weber.
In 1960 his paper [50]| discussed the possibility of direct detection of GWs and stated
that GW luminosity of binary black-hole coalescences could be as high as ¢°/G, or about
102 L. In 1966 Weber and his students at the University of Maryland constructed the
first resonant-mass detector or ‘Weber bar’. [51] These cylinders consisted of multiple
aluminium cylinders (2 meters in length, 1 meter in diameter and each weighted 1.2
tons) which were held at room temperature and isolated from vibrations in a vacuum
chamber. They vibrated at a resonance frequency of 1660 Hz and were designed to be
massive enough to be set in motion by supposedly weak GWs and the piezoelectric sensors
had to be extremely sensitive as well, capable of detecting a change in the cylinders’
length of about 1071 meters. [52] Although Weber began publishing papers in 1968 with
evidence claiming that he had detected GWs with one such resonant bar, the results of
his experiments were largely discredited by others who all failed to replicate the positive
results. Weber-type detectors as the earliest type of resonant-mass detector were dominant
in 1960s and 1970s and many were built around the world.

The second generation of resonant-mass detectors emerged in the 1980s and 1990s.
They were cooled to cryogenic temperatures with superconducting transducers and, as
a result of their upgraded design, they achieved at least 6 orders of magnitude greater
flux sensitivity than the original Weber-type detectors. [53] The five detectors — AL-
LERGO (Louisiana, US), AURIGA (Padua, Italy), EXPLORER (CERN, Switzerland),
NAUTILUS (Rome, Italy) and NIOBE (Perth, Australia) — have been almost continuously
searching for impulsive events since 1997 and as part of a global network for International
Gravitational Event Collaboration (IGEC), they have been providing mutual data ac-
cess. [51] The third generation of resonant-mass detectors is represented by two cryogenic
spherical GW antennas, the MiniGRAIL (Leiden, Netherlands) and the Mério Schenberg
(Sdo Paulo, Brazil) that were built in the 2000s as downsized versions of the original
proposals (others were cancelled). NAUTILUS, AURIGA and the two spherical antennas
are still active, but most resonant-mass detectors have been decommissioned in favour of
interferometric detectors.

1.2.2 Modern measurements with interferometric detectors

The idea of using laser interferometry for the measurement of gravitational radiation
was first suggested in the early 1960s by Soviet scientists Mikhail Gertsenshtein and
Vladislav Pustovoit. [55] The basic idea behind laser interferometry is to split laser beam
from a single source into two sub-beams that travel in different optical paths, which
are then combined again to produce interference. In classical Michelson-Morley-type
laser interferometers designed for gravitational-wave detection, the sub-beams travel down
orthogonal arms, bounce off mirrors, and then return to recombine. Normally the travel
time is the same in each sub-beam, hence the light recombines constructively. However,
interference occurs when a passing GW changes the relative length of the optical cavities
in the interferometer (or equivalently, the proper travel time of photons) resulting in a
strain

h=AL/L, (1.1)
where AL is the difference in path lengths L along the two arms of the interferometer.
[56] For the typically-used, infrared lasers of wavelength A ~ 1pum, and interferometer
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Figure 1.2: A simplified schematic diagram of a Michelson interferometer with annotations
showing the optical power used during O1 run in aLIGO detectors. The interferometer is en-
hanced by two 4-kin-long resonant arm cavities, which increase the optical power in the arms
by a factor of Gy =~ 270. The diagram illustrates a laser beam being split into two sub-beams
that travel down orthogonal arms, bounce off mirrors, and then return to recombine. Since the
interferometer is operated near a dark fringe, all but a small fraction of the light is directed back
towards the laser. The Nd:YAG laser, with wavelength A = 1064 nm, is capable of producing
power up to 180 W, but only 22 W were used in O1. A suspended, triangular Fabry—Pérot optical
cavity serves as an input mode cleaner to clean up the spatial profile of the laser beam, suppress
input beam jitter, clean polarization, and help stabilize the laser frequency (modulated at radio
frequencies 9 and 45 MHz). The power recycling mirror between the beam splitter and the read-
out photosensors resonates this light again to increase the power incident on the beamsplitter
by a factor of ~ 40, improving the shot noise sensing limit and filtering laser noises. On the
antisyminetric side, the signal recycling mirror is used to broaden the response of the detector
beyond the linewidth of the arm cavities. The output mode cleaner at the antisymmetric port
removes excess spatial and frequency components of the laser light before the signal is detected
by the main photodetectors. Faraday isolators suppress reflected beams while electro-optic mod-
ulators add radio frequency-sidebands to the lager light for the locking of laser beams to optical
cavities. (Based partly on a figure courtesy of the LIGO Scientific Collaboration. [54])

arms of length L = 4 km, the minimum detectable strain is h ~ A\/L ~ 3 x 1071%. The
schematic illustration of the specialized versions of Michelson interferometer applied in
the instrumental design of GW detectors is shown in Fig. 1.2. Although the concept of
using laser interferometry was conceived the early 1960s, its realization came only in the
late 1960s and early 1970s through the pioneering work of Rainer Weiss at MIT and Kip
Thorne and Ronald Drever at Caltech. The idea was put into practice by Rainer Weiss,
who published an analysis of laser-interferometer performance in 1967 [57], demonstrating
that its sensitivity is limited only by photon-shot noise at high frequencies. In 1972, Weiss
identified all the fundamental noise sources that can cause movement in the optics. [58|
He conceived the original idea of interferometric detectors with L-shaped arms, at 90°
angles to each other would be optimal for GW detections. A passing GW would slightly
stretch one arm as it would squeeze the other. In the late 1970s, Kip Thorne triggered the
creation of an experimental gravitational-wave group at Caltech, led by Ronald Drever



and Stan Whitcomb. The subsequent construction of Weiss’s 1.5-meter-long prototype
at MIT and Drever’s and Whitcomb’s 40-meter-long prototype interferometer at Caltech
was funded by the US NSF (National Science Foundation).

Following the success of the first prototypes, Weiss was funded by NSF to design and
lead a technical and cost study for the first generation of several-kilometer-long interfer-
ometers. Caltech and MIT submitted proposal to NSF in 1989 for the joint design and
building of two 4-km-long and one 2-km-long laser interferometers in the United States
at two sites (cf. Fig. 1.3); L1 in Livingston, Louisiana and H1 and H2 in Hanford,
Washington under the joint leadership of Drever, Weiss and Thorne. To operate these
facilities at both sites, the LSC was created in 1997 under the leadership of Barry Barish,
and later joined by a number of universities and research institutions (mostly US-based),
including Hungarian research groups from Fdtvés Lordnd University and University of
Szeged. The first European-based interferometric instrument, GEOG600 of just 600 me-
tres arm length was built in a German-British partnership in 1995, in Sarstedt (near
Hanover, Germany: see Fig. 1.3) as a downsized version of the original proposal of a
3-kilometer-long interferometer. However, in 1994 the French CNRS (Centre national de
la recherche scientifique) and the Italian INFN (Istituto Nazionale di Fisica Nucleare) set
up a project as well to design and construct the 3-km-long Virgo interferometric detector
in the vicinity of Cascina (near Pisa, Italy: see Fig. 1.3). In 2000, CNRS and INFN
created the EGO (European Gravitational Observatory) consortium that is responsible
for the maintenance and operation of the instrument. The Virgo Collaboration was later
joined by Wigner Research Centre for Physics (Hungary), NIKHEF (the Netherlands),
POLGRAW (Poland) and University of Valencia (Spain).
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Figure 1.3: Geographical locations and orientations of current and future laser-interferometric
gravitational-wave detectors across the globe. The GEO600 detector is currently taking data; the
alLIGO detectors at Hanford and Livingston and aVirgo are expected to begin taking data in 2015;
KAGRA should operate in its full optical configuration starting around 2018; and LIGO-India
around 2020. LIGO-India is contingent on final approvals and funding, and its exact location
has not yet been determined. (Based partly on a figure courtesy of the Virgo Collaboration.[59])



The first-generation laser-interferometric detectors; iLIGO (Initial LIGO) and iVirgo
(Initial Virgo) commenced several data-taking periods from 2002 to 2010 and from 2007 to
2011, respectively. The 6th science run (S6) of the two iLIGO detectors that occurred from
July 2009 through October 2010 were conducted in coincidence with iVirgo detector’s 2nd
and 3rd science runs (VSR2, VSR3). Although the sensitivity of iLIGO increased in a wide
frequency band over four orders of magnitude larger than Weber’s original instrument and
reached its primary design specification of a detectable strain of 2x 10723 Hz /2 at 200 Hz,
no gravitational wave signals were detected at this stage. [54] The era of first-generation
instruments in iLIGO came to an end in 2010, at which point it was disassembled to make
way for new and improved instruments which were designed to be 10 times more sensitive
than their predecessor, and promised to increase the volume of the observable universe
by a factor of 1000. Upgraded components for the al.IGO detectors (shown in Fig. 1.2)
were installed in the existing facilities from 2008 to 2014. [60] These upgrades included an
increase in the laser power to reduce quantum noise, larger and heavier mirrors to reduce
thermal and radiation pressure noise, better suspension fibers for the mirrors to reduce
suspension thermal noise, among many other improvements. [31] The design levels of the
aforementioned sources of noise limiting the sensitivity of the two alLIGO detectors are
shown in Fig. 1.4.
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Figure 1.4: The design levels of numerous noise sources that limit the sensitivity of the two
aLIGO detectors at low frequencies. The strain sensitivities are similar between the two sites.
Panel (a) shows the low-frequency curves for L1, whereas panel (b) shows the high-frequency
curves for H1 detector. Quantum noise is the sum of the quantum radiation pressure noise and
shot noise. Dark noise refers to electronic noise in the signal chain with no light incident on
the readout photodetectors. Thermal noise is the sum of suspension and coating thermal noises.
(GGas noise is the sum of squeezed film damping and beam tube gas phase noises. The coupling
of the residual motion of the Michelson (MICH) and signal-recycling cavity (SRCL) degrees of
freedom to gravitational wave channel is reduced by a feedforward-cancellation technique. At
low frequencies, there is currently a significant gap between the measured strain noise and the
root-square sum of investigated noises. At high frequencies, the sensitivity is limited by shot
noise and input beam jitter. (Original figure, courtesy of the LIGO Scientific Collaboration.

[54)
The newly-installed alLIGO was commissioned from mid-2014 to mid-2015 with a

sensitivity roughly 3-4 times greater in the frequency range between 10 Hz and 10 kHz
than that of iLIGO’s last science run. Around 100 Hz, the strain sensitivity was 8 x
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1023 Hz~'/2, which resulted in an astrophysical reach = 4.1 and = 3.5 times greater than
that of the iLIGO detectors: The sky location and source orientation-averaged range was
1.3 Gpc for a 30My + 30M, BNS, whereas for a BNS star system the range was 70-80
Mpec. [54] The target strain sensitivities of advanced detectors anticipated for future runs
are shown as bands in Fig. 1.5. All these improvements have culminated in the discovery
of a series of GW transient events during the observation runs O1 and O2 between 2015
to 2017 that marked the opening of the era of gravitational-wave astronomy. [61]| For
further details about GW transient events discovered during the first observation runs of
advanced detectors, cf. Sec. 1.3.2.
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Figure 1.5: The target strain sensitivities of aLIGO (top left), aVirgo (top right) and KAGRA
(bottom) as a function of frequency. The quoted range is for a 1.4Mg + 1.4Ms BNS merger. The
BNS range (in Mpc) achieved in past observing runs and anticipated for future runs is shown
as bands. The O1 aLIGO curve is taken from the Hanford detector, the O2 alLIGO curve comes
from Livingston. In each case these had the better performance for that observing run. The
03 curves for aLIGO and aVirgo reflect recent performance. Detailed planning for the post-O3
to O4 period, shown in Fig. 1.1, is now in progress and may result in changes to both target
sensitivities for O4 and the start date for this run. The the BNS curve for KAGRA may be
realized by detuning the signal recycling cavity to significantly improve the BNS range to 155
Mpc once design sensitivity is reached. (Original figure, courtesy of the KAGRA Collaboration,
the LIGO Scientific Collaboration, and the Virgo Collaboration. [19])

Current operating facilities in the global network include the twin aLIGO facilities in
the United States and the aVirgo in Europe. KAGRA, an underground cryogenic inter-
ferometer built in Japan (Kamioka mine near Hida, Gifu Prefecture) is coming online by
the end of 2019 to join the campaign of aLIGO and aVirgo. The coming years will also



see the arrival of a third LIGO detector located in India (near Aundha Nagnath, Hingoli
District, Maharashtra), which is expected to be operational around 2022. Geographical
locations and orientations of current and future laser-interferometric gravitational-wave
detectors across the globe are listed in Table 1.1 and shown in Fig. 1.3. Furthermore,
the plans to design third-generation observatories, such as the Einstein Telescope [62] or
Cosmic Explorer [63], with another factor of 10 improvement in sensitivity, are already
on the way. It is also possible that for some sources, there could be multiband GW obser-
vations. [19] The space-borne LISA (Laser Interferometer Space Antenna) could provide
early warning and sky localization, as well as additional information on system parame-
ters and formation mechanisms. |24, 25] Building multiple GW observatories around the
globe will increase the confidence of a detection by observing the signal by independent
observatories with uncorrelated noise. Operating them together is also helpful in locating
the sources of GW signals more accurately and determining the source parameters with
higher precision. [64]

Detector Latitude (¢) Longitude (\) Orientation (vy) (

LIGO Hanford 46°27'19" N 119°24'28" W 171° 90°
LIGO Livingston 30°33'46"” N 90°46'27" W 242° 90°
GEO600 52°15" N 9°48'36” E  68°46'48" 94°19'48"
Virgo 43°37'53" N 10°30'16” E  115°36’ 90°
KAGRA 36°25'26"” N 137°19'11” E = 75° 90°
LIGO-India 19°32'24” N 77°2'26" E 58°12" + kx90°  90°

Table 1.1: Geographical locations and orientations of currently operational and future laser-
interferometric gravitational-wave detectors across the globe. The angles ¢ and A are the geodetic
latitude and longitude, respectively, of the detector’s site. The angle ~ determines the orienta-
tion of the interferometer arms with respect to local geographical directions and it is measured
counter-clockwise from the East to the bisector of the interferometer arms. The angle ( is the
angle between the interferometer arms. The geographical locations and orientation angles are
based on Refs. [65, 66].

1.3 Observations of gravitational waves

I begin with a discussion of the observations of gravitational-wave events with the first
indirect observational evidence of gravitational waves in Sec. 1.3.1. Next, I review a series
of directly observed GW events, commenced with the detection of GW150914.

1.3.1 Hulse—Taylor binary pulsar

A number of experiments have provided indirect evidence, notably the observation of
binary pulsars. The binary-pulsar system PSR1913+16 was certainly not the first dis-
covered pulsar, but it was the first observed binary-pulsar system which evolves precisely
matching the general relativistic predictions of energy loss through gravitational-wave
emission. In 1974 Russell Hulse and Joseph Taylor [46] detected pulsed radio emissions
from this system using the Arecibo Observatory’s 305m radio telescope in Puerto Rico.
Subsequent observations of its pulse-arrival times, taken between September 1974 and
March 1981, by Taylor and Weisberg, [47] verified that the measured decay of the orbital



parameters in the system is in precise agreement with the rate at which the orbital period
should decay as kinetic energy is lost from the system through gravitational radiation, ac-
cording to Einstein’s general theory of relativity. The precise agreement provided the first
compelling observational evidence for the existence of gravitational waves. The ratio of
observed to predicted rate of orbital decay was calculated to be Pt/ PGR = 0.99740.002
at the time. (Now P /PSR = 0.9983 & 0.0016, cf. Table 1.2). The importance of grav-
itational waves is highlighted by the very fact that even this indirect evidence for their
existence earned Hulse and Taylor the Nobel Prize in 1993. Taylor and co-workers moni-
tored PSR1913+16 for 20 years to further confirm that the system lost energy exactly as
predicted. [64] Its detailed features were deducted from observations of the pulse-arrival
times and the Doppler effect. Fig. 1.6 summarizes the comparsion between the observed
change in the epoch of periastron of measurement and the corresponding general relativis-
tic prediction. Since the discovery of PSR B1913+16, several other binary-pulsar systems
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Figure 1.6: Orbital decay of PSR B1913+416 as a function of time. The parabola represents
the orbital phase shift predicted for gravitational emission according to general relativity. The
data points, with error bars too small to show, indicate the observed change in the epoch of
periastron. (Original figure, courtesy of J. M. Weisberg. [67])

with gravitational radiation-induced orbital decay have been observed, albeit with some-

what less precision than PSR B1913+16. See the published measurements of Pi"r/ PSR
for 10 such pulsars in Table 1.2.
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PSR pintr | pGR
J034810432 1.05 £ 0.18
J0737-3039  1.003 + 0.014
J1141-6545  1.04 + 0.06
B1534+12  0.91 = 0.06
J1738+0333 0.94 +0.13
J1756-2251  1.08 + 0.03
J1906-+0746 1.01 + 0.05
B1913+16  0.9983 + 0.0016
B2127+11C  1.00 = 0.03

Table 1.2: Comparison of gravitational radiation-induced orbital decay with the orbital decay
predicted by general relativity in 10 binary PRSs. (For further details and references, please, see
Ref. [67].)

1.3.2 GW events and source parameters from observation runs

O1 and O2
Event my /M ma /M M/M;, [ M/ My ag Fraa/(Mec®)  Llpear/(ergs™")  dp/Mpc z AQ/deg”
GW150914 356735  30.67F1]  28.671¢ —0.0170% 63.1733 0.6973%; 31504 3.6701 < 10%  430%13)  0.09%7% 179
GW151012 233t 136%1L 152439 0.0470%  35.719%  0.671018 1.5492 3.2708 % 10° 1060138  0.214099 1555
GW151226  13.7433 77432 8.910% 0.1840:2  20.5X8%¢  0.744007 LO%gS 34107 % 10% 4404150 0.09%001 1033
GW170104  31.0%12  20.1%}% 215721 —0.047040  49.1%32  0.667005 2.279% 33588 x 10° 9604430 0.19408% 924
GW170608  10.9t3%  7.6%13 7.9792  0.03%012  17.8732  0.697994 0.9599 35704 % 10% 3201139 0.07992 396
GW170729  50.61§S  34.3%%L 357792 036103 80.3%{ES 0.8179Y%] 4.8+17 42492 % 10°  27501{330 0.48+045 1033
GW170809 352453  23.8%3% 250731 0.07%31% 564732 0.70%9%3 2.788 35508 % 10 990F320  0.20%002 340
GW170814  30.7%37  25.3%%)  24.2414 0.078012 534133 0.72%597 2.7104 3704 x 10°0 5801459 0.12400% 87
GW170817 1.46+4 %' 1277599 1.186:3:99%  0.0019% <238 <0.89 >0.04 > 0.1 x 10° 4011 0.0173:99 16
GW170818  35.5%12  26.8%43 26,7731 —0.09%01F  59.874%  0.6799T 2.703 347355 10% 1020439 0.20+5:57 39
GW170823  39.6tW9  204%63 293742 008403  65.67%F 0.7179% 3.3+ 3.670:8 x 10° 18501810 0.344013 1651

Table 1.3: Selected source parameters of the 11 confident detections. The columns show source
frame component masses m; and chirp mass M, dimensionless effective aligned spin &g, final
source frame mass My, final spin af, radiated energy FEr,q, peak luminosity fpeak, luminosity
distance dp, redshift z and sky localization AQ/deg?. Median values with 90% credible intervals
include statistical errors, and systematic errors from averaging the results of two waveform models
for BBHs. The sky localization is the area of the 90% credible region. For BBH events, the
redshift was calculated from the luminosity distance and assumed cosmology. (Original table,
courtesy of the LIGO Scientific Collaboration and the Virgo Collaboration. [61])

Just a few days after the start of the first science run (O1), on September 14, 2015,
the alLIGO detectors recorded an interference pattern associated with a gravitational-wave
transient which was emitted from a BBH system of chirp mass M = 28.271-8 M (cf. def-
inition in (1.6)) at a luminosity distance d;, = 440718 Mpc. [68] The signal, designated
‘GW150914 [69], was so loud® that the probability of a false alarm was much smaller
than 1077, [31] The direct observation of the first signal was shortly followed by the iden-
tification of another 10 confirmed signals over the period of alLIGO’s first two observation
runs (O1, September 2015 to January 2016) and (O2, November 2016 to August 2017) to
which aVirgo has joined in August 2017. A third observation run (O3) began on April 1,
2019 from which a large number of candidate events were recorded (a total number of 22

3The level of signal relative to the level of background noise, measured by the SNR (Signal-to-noise
ratio), was much larger than 50.
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candidate events to September 2019). This section will briefly discuss the first series of
confirmed GW events, shown in Fig. 1.7, that constitute the first GW-transient catalogue
of CBCs (GWTC-1) [61], and the properties of their sources. From O1, two confident
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Figure 1.7: Time-frequency maps and reconstructed signal waveforms for the eleven GW
events in GWTC-1. (Original figure, courtesy of LSC—Virgo Collaboration, S. Ghonge and K.
Jani. [61])

detections of signals from BBH mergers were made: GW150914 [70] and GW151226 [71].
Additionally, a third trigger has appeared in the O1 catalog of binary black holes which
was later relabel as GW151012 [72| after its assessment. Following the reanalysis of O1
with the O2 pipelines, GW150914 remained the highest SNR in O1 data sets, behind only
the binary neutron star inspiral GW170817 [73] and no new GW events were discovered.
[61] From O2, four additional BBH merger events; GW170729, GW170809, GW170818
and GW170823 were reported by Ref. [61]: GW170729, GW170809, GW170818 and
GW170823.

The GW signals emitted from CBCs depend on intrinsic parameters that specifically
delineate emitted waveform (1.76) and the general relativistic two-body dynamics (1.75) in
the binary and on eztrinsic parameters that encode the position of the source in relation
to the detector network. Thus, an isolated compact binary undergoing quasi-circular
inspiral is uniquely described by the mass m;, spin vector S: and electric charge @); of its
components that are intrinsic to the source. Note that the electric charge of astrophysical
BHs is supposed to be negligible. Seven additional extrinsic parameters are required to
define the sky location (right ascension « and declination §), luminosity distance dy, the
orbital inclination ¢ and polarization angle ¢, the time ¢, and phase ¢. at coalescence that
are extrinsic to the source. For more information about polarizations and sky location,
cf. Sec. 1.5.5. Parameter estimation for the sky locations of confirmed GW events from
observation runs O1 and O2 are shown in Fig. 1.8. For more details, see references in
[61]. If the spins have a component in the orbital plane, then the binary’s orbital angular
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Figure 1.8: Parameter estimation for the sky locations of confirmed GW events from observa-
tion runs O1 and O2 in a Mollweide projection. The probable position of the source is shown in
equatorial coordinates (right ascension is measured in hours, and declination is measured in de-
grees). 50% and 90% credible regions of posterior probability sky areas for the GW events. Top
panel: Confidently detected O2 GW events (GW170817, GW170104, GW170823, GW170608,
GW170809, GW170814) for which alerts were sent to EM observers. Bottom panel: O1 events
(GW150914, GW151226, GW151012), along with O2 events (GW170729, GW170818) not pre-
viously released to EM observers. (Original figure, courtesy of the LIGO Scientific Collaboration
and the Virgo Collaboration. [61])

momentum L and its spin vectors precess |74, 75] around the total angular momentum
J=L+5, +5,. (1.2)

For precessing binaries the orbital angular momentum vector L is not a stable direction,
and it is preferable to describe the source inclination by the angle 6;5 between the total
angular momentum J and the line of sight vector N instead of the orbital inclination
angle ¢ between L and N |76]. Frequency-dependent quantities such as spin vectors, and
derived quantities as &, were quoted by Ref. [61] at a GW reference frequency fier = 20
Hz. The dimensionless spin vectors and spin magnitudes are defined by

&= cS/(Gm?), a;=clSi|/(Gm?), (1.3)

respectively, on the grounds that the maximum spin a Kerr BH of mass m may reach is

Gm?/c. The effective aligned spin that represents the dominant spin effect is written as a

simple mass-weighted linear combination of the spins [77] projected onto the Newtonian

angular momentum ﬁN, which is normal to the orbital plane ([: — Ly for aligned-spin

binaries)

(mi&1 +maeby) Ly
M )

Eeft = (1.4)
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where m; is defined to be the mass of the larger component of the binary, such that
myi > Mo, and
M = my + mo (15)

is the total mass of the binary. Throughout the inspiral & is approximately conserved
[78] and the phase evolution depends at leading order on the chirp mass [79],
(m1m2>3/5

M = M5B

(1.6)
which is also the best measured parameter for low-mass systems dominated by the inspiral
[80]. The mass ratio
¢="2<1, (1.7)
my
and effective aligned spin &g appear in the phasing at higher orders [78]. One may also
find it useful Oto introduce the reduced mass and the symmetric mass ratio by

/'L:mlmQ/Ma T]:M/Ma (18)

respectively.

1.4 Fundamentals of spacetimes on pseudo-Riemannian
manifolds

In this section, first the mathematical notation and conventions used in the present dis-
sertation are discussed. Next, I summarize the necessary mathematical preliminaries of
pseudo-Riemannian geometry which lay the conceptual foundations for clear and intuitive
discussion of my own research discussed in the following chapters. The discourse in this
section is mostly based on the content of comprehensive introductory textbooks [32-34].

1.4.1 Mathematical notation and conventions

Throughout the dissertation, I shall use ‘geometrized’ units, in which the speed of light ¢ in
vacuum and the gravitational constant G are set to unity by an appropriate choice of units
so that the Einstein constant becomes x = 87G/c® = 8r. However, for convenience of the
reader, G and c have been restored in those formulae that are compared to their respective
Newtonian counterpart. Table A.1 that provides conversion factors for ‘geometrized’ units
into ST units is found in Appendix A.2. Spatial coordinates are labeled with Latin indices
a, b..., whereas the ones belonging to 4-vectors and tensors are labeled with Greek indices
a, B .... I conventionally denote time coordinate by the index 0, while spatial coordinates
are denoted by indices running from 1 to 3. According to Einstein’s notational convention,
I am summing over all of the possible values of that index variable which occurs twice
in a single term, once in an upper and once in a lower position. Lower indices stand
for covariant quantities, upper ones for contravariant ones, whereas both in a single term
denote mixed variance. Symmetrization of indices is indicated by (). The metric signature
is chosen as (— + + +) according to the Pauli space-like convention. Partial derivatives are
denoted by J, or a comma, single and repeated covariant derivatives by V,, V,, or by a
semicolon. Any variable with overhead hat (e.g. ¢) represents the linearized perturbation
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of its corresponding ‘background’ quantity (e.g. ¢). In the present dissertation, common
homogeneous relations which fall into various types according to their specific properties
are denoted by the following symbols: Symbols based on equality relations in a broader
sense comprise = for equality, = for equality by definition, ~ for approximate equality,
o for proportionality, ~ for asymptotic equivalency or for same order of magnitude.
Furthermore, the following types of inequalities include < or > for strict inequality, < or
> for not-strict inequality (not greater/less than), < or > for asymptotic comparison
(i.e. much less/greater than).

1.4.2 Fundamental definitions and concepts

A principal premise of general relativity is that a spacetime can be modeled by a 4-
dimensional pseudo-Riemannian manifold, more specifically, a Lorentzian manifold (which
is a pseudo-Riemannian manifold of Lorentzian signature). A pseudo-Riemannian space-
time (M, g) is a differentiable manifold M endowed with an everywhere non-degenerate,
second-degree, smooth and symmetric metric tensor field g. Let the components of a
vector € R* given on M by local coordinates

{z" : p €10,3] C N}, (1.9)
then any tangent vector, denoted by u = u*e,, defines the local basis of the tangent space
to M at each point & € M by

{e* =0/0z" . u € [0,3] C N}. (1.10)
The metric tensor can be written in the form
g = gudr" @ dz” where g, =e,e,. (1.11)

(1.11) is a linear combination of tensor products of one-form gradients of local coordinates
(1.9), where the coefficients g, are a set of 16 real-valued functions. In order for the metric
to be symmetric, 10 of its coefficients are independent. The non-degeneracy of g,,, means
that this matrix is non-singular (i.e. has non-vanishing determinant), while the Lorentzian
signature of g implies that the matrix g,, of the metric tensor has one positive and three

negative (+ — — —) eigenvalues (or the other way around (— + + +)). In a 4-dimensional
flat spacetime, the metric tensor is named after Hermann Minkowski and written as
1 0 0 0
N = diag[+1, -1, -1, —1] = 8 _01 _01 8 , (1.12)
0o 0 0 -1

with the signature of our choice. Most importantly, the Minkowski spacetime (M, n) is the
mathematical setting in which Einstein’s theory of special relativity is most conveniently
formulated. This metric is Lorentz invariant, in other words, it transforms under a change
of coordinates

ot — gt = AP (1.13)
as Ny = Aau,nagAﬂ » which is the defining property of a Lorentz transformation:
/ v By 00
Ox —By ~v 00
noo—= =
At = S = 0 0o 10 | (1.14)
0 0 0 1
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where 8 = v/c and v = (1 — 32)~/2 are notations from classical electrodynamics for
fractional speed and for the Lorentz factor, respectively. A particular Minkowski diagram
of Fig. 1.9 illustrates some properties of Lorentz transformations relating events in two
inertial frames of reference, where an observer stationary at the event (0,0) makes a
change of velocity along the x-axis. With the quantities dz* in (1.11) being regarded as

t tl

Figure 1.9: Minkowski diagram with resting frame (z,t), moving frame (2/,¢'), light cone, and
hyperbolas indicating the surfaces of transitivity of the orthochronous Lorentz transformations.
In 4-dimensional spacetime, they are represented by hyperboloids of two sheets inside the light
cone and one-sheeted hyperboloids outside the light cone together with the past and future light
cones themselves and, separately, the origin. (Original figure, courtesy of M. P. Hobson et al.
[34].)

the components of an infinitesimal coordinate displacement four-vector (1.9), the metric
determines the invariant square of an infinitesimal line element (also often referred to as
‘spacetime interval’) that measures the separation between two arbitrarily close events in
spacetime. The line element is conventionally denoted by

ds* = g, dat @ dz” (1.15)

and indicates the causal structure of spacetime. In Minkowski spacetime, the Lorentz
transformations (1.14) preserve the spacetime interval between any two events. Unlike
Riemannian manifolds with positive-definite metrics, an indefinite signature allows any
tangent vector u in (1.10) to be classified into timelike, null or spacelike, shown in Fig.
1.9. Accordingly, the spacetime interval (1.15) is

e timelike and can be physically traversed only by a massive object when ds? < 0.
\/|ds?| acts as an incremental proper time;

e lightlike and can only be traversed by light when ds? = 0;

e spacelike and cannot be traversed when ds? > 0, since they connect events that are
outside each other’s light cones. y/|ds?| acts as an incremental proper length.

For a tangent vector field u = {u”e,} in eq. (1.10), the covariant derivative V u is
defined by
V" =ou” + T u, (1.16)
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where V,, denotes the covariant derivative along tangent vectors of the manifold. Deter-
mined by how the tangent space is attached to the cotangent space by the metric tensor,
the Christoffel symbols of the second kind (also known as metric connection coefficients)

1 ago‘,@ 8gaa aga,@
', = =g"° — 1.17
5= (817“ * oz Ox° (1.17)

are constructed from the metric tensor (1.11) and its first partial derivatives and repre-
sented by an 4 x 4 x 4 array of real number and provide a concrete representation of the
connection of pseudo-Riemannian geometry in terms of coordinates on the manifold M.
They are symmetric in the two lower indices and represents the change in the local basis
(1.10) at each point € M through

Oe®
ox”

In general relativity, the world line of a freely moving or falling particle is given by the
geodesic equation of motion

e L (1.18)

Azt dx® dxP
gz T g =0 (1.19)

where s is an affine parameter of motion (e.g. the proper time). The Riemann curvature
tensor, containing linear in the second-order derivatives of the metric tensor, is formally
given by

Rpa;u/ = Vurpuo' - vurp;w' + Fpu)\r)\ua - FPV)\F/\

which measures intrinsic curvature of any manifold M equipped with an affine connection
(1.17). The Ricci curvature tensor is formed by the contraction of the first and third
indices of the Riemann tensor, and it is written in a more compact form

(1.20)

Ho s

Ry =R =R 00 = 97" R 5pp0- (1.21)
By further contraction of indices, the Ricci scalar is called into being as
R=g""R,,. (1.22)

The Ricci curvature tensor and another rank-2 tensor, known as the Einstein tensor,
defined by

1
G = Ry = 5 R (1.23)

stand in dual relationship; they are the trace reverse of each other. Finally, Einstein’s
gravitational-field equations
G = KT}, (1.24)

allows us to relate local curvature of the spacetime, incorporated in G, to its source, the
stress—energy tensor 7,,, which represents the energy and momentum present in the space-
time and k = 87G/c? is the Einstein constant. — To read more about the stress—energy
tensor, please read Sec. 3.3 and Ref. [34, p. 176-201]. — Thus the Einstein equations
(1.24) constitute the mathematical setting for the description of the gravitational field
and of the chrono-geometrical structure of the spacetime, where the metric tensor deter-
mines the invariant line element (1.15), and acts also as a dynamical variable describing
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the gravitational field. The high degree of non-linearity in eqs. (1.24) implies that exact
solutions is analytically unattainable for arbitrary matter distribution. Therefore there is
no complete solution for a spacetime with compact binary objects in it but approximate
solutions can be found in the case of weak fields. A pair of commonly used approximations
found in the dissertation are the following:

o Linearized gravity is a perturbative approximation in the week-field regime which
involves expansions in a small parameter which express orders of deviations of the
metric from the Minkowski metric. (Appears in Sec. 1.5 and Sec. 4.3);

e Post-Newtonian expansion is a week-field and slow-motion approximation expanded
in small parameters which express orders of deviations from Newton’s law of uni-
versal gravitation. (Appears in Sec. 1.5.6 and Sec. 2.2).

In addition, special types of exact solutions of the Einstein equations (1.24) can be found
in the dissertation by imposing simplifying assumptions. Such simplifying assumptions
on the metrics exhibiting symmetries of the spacetime are the following:

e Spherical symmetry is a characteristic feature of some exact solutions, especially
the Schwarzschild solution and the Reissner—Nordstrom solution. (Appears in Sec.
3.4 and Sec. 4.2.1);

e Axially symmetry is a characteristic feature of Kerr solution which describes the
empty spacetime around a rotating uncharged axially-symmetric black hole with a
quasi-spherical event horizon. (Not used in the dissertation).

Simplifying assumptions on the intended physical interpretation of the stress—energy ten-
sor comprise the following solutions:

o Dissipative-fluid solution often employed as general stellar models where viscous
flow and heat transfer is present. (Appears in Sec. 3.3.2);

o Perfect-fluid solution is used to model idealized distributions of matter, such as the
interior of a star or an isotropic universe. It has vanishing viscous shear and heat
flux, therefore it is completely characterized by their rest-mass density and isotropic
pressure. (Appears in Sec. 3.3.1 and Sec. 4.2.1);

e Dust solution is a pressureless perfect fluid often used as cosmological models for
matter-dominated epoch. Its constituent particles locally move in concert and in-
teract with each other only gravitationally. (Appears in Sec. 4.3 and Sec. 4.4.2);

o Vacuum solution describes regions in which no matter or non-gravitational fields
are present. (Appears in Sec. 1.5.4 and Sec. 4.4.2).

1.5 Linearized gravitational-field equations and gravi-
tational waves

As discussed in Sections 1.1 and 1.2, as a result of the astronomical distances to their
respective sources, the amplitude of the gravitational waves (expressed by ‘strain’ (1.1),
a dimensionless parameter) when measured by observatories on Earth are predicted to
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be extremely small. Far away from the source of gravitational radiation, the weak grav-
itational field can be approximated by a region of asymptotically flat spacetime that is
described by the metric tensor

Guv = Nuv + huw (125)

where the small linear disturbance of the Minkowski metric 7, is represented by a dimen-
sionless strain |h,,| < 1 and the first and higher partial derivatives of h,, are also small.
Throughout such a region of spacetime, any coordinate system {z* : u € [0,3] C N}
which allows the metric tensor to be expressed in a close-to-Minkowski form is called
quasi-Minkowskian. In Sec. 1.5.2, the mathematical labour of producing the linearized
form of the Einstein field equations (1.24) is greatly simplified by the adoption of quasi-
Minkowsian coordinates.

1.5.1 Linear coordinate transformations

Quasi-Minkowskian systems may be related to each other by two different classes of coor-
dinate transformations; the global Lorentz transformations and infinitesimal coordinate
transformations. Based on (1.13), let us first consider global Lorentz transformations
which were already introduced in (1.13) by the following change of coordinates:

' =AY, (1.26)

where the matrix elements A#, are constant everywhere and correspond to (1.14). The
metric coefficients transform as

, oxf O0x°

Y = ngpa = AN (oo + Ppo) = M + AP A7V hyo, (1.27)

where 7, = A?,A%,n,,. Thus, g, is also of the form (1.25), with
R = AW A7 By (1.28)

Moreover, it is apparent from this expression that, under a Lorentz transformation, h,,
itself transforms like contravariant tensor components in Minkowski spacetime (M, n).
[34, pp. 468| Ref. |34, pp. 468| explains that the above property suggests a convenient
alternative viewpoint when describing weak gravitational fields. Instead of considering a
slightly curved spacetime representing the general-relativistic weak field, one may consider
h,. simply as a symmetric tensor field of rank 2 defined on the flat Minkowski background
spacetime in Cartesian inertial coordinates.
The other type of coordinate transformations, infinitesimal coordinate transformations
is expressed by
o't =zt + M (x), (1.29)

where £#(x) are four arbitrary functions of position of the same order of smallness as h,,.
Infinitesimal transformations of this sort make tiny changes in the forms of all scalar,
vector and tensor fields, but these can be ignored in all quantities except the metric,
where tiny deviations from 7, contain all the information about gravity. From (1.29),
one has

In
zy—@+@@, (1.30)
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and, working to first order in small quantities, it is straightforward to show that the
inverse transformation is given by*

oxt
=0t — 0,&". 1.31
al.lu v g ( )
Thus, again working to first order in small quantities, the metric transforms as follows:

, oxP dx° o o
G = o O = (8= D) 5T = Do) + i) = T+ s = D,y — 06, (1.32)

where &, = 7,,§” was defined. Hence, one sees that g, is also of the form (1.25), the new
metric perturbation functions being related to the old ones via

h:w = h/w - aufu - 8V€M- (133)

If one adopts the viewpoint in which £, is considered as a tensor field defined on the flat
Minkowski background spacetime, then (1.33) can be considered as analogous to a gauge
transformation in electromagnetism. From (1.33), it is clear that if A, is a solution to the
linearized gravitational-field equations (cf. eq. (1.53)), then the same physical situation
is also described by

hzzejw = h#u - augu - aufu' (1'34)

In this interpretation, however, (1.33) is viewed as a gauge transformation rather than a
coordinate transformation.

1.5.2 The linearized gravitational field equations

To obtain the linearized form of the Einstein’s gravitational field equations (1.24), one
needs to produce the linearized expression for the Riemann tensor R?,,,; the correspond-
ing expressions for the Ricci tensor R, and the Ricci scalar R then follow by the con-
traction of indices.

To perform this task, first the linearized form of the connection coefficients (1.17) is

obtained as
(o 1 g 1 o (e g
I = 5"7 p(auhpu + Ouhp, — aphw’) = §<8th +Ouhy =0 h“”)’ (1.35)

where only the linear terms of the metric perturbation h,, were kept and the notation
07 = 1?0, was introduced. One may now substitute (1.35) directly into the expression
(1.21) for the Riemann tensor where The last two terms on the right-hand side are products
of connection coefficients and so will clearly be second order in h,,; they will therefore be
ignored. Hence, to first order, one has

1
Ry = 50001 + 0p0 Ny = 0,0y, — 9,0,h5). (1.36)

which is easily shown to be invariant to a gauge transformation of the form (1.34). The
linearized Ricci tensor is obtained by contracting the above expression for R7,,, on its
first and last indices.

1
R, = 5(aya,ih + Ry — 0,0,h5 — 9,0,h), (1.37)

)

4Note that, for the remainder of this chapter, the common symbol for equality ‘= will be used to

indicate equality up to first order in small quantities as well as exact equality.
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where the trace h = hf and the d’Alembertian operator [? = 9,0” were defined. The
Ricci scalar is obtained by a further contraction, giving

R=n"R,, = *h— 0,0,h". (1.38)

Substituting the expressions (1.37) and (1.38) into the gravitational-field equations one
obtains the linearized form as

8, 0uh 4+ OPhy, — 0,0, — 0,0,ht — 0y (BPh — 0,0,h7°) = —2kT . (1.39)

The number of terms on the left-hand side of the field equations has clearly increased in
the linearization process. This can be simplified somewhat by defining the ‘trace reverse’

of h,,, which is given by
1

By = hy, — 5l (1.40)

On contracting indices one finds that h = —h. On substituting these expressions into
(1.39), the field equations become

P hyw + 08,007 — 8,0,hf, — 0,0,h = —2KT . (1.41)

These are the basic field equations of linearized general relativity and are valid whenever
the metric takes the form (1.25). Unless otherwise stated, for the remainder of this chapter
I will adopt the viewpoint that A, is simply a symmetric tensor field (under global Lorentz
transformations) defined in quasi-Cartesian coordinates on a flat Minkowski background
spacetime.

1.5.3 Linearized field equations in Lorenz gauge

The field equations (1.41) can be simplified further by making use of the gauge transforma-
tion (1.34). Denoting the gauge-transformed field by hj,, for convenience, the components
of its trace-reverse transform as

RH = Y — OREY — OV ER 4+ P 0,E° (1.42)
and hence one concludes that
OPR'™ = 9" — [O%¢r. (1.43)
Therefore, if one chooses the functions £#(x) so that they satisfy
O%¢" = 9,h™ (1.44)

then one has 9,h" = 0. The importance of this result is that, in this new gauge, each of
the last three terms on the left-hand side of (1.41) vanishes. Thus, the field equations in
the new gauge become

?hl, = —2kT},,. (1.45)

The linearized field equations may be written in the form of inhomogeneous at d’Alembertian
equations, |81, pp. 21] )
O?h, = 26T, (1.46)
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Figure 1.10: The disturbance in the gravitational field at the event (ct, x') is the sum of the
influences of the energy and momentum sources at the points (ct, ') on the past lightcone.
(Original figure, courtesy of M. P. Hobson et al. [34].)

provided that the Buv satisfy the Lorenz gauge condition (also referred to as harmonic

gauge) )
d,h" = 0. (1.47)

The constrains (1.44) and (1.47) on the functions £#(x) require
O%¢* =0 (1.48)

to hold to preserve the Lorenz gauge condition by any further gauge transformation of
the form (1.34). A suitable transformation, which satisfies the condition (1.48), is given
by

& = e exp(ik,a’), (1.49)

where the € are constants and k, are components of the 4-wavevector (1.54). In the
presence of some non-zero stress—energy tensor 7", the general solution to the linearized
field equations (1.46) in harmonic coordinates is most easily obtained by using a Green’s
function in the form

e | e B

extending over the whole three-dimensional space R3. In the interests of brevity, the
lengthy calculation presented in [34, pp. 475-478| is not repeated here. It is apparent
that the solution at the event (Z,t) depends not only on the data on the light cone where
(¥ —7')* = *t? but also on data that are interior to that cone. [81, pp. 22| Tllustrated by
Figure 1.10, this region of spacetime is the intersection of the past lightcone of the field
point with the world tube of the source at the retarded times t, defined by

7 — 7|
t, =t — .

(1.51)

C
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1.5.4 Plane waves as vacuum solutions of the linearized field equa-
tions

In empty space, the linearized field equations (1.46) reduce to the wave equation
O?h* = 0, (1.52)

with the attendant gauge condition (1.47). Obviously, the wave equation (1.52) has plane-
wave solutions of the form

R = A" exp(ik,z”), (1.53)
where AM are constant complex components of a symmetric amplitude tensor. The
k* = n*"k, are constant real components of the 4-wavevector, conventionally to denoted
by .

(K] = (w/c, k), (1.54)

where k is the spatial 3-wavevector in the direction of propagation and w is the angular
frequency of the wave. It is convenient to consider a plane GW propagating in the z3-
direction, in which case the components of the 4-wavevector are

(k'] = (w/c,0,0,w/c). (1.55)

Substituting the plane-wave solutions (1.53) into the wave equation (1.52) and using the
fact that 0,h*" = k,h*", one finds that

D2 = 0 0,0, B" = 1k kB = 0. (1.56)

This can only be satisfied if
k°k, =0, (1.57)

i.e. the vector k must be null or lightlike vector (cf. Sec. 1.4.2). The nullity of k implies
that

w? = 2k, (1.58)
and so both the group and phase velocity of a gravitational wave are equal to the speed of
light. Since the linearized Einstein equations only take the simple form (1.52) in the Lorenz
gauge, one must also take into account the gauge condition (1.47). On substituting into
the latter the plane-wave form (1.53), as a consequence the gauge condition is satisfied,
provided that one obeys the additional constraint

APk, = 0. (1.59)

Thus any plane wave of the form (1.53) is a valid solution of the linearized vacuum field
equations in the Lorenz gauge, provided that the vector k* satisfies (1.57-1.59). Since the
vacuum field equations are linear, any solution of them may be written as a superposition
of such plane-wave solutions of the form

e (z) = / A™ (k) exp(ik,a?)d°k, (1.60)

where the integral is taken over all values of k. Physical solutions corresponding to
propagating plane waves in empty space are represented by the real part of the plane-
wave solutions (1.53):

R = AP exp(ik,a”) + (AM™)* exp(—ik,a”) (1.61)
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as a superposition of two plane waves of the form (1.53). Under the residual gauge
transfomation allowed by (1.48), the amplitude tensor transforms as

A = A el R i Pk, (1.62)

when the expression (1.49) is substituted for £ into the transformation law (1.42) for
the trace-reverse tensor AV, which is assumed to be of the form (1.53). The symmetry
of the amplitude tensor, together with the four Lorenz-gauge conditions (1.59) for a
four-wavevector (1.55), implies that A*3 = A#0. Therefrom the number of independent
components in the amplitude matrix reduces to six.

1.5.5 Polarization states and effect of passing gravitational waves

In the frame of Einstein’s general theory of relativity, the freedom to make a further
gauge transformation may further reduce the number of independent components in the
amplitude matrix from six to just two. [82] Accordingly, in Einstein’s theory of general
relativity, which is based on the concept of metric tensor, GWs have two ‘tensor’ polar-
izations, denoted by + and x and any possible plane gravitational waves travelling in the
z-direction may be obtained in the form

0 0 0 0
0 AT AT g .
h;(uT/T) = 0 A?_TT) _X(TT) 0 expli(kgz — wyt)] (1.63)
x +
0 0 0 0

by superposing arbitrary amplitudes and relative phases of these two polarization modes
in the new transverse-traceless gauge, denoted by ‘T'T". k, and w, are wave number and
angular frequency of the GWs, respectively.®

More general metric theories®, however, predict the existence of up to four additional
modes (called ‘vector’ and ‘scalar’ polarizations), to the full complement of six polarization
modes of GW. [83] The ‘monochromatic components’ of amplitude tensor (1.64) can be
conveniently written in the form of

0 0 0 0
0 A +4, A, A,
0 A,  A,—A, A,
0 A, A, V24

Ay, = (1.64)

The full metric perturbation due to a gravitational wave from a direction ) can be written
as a sum over all polarization modes

hij(t — Q) =Y WAt — Q- B)e (), (1.65)

where A labels the six possible polarization modes: the +- and Xx-type tensor modes, the
x- and y-type vector modes, the breathing and longitudinal scalar modes, respectively.
[56] The metric perturbation for each mode can be written in terms of a plane wave

*Provided that the all components of the GWs have the same propagating velocity (the speed of light).

6 Alternative or modified theories of gravity, such as Horndeski’s theory, Brans—Dicke theory or f(R)
gravity, are either straightforward alternatives to or generalizations of Einstein’s general theory of rela-
tivity.
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Figure 1.11: Tlustration of the displacement the six polarization modes for gravitational waves
permitted in any metric theory of gravity induce on a set of circularly arranged test particles.
The initial configuration of test particles is represented by solid and doted lines, respectively,
at the moments of different phases by w. The ellipses (or circles) illustrate the effect of a
passing gravitational wave, the circled dot and the arrow represent the direction of propagation.
Transverse polarization modes are shown in (a), (b), and (c), where the wave propagates out
of the plane; longitudinal polarization modes are shown in (d), (e), and (f), where the wave
propagates in the plane. In Einstein’s general theory of relativity, only ‘plus’ and ‘cross’-type
polarization modes are present; in massless scalar—tensor gravity, (¢) may also be present. (Figure
is adapted from [34, pp. 506-507] and [84].)

expansion,

WAt 7) = / ¥ [ dS) exp [mf(t - Q)] WA(F, Q)ed (), (1.66)
where f is the frequency of the gravitational waves, k=o2r fQ corresponds to the wave
vector (1.55), € is a unit vector (1.69) that points in the direction of GW propagation,
and ef;- is the Ath polarization tensor represented by [84]

10 0 010
=10 —-10], es=(100],
0 0 0 000
00 1 000
;=000 ], e;={001], (1.67)
100 010
100 000
=010, e;=v2[000
000 001




Three of them are transverse to the direction of propagation, with two ‘tensor’ modes (+-
type and x-type) representing quadrupolar deformations, and one ‘scalar’ mode (b-type)
representing a monopolar ‘breathing’ deformation. Other three modes are longitudinal,
with one being an axially symmetric stretching ‘scalar’ mode (I-type) in the propagation
direction, and one quadrupolar ‘vector’ mode (z-type and y-type) in each of the two
orthogonal planes containing the propagation direction. Figure 1.11 illustrates the effect
of the six polarization modes on a set of circularly arranged test particles. Einstein’s
general theory of relativity predicts only the first two transverse quadrupolar modes (a)
and (b) independently of the source; these modes correspond to the waveforms h, and
hy discussed in eq. (1.63) (note the cos2¢ and sin 2¢ dependences of the displacements).
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Figure 1.12: The Euler angles (0, ¢, v) are adapted to describe the orientation of the detector
frame (&, ¢, Z2) with respect to the frame of GW propagation (m, n, Q). (Original figure, courtesy
of N. Yunes & X. Siemens [56].)

Let us consider a frame with unit vectors & = (1,0,0), y = (0,1,0), 2 = (0,0,1) in
the direction of the z, y, and 2 axes fixed to the detector’s frame, shown in Figure 1.12.
Relative to the detector, a coordinate system of the gravitational wave is given by their

coordinates as
2’ = (cos @ cos ¢, cos O sin ¢, — sin 0)
y' = (—sin ¢, cos ¢, 0) (1.68)
z' = (sin 6 cos ¢, sin @ sin ¢, cos 0),

where the two sets of coordinates may be related to one another through rotation by

angles (6, ¢). [56] One still has the freedom to perform the third elemental rotation by
the angle v about the propagation direction of gravitational wave, which is expressed by

m = 2’ cos) — ¢ sin )
n=—a'siny +y cosy (1.69)
Q=72
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The detector’s frame is also shown in Fig. 1.12 with respect to the rotated frame of
GW propagation (m, n, 2). One may use the unit vectors (1, n, §2) to generalize the
polarization tensors (1.67) to a wave coming from a direction ) as follows [56]

(1.70)
tensor
0.9
0.8
0.7
0.6
0.5
4 , 0.4
S 0.3
o 0.2
I +type x-type x-type y-type b or |-type >
GW direction © D. Barta | Wigner RCP

Figure 1.13: Antenna patterns for Michelson interferometer strain response (cf. egs. (1.73))
evaluated in the small-antenna limit with ¢ = 0. Panels from left to right show the antenna
pattern response functions for the +-type and X-type tensor modes (|Fy| and |Fx|), the z-type
and y-type vector modes (|F;| and |F,|), and the b-type and I-type scalar modes (|F},| and |F|
up to a sign, it is the same for both breathing and longitudinal). Colour indicates the strength
of the response with red being the strongest and blue being the weakest. The black lines near
the centre give the orientation of the interferometer arms which point in the Z and ¢ directions.
(Based partly on a figure courtesy of N. Yunes & X. Siemens [56].)

For alLIGO and aVirgo, the arms are perpendicular so that the antenna pattern re-
sponse can be written as the difference of projection of the polarization tensor onto each
of the interferometer armes,

N

FAQL ) = (@3 — §i)ed (@, 0). (L.71)

ij

This means that the strain measured by an interferometer due to a gravitational wave
from direction 2 and polarization angle v takes the form

~
Y

h(t) = ha(t — Q- 2)FA(Q, ). (1.72)
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Explicitly, the antenna pattern functions are, [82]

1
F*(0,¢,¢) = 5(1 + cos? 0) cos 2¢ cos 21 — cos 0 sin 2¢ sin 21

1
F*(0,¢,v) = —5(1 + cos? 0) cos 2¢ sin 21 — cos 0 sin 2¢ cos 21)

F*(0,¢,1) = sinf(cos  cos 2¢ cos ) — sin 2¢ sin 1))

. . . (1.73)
FY(0,¢,1) = —sinf(cos 0 cos 2¢ sin 1) + sin 2¢ cos )

1
F*(0,¢) = —3 sin? @ cos 2¢

FY(0,¢) = % sin” 0 cos 2¢.

The dependence on the polarization angles ¢ reveals that the 4+-type and Xx-type polar-
izations are spin-2 tensor modes, the z-type and y-type polarizations are spin-1 vector
modes, and the b-type and [-type polarizations are spin-0 scalar modes. Note that for
interferometers, the antenna pattern responses of the scalar modes are degenerate. Figure
1.13 shows the antenna patterns for the various polarizations given in eqs. (1.73) with

b= 0.

1.5.6 Post-Newtonian equations of motion and gravitational wave-
form

Post-Newtonian expansions are approximate solutions of the Einstein field equations
(1.24) in weak-gravitational-field and slow-motion regime, expanded to any specified order
in a small parameter
v GM

‘raTay
which express orders of deviations from Newton’s law of universal gravitation and provide
a powerful formalism for modeling CBCs during the inspiral phase, when the orbital speed
of the binary v is much smaller than the speed of light ¢. [29] A PN expansions of order
O(€") to the Newtonian expression of gravity is said to be of (n/2)PN order.

In the PN formalism, the spacetime is assumed to be split into the near and wave
zones. The field equations (1.24) for the perturbed Minkowski metric (1.12) are solved
numerically by CBwaves in both regions. A fourth-order Runge-Kutta (RK4) method
with adaptive step-size control is carred out to numerically solve for the 3PN-accurate
near-field radiative dynamics for the relative two-body equation of motion written as

dv M .
== (=7 + Apx + Agpx + Agspn + Aspy + Azspy + .. ) (1.75)
at each time t > ¢, where tg is the time of arrival of the signal at the detector; r = |1 — x|
is the separation, v = vy — v, is the orbital velocity, i = (x; — x2)/r is the mean motion,
and M is the total mass (1.5), and p is the reduced mass (1.8) of the compact binary
system that consists of two components of mass m; and ms. The far-zone radiation field,

decomposed as [75]

2Gp
b = == (Qu + PP Qs+ PQuy + PQIY + PQuy + PYQ5Y + P*Qu + P*Q)),

C4dL
(1.76)

(1.74)

a
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Figure 1.14: Range of validity of the main analytical and NR methods to solve the two-body
equation of motion. The horizontal axis shows the binary mass ratio, while the vertical axis
shows the radial separation between the two black holes in the binary. (Original figure, courtesy
of A. Buonanno & B.S. Sathyaprakash [85].)

is determined in harmonic coordinates (1.47) by a simultaneous evaluation of orbital
elements (¢, r, i) for the relative two-body equation of motion (1.75), where dj, is the
luminosity distance (typically a few Mpc) to the GW source. The leading term @);; is the
Newtonian mass quadrupole moment that leads to the so-called ‘quadrupole formula’

9 ..
ualt, @) = Lt = di) (1.77)

where I, is the quadrupole moment of the source. P°Q;;, P'5Q,;, P?Q,; are higher-
order relativistic corrections up to 2PN order beyond the Newtonian term, while P f’jo,
P1'5Q§jo, p? §js are corrections arising from spin—orbit and spin—spin effects, respectively.
The notation A,px and P" indicates that the term is O(€") relative to the Newtonian term
—n and @, respectively. Here, for brevity, I will not repeat the lengthy PN coefficients
for P". They are written out explicitly in the appendix of Ref. [86]. Nor will I quote all
relativistic corrections A,px to the acceleration — they are written out explicitly in Ref.
[87] — but only the 1PN corrections and the leading radiation-reaction terms at 2.5PN

order:

—-

8 M 17TMY\ . m
A2.5PN = -—1" 31}2 + —]rn — (U2 -+ 3—) V] .

5T 3 r r
The radiation-reaction acceleration is expressed in the so-called Damour—Deruelle gauge.
Radiative orbital dynamics involving all possible correction terms up the 3PN order be-
yond the Newtonian term are sufficient to analyze the orbit and evolution of the binary

pulsar (cf. the Hulse-Taylor binary pulsar in Sec. 1.3.1) and they are written out explic-
itly in terms of unperturbed mean motion 7 and orbital eccentricity e in Ref. [25]. The

M 3 . .
AlPN = |:(4 + 27’]) (1 + 3’[7)’02 -+ 57’]7"2:| n + (4 — 277)7"'07

(1.78)
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secular evolution is treated adiabatically, assuming that the timescales of the shrinkage
of orbits (due to gravitational energy radiation E) and the precession (due to angular
momentum flux .J ) are much longer than that of the orbital period. Consequently, the
functions (@1pn, é1pn-..) in the equations derived from FE and J depend only on the
eccentricity e, and not on eccentric anomaly u. Hence, the adiabatic evolution equations
for = (Mw)?? and e form a closed system, and can be solved independently of Kepler’s
equation. Given initial conditions x(0) and e(0), one can solve the system of ODEs nu-
merically to obtain x(t) and e(t). The integration of the equations of motion is terminated
at the ISCO (Innermost stable circular orbit), which is located at

risco = 6GM /¢ (1.79)

in Schwarzschild spacetime (for a non-spinning sources). The orbital angular frequency
at the ISCO is
fisco = ¢/ (6V6rGM), (1.80)

which marks the end of the inspiral phase. It ought to be noted that the PN equations
of motion applied in the computation are a series expansion of corrections to the acceler-
ation of the binary components. Whole-order terms in the series represent conservative,
relativistic corrections, and half-order terms represent dissipative corrections. [88|

It is critical to point out that the PN approximation can not be reliably applied when
higher-order corrections to the equations of motions become comparable in magnitude to
lower-order corrections. Levin, McWilliams, and Contreras argue in Ref. [88] that the
PN expansion breaks down in the strong-field regime when 3.5PN order term becomes
larger than preceding terms and drives the binary system to larger separation. The range
of validity of the PN approximation is illustrated in Fig. 1.14.
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Chapter 2

Fast prediction of eccentric inspirals
using reduced-order models

The present piece of research is a response to the growing demand for computationally-
efficient generation of eccentric waveform families in gravitational-wave searches. To the
extent of our knowledge, surrogate model building for this particular family of waveforms
has not yet been tested. ROM (Reduced-order model) techniques have proved exceedingly
efficient for other models (such as for aligned-spin BBHs), thus, one may anticipate similar
benefits of extremely large speedups in the time-consuming process of generating eccentric
waveform. My aim is to give a proof-of-principle demonstration of its exceptional potential
and to offer a novel and practical way to dramatically accelerate parameter estimations.
The introductory Sec. 2.1 delineates the issue of cost in gravitational waveforms
generation and reviews the development of ROM-based models in response to the compu-
tational demand for cheaper methods. Sec. 2.2 deals with the procedure for generating
fiducial PN waveforms by CBwaves, with respect to the statistics of the cost of comput-
ing individual waveforms to estimate the total cost of building template banks. Sec. 2.3
proposes the simplest strategy (regular spacing) for template placement in the intrinsic
parameter space, followed by the representation of the fiducial waveform templates on a
common, finely sampled and regularly spaced frequency grid. Sec. 2.4 gives a general
description of my approach to construct efficient ROM assembled from the reduced bases
and of its characteristic features, particularly the truncation error. Sec. 2.5 is dedicated
to assess the overall performance of the ROM, including the accuracy of the surrogate
model and its computational cost relative to that of the fiducial model. Conclusions,
remarks, limitations and an outlook for future research will be given in Sec. 2.6.

2.1 Computational complexity in the multi-dimensional
parameter space

As it has been discussed in Sec. 1.3.2, GW sources can be described by a set of eight
intrinsic and seven additional extrinsic parameters A = Aintrinsic + Nextrinsic, associated
with the astrophysical model of their respective sources. The earlier are intrinsic to the
source (the mass m;, spin vector §Z and electric charge Q; of its components) while the
extrinsic parameters are those which depend on the relative location of the source with
respect to the detector (right ascension « and declination § of the sky location, luminosity
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distance dp, the orbital inclination ¢ and polarization angle ¢, the time t. and phase ¢,
at coalescence). Each template has a specific set of values for its parameters which are
hereinafter collectively referred to as model parameters. A collection of points in a p-
dimensional parameter space, provided that p is the number of model parameters, is
called a template bank (or template grid). [89] A template bank generated with minimal
match T, could contain a large number of templates that scales as L ~ (1—T,,)"?/2. The
number of templates L required for correlations grows rapidly with p and the number of
GW cycles Leye. [90] A fully coherent GW search for a CBC with p = 8 parameters lasting
for Leye = 10° cycles would require as much as L = 10*° waveform model evaluations. [91]

Al

Figure 2.1: A schematic illustration of a tensor product grid on a base patch covering the
entire domain of interest in model parameters A1, Ay and a refinement patch. (Original figure,
courtesy of M. Piirrer. [92])

Over the last three decades methods have been developed for setting up template
banks which minimize the computational cost in GW searches without degrading the sig-
nal detectability, measured by the signal-to-noise ratio (SNR). [93-95] Since the 1990s a
method most feasible for small-dimensional parameter space (p = 2, 3, or 4 at most) has
been popular to address the problem of template placement by associating the parame-
ter space with a positive-definite metric space. In this geometric framework, the metric
measures the fractional loss in squared SNR of a predicted signal (at one point in the pa-
rameter space) filtered through the optimal waveform template corresponding to a nearby
point in the parameter space. [96] In 2009 a template placement algorithm was developed
that is suitable for any number of dimensions, provided that the metric distance between
two points in the parameter space is large or well-defined. [97] A schematic illustration
of a template tensor product grid with refinement patch is shown in Fig. 2.1. Beside
the issue of ensembling sufficiently large template banks, parameter estimation (PE) car-
ries a number of challenges unique to large data sets. The exploration of the parameter
space of BBHs relies on numerical relativity (NR) simulations of the field equations to
discover how such mergers evolve. [98] Even a very coarse survey of the parameter space
would require an enormous number, typically L = 10° — 107 [99], of expensive NR sim-
ulations which impose a computationally insuperable obstacle. The required number is
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in fact subtantially greater than the combined number of all simulations ever performed
by each and every NR group [100, 101]. Consequently, techniques which can estimate the
astrophysical parameters fast and accurately are needed to overcome this computational
bottleneck. [102]

Reduced-order modeling or model order reduction is a practical mathematical tool
to extract the fundamental features of a computationally demanding high-order model
through exploiting only a reduced set of information. Investigations [103-106] over the
last few years have revealed that GW templates exhibit significant redundancy in the
parameter space, suggesting that the amount of information required to represent a fidu-
cial waveform model is appreciably smaller than commonly anticipated. The reduction of
information content is achieved through expressing the essential information by means of
only a remarkably few, reduced number of representative waveforms r < L to construct a
reduced-order model (ROM) also known as a surrogate model. ROMs provide compressed
approximations of any selected waveforms within the same physical model. They are
projection-based techniques that aim to lower the computational complexity in the sim-
ulations by mapping the original FOM (Full-order model) onto an appropriate subspace
of much lower dimension spanned by a reduced-order basis. To find these representative
waveforms that constitutes the reduced basis several methods, including SVD (Singular-
value decomposition) and greedy methods have been proposed, usually combined with the
empirical interpolation method (EIM). [103, 107] SVD-based methods have been applied
in Refs. [105, 106, 108] to interpolate time-domain inspiral waveforms. I am going to pro-
vide an effcient (fast and accurate) representations of approximated waveforms for any
desired parameter values within the model by using the information provided by only r
ROM waveforms instead of the total number L. [105, 109] The SVD-based approach to
significantly accelerate PE process used in Ref. [110] is to directly interpolate the like-
lihood function over a significant portion of the parameter space. Moreover there is yet
another method, presented in Refs. |98, 111], that defines special reduced-order quadrature
(ROQ) rules to assist in fast likelihood evaluation.

2.2 Fiducial waveform models

Current searches for GWs from NS and stellar-mass BH binaries use restricted stationary-
phase approximations to the Fourier transform of 3.5PN-accurate circular inspiral-only
waveforms, such as spin-aligned TaylorF2 or SpinTaylorT). |29] The first part of this sec-
tion describes a procedure for constructing PN non-spinning eccentric inspiral waveforms
by CBwaves model in the time domain. The second part deals with the statistics of the
cost of computing individual time-domain (TD) waveforms, drawn from a relatively large
number of sample points in a finite-sample distribution.

2.2.1 Construction of eccentric post-Newtonian waveform tem-
plates

Stellar-mass BBHs and BNSs in the inspiral regime are adequately described by high-order

Post-Newtonian (PN) waveform templates. For more details about the PN framework,

please recall Sec. 1.5.6. Therefore, T construct PN templates by making use of the
CBuwaves software, developed by the Virgo Group at Wigner RCP with the intent of
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providing an efficient computational tool capable of generating gravitational-waveform
templates produced by generic spinning binary configurations moving on eccentric closed
or open orbit within the applied PN framework. A detailed examination of the software’s
performance is given in Ref. [86]. The source release and binary packages supported both
on x86 and x86 64 platforms are available at the group’s website [112|. The range of
validity for the PN approximation in the late inspiral phase has been examined in Ref.
[86] by CBwaves simulations through PN expansion parameter €, which was introduced
in (1.74) and found to be below the critical upper bound € ~ 0.08 — 0.1. Therefore, the
equations of motion shall be cut off at the radial separation r ~ 10GM/c?, in accordance
with Ref. [88], well outside the radius of Schwarzschild ISCO (1.79). As a consequence,
the highest orbital frequency [113]

Juso = 03[(1 - eiso)/(G - 26LSO)]3/2(7TGM)_1 (2.1)

at the LSO (Last stable orbit) for nonrotating eccentric sources is less than the orbital
frequency at the ISCO (1.80) if erso, associated with the residual orbital eccentricity at
the end of inspiral phase, exceeds 1/3.

Fig. 2.2 demonstrates that the integration run-time t;,; depends sensitively both
on the initial eccentricity and on the disparity of components’ masses (m;, ms) in a
binary system. The t;,; increases exponentially with decreasing total mass M. The mass
disparity, defined by ¢ = 1—g¢, allows better comparability with ey than g itself, considering
that t;,; asymptotically increases — faster than with decreasing M — towards infinity as
either ey (left panel) or ¢ (right panel) tends to 1. The physical interpretation of these
competing trends is very simple:

1. The lighter the components of the binary are, the longer it takes for them to grad-
ually descend onto their ISCO through a sequence of increasingly circular orbits.
[114]

2. The more eccentric the orbit was initially, the longer it takes to shed its residual
eccentricity over many orbital periods. [18]

3. Among different configurations of equal total mass, the one with the largest mass
disparity has the longest inspiral time for harbouring the lightest component. [114]

At the high total-mass region on Fig. 2.2, the influence of first trend grows comparable
to that of the last two to reverse the trend of decreasing integration run-time. Fig. 2.4
shows the influence of M and ¢ on the length of integration run-time t;,; from a different
aspect. Excluding the red and yellow dots, each point in the coloured triangular region is
assigned to a hue level running from dark to light as the value of t;,; increases on a loga-
rithmic scale. The dark blue ‘basin’ represents the region where M and ¢ simultaneously
lower the value of t;,; to its minimum. Isoclines running in parallel are connecting points
at which t;,; has the same value, therefore they are associated with horizontal lines in
Fig. 2.2 (b). The influence of growing ¢ becoming comparable to and gradually greater
than that of M accounts also for the drift from the linear rising trend in the curvature
of isoclines that occurs at the high-g region on Fig. 2.4. Although Fig. 2.4 suggests that
over 85% of the waveform templates of initial eccentricity ey = 0 are computed up to
10 seconds, in fact, only 4.6% of all waveform templates require less then 10 seconds to
integrate, as demonstrated in Fig. 2.3. Out of a total of 1800, only those 120 templates
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are shown in Fig. 2.4 that are located in the ey = 0 plane. Still, the figure illustrates
well that in the same ep-plane the frequency of templates with little ¢;,; is extremely high
compared to that of templates with large t;,;, regardless of the value e,.

In the next section I shall give a quantitative description of the summary statistics
computed from the relative frequency of occurrence (or empirical probability) of the in-
tegration time-runs.
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(a) Integration run-times for equal-mass (b) Integration run-times for systems on
systems (g = 0). circular orbit (eg = 0).

Figure 2.2: The integration run-time ¢y, increases exponentially with decreasing total mass M.
With increasing initial eccentricity eg (left panel) or mass disparity ¢ (right panel), tin; grows
asymptotically at a significantly faster rate than with decreasing M. The integration time of
those template waveforms that enter a detector’s sensitivity band at a frequency of 10 Hz has been
measured 20 times, each at 11 distinct values of M € [2.15M¢), 215M)] for three distinct values
of initial eccentricity; ey = {0, 0.7, 0.98} and mass disparity; ¢ = {0, 0.1, 0.99} represented by
blue, orange and green dots, respectively. The template waveforms were generated at a uniform
sampling frequency 16.384 kHz. Around each median curve of corresponding ti,, values, the
shaded bands represent their respective 95% point-wise confidence band.

2.2.2 Probability distribution of integration run-times

Let T = {¢int, ¢int . ¢} be a univariate independent and identically distributed (IID)
finite data sample drawn from the probability (or relative frequency) distribution of the
discrete random variable ¢ € T while a discrete set of L time-domain input waveforms

h(t) = {h(t; M) Hiy (2.2)

is computed at each parameter point A\; (cf. Sec. 2.3.1) by evaluating Eq. (1.76) at a
distance D = p simultaneously with the integration of the equations of motions at 3PN
order that requires integration run-times ¢,

Since I do not make any prior assumption about the probability distribution, I shall
use a non-parametric model where the statistical measures are determined by the finite
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data sample T. In statistics, kernel density estimation (KDE) is a fundamental data-
smoothing technique that provides a non-parametric estimate, based on observed data
T, of an unobservable underlying probability density function (PDF) of the continuous
random variable inf T < ¢ < supT. A PDF, denoted by f£; and illustrated in Fig. 2.3,
is a non-negative Lebesgue-integrable function that defines the cumulative distribution
function (CDF) of a real-valued random variable ¢, evaluated at a value t" as

F,[t'] = Prft < 1] = / ST (2.3)

It represents the probability that the random variable ¢, with the expected value given by
Eft] = / t'dF (1], (2.4)

—00

takes on a value less than or equal to ¢’ and its kernel density estimator is

falt] = ih il K [t _ht}m} : (2.5)

where K > 0 is a symmetric kernel with total integral normalized to unity and h > 0
is the bandwidth (or smoothing parameter). One might intuitively choose h as small
as the data sample T allows; however, there is always a trade-off between the bias of
the estimator and its variance. Another option is the use of adaptive bandwidth kernel
estimators in which the bandwidth changes as a function of t.

A specific quantitative measure of the probability distribution is the n-th moment

pin = E[(t = c)"] (2.6)

of the continuous random variable ¢ about some central value ¢ (e.g. the mean, denoted by
p) where E is the expected value of ¢ defined by Eq. (2.4). The graphical representation
of the most common measures of central tendency (mean, median, mode) is depicted on
Fig. 2.3 with solid, dashed and dotted red lines, respectively. The PDF rapidly increases
with the random variable ¢ up to a point at t = 0.81653 sec. From then onwards this
monotone increase slows down and eventually comes to a halt at ¢ = 4.438 sec, which
marks the mode, i.e. the most frequent value in the distribution. The median which
represents the value separating the higher half of the probability distribution from the
lower half is located at ¢ = 20.615 sec. The mean which represents the first moment of
the PDF (u = p; in Eq. (2.6)) is situated at ¢ = 77.499 sec.

The central tendency of distributions is typically contrasted with its dispersion that
measures the extent to which a distribution stretched or squeezed. Common measures
of statistical dispersion are the variance and standard deviation: The wvariance of t is
the second central moment, given by (2.6) as Var[t] = E[(t — )% and the standard
deviation is its square root, denoted by o. For the given distribution ¢ = 266.885 sec.
Finally, the shape (or asymmetry) of probability distributions is quantitatively measured
by the third and fourth central moments, called skewness and kurtosis and denoted by
Skewl[t] = E[(t — u)?/0®] = 18.56 and Kurt[t] = E[(t — p)*/o?] = 490.04, respectively.
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Figure 2.3: PDF denoted by £:(t) (blue line) and CDF by F4(t) (orange line) are displayed as
functions of the random variable ¢ € [inf T, sup T], corresponding to tini-values, which is measured
in seconds on the lower horizontal axis and in standard deviation (o = 266.885 sec) round the
mean value of ¢ on the upper horizontal axis. The smooth KDE with adaptive bandwidth is
based on the data sample T collected from the integration run-times of L = 1800 waveform
templates that were generated in the parameter space (), described in Sec. 2.3.1. The location
of the mode, the median and the arithmetic mean are illustrated by dotted, dashed, and solid
red lines, respectively in ascending order of their locations. This order of the measures of central
tendency is a characteristic feature of right-skewed (positive skewness) distributions.

2.3 Template placement and common frequency grid

Let us now discuss the placement of a grid of TD waveform templates in a compact
parameter space, followed by the generation of a sequence of frequency-domain (FD)
templates on a common finely sampled uniform frequency grid. The TD waveforms are
Fourier transformed and split into their amplitude and phase parts. These functions
are accurately represented on a sparse frequency grid with only O(10%) nodes, with a
sampling frequency recorded well above the Nyquist frequency of the shortest time-series
in the template bank.

2.3.1 Template placement in an associated 3-dimensional param-
eter space

The set of input waveforms (2.2) is computed by CBwaves, described in Sec. 2.2.1, at
corresponding parameter points

A={N €O}, (2.7)

in a compact p-dimensional parameter space (2 C RP, where p is the number of model
parameters. I restricted this study to a feasible 3-dimensional parameter space consisting
of totally ordered one-dimenstional sets of values of corresponding model parameters
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(mq, mo, €) that define a sparse grid of points
A=m; @mo®e = {(mj,mj,e) : i €0, imax];J € [isimax); k € [0, kmax) } (2.8)

covering the desired parameter range in the particular model involved. Owing to the
invariance of input waveforms under exchange of the components’ masses (my, ms), the
values of the 2-dimensional index pair (i, j) are constrained to a triangular sub-region
in the positive quadrants where ¢ < j. Considering that the waveform templates span a
3-dimensional parameter space, each template is successively placed into a single vector
(2.2) as indexed by

2

in the range of values 1 <[ < L. This flat index corresponds to the position of templates
in the parameter space. The total number of templates in the set is then expressed as

1
I = Kimax - Z—)Hj] Ko + 4 1 (2.9)

L = [(Zimax +1)% — 2] kinan/8 + 1. (2.10)

It is desirable to work with a dense grid of short waveforms encompassing the late inspiral
phase to make a better coverage of the selected region of the parameter space. For the
sake of simplicity, templates are sampled at equidistant parameter combinations within the
region. Nevertheless, using a template placement algorithm that is based on a template-
space metric over the parameter space makes a far more efficient coverage. [115, 116]
Generally, the algorithms that use geometrical techniques concentrate more points near
the boundaries of the region and at lower mass-ratios.

The set of initial eccentricity {eg : 1 < k < kpax } is chosen to cover the entire interval
[0, 0.95] and the mass ratio (1.7) is allowed to range between equal mass at ¢ = 1 and
relatively extreme systems at ¢ ~ 0.01 with total mass M /M, € [2.15,215]. In terms of
the symmetric mass ratio (1.8) the model covers approximately n € [0.01,0.25]. Fig. 2.4
shows the placement of those L = 120 templates (red dots) that are situated in the k = 0
plane section of the parameter space €2, out of a total of 1800 templates, and are collected
in h(t). These templates are confined within a triangular region with a boundary 02
(thick gray line).

2.3.2 Production of frequency-domain waveforms

For optimal orientation all time-domain waveforms in Eq. (2.2), composed of their two
fundamental polarizations h, and hy in the dominant € = m = 2 mode are represented
by complex-valued GW strain amplitudes

hn()\l) = th(tn; /\l) — ’ihx<tn; )\l) (211)

at N equidistant grid points

{t, = nAt},ep.n-1 (2.12)
as elements of a finite sequence of N regularly spaced samples of the complex-valued TD
waveforms {ho(A;), h1(N\), ..., hy—1(A)}. The sequence is converted by a fast Fourier
transform (FFT), denoted by a linear operator & : h — h, into an other equivalent-length
sequence of regularly spaced samples

{ilk<)\l>}k;6[—N/2,N/2—1] = F{hn(N) fnep.n-1] (2.13)
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Figure 2.4: The template bank h(t) of L = 1800 waveform templates was set up over a domain
{(M, q, e0)|M € [2.15M,215My], ¢ € [0.01,1], ¢9 € [0,0.95]} C 2 by computing Eq. (2.2)
with uniform grid spacings {AM = 14.19Mg, Aq = 0.06, Aeg = 0.063}. Red points, confined
within a triangular region with a boundary 99 (thick gray line), represet the parameter points
of those 120 input waveforms that are situated in the & = 0 plane section of the parameter
space €. In order to measure the accuracy of the ROM of waveforms, Eq. (2.34) is evaluated
at equidistant parameter points (yellow points) from their respective nearest basis-waveform
neighbours. Each background point in the coloured triangular region is assigned to a hue level
running from dark to light as the value of the integration run-time t,; increases on a logarithmic
scale. tiy¢ increases exponentially with decreasing total mass M and grows asymptotically at
a significantly faster rate with increasing mass disparity g. The dark blue ‘basin’, where the
great majority of template waveforms are concentrated, represents the region where M and ¢
simultaneously lower the value of tj,; to its minimum. Isoclines (thin gray curves) running in
parallel are connecting points at which #,; has the same value. A drift from the linear rise in
the curvature of isoclines occurs at the high-q region, where the influence of growing ¢ becomes
comparable to and gradually greater than that of M.

evaluated at the same N equidistant frequency grid points {f_n/2, ..., fo, ..., fnj2-1}
considering that ROM construction, to be discussed in Sec. 2.4, will require a set of values
that reside in the same grid points over all the waveforms in the template bank.

1. This is achieved by having the length of all frequency series truncated to that of the
shortest waveform in time, denoted by

T - tN,1 - to. (214)

This particular waveform is associated with the highest mass, lowest eccentricity
configuration (i = imax, J = imax, K = 0) in the template bank and its position in
the parameter space, given by Eq. (2.9), is lshort = ((max + 3)imaxkmax/2 + 1.

2. Another possible way, used by |92, 117|, to adjust the frequency series to the same
length is to make the shorter-length waveforms of sufficient length by extending
them with other templates such as TaylorF2.
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Figure 2.5: A schematic illustration of the method for building and evaluating the surrogate
model over a common frequency grid. The red dots show the selection of parameter points for
building the reduced basis, the blue dots show the associated empirical nodes in time from which
a waveform can be reconstructed by interpolation with high accuracy, and the blue lines indicate
a fit for the waveform’s parametric dependence at each empirical time. (Original figure, courtesy
of S. E. Field et al.. [102])

The Fourier coefficients in Eq. (2.13), given by
) =) ha(N)e 2N ke 0, N — 1], (2.15)

are complex-valued functions of the frequency f; which encodes both the amplitude and
the phase,

B = Relu 2 + Il )R/N, B = =it (/1) (2.16)

respectively. In this interpretation, iLk<)\l) corresponds to the cross-correlation of the
time sequence h,()\;) and an N-periodic complex sinusoid e>™ "/~ at a frequency point
fr = k/N that represents k cycles of the sinusoid. Therefore, Eq. (2.15) acts in place
of a matched filter for that frequency. (To read more about matched-filters, please read
Sec. 4.5.2) Now, the sequence of frequency-domain waveforms (2.13) can be re-expressed
as ‘chirps’ in a simple form

{he(\)} = {hl) exp(iAR))} (2.17)

where the oscillation degree A is a large number. The behaviour of GWs in the late inspiral
phase is highly oscillatory, but the amplitude and the phase themselves are smoothly
varying functions of frequency. [118] It will thus be more expedient to perform high-
accuracy parametric fits of the phase and amplitude given by (2.16) rather than of the
complex waveform (2.11) itself. The preprocessed amplitudes and phases are collected in
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the columns of separate template matrices {H®, H)} € RV*L,
H = (h)y € CV*E (2.18)

where the amplitude or phase labels have been dropped for brevity and where L is the
total number of templates, and each template ﬁl( fx) is given on a common freqency grid
of length N. I will represent the waveforms at a large number of frequency points so that
N Z L. A schematic illustration of building templates over a common frequency grid is
shown in Fig. 2.5.
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Figure 2.6: The panels illustrate the inspiral evolution of equal-mass BBH/BNS systems (g = 0)
starting at a Keplerian mean orbital frequency of 5 Hz at a distance D = u. The four most
distinct template waveforms were generated by CBwaves at a uniform sampling frequency of
16.384 kHz with extreme values of total mass M = {2.15Mg, 215My} and initial eccentricity
eo = {0.00, 0.95} in the investigated parameter space (2. (See large red points on Fig. 2.4.) The
top inset panel presents the last N = 15,000 points of the longest waveform (blue) projected
onto an equal number of points of the shortest waveform (red).

2.3.3 Definition of a regularly spaced high-resolution frequency
grid
Provided that T in (2.14) is the longest time length, the time spacing is defined as
At=T/(N —1) (2.19)

by Egs. (2.12) and (2.14). The time spacing and the number of time steps N in the grid
(2.12) are chosen such that the FD waveforms (2.17) are sampled at a rate of f; and cover
a suitable and well-resolved frequency range | fiow, fhigh]-

1. The lower limit of the frequency range fi is specified by the low-frequency cutoff
of the detector noise spectrum which is close feu0f = 10 Hz for advanced detectors
design.
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2. The upper limit fuign is determined to be at fisco = 2.045 kHz by the ISCO fre-
quency (1.80) for the lowest total mass configuration of interest M = 2.15M,.

The Nyquist criterion requires the sampling frequency to be at least twice the highest
frequency contained in the signal to avoid aliasing. Thus, the smallest sufficient sam-
pling frequency is f; = 4096 samples per second for being the first power of 2 to meet
the criterion. Note that the typical sampling rate being used by aLIGO and aVirgo
observatories in ongoing searches for GWs is at 2048 Hz. [119]| Instead, an equidistant
grid with N = 4000 grid points is sampled at f; = 16.384 kHz in the frequency band
Mf € [0.0001,0.0216] in geometrized units (G = ¢ = 1). The conversion factors for
‘geometrized’ units into SI units are listed in Table A.1. The total mass M is expressed
in units of geometrized solar mass by My[s| = G/c® x Mylkg] ~ 4.93 x 107% sec. At the
time resolution At = 1/ f; ~ 4.59M which corresponds to a Nyquist frequency

fny = f5/2~2.03 x 1072 M (2.20)

a waveform long enough for the BNS system of total mass M = 2.15M;, down to fioy =
2.48 x 107 M~ is given and is about T' = (N — 1)At ~ 1.83 x 10*M long in time. The
spacing in frequency domain is

Af =2fxy/N, (2.21)

so the power will be either in positive or negative frequencies, depending on conventions
and only half of the FFT should be considered. Combining this with the relations (2.19-

2.20), one has
N-11
Af=" """ ~545x 10 °M L. 2.22
f T 5.45 x 10 (2.22)

Only half of the points in the FFT spectrum are unique, the rest are symmetrically
redundant. Thus, the points of negative frequencies contain no new information on the
periodicity of the random number sequence. Which amounts to swapping the left and
right half of the result of the transform.

2.4 SVD-based reduced-order surrogate model building

In this section I summarize some of the characteristic features of SVD that are especially
useful for reduced-order modeling and discuss my approach to construct a compressed
approximate representation of a collection of fiducial waveforms at the cost of trunca-
tion error. Next, projection coefficients of the waveforms are determined in terms of
the reduced basis. In conclusion, the ROM is assembled from the reduced basis and
projection coefficients interpolated over the parameter space. My procedure follows the
well-established strategy that has been pursued by Piirrer and by Cannon for building
frequency-domain ROMs. [92, 105, 106, 117]

2.4.1 Singular values and truncation error

Formally, the decomposition of the template matrix H € CV*L in Eq. (2.18) is expressed
by a factorization of the form
H = VXU, (2.23)
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Figure 2.7: Illustration of the multilinear SVD of a multilinear rank-(R;, R2, R3) tensor of a
3-mode and the different spaces.

where the complex unitary matrices
V=[v]...lvg) eREE U =[uy]...|uy] € RN (2.24)

are orthogonal sets of non-zero eigenvectors of the non-negative self-adjoint operators
HIH and HH' so that UTU = T and VIV = 1. The illustration of SVD of multilinear
tensor is shown in Fig. 2.7. The rank—nullity theorem states that the SVD (2.23) pro-
vides a decomposition of the range of H. [117] Accordingly, the left-singular vectors (or
eigensamples) {v; € V'} provide an orthonormal basis

range(#H) = span{vy, ..., vg} (2.25)

for the range of H (columnn space) where the maximal number of linearly independent
columns of H is R = rank(H) < L. In a qualitative sense, each v; represents a typical
waveform pattern. The right-singular vectors (or eigenfeatures) {u; € U} provide a basis
for the domain of H (row space) and represent the evolution of the magnitude of each
waveform along the frequency gridpoints. The diagonal entries of the rectangular matrix
¥ € RV*L correspond to the non-negative real SV (Singular value)s oy > ... > 04, >0
where s = min(N, L). SVs are roots of eigenvalues of HIH (and of HHT) describing the
spectrum of the template matrix H, arranged in monotonically decreasing order (cf. Fig.
2.8). If the number of frequency points is significantly larger than the number of waveforms
(i.e. L < N), then a thin SVD is a more compact and ‘economical’ factorization of Eq.
(2.23) than the full-rank SVD that comprizes all R eigensamples. In practice, low-rank
matrices are often contaminated by errors, and for that reason they feature an effective
rank Req smaller than its exact rank R. The reduced-rank approximation of the template
matrix H is expressed by

M, => owiou], (2.26)

i=1
which comprises only those r < R singular vectors which correspond to singular values of
a significant magnitude. The approximated representation (2.26) of the fiducial template
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bank H is the r-th partial sum of the outer-product expansion of the expression (2.23),
where r denotes the desired target rank. The Eckart—Young theorem [120] implies that the
low-rank SVD in Eq. (2.26) provides the optimal rank-r reconstruction of the template
matrix

H, = argmin || H —H, | (2.27)
rank(H].)=r

in the least-square sense, where the truncation error of approximated representation (2.26)
in both the spectral and Frobenius norm is given by

min(N,L)
|7 =Hy =01 (H), [ H—=Ho o= | D o2H), (2.28)
1=r+1
respectively.
Fig. 2.8 shows 0, = 0;/0; on logarithmic scale as a function of the number of
SVD components ¢ = {1,..., R} involved in the approximated representation. Each

0;, which describes the relative magnitudes of the corresponding eigenfeatures, is com-
puted from the truncated SVD (2.26) of template matrices with three distinct full-ranks
R = {550, 936, 1800} (i.e. total number of templates). The truncation error in the
approximation, in accordance with Eq. (2.28), decreases with the number of SVD com-
ponents retained. The ultimate accuracy (or minimal error) achievable is limited by the
total number of templates L that the original template matrix ‘H contains. The grow-
ing rate of decay in the SV spectrum demonstrates that the individual SVD components
gradually lose their relevance for being included in the approximation. In this respect,
the spectrum has three clearly distinctive regions characterized by the rate at which SVs
decrease:

1. Overreduced SVD (k < 400) retain insufficient amount of information to construct
a representation by the orthonormalization (2.25) with less than relative error of
107°—107°. The initial steep exponential fall attests that the information contained
in the corresponding eigenfeatures is predominantly relevant. In fact, the first few
components shown on Fig. 2.9 contain roughly 90% of all the information on the
input waveforms, regardless of rank(#). Then, SVs decrease at a much lower, yet a

slowly increasing rate, practically indistinguishable for different values of full rank
R.

2. Sufficiently reduced SVDs (400 < k < 500 — 600) efficiently select the relevant
information, so that the relative error of representation (2.39) is kept well-suppressed
while the number of SVD components stored in the reduced-rank template matrix is
significantly lower than that of the full-rank. The larger the full-rank R is, the more
SVD components have to be kept to achieve the same accuracy of representation.

3. Underreduced SVDs (k 2 500 — 600) admit the lowest possible truncation errors,
limited only by the numerical errors of the FOM or full-rank approximation itelf.
However, the accuracy of reconstructed waveform representation improves at a rate
much lower than in the preceding regions. The loss of relevant information content
due to the reduction of the number of SVD components is inefficiently low compared
to the improvement of accuracy.
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Choosing an optimal target rank r is highly dependent on the objective. One either
desires a highly accurate reconstruction of the fiducial waveform templates, or a very low
dimensional representation of the fundamental features in the templates. In the former
case r should be chosen close to the effective rank, while in the latter case r might be
chosen to be much smaller. Fig. 2.8 demonstrates that choosing a target rank r = 456
for the smallest among fiducial template matrices will result in a truncation error related
to 6 = 2.66 x 10715 at r = 456.
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Figure 2.8: Normalized singular-value spectra of the template matrix for full ranks R =
{550, 936, 1800} are illustrated by blue, orange and green colour, respectively. The horizontal
axis represents the index of SVs, while the vertical axis represents the relative variance of SVs.
The main panel displays the relative variance of &; of the matrix H(4) which encodes the am-
plitude part of waveform templates while the corresponding relative variance of &; for the phase
is shown in the top inset. At r = R — 1 its infimum, &,., falls onto a dotted black line given by
log 6, —log oy &~ —34.8877 — 0.00204394 R. The rate at which the ratio decreases is significantly
lower under the dashed black line given by —6.23703 — 0.0250683 R. Excluding waveforms in the
lower section causes less errors by a magnitude much smaller than in the upper section.

2.4.2 Assembly of the surrogate model

The basis for the amplitude or phase space is given in the columns B; of the matrix

(2.29)

Vi, e RV*E i N > L
VeRVN i N<L
and a full-rank basis is desired. If N < L, then the information from L waveforms at N
grid points is contained in a basis of dimension N. The reduced basis waveforms only
resemble the physical behaviour of frequency domain amplitudes and phases for the first
basis function, the higher basis functions are oscillatory (cf. Fig. 2.9). To compress the

45



—'l 5 — 4 5
0.04 ‘ ‘ ‘ 0.04
0.02F 0.02f ]
- § . /
= ¥y © V \/
-0.02 1 -0.02r 1
-0.04 : : : -0.04 : : :
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
f (kHz) f (kHz)
(a) Basis functions for the amplitude modes. (b) Basis functions for the phase modes.

Figure 2.9: Reduced basis functions for the first 5 amplitude and phase SVD modes are repre-
sented at N = 4000 grid points in the frequency domain. The basis functions become increasingly
oscillatory as their index ¢ increases.

model, a reduced basis of rank r is selected from the FOM or full-rank basis (2.25) in the
form
B.=V,=[vi]...|v,] e R forr < R< N. (2.30)

For any r the columns of V, are optimal orthonormal basis for the starting waveforms.
Notice that B, C B,.;, which demonstrates the underlying hierarchical nature of the
generated template banks. [117] Fig. 2.10 may serve as an illustration of the underlying
sparsity of the selected basis in the parameter space. The identification of parameter
values associated with the basis waveforms selected by SVD from the FOM is not that
straightforward as a greedy algorithm would pick values that parameters take. Neverthe-
less, it may safely be said that a very small part of the parameter space volume is covered;
the parameter points are heavily concentrated at low-mass and low-eccentricity values.

Hereafter the label r» on the rank-r reduced basis will be dropped for brevity. The
projection coefficient vectors i are computed from the reduced bases B and B for
any given input waveform i € RY as follows

fi(h)=B"h e R", (2.31)

where the labels referring to amplitude or phase were dropped for brevity. The projection
coefficient vectors for all waveform templates are packed in the matrices M®) and M@
with entries

Mkl = /Lk(ﬁl) = (BTH)M < RTXL. (2.32)

By the comparison with Eq. (2.23), one may concede that M = BTH = —XUT for a
full-rank basis B = V. It follows that the projection coefficient matrices are ordered in
the same way as the individual waveforms in 4. To undo the packing of the waveforms
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in the matrices M I partition the linear index [ that enumerates the waveforms in ‘H and
obtain a tensor )
Miggi. = 1l 1)) € R, (2.33)

To complete the model the projection coefficient vectors are defined at any position in

250

Figure 2.10: The SVD-based reduced-basis parameter choices in the 3-dimensional parameter
space (m1, ma, €y). Comparing the positions of the retained r = 600 templates to the placement
of the original R = 1800 template shown in Fig. 2.4, it becomes clear that primarily those
parameters are selected that are associated with low-mass and low-eccentricity systems. Only a
small fraction of the whole volume of the parameter space is covered.

the chosen parameter space by suitable interpolants I[M](A) € R" for the amplitude and
phase coefficient tensors MY M) For each input waveform one has two corresponding
r-vectors of projection coefficients (for amplitude and phase) that are interpolated over
the parameter space. The frequency-domain ROM representation of waveform templates
is then constructed in the form

hs(As £)= AN 1 [BY - IIMWD)N)] exp (il [B@ - IM®](A)]}, (2.34)

where - denotes matrix multiplication, I;[-] interpolates vectors in frequency on a suitable
grid, and Ag(X) is an amplitude prefactor which is stored before the SVD takes place and
an interpolant is computed over the parameter space.

2.5 Accuracy and speedup for surrogate model predic-
tions

Once a ROM is built, any surrogate waveform can be evaluated as a sum of reduced basis
elements with incremental errors within the parameter range covered in the particular
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model. The main criteria for a successful ROM are that it facilitates data analysis ap-
plications that were infeasible with the fiducial waveform model and that it represents
waveforms accurately. [92] This section is dedicated to appraise the overall performance
of the ROM building discussed in Sec. 2.4. The first part of this section assesses the ac-
curacy of surrogate model predictions in terms of the match between the surrogate model
and the fiducial model. In the second part an overview of the computational efficiency of
the ROM is provided with respect to computational complexity and cost relative to the
cost of the fiducial model.

® N2 errors for 4 different values of Af
1075 N? errors for Af =5.45 x 107°M !
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Figure 2.11: The linear trend in the change of surrogate error (2.37) as a function of the
resolution of the frequency grid. Higher resolution of sampling times (i.e. lower resolution
for sampling frequencies) result lesser uncertainty in estimating the amplitudes and phases.
Surrogate error Ah? = 1.98 x 1077 is marked with an orange point for a frequency-grid spacing
Af = 5.45x107° M ! which was obtained in Eq. (2.22). The value of surrogate error corresponds
to the mean relative error of the amplitude AR ~ 4 x 107 shown in Fig. 2.12.

2.5.1 Reconstruction errors

The overlap integral of two normalized waveforms, say, of a fiducial CBwaves waveform
hep and its surrogate model prediction hg, is given by the mismatch (or unfaithfulness)
between the two waveforms and is defined as the normalized inner product (2.36) maxi-
mized over time and phase shifts

M =1 — max (e, hs)

(hon, hs) 2.35
to.so ||hesll||hs| %)

with an inherited norm given by ||h||?> = (h, h). A natural inner product between the two
waveforms is given by the complex scalar product

N 5 Thigh F *
<hCB7 hs) = 4Re/f %df (236)

where the tilde denotes Fourier transformation given in Eq. (2.13), h%(f) is the complex
conjugate of Ist(f), S;(f) is the one-sided PSD (Power spectral density) of the detector
noise and fiow, fhign are suitable cutoff frequencies for detector sensitivity. The low-
frequency cutoff depends on the PSD and is at 10 Hz for advanced detectors design. The
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high-frequency cutoff is at 2.045 kHz, which is the ISCO frequency of the lowest total-mass
configuration in my fiducial model, discussed in Sec. 2.3.3.
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Figure 2.12: Top panel: The amplitude and the phase part of the waveform associated with
!l = 1. There is visual agreement among the fiducial CBwaves waveform and its surrogate
prediction throughout the entire frequency range. Bottom panel: The relative errors (2.39) with
moving average of 50 points, defined by Eq. (2.39), in the amplitude and the phase difference
between the fiducial waveform and its surrogate model prediction. The differences are smaller
than the errors intrinsic to the surrogate model itself, as well as those of state-of-the-art NR
simulations.

A discrete version of the normed difference between a fiducial waveform and its sur-
rogate is what one may actually measure:

N-1

ARO) = £ 3 [IBen(fi 3) — hs(f )] (237)

where f is the sampling frequency discussed in Sec. 2.3.3. The square of the normed
difference between two waveforms, referred to as the surrogate error, is directly related
to their overlap (2.36). It is the dominant source of error in the surrogate model that
translates directly into errors in the fits of the parameters for building the surrogate.
[102] Fig. 2.11 shows the linear correlation of the surrogate error in Eq. (2.37) with the
time spacing A f in the regularly spaced grids (2.12-2.13). The surrogate model gradually
converges to the fiducial one at finer time scales (i.e. larger sampling frequencies). Other
errors of interest are the pointwise ones (separately for the amplitude and phase). They
are encoded in the [th surrogate model prediction (2.34) as

BV (fis ) = LIBW - TMDI0), - B (fis M) = LIBD - TM®I )], (2.38)
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respectively. The relative errors in approximating the amplitude and phase of a fiducial
waveform by its surrogate model prediction is then expressed by

AR (frsN) = |1 - ﬁéA)(fk; Al)/ﬁ(cjéllg(fk; N, AR (fi )= |1 - Bé‘”(fm )\z)/ilgjd)]%(fk; )\1)) ;
(2.39)

where the amplitude and phase parts of fiducial waveforms, ﬁ(g};( fr; A1) and Bgf’g( s A,
respectively, are given by Eq. (2.16) on N discrete frequency points f.

Fig. 2.12 shows a comparison between the surrogate and fiducial model, using the
template assigned to [ = 1. The top panel shows that the fiducial and surrogate waveforms
are visually indistinguishable. The bottom panel demonstrates that both amplitude and
phase pointwise errors (2.39) increase with frequency. Nevertheless, the errors are indeed
as small as predicted on Fig. 2.8. A moving average of 50 points was used to smooth out
short-term fluctuations in the error and highlight longer-term trends. Fig. 2.5 shows a
schematic illustration of building surrogate models over a common frequency grid.

2.5.2 Computational cost and speedup for surrogate model pre-
dictions

Apart from the requirements for accuracy or reliability, a ROM building is considered
efficient if it generates cost-efficient surrogate models. The major advantage of using
surrogate model predictions in lieu of actual waveform evaluations is their significantly
reduced resource consumption. Now I discuss the computational cost, in terms of opera-
tion counts and run-time, of ROM building and present the desired speedup that can be
achieved when evaluating surrogate models.

As described in Sec. 2.4.2, the complete surrogate model (2.34) is assembled with
the evaluation of r projection coefficients p;(f) given in (2.31) and 2r fitting functions
{ﬁgA)(A)}le and {lNzl(¢)(A)}}”:1 given in (2.38). In order to construct a surrogate model for
some parameter A\, one only needs to evaluate each of those 2r fitting functions at Ao,
recover the r complex values {/Nzl(A)()\o) exp[—ile(d))()\o)]}{zl, and perform the summation
over the index [. Each p(f) is a complex-valued frequency series with N samples. There-
fore, the total operation count to evaluate the surrogate model at each \g is (2r — 1)N
plus the cost to evaluate the fitting functions. [102] The entire process of constructing
a small, efficient ROM which is comprized of only r = 550 waveform templates sampled
at N = 4000 grid points requires the execution of approximately 4.4 x 10° operations
(excluding the cost of evaluating the fitting functions).

The notion of ‘speedup’, in this terminology, is the number that evaluates the relative
performance of generating the same waveforms on the same processor by the execution
of CBwaves code and of the surrogate model. More specifically, I test the acceleration
of waveform generation by measures on the length of time required to perform each
computational process. Let as note that the time which was denoted by t;,; and was
referred to as ‘integration run-time’ in Sec. 2.2.1 is actually the execution time during
which the processor is actively working on my computations. It is referred to as CPU
time (or run-time) and will be denoted by tcpy. In contrast, the actual elapsed real
time accounts for the whole duration from when the computational process was started
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Figure 2.13: Top panel: Computational time tcpy to generate fiducial waveforms by CBwaves
code (dots; connected by solid lines) against the cost of evaluating corresponding surrogates by
ROM (rectangles; connected by dashed lines). The computational time was measured for three
different initial eccentricities of equal-mass configurations, each associated with different colours.
Bottom panel: The speedup in evaluating the surrogate model is several thousand times faster
around 10—50 M, than generating CBwaves waveforms. For high total mass the speedup falls off
to several hundreds. The speedup is roughly twice as great for configurations having extremely
high initial eccentricity at eg = 0.98 (blue line) as for circular ones at eg = 0 (green line).

until the time it terminated. The difference between the two can arise from architecture
and run-time dependent factors such as waiting for input/output operations (e.g. saving
waveform templates). Consequently, the elapsed real time is greater than or equal to the
CPU time.

Fig. 2.13 shows (on top) the computation time or CPU time for CBwaves waveforms
(solid lines) against corresponding surrogate waveforms (dashed lines) as a function of to-
tal mass of the binary system. The total mass M is measured in the same 11 points as in
Fig. 2.2 for three different initial eccentricities (eg = {0.98, 0.6, 0}) of equal-mass configu-
rations, each associated with different colours. The computation time tcpy for surrogates
is multiplied by a factor of 300 in order to shift the curves close to their respective CB-
waves counterparts and enable visual comparison. The bottom panel demonstrates that
surrogates are several thousand times faster around 10 — 50 Mg, to evaluate as compared
to the cost of generating CBwaves waveforms. The speedup falls off to several hundreds
as the total mass increases. Moreover, the speedup grows when the initial eccentricity e
is increased in much the same way as with the mass disparity ¢ (cf. Fig. 6 in [92]). The
speedup is roughly twice as great for configurations having extremely high initial eccen-
tricity (eg = 0.98) as for circular ones (ey = 0). The resemblance of the influence of ¢y and
¢ on the speedup can be attributed to their asymptotical nature as it had been pointed
out earlier in Sec. 2.2.1. It is also evident that the speedup culminates when waveforms
for configurations of very low total mass and very high eccentricity are generated. Such
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waveforms are prohibitively expensive to generate with CBwaves in contrast to surrogates
that are generated at the same cost, regardless of the parameters of the configuration.

Let us note that successive versions of SEOBNR (aligned-Spin Effective-One-Body
Numerical Relativity) ROMs have been developed and put to use within LAL (LSC Algo-
rithms Library) (LSC Algorithms Library) to shorten data analysis applications carried
out since the first observation runs have begun. [121] It has been shown in [102, 103| that
the cost of evaluating the surrogate model is linear in the number of samples N (cf. Fig.
2.11 where the surrogate error depends on the sampling rate). Depending on the sampling
rate, the speedup is between 2 and almost 4 orders of magnitude. The speedup in eval-
uating surrogate models compared to generating NR waveforms with the LAL analysis
routines is crucial for searches and theoretical parameter estimations. SEOBNR (aligned-
Spin Effective-One-Body Numerical Relativity), IMRPhenomD (IMR Phenomenological
Model ‘D’) and PhenSpinTaylorRD waveform approximants are among the best available
GW models for generic spinning, compact binaries. In comparison with my results, the
speedup achieved at the typical rate of 2.048 kHz used by aLIGO and aVirgo observatories
is roughly 2300. [119]

2.6 Summary of ROM-based predictions, limitations
and an outlook

The primary goals of the present research have been to propose a potential extension
of the ROM techniques to alleviate the computational burden of constructing waveform
templates for coalescing compact binaries with any residual orbital eccentricity and to val-
idate the applicability of ROMs to this particular family of waveforms. ROMs have been
applied to several waveform families (SEOBNR, IMRPhenomP and PhenSpinTaylorRD)
in LAL routines for gravitational-wave data analysis. [103-109] The aforementioned wave-
form families provide efficient descriptions of gravitational waves emitted during the late
IMR stages of compact binary systems, but only in the zero-eccentricity limit. The major
motivation for extending the scope of application beyond the zero-eccentricity limit is
based on the ground, referred to in Sec. 2.1, that the great majority of compact objects
formed in dense stellar environments retain some non-negligible eccentricity when enter-
ing the frequency band of ground-based GW detectors [18, 19], as well as the impact of
eccentricity on the accuracy of parameter estimation for BNSs [30].

My approach to construct frequency-domain ROMs has been predominantly based
on the method outlined in Refs. [92, 117] (cf. Sec. 2.4). Input waveforms comprised
in the ROM are Fourier transformed and split into their amplitude and phase parts (cf.
Sec. 2.3.2). These functions are accuretely represented on a common, finely sampled and
regularly spaced frequency grid defined in Sec. 2.3.3 with only N = 4000 equidistant
nodes, with a sampling frequency recorded well above the required Nyquist frequency, at
fs = 16.384 kHz. Fig. 2.11 demonstrates that, beside the degree of model order reduction,
the accuracy of surrogate-waveform representation relies on the sampling frequency. The
upper and lower limits of frequency contained in the grid are determined from the ISCO
frequency for the lowest total-mass configuration of interest (which is roughly 2 kHz in
this study) and the low-frequency cutoff of the detector noise spectrum (which is close to
10 Hz for aLIGO design). The ROM is designed to be capable of producing surrogates
for GWs from CBCs of total mass between 2.15M; and 215M, thereby covering the
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entire total-mass range of stellar-mass BBH/BNS systems of interest for ground-based
GW detectors. The mass ratio is allowed to range between equal mass at ¢ = 1 and
relatively high mass-ratio at ¢ ~ 0.01 while the initial orbital eccentricity changes over
a relatively wide range of values from ey = 0 (circular orbits) up to eq = 0.95 (highly
eccentric orbits). Configurations with both low total-mass and high mass-ratio would
imply component masses well below 1M, which, of course, are excluded as inconceivable
astrophysical sources. Despite the fact that the investigation has been restricted to a
feasible 3-dimensional subset of the full 8-dimensional parameter space of GW signals (cf.
Fig. 2.4), the conclusions of Sec. 2.4, in agreement with that of Refs. [92, 102-104, 117],
suggest that a full representation of the 8-parameter space might actually be achievable
with a relatively compact reduced basis (cf. Ref. [102]). Template placement algorithms
based on template-space metric (such as in Ref. [115, 116]) make admittedly far more
effective coverage of the parameter space than the uniform spacings used in this study.
As a matter of fact, Fig. 2.10 illustrates that the large majority of parameters of the
selected templates constituting the reduced basis are concentrated along the axes of the
parameter space.

The reduced bases were built separately for the input amplitude and phase (cf. Fig.
2.9) by the decomposition of template matrices that comprise 550, 936, and 1800 input
waveforms, respectively. The projection coefficients for corresponding input waveforms
projected onto their reduced bases were calculated as functions of the model parameters
(M, q, eg) and were interpolated by tensor product cubic lines over the parameter space.
Finally, the ROM which preserves fundamental features of the original FOM is assembled
from its constituent parts. Fig. 2.8 demonstrates the underlying hierarchical nature of
the generated template banks and indicates that the truncation error in the approximated
representation of surrogates decreases with the number of SVD components retained,
characterized by a rate at which SVs decrease. Extremely little (r < 400) or large number
(r 2 500—600) of SVD components retained are equally poor choices because the amount
of information is either insufficient to construct accurate representations or excessively
large compared to the achieved accuracy. An effective rank is chosen preferentially from
a ROM which posess the lowest SV with the smallest possible number of components
retained (in the presented case r = 456). The first part of Sec. 2.5 assess the error of
surrogate model predictions for waveforms that were originally not present in the original
template bank, with special regard to the impact of frequency on the reconstruction
error. To that end, reference waveforms were generated by CBwaves in all the intersection
points right between the grid poinst of the original template bank (cf. the yellow in Fig.
2.4). Finally, the surrogates were evaluated in the corresponding parameter-space points
for comparison and the relative error was measured along all the N = 4000 frequency
points. The bottom panel of Fig. 2.12 attests that the relative error of the approximated
representation is consistent with the error estimates derived from the singular values
(AR ~ 10715, Ah(® ~ 107'3) over a large portion of the frequency range, but larger
than expected at around the starting frequency (AL ~ 10713, AR® ~ 10713). The
figure indicates that the relative error of the amplitude and phase increases with the
frequency. My results provide clear examples of the construction and use of ROMs for
eccentric inspiral waveforms.

My results also provide strong evidence that large increases in the speed of compu-
tation are obtained through the use of ROMs. Fig. 2.2 has exposed that the cost of
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computing input waveforms increases exponentially as the total mass decreases, but rises
asymptotically at an even faster rate than the initial eccentricity or mass disparity in-
crease. In contrast to the cost of EOB waveform (complete IMR) generation that rises
steeply as the starting frequency is decreased (cf. Ref. [92]), the cost of CBwaves waveform
(inspiral-only) generation rises more gradually. The cost of input waveform generation
varies considerably in the region of parameter space (M, ¢, ey) explored and depicted in
Fig. 2.4, but Fig. 2.3 has revealed that only a surprisingly small fraction of waveforms
of high-eccentricity and high-mass-disparity configurations are actually responsible for
the prohibitively large time-consumption of integrating a large number of 3PN-accurate
equation of motion over the investigated range of parameters. As discussed in the second
part of Sec. 2.5 (based on Ref. [117]), the cost of generating surrogate waveforms (shown
in the top panel of Fig. 2.13) comprises a constant cost of the spline interpolation at each
frequency point and a cost of performing the interpolations of coefficients over the param-
eter space. The speedup in evaluating the surrogate model, shown in the bottom panel
of Fig. 2.13, is 2-3 orders of magnitude faster than generating corresponding CBwaves
waveforms overall, reaching a factor of several thousand around 10-50 M.

Finally, the method presented in this chapter is limited to building surrogate models
of inspiral-only PN input waveforms for the reason that eccentric binaries circularize
in the last few cycles before the merger. Nevertheless, composite waveforms that fully
cover all the IMR phases can be constructed as prescribed in Ref. [92, 117] by matching
the inspiral and NR waveforms of merger stages in either the time or frequency domain
and then fitting this ‘hybrid’ waveform to the ring-down part, described by damped
exponentials. The gap between the initial part of the waveform and its final ring-down
part, described by damped exponentials, is bridged by a phenomenological phase. The
practical implementations of ‘hybrid” waveforms that comprise eccentric inspirals will be
left for future work. I anticipate substantial speedup factors to come for predicting NR
waveforms with a surrogate model compared to the expensive NR simulations for the same
parameters. Developing an efficient template placement technique (such as in Ref. [115,
116]) for better coverage of the parameter space and an adaptive sampling technique in
the frequency domain are critical factors in the operational efficiency of ROMs and have
been left for future work. All these ultimately leading to computationally feasible and
successful exploration of the full 8-dimensional parameter space of GW signals.
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Chapter 3

Radial pulsations of relativistic stellar
models for dissipative fluids

This chapter is dedicated to present my results of my latest papers [4, 5] on the radial oscil-
lations of neutron stars affected by the viscosity and thermal conductivity of neutron-star
matter. Here, in addition to providing a comprehensive review of the basic theory of rel-
ativistic stellar pulsations, I present an analytical formulation of the dynamical equations
that governs the radial mode of linear adiabatic stellar oscillations through a perturba-
tion scheme. I prove that, similarly to the non-dissipative case, the pulsation equation
expressed by a set of effective variables which involve dissipative terms, can be recast in a
self-adjoint form. In contrast to the common non-dissipative case, the associated SLEVP
(Sturm-Liouville eigenvalue problem) is generalized for a discrete set of eigenfunctions
with complex eigenvalues which correspond to the squared frequencies of the oscillation
modes and the imaginary part corresponds to the damped solution. However, the main
novelty of this approach is the ability to directly relate the damping ratio of oscillations to
the expressions S; and Ss, which stem from the viscous and heat-conductive contributions
to the stress—energy tensor, without relying on explicit NR computations. The scale of
relaxation time, directly related to the damping ratio, is identical to approximate solution
for the time-scale of energy dissipation given by [122] in an alternative way. The usefulness
of my analytical approximation method is evidently restricted to providing qualitative and
‘order-of-magnitude’ information about the dissipative time-scales in (3.104) rather than
a precise one.

Conversely, the numerical solution of the eigenvalue problem has yet to be published
in my next paper [5]. There SLEVP for the radial oscillation modes of stars is converted
to a system of finite difference equations where I implement a second-order accurate
differencing scheme so the resulting system of finite difference equations emerges as a
tridiagonal matrix eigenvalue problem. In a manner similar to the approach of Kokkotas
and Ruoft [123], I compute the four lowest-frequency radial-oscillation modes of neutron
stars constructed from various potential EOSs of cold-nuclear-matter considered by Ozel
and Freire [124]. The algorithm yields zero-frequency modes at the maxima and minima
of the mass curves while the equilibrium adiabatic index characterizes the stiffness of
the EOS at a given density. Finally, I evaluate the rate at which viscosity and thermal
conductivity drain energy from the radial oscillation mode.
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3.1 Context of relativistic asteroseismology

3.1.1 Astrophysical motivation for relativistic stellar oscillations

Neutron stars provide us with unique insights into the physics of the extremely dense
and cold nuclear matter, which cannot be reached in terrestrial experiments. The cen-
tral density of a neutron star is expected to reach up to several times of the nuclear
saturation density (no ~ 0.16 fm’?’). The constraints on the properties of matter at su-
pernuclear densities (cf. [125] and references therein) and relatively low temperatures
(compared to particle collisions producing comparable energy densities) rely heavily on
observations of macroscopic equilibrium parameters (masses, radii, moments of inertia,
etc.) of NSs. Attention has focused especially on measurements of the stellar mass M
and circumferential radius R of these stars which depend significantly on their respective
EOS (e.g., the relation between the pressure and the total energy density). [124, 126,
127] The recent discovery of NS with mass as high as M =~ 2.01M, (e.g., PSR J1614-2230
has M = 1.927 + 0.017M, [128] and PSR J0348+40432 with mass M = 2.01 4+ 0.04M
[129] has ruled out several EOSs, as shown in Fig 3.3. Due to the tremendous advances
in the measurements, precise masses for ~ 35 currently known NSs range from 1.17 to
2.01 M. Also more than a dozen radii are known in the 9.9-11.2 km range, but current
estimates for radii are still dominated by systematic errors [130, 131]. One major class of
EM observations comprises X-ray and ~y-ray burst phenomena. These events are clearly
explosive in nature and have been generally associated with neutron stars by many au-
thors (cf. e.g., [7]). These explosive events perturb the associated neutron stars, and the
resulting dynamical behaviour may eventually be deduced from such observations. X-ray
observations from the recently launched NICER mission ([11]) and from the upcoming
LOFT mission [12, 132] will impose stricter constraints on plausible EOSs by yielding the
mass and radius of a few stars to ~ 5% precision. EOS predictions as well have become
more reliable due to precision measurements of nucleon-nucleon interactions, detailed
calculations of binding energies of light nuclei and cold nuclear matter which constrain
three-body forces, inclusion of relativistic effects, improved many-body and Monte Carlo
methods. [133]

The interior structure of stars is probed by asteroseismology using the frequency of
seismic waves rippling throughout the star. The frequencies of NS oscillations that relies
on accurate stellar models are matched to the observed frequencies. The period of stellar
oscillations for non-relativistic stars are in the range of minutes, whilst for neutron stars
the periods are much shorter, typically range from 0.2 to about 0.9 milliseconds. [15] These
oscillations occur when a star is perturbed away from its dynamical equilibrium and a
restoring force tries to return it back to that equilibrium state. Among the various types
of oscillation modes, I focus on the fundamental modes (f-modes) of non-rotating NSs
where the pressure provides the dominant restoring force that produces radial oscillations.
Pulsation in radial modes are the simplest and generally the largest amplitude stellar
pulsations, where the displacement is purely radial and spherically symmetric. Provided
that there is no stationary surface between the centre and the surface of the star, an
oscillation can be called the fundamental radial mode. [134, p. 55| Moreover, knowledge
of f-modes of non-rotating stars also provides estimates for the f-mode properties of slowly
rotating stars, for the case of uniform rotation [135] and also for differential rotation [136].
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3.1.2 Theoretical development in relativistic stellar oscillations

Theoretical interest in the dynamical stability of relativistic stars has arisen since 1964
from the seminal works of S. Chandrasekhar, R.F. Tooper and J.M. Bardeen [137-141]
and a general stability criterion was formalized in the 1970s by J. L. Friedman and B.
F. Schutz [142]. The stability of spherically symmetric stars under radial adiabatic per-
turbations has been extensively studied and reported in the literature (e.g [8, 9, 143—
145]). Induced by the small radial perturbations, dynamical instability will intervene by
radial oscillation before the star contracts. Several techniques for obtaining spectra of
oscillation modes have been developed for various stellar equilibrium models, mostly with
zero-temperature EOS. Although, these studies mostly investigated for zero-temperature
EOS stellar models, proto-NS with finite-temperature EOS [146] and strange stars [145,
147] were also studied. T have applied Chandrasekhar’s linear varational method [137,
138] to formulate the variational principle which forms the basis for determining the
characteristic eigenfrequencies and relaxation times of radial oscillations.

The first exhaustive compilation of radial modes for various zero-temperature EOS
was presented by Glass & Lindblom in [8|. Although their equations were correct, the
numerical results for the oscillation frequencies were flawed as it was later pointed out by
Vith & Chanmugam in [145]. Vath & Chanmugam computed the frequencies of radial
oscillation for six EOSs and verified their own results invoking the argument [143]| that
a correct NR algorithm must yield a zero-frequency mode at that specific central density
that corresponds to the maximal-mass configuration for the particular EOS. Stars on
the high-density side of this maximal-mass instability point are unstable and eventually
collapse. Kokkotas & Ruoff emphasized in [123] that the above mentioned test is only
applicable when a constant local adiabatic index is used both in the equilibrium stellar
model and its perturbation equations. In general, a variable adiabatic index can be
employed that depends on the dynamical regime regulated by a more complicated EOS.
Kokkotas & Ruoff re-examined earlier studies of radial oscillation modes for the most
common EOSs and corrected the values of eigenfrequencies found by Glass & Lindblom
in [8]. Moreover, their survey included six additional EOSs that were more recent at the
time (cf. [123] and references therein).

Concurrently, the conversion of kinetic energy into heat and effects of viscosity on
stellar pulsations in general has been addressed first by [148-150]. Properties of transport
coefficients (bulk viscosity, shear viscosity, thermal conductivity) in neutron stars have
been studied more in detail by a number of recent of works [151-154]. The density
and temperature dependence of shear viscosity and of bulk viscosity in the crust and in
the core, respectively, have been described for different EOSs of neutron stars by [151].
Thermal conductivity and shear viscosity of nuclear matter arising from nucleon-nucleon
interaction in non-superfluid neutron-star cores were considered by [152], whereas those
arising from the collisions among phonons in superfluid neutron stars were considered
by [154]. An extension of [152]| for different nucleon-nucleon potentials and different
three-body forces in [153]| found that the nucleon contribution dominates the thermal
conductivity, but the shear viscosity is dominated by leptons. The most up-to-date review
of the transport properties and the underlying reaction rates of dense hadronic and quark
matter in the crust and the core of neutron stars is found in [155].
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3.2 Equation of state and chosen models

Internal structure and macroscopic properties of NSs are strongly correlated with the EOS
of dense matter, even though the exact EOS remains exceedingly uncertain especially at
high densities. Although, the latest discovery of high-mass NSs PSR, J1614-2230 [128] and
PSR J0348+0432 [129] has ruled out several EOSs, suggesting that the maximal mass for
NSs has to be larger than M ~ 2M,, for a given EOS, but the number of candidate models
with maximal mass below this limit is still considerably large.

In NS cores, the temperature of matter is far below the Fermi energy of its constituent
particles and its particular thermodynamic state at T' ~ 0 is accurately described by the
isentropic one-parameter EOS

p= p(p)v €= G(p), (31)

relating the pressure p and energy density € to the rest-mass density p which exceeds
nuclear density [156]
Prue =~ 2.3 x 10" g/cm®. (3.2)

In fact, densities in the cores are expected to be as large as p ~ 5—10pg, where the nuclear
matter at saturation (i.e. at the minimum of the energy per nucleon) has the density
po ~ 2.8 x 10" g/ecm® or ng ~ 0.16 fm™3, where the baryon-number density is related
to the baryon-mass density as ng = pg/m, and m, = 931.494 MeV is the atomic mass
unit. Given that neutrons geometrically overlap at p ~ 4pg and with increasing overlap
between nucleons, transitions to non-nucleonic states of matter are expected. [124] It is
possible for ultra-dense matter to contain hyperon, pion or kaon condensates. [157] Some
of the possibilities considered to date also include free quarks or colour superconducting
phases. [158]

3.2.1 Tabulated nuclear-theory-based EOS models

With the intention of covering a wide range of potential types of representative EOSs
and generation methods, here I consider four EOSs of cold nucleonic matter (i.e. the
hypothetical components composed of neutrons, protons, electrons, and muons) and I
follow the widespread naming convention of Refs. [124, 126, 127]:

e APR/ was derived of a variational method with modern nuclear potentials [159];
e MPA1 was derived of a relativistic Brueckner-Hartree-Fock theory [160];

e MS1 was derived of a relativistic mean-field theory |161];

e SLy was derived of a potential method [162].

and I also include three EOS of non-nucleonic state (i.e. the hypothetical components
composed of hybrid nucleon—hyperon—quark matter):

e [/ was derived of a relativistic mean-field theory including effects of hyperons [157];

e ALF1 is a hybrid EOS which describes a APR4 nuclear matter for a low density and
a colour—flavor-locked quark matter for a high density with the transition density is
3po where pg ~ 2.8 x 10" g/cm®. [158];
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Abbr. Constituents My,./M., R;,;/km Ref.
APRA Nucleons 2.22 11.13  [160]
MPA1 Nucleons 2.47 12.08  [160]
MS1 Nucleons 2.78 1477 [161]
SLy Nucleons 2.06 11.45  [162]
H4 Nuc., ¥, A 2.04 13.57  [157]
ALF1  u, d, s quarks 1.50 9.63 [158]
SQM1 Nuc., s quarks 1.56 8.89 [163]

Table 3.1: Nucleonic and hybrid nucleon—hyperon—quark matter models based on different
microphysics. The upper 4 models correspond to nucleonic, the lower 3 models involve non-
nucleonic states of matter, such as kaon condensates or hyperons. M,ax and R; 4 are the maximal
mass of spherical NSs in units of Mg (also marked in Fig. 3.3 by the symbols ¢) and the
circumferential radius of 1.4Mg NSs in units of km for a given EOS, respectively.

e SQM1 is a hybrid EOS which describes relativistic non-interacting gas mixed with
strange quark matter [163].

Provided that the above considered EOSs is described by piecewise-polytropes with
n = 3 pieces as in Sec 3.2.2, the following densities are determined at the boundary of two
neighbouring pieces: p; ~ 10 g/cm®, py ~ 5.012x10™ g/cm®, p3 ~ x10" g/cm®. ALF1
has the lowest pressure among the above considered EOSs and, thus, making it the softest
one. APR4, MPA1 and Sly have also relatively small pressure as in the case of ALF1 for
a low-density region p; < p < ps, but for po < p < ps, the pressure is higher than that
for ALF1. Thus, for p < p3, which NSs of canonical mass 1.3 — 1.4M have, these EOSs
are soft as far as the canonical neutron stars are concerned. It is worthy of note that for
a relatively small value of po, the adiabatic index, as illustrated in Fig. 3.2, is as large
as I'y ~ 3, owing to that the maximal mass of NS has to be Muy., S 2M, for a given
EOS. Thus, an EOS that is soft at p = py has to be in general stiff for p 2 p3. Although
MPAT1 has pressure that even exceeds that of H4 for a high-density region p = ps. By
contrast, H4 and MS1 have pressure higher than the rest for p < ps3, although the EOSs
become softer for a high-density region p 2 ps. In particular, MS1 has extremely high
pressure among many other EOSs for p < p3, and on that account, it is the stiffest EOS.
All the distinguishing feature mentioned above are reflected in Fig. 3.1, which display
the pressure in NS as a function of the baryon-number density or of rest-mass density.
Table 3.1 lists the constituent particles, the maximal mass and circumferential radius of
neutron stars of total mass 1.4M, associated with the representative EOS, respectively.

3.2.2 One-piece and piecewise-polytropic EOS

Although the tabulated EOSs listed in Table (3.1) are more realistic, they are too com-
plicated to illustrate some fundamental features. A very common closed-form EOS is the
polytropic one,

which describes a non-interacting, degenerate matter. In general, the ‘polytropic constant’
K = K(s) depends on the entropy, however, the degenerated matter dynamics in zero-
temperature approximation can be modeled as an adiabatic flow with a constant K.
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Figure 3.1: Pressure in compact stars as a function of the baryon-number density or of rest-
magss density for some nucleonic and hybrid nucleon—hyperon—quark matter models based on
different microphysics. The nuclear saturation density ng ~ 0.16 fm ™ is denoted by a shaded
gray line. The range of pressures at ng is approximately a factor of 1 to 3 MeV fm™3. The
pressures and number density series were reproduced from Ref. [124].

(For more details on K, c¢f. A.11.) The internal energy is given by the first law of
thermodinamics for adiabatic process (0Q) = 0), which can be integrated to obtain

1 1
€=P+mKPF=P+mP7 (3.4)

where ll)i_r)r(l) ¢/p = 1 was imposed. [139] With the adiabatic assumption, eqs. (3.3-3.4)
represent a barotropic fluid where the pressure is just a function of p. The adiabatic
index I'1, defined by
__dlogp e+ pdp
"“dlogp p de
is an important dimensionless parameter characterizing the stiffness of the EOS (3.3) at
a given density. [164, p. 190 For instance, a non-relativistic degenerate Fermi gas is
reasonably well described by a polytropic EOS that scales as p o p®?, and for highly
relativistic degenerate Fermi gases, p o< p*/3. Generally, 'y depends on the dynamical
regime given by p and e as shown in Fig. 3.2 for the EOSs listed in Table 3.1. The
EOS (3.3) must satisfy the following two conditions. The first, thermodynamic stability,
requires the EOS be monotonic (dp/dp > 0 and dp/de > 0), and therefore I' must be

positive. The second, causality requires the speed of sound c¢g be less than the speed of
light:

(3.5)

dp
2= < (3.6)

60



— ALF1

AP4

H4

— MPA1

Adiabatic index: T';

— MS1

— SLy

0.2 0.4 06 08 1.0
3

Number density (fm™)
Figure 3.2: The effective adiabatic index I'(e) function of the energy density € (including the
rest-mass density p contribution) for the set of candidate EOS models considered in Table 3.1.
The average value of the exponent I't = dlogp/dlognp ~ 2 holds for nucleonic EOSs in the
vicinity of nuclear saturation density ng ~ 0.16 fm 3, denoted by a shaded gray line.

Therefore, egs. (3.5-3.6) bound the average value of adiabatic index as

_ 4
Fl = €+pC2 2

S

p 3

(3.7)

within a dynamically stable star. [165] For spherical stars in Newtonian gravity, 'y < 4/3
is a sufficient condition for dynamical stability, however, in the stronger gravity of general
relativity, even models with the stiffest EOS become unstable for some value R/M > 9/8.
The more rigorous constrain on I['; for a star to be stable against radial perturbation

n<§+K%¥ (3.8)
where K is positive and of order of unity. For dynamical oscillations of neutron stars, the
adiabatic index I'y does not coincide with the polytropic one T.

Read et al. [127] demonstrated that a piecewise-polytropic EOS with three pieces
(n = 3) above the nuclear density approximately reproduces most properties of the rep-
resentative EOS listed in Table 3.1. These nuclear-theory-based EOSs at high density
are modeled with a small number of parameters and the expression for pressure (3.3) is
written in a parameterized form as

p(p) = Kip" for pi<p<ps (0<i<n), (3.9)

where n is the number of the pieces used to parameterize a EOS at high-density, p; is
the rest-mass density at the boundary of two neighbouring (i — 1)-th and i-th pieces, K;
is the polytropic constant for the i-th piece, and I'; is the adiabatic index for the i-th
piece. Here, py = 0, p; denotes a nuclear density evaluated in eq. (3.2), and p,41 — oc.
Other parameters (p;; K;; I';) are determined by fitting with a nuclear-theory-based EOS.
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Requiring the continuity of the pressure at each p;, 2n free parameters, say (K;; I';),
determine the EOS completely.

Hotokezaka et al. [166] showed the free parameters the free parameters can be de-
termined the following way: First, the EOS below the nuclear density p; is fixed by
the parameters Iy = 1.35692395 and K,/c? = 3.99873692 x 108 (g/cm®)'~To. The
EOS for the nuclear matter was determined in [127]| as follows: py was fixed to be
p2 ~ 5.012 x 101 g/cmg, and p, at p = py was chosen as a free parameter. The reason is
that ps is closely related to the radius and deformability of neutron stars [126]. Namely, ps
primarily determines the stiffness of an EOS. Second, ps was fixed to be p3 ~ x10' g/cm®.
With these choices, the set of free parameters becomes (po; I'1; I'y; I's). These four pa-
rameters are determined by a fitting procedure (cf. [127]). With the given set of values

(p1; Ky; T'1; pa) are subsequently determined by
Ky =pyp,"' and p; = (KO/Kl)l/(Fl_FO). (3.10)
By the same method, Ky and K3 are determined from

Kypy® = Kipy's  Kspy® = Kopy®. (3.11)

3.2.3 Hybrid EOS for heating and cooling processes

One of the most serious drawbacks of the polytropic EOS is that, although (3.3) is a good
approximation for a ‘cold’ star, there are extremely energetic processes, like the merger
of stars or accretion from a disk, which can increase enormously the temperature and a
simple polytrope will not provide a physical description. A more realistic EOS in closed
form can be obtained by a combination of the polytripic EOS to describe the cold part
and an ideal EOS for the thermal one, allowing for fluid heating due to shocks. Thy
hybrid EOS is given by

p=Kp"+ (T — 1)pew (3.12)

with an adiabatic thermal index I'yy, that can be different from the adiabatic cold index
I'. The internal energy can be split into a thermal and a cold part,

€ = €th + €cold- (313)

The total internal energy density ¢ can be obtained from the evolution of the conserved
quantities, whilst the cold part is described by (3.4), leading to the explicit expression

-T
o {hpF + (T — 1) pecn. (3.14)

p=K

It is possible to extend this approach by using a collection of continous piecewise-polytropes
(3.9) in hybrid EOSs, which in turn allows an accurate match with any tabulated nuclear-
theory-based EOSs at high density.

3.3 Stress—energy tensor and equations of thermal evo-
lution

The general-relativistic hydrodynamic equations for a generic fluid involve the equations
of motion that are given by the conservation of rest mass and by the conservation of
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energy and momentum:

V" =0, (3.15)
v, " =0, (3.16)

respectively, and the second law of thermodynamics
V.5 >0 (3.17)

that are relativistically consistent. Although the perfect-fluid approximation disregards
scenarios when dissipation and energy fluxes are present, it works well for most fluids
under generic conditions. However, it loses its validity when thermodynamic (i.e micro-
scopic) time-scales are comparable to the dynamic (i.e. macroscopic) ones and thus when
assumption of local thermodynamic equilibrium breaks down. The requisite extension
of perfect-fluid description that accounts for dissipative terms and energy fluxes is non-
perfect fluid. In general, one can assume the rest-mass density current and stress—energy
tensor as the linear combination of two contributions:

JH = Jhe + Jypp, T = Thy + Thpr, (3.18)

where the indices "PF" and "NPF" refer to the perfect and non-perfect fluid contributions,
respectively.

3.3.1 Stress—energy tensor for perfect fluids

For a system which consists of perfect fluid with total-energy density ¢, isotropic pressure
p and covariant metric elements g, corresponding to the antecedent line element (4.24),
one shall have

J}EF = pu,, TiVF = (e +p)uyuy — PGy, (3.19)

where the spatial components of fluid four-velocity u, are zeros. Normalized to u#u, = 1,
it becomes
u, = (¢%,0, 0, 0). (3.20)

By construction, the quantity € introduced above in eq. (3.19) represents the total-energy
density of the fluid, given by
e=p(l+e), (3.21)

which consists of both the rest-mass density of the fluid p and the specific internal-energy
density e, internal-energy density per unit rest mass or which in this case represents the
thermal motion of the constituent fluid particles. [167, p. 98] Finally, the specific enthalpy

h is defined by
h=0TC 1442 (3.22)
p p
Now, recognizing that in a non-relativistic regime ¢ < ¢? (i.e., the energy density of the
fluid is essentially given by the rest-mass density) and p/p < ¢* (i.e., the pressure contri-
bution to the energy density is negligible), the Newtonian limit of the specific enthalpy is
given by
h:1+6+]—;—>1. (3.23)
Note that there are two natural ways to define four-velocity u*. One option, given by
Eckart, uses a unit timelike vector wy parallel to J, whereas the other, suggested by
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Landau, defines a unit timelike vector ug parallel to T - ugp. However, these two vectors
are identical for a perfect fluid and parallel to entropy current S. The (maximum) entropy
principle (3.17) implies a strict equality for perfect fluids, whose entropy current is then
given simply as S¥* = sput. However, for relation (3.17) to be strictly non-zero, the
entropy current must have an additional contribution from dissipative parts (first-order
theories) with non-zero divergence such that

St =sput +Q"/T, (3.24)

where the temperature 7', deduced from the first law of thermodynamics, is given by

1 /0
T=- (—6) (3.25)
p \0s/,
and [Q*] = [0, @] are the components of the heat-flux four-vector (3.32) that describes

the rate of energy flow per unit area along each spatial coordinate axis within the Fckart
frame.

3.3.2 Stress—energy tensor for dissipative fluids

Neutrino emission processes are supposed to be the main sources of energy loss in the
stellar core in the later stages of stellar evolution. For this reason, the equations of
relativistic fluid dynamics to describe energy-momentum conservation are written as

Ty = —Quu®, (3.26)

where @, is the total neutrino emissivity of all processes outlined in Table 3.2, and T8
is the full stress—energy tensor for dissipative fluids. It is possible to write the dissipative

contributions T4 to the full stress-energy tensor as the sum of a viscous stress tensor 7.5

VISC
and a heat-flow tensor T}f‘eit that accounts for the generation of energy fluxes. Therefore,
the full stress—energy tensor can be further decomposed into the form of

T8 = T8 + T + Ty (3.27)

visc heat>

where
To = (e + p)uu’® + ph?,

T, = Qu’ + Q%u, (3.28)

T — — (O — 2ngep

VI1sC

are the perfect fluid, heat-flux and viscosity stress-energy tensors, respectively. [168]
Note that despite its causality and stability problems [169], the above description of
stress—energy tensor has been widely used in Eckart’s theory of relativistic irreversible
thermodynamics [170]. The p and e are the isotropic pressure and energy density, ap-
pearing in eq. (3.1), as measured by a comoving observer with velocity u® which satisfies
u*u, = 1 with u° > 0, and

hoP = g 4 uP (3.29)

is the standard projection tensor onto 3-space normal to flow. The symmetric trace-free
spatial shear tensor is defined as

(87 1 « Q ]' «
0% = 5 (W g h) — ZOh° (3.30)
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and expansion scalar (or dilatation rate)

O =u?, (3.31)
is associated with the convergence (or divergence) of the fluid world lines. The heat-flux
density in egs. (3.26-3.28) written as

Q" = —#h* (T)5 — Tay) (3.32)

is a spacelike vector, Q“u, = 0, which describes the flow of thermal energy per unit
of area along spatial coordinate axis z® per unit of time. The first term in eq. (3.32)
corresponds to the non-relativistic Fourier’s law of heat conduction, the second term takes
into account the relativistic effect of isothermal heat flux due to the inertia of energy with
ag = wug,, being the acceleration of fluid. The negative sign indicates that heat flows
from higher to lower temperature regions.

In eqgs. (3.28) and (3.32), n, ¢, and «k are collectively called transport coefficients
(or dissipation coefficients). The bulk viscosity coefficient ¢ defines the resistance of the
medium to gradual uniform compression or expansion; and « is non-negative and accounts
for the thermal conductivity, respectively. [167] The shear (also called as ‘common’ or
‘dynamic’) viscosity coefficient 1 describes the fluid’s resistance to gradual shear defor-
mation and it is assumed to be equal to the electron shear viscosity 7. in the stellar core.
The shear viscosity of neutrons and of protons (which is even smaller c¢f. [171]) can be
neglected for the reason that it depends strongly on the nuclear interaction model and
the many-body theory. [151]

3.3.3 Equations of thermal evolution of neutron stars

The thermal balance equation for a pulsating neutron star will be derived taking into
account three dissipation mechanisms: the shear viscosity in the core, the non-equilibrium
beta-processes in the core and heat conduction. The internal structure of neutron stars
can be regarded as temperature-independent. After thermal relaxation, the redshifted
temperature T(t) = T'(r, t)e”/? becomes constant throughout the interior. The relativistic
equations of thermal evolution include the flux and energy equations [172]:

L, 2
i —m/l——mel’/Qaﬁ(Te"/Q),
r ar r o (3.33)
1 2m T
l———= Lr )= — v _U_’
Arr2ev \ r 87’( <) @ ev/2 Ot

where the gravitational mass m(r) and the metric function v(r) are determined by the
equilibrium stellar model (3.37). C, is the specific heat capacity,  is the thermal conduc-
tivity, 7" is the local temperature. The first equation is the general relativistic definition of
the local photon luminosity L,, due to the non-neutrino heat flux (), transported through
a sphere of radius . The second equation expresses how the photon luminosity varies
with the neutrino emissivity @), .
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Heat flux Local luminosity

Process Reaction lerg cm—3s~1] ferg 5]

n—ptetr,
p+e—=n+r,
: n+N—=p+te+N+r 202278 384078
Modified Urca ptet+Nontet N+, Q ~ 10 15 L, ~10 15

Bresmmstrahlung N+ N >N+ N+4v+v  Q ~ 10182078 L, ~ 10%38T7%

Direct Urca Q ~ 3 x 107§ L, ~10%7T¥

Table 3.2: Possible mechanisms of neutron star cooling by various neutrino-emission processes
due to nucleon-nucleon collisions assumed to take part in the core. The modified Urca process
has the neutron and the proton branch, each including a direct and an inverse where N = n or
p, respectively. (Original table, courtesy of Y. Lim. [173])

3.4 Equilibrium stellar model and quasistatic approxi-
mation

Let us consider a static spherically symmetric star, described by the Schwarzschild metric
ds® = e’dt* — e dr® — r?dQ?, (3.34)

where ¢t and r are the time and radial coordinates, df2 is a solid angle element in a spherical
frame with the origin at the stellar centre and

v=uv(tr), X=Atr) (3.35)

are the metric functions which depend only on the temporal and radial coordinates (¢, 7).
The later function is often replaced by the expression

A= (1—2m/r)", (3.36)

where the m is the gravitational mass contained within the radius r. It is convenient
to replace the physical variables for energy density e and for isotropic pressure p by
corresponding effective variables

E=e+ () p=p— (TN} (3.37)

that incorporate time-dependent dissipative contributions of the stress—energy tensor
(3.28). So that Einstein field equations

G¥, = 81", (3.38)

upon satisfying the metric (3.34), provide five PDEs for each of the non-vanishing mixed-
variance components of the stress—energy tensor, of which the four distinct ones are

XN 1
Smé=e (7 - ﬁ) +3 (3.39a)
r 1
81p = e (”? + ﬁ) -5 (3.39b)
" N/ 12 Y —v . L.
S = e (% _ 4” + VZ 4+ = ) n 64 (2>\ FAG— p)) (3.39¢)
8tTh = e 2 \/r, (3.39d)
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where p = p— TxprY + Tpr% and overdots and primes denote partial differentiation with
respect to ¢t and r, respectively. Another equation is proportional to (3.39¢), thus it is
needless to consider it separately. The effective variables (p, p) satisfy the same Einstein
field equations in the quasi-static regime as the corresponding physical variables (p, p)
that take account of the contribution of T{pp to p and € in eq. (3.21). Therefore, the
effective and physical variables share the same radial dependence. [174] Owing to the fact
that (3.39a) involves only A and p, it becomes

m' = drr’p, (3.40)

once the new radial-dependent variable m(r) from (3.36) has been introduced. Similarly,

R 2(47r3p + m)
V=1 + /0 md?“ (341)

Suppose that the radius extends to R, from (3.40) it is evident that the integral of the
effective rest-mass density over the stellar interior

m(R) = 47r/0 p(r)ridr (3.42)

can be interpreted as the ‘gravitational mass’ of the system which includes all contribu-
tions to the relativistic mass (rest mass, internal energy, and the negative gravitational
binding energy). However, integrating the total energy-density over the proper volume

dVy = \/det(yi;)da® = dme**r?dr, (3.43)

where the curvature of 3-space has been taken account of through A, one obtains the mass
R
m(R) = 47?/ p(r)e2ridr (3.44)
0

that represents the sum of rest mass and internal energy. The difference between the two
arises as a result of the mutual attraction of the fluid elements, called the binding energy,
which is given by

Eg=m(R)—m(R) >0 (3.45)

and exhibits the amount of energy required to disassemble a whole system into separate
elements.

It is convenient not to use eq. (3.39¢) directly, but instead substracting it from (3.39b).
It can be replaced by the first-order ODE

2(TwprY — Tnpr2 AV
P +ip+p = (Tner’y = Thery) | f6 (2A + A\ - p)) : (3.46)
T ™

which stands for the condition for hydrostatic equilibrium, provided that the right-hand
side of the equation is zero (cf. (3.59)). The first term on the right-hand side recovered
from eq. (3.27) is simply the result of

1 _, .
(guTnpp — g22Tpp) = 1 2P\ (3.47)
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Figure 3.3: Typical M—R relations for non-spinning neutron-star models corresponding to the
realistic EOSs displayed on p—n plane in Fig. 3.1. M—-R curves for typical nucleonic EOSs (AP4,
MPA1, MS1, SLy) are shown as light-coloured curves, blue curves refer to self-bound quark stars
(ALF1, SQM1), and the green line to a strange star model (H4). The symbols ¢ mark the maximal
magss models. Most EOSs involving non-nucleonic matter, such as kaon condensates or hyperons,
tend to predict an upper limit around 2.01 M, for the maximal mass of neutron stars. The purple
and the green bands indicate the rapidly rotating neutron stars in millisecond pulsars, catalogued
as PSR J1614-2230 |128| and J0348+0432 [129], with the highest-known mass of 1.97 £0.04 M
and 2.01£0.04 M), respectively. The light red band shows the interval of total binary NS masses
inferred from gravitational-wave signal GW170817 (cf. Sec. 1.3.2). The dashed gray lines refer to
stars whose central density p. is double or triple of the nuclear saturation density pg, respectively.
The upper left areas of different shades of grayscale refer to regions of the M—R plane excluded
by general relativity (GR) constraint for R > 2GM/c?, by finite pressure for R > 2.25G M /c?,
and by causality for R > 2.9GM/c?>. The lower shaded area indicates the region bounded by
the realistic mass-shedding limit R/10 km < C?/3(M/Mg)"/3(fx /1 kHz) for the highest-known
Keplerian frequency, fx = 716 Hz, for the uniformly rotating neutron star PSR J1748-2446ad.
The deviation of C from its Newtonian value of 1.838 depends, in GR, (as computed by [175]) on
the neutron star interior mass distribution. For a hadronic EOS, C = 1.08, whilst for a strange
star with a crust, C = 1.15.
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recovered from eq. (3.27). After the elimination of v/, one obtains the generalized Tolman—
Oppenheimer—Volkoff (TOV) equation

v

. (P+p)Arr*p+m) e

= XN+ AN —i v/2 3.48
r(r —2m) 167 ( +AMA =7 o Bre 77)) (3.48)

for non-perfect fluids. Let us note that the non-zero terms on the left-hand side of eq.
(3.48) are not contradictory to conservation of energy and momentum in (3.15-3.16).
It will be shown that a set of two equations (3.59) takes over its role; one describing
the hydrostatic equilibrium and another describing the perturbation-induced departure
from the equilibrium configuration. When supplemented with an EOS (3.1), relating
some fundamental thermodynamical quantities such as € and p, eq. (3.48) completely
determines the structure of spherically symmetric stars of isotropic material in equilibrium
as shown in Fig. 3.3.

3.5 Infinitesimal radial oscillations

Let us suppose an equilibrium configuration of non-perfect fluid governed by the egs.
(3.39) is subject to a small linear perturbation that does not violate its spherical symme-
try. Let 0 hereafter denote a small ratio between the scale of variation of the perturbed
variables and the correspondig ones in unperturbed configuration. Any quantity asso-
ciated with the unperturbed equilibrium state is denoted by the subscript ‘0’, whereas
those that represent perturbations are equipped with the subscript ‘1’. In respect to
such a perturbation, motions in the radial directions arise. While formulating the equa-
tions governing the perturbed state, I shall ignore all quantities which are of the second
or higher orders in motions. Consequently, the four-velocity of a fluid element will be

expressed as
U, = (—eVo/Q’ e>\0—1/0/2(svl7 0, 0), (349)

where

dvy = dr/dt (3.50)

is the radial velocity with respect to the time coordinate ¢.

3.5.1 Perturbation equations for stellar oscillations

One way to describe perturbations is the ‘microscopic’ point of view where the observer
follows individual fluid particles as they move through space and time. [176] It is conve-
nient to introduce a displacement field & (in our case, a scalar field) in the Lagrangian
representation defined by N

%:Ul“_—(?jl _)O,

ot Po + €o
which connects fluid elements in the equilibrium with corresponding ones in the perturbed
configration. There is yet another, ‘macroscopic’ way of looking at the perturbations. [177]
In the Eulerian representation of fluid motion, I simply consider changes in the variables
(A, v, €, p) at a fluid element fixed in space and time. [178] This means that

(3.51)

A=X+0N, v=vy+dv, e=¢ecx+0€6, p=py-+op, (3.52)
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where the linear perturbations (6A;, évy, dey, 0py) are Euler changes. In this manner, I
retain only those terms of the full stress—energy tensor (3.27) that do not involve second
or higher orders in . The PF and NPF parts of the tensor assume the form of

€y + (561 (po + 60)(51}1 0 0
—eX 0 (po + €9)dvr —po — Opr 0 0
T
(Tew)t, = 0 0 o — b1 0 (3.53a)
0 0 0 —po — Op1
STV, (T, AT, o 0
TNPF)O + 5(TNPF)O 5(TNPF)1 0 O
wo_ ( 0 1 1 1 1 1
(TNPF) v 0 0 5(T1NPF)22 0 > (353b)
0 0 0 S(TNPF)

respectively. Notice that in eq. (3.53a), the off-diagonal elements are the only elements
where the leading-order terms are absent, whereas in eq. (3.53b) the leading-order terms
are present only in these very same elements (cf. Appendix). In view of the above, field
equations (3.39a) and (3.39b) hold true if the pair of static metric potentials (Ao, o) is
replaced by (A, ). The corresponding linearized equations governing the perturbations
are, thus,

% (re o)) = —8mr?de (3.54)
and 5 d
E(Syl + %5)\1 = 6\ — 81 r3p,. (3.55)
The appropriately linearized form of eqs. (3.39d) and (3.16), respectively,
0
EM = 8me™r [(po + €0)dv1 + 6(T7 7)) (3.56)
and

p6 + %(p() + Eo)V(/) + 6/\071/0 (p() + 60)5@1 + ((5p1 — 5(T1NPF)11)/ + %(po + 60)(5Vi

3 (91 + ey + S(TNFF), — S(TNTF)Y) g — L(THPFY, (05, + i) (3.57)
—O(TY) + (S(TYF)% + 6(TYPF), = 26(TYFF) ) /r = 0

shall serve in place of the remaining two field equations. At this point one may recall the

definitions (3.37) for the effective variables (€, p) and introduce their respective linearized

forms (€p+0€y, po+0p1). Egs. (3.52-3.53) enable us to identify these new variables easily:

€ =€, & =re+(T7

_ _ 3.58

Po=Po, P1=DP1— (TlNPF)lr ( )

Consequently, expressed in these more suitable variables, eq. (3.57) decomposes into a
set of two equations

Do + € . 74 ., DiteE
156+p02 vy =0, (Po+ &) (e“ °v1+31) +p'1+p12 L =T, (3.59)

where the first equation assumes the role of the constraint (3.48) for hydrostatic equi-
librium while the second one governs the dynamics of perturbation-induced departure
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from the equilibrium configuration. As will be shown later on in Sec. 3.6, fluctuations of
the stellar radius exhibit oscillatory behaviour: expansions and contractions in the outer
layers as a star pursues to maintain equilibrium. The remaining NPF contributions are
gathered on the right-hand side to form the source term

1 . . TNPF 2 TNPF 3 _ 2 TNPF 1
T = §(T0NPF)01(A1+01) + (T — ()5 + (0 - )5 —2(Th )1, (3.60)

which stems from frictional forces in the fluid itself. As such, it is responsible for expo-
nential growth or damping, depending on the friction coefficient.
Now, in the sense of the definition (3.51), the integration of eq. (3.56) yields

Ao

5/\1 = 87'('(]30 + E())(Sgl (361)

r

or in consideration of the first eq. of (3.59),
d
5/\1 = 5515()\0 + Vo). (362)

Egs. (3.54) and (3.61) provide

_ dEO dpo 1 8(7“2(551) _ _
06 = —5515 — 5513 - T_QT(pO + €). (3.63)
Substituting for dpy/dr in the last equation from the first eq. of (3.59), one may also

write
eM/2 9(r2e=20/25¢))

r? or
Considering next equation (3.55) and substituting for 6; in accordance with eq. (3.61),
one obtains

(Po + €o). (3.64)

déo
€1 = —5 —_—
3 51 dr

e ™ 9 dy, 1
, 551/1 = 8m |:5]51 + (]70 + go) (d—: + ;) 5£1j| (365)
or in view of the first eq. of (3.59),
0 dy, 1 d
(250 + gO)ECsyl = [5]91 + (150 + E()) (d_TO + ;) 551:| E()\O + VQ). (366)

3.5.2 Damping of stellar oscillations

Suppose that for normal modes of the fluid perturbations (6\;, dvy, d€;, dp;) possess a
harmonic time-dependence of the form exp(i§2t) where

i = —1/7 + iwg (3.67)

is a complex characteristic frequency to be determined in Sec. 3.6. Being subject to the
damping effect of the dissipative forces, the fluid perturbations oscillate with a damped
angular frequency (sometimes called pseudo-frequency)

wg = wp\/1— (2, (3.68)
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related to w, which is the natural frequency (or resonant frequency) of the undamped
system. The rate at which the normal modes of radial oscillations are damped is charac-
terized by the relaxation time (or damping time)

T=—1/wy( (3.69)

and can be determined from energy-dissipation eq. (3.102). [133] Expressed by the damp-
ing ratio ¢, a dimensionless non-negative parameter, the complex characteristic frequency

iQ = —w, (¢ —iy/1— C?). (3.70)

The value of ( prescribes the frequency response and critically determines the dynamical
behaviour. The oscillation is undamped (¢ = 0), if the star oscillates with its natural
angular frequency w,. It is underdamped (¢ < 1) if the star oscillates with a damped
frequency wy and with the amplitude gradually decreasing with the rate of decay 1/7.
It is critically damped (¢ = 1) if the star returns to steady state as quickly as possible
without any oscillation.

With the harmonic time-dependence, one may rewrite the second equation of (3.59)
in the form

QQ Ao—10 (= — o >‘6 ’ E11/[/) ﬁO + € / 1 / / .
e (Po + €&)&1 = Py + (? + 1/0) + - T 5 (7/0 + ;) (Ao + vp)&1 + 1025,
(3.71)

where, in accordance with eq. (3.66), (po + €)v; was substituted for. Also, one may
recall that € is expressed in terms of & and the perturbed variables by eq. (3.63). The
additional term S is given by the expression (A.6).

3.5.3 The conservation of baryon number

The continuity equation (3.15) of the rest-mass-density current given as in (3.19) involves
the conservation of the baryon number, represented by the condition

V,.(Nu") =0, (3.72)

provided that N is the number of constituent baryons per unit volume. Let the covariant
derivative be written differently, in the form

0 0
@(Nu“) + (Nu“)@ logv/—g=0 (3.73)

with the expression 0(log+/—g)/0z" being put in the place of the Christoffel symbols
corresponding to the metric given in eq. (3.34) and
g =ertsin? g (3.74)

being the determinant of the metric tensor. In the framework of the present linearized
theory, it is quite reasonable to define the baryon number by

N = Ny + 6Ny, (3.75)
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so that eq. (3.73) endowed with the non-vanishing components of the four-velocity (3.49)
emerges as

0 1

-2

€_V0/2—(5N1 +

ot r

0 1 0 d
5 (NoTQB_VO/Qgﬂl) +§N06_V0/2 (ad)\l + (5’015()\0 + 1/0)) = 0. (376)

With vy replaced by the Lagrangian displacement &; defined in eq. (3.51), the last equation
brings about fluctuations in the baryon number:

61/0/2

N, + 4 (N0r2e’”°/25£1) + %NO (5)\1 + 5f1di()\o + Vo)) =iQ7'N, (3.77)
r

rZ Or

where the second term on the right-hand side vanishes on account of eq. (3.62) and

1 ) TNPF 1
N = ﬁeko-‘r?ma (TQG—()\()-I—QVO)/QNO(plTE)O) (3.78)
0+ €o

represents the effect of dissipative terms on the baryon-number perturbation. Subse-
quently, eq. (3.77) reduced significantly and one obtains

5N1 = —%651 — N, e—g (7"2671/0(551) — Z'QilN- (379)
dr r? Or

Provided that N = N(e, p) is an EOS that corresponds to (3.1), small linear perturbations
in the energy density or pressure treated as variation are expected to induce baryon-
number perturbations given by

. ON,_  ON;__
0Ny = —6 —0 3.80
1 agl €1+ 8]31 D1, ( )
which in turn yields
_ 8]\70 - Y 8A/\_/YO _
= — N, — —9 81
om = (5o0) (o= Gotm). (3.81)

under the assumption that variables in the perturbed state relate to each other roughly
the same way as the corresponding variables in equilibrium, that is ON;/0€, ~ N,/
and ON, /0p; ~ ONy/Opo. With €, and JN; given by eqs. (3.63) and (3.79), respectively,
eq. (3.81) comes to be

~ dpo _en o v 1 [ ONg !
op1 = —5551 - FlpOﬁE (r%e /2551) — Q! (5_]70) Sa, (3.82)

where the dimensionless parameter 'y, given by

C(ONNT (0N
I = (Pow) (No — (Po + 60)8_€o> ; (3.83)

is identified with the adiabatic index (3.5) that characterize the stiffness of the EOS at a
given density. The average value for the adiabatic index is determined by eq. (3.7) to be
greater than or equal to 4/3 within a star that is dynamically stable against infinitesimal
radial adiabatic perturbations.
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3.6 The pulsation equation and eigenvalue problem

With elimination of €, and p; from eq. (3.71), through egs. (3.63) and (3.82), eq. (3.71)
may be written as

—vo /= _ d _ 1 / / — I, _ / 1 / /
Q2N (g + 69)&1 = @(flpo) - (5)\0 + Vo) &1y — §(p0 + €) (Vo + ;) (Ao + 10)

v, d d I'po d : _
+2—7?25 [7“2(]50 + 50)51} - e_(>‘0+2yo)/25 |:@(>‘0+3V0)/2—;§0 E (T’QG_VU/2§1)} + 2(981 —Q 15‘2)’
(3.84)

where the third and forth terms on the right-hand side are the result of the transformation
i—{ + f% = exp(—g)% [f exp(g)], which applies to any two functions (f, g) of the variable
r and Sy is written out in eq. (A.8) in appendix.

Substituting for pf, from the first eq. of (3.59) and applying the same transformation
for the first two terms on the right-hand side of eq. (3.84) allow us to merge them with
the next two terms in the expression

1

1 1 3
Lo+ @) ( T ;ug) & (3.85)

which (cf. (56) in [137]), in turn, compared with the field equation (3.39¢) restricted by
equilibrium conditions,

" Y /2 Y,
8y — e (”—0 SN B N B 0) , (3.86)
T

is reduced to three terms. Making use of the first eq. of (3.59) once again, the relation
(3.84) appreciably reduces to give the pulsation equation

2 do-vo(n o e — [ 2dPo Nos (m o = 1 dpo]”
Qe (Po+&)é1= | - + 8me™po(po + &) — ——— | =— &
r dr Do + € | dr (3.87)
d . I'ipg d
—(Mo+210)/2 Ao+310)/2 1t 1P0 2 —uy/2 . -
—e (Ao+2v0)/ 5 (6( 0+3v0)/ _7“2 5 |:’l“ e o/ 51]) —|—Z(QSl — Q 182)

associated to the class of second-order linear ODEs. Besides this, the definitions (3.67-
3.70) make possible the separation of real and imaginary parts of the complex frequency

squared:
0 = w2 (1 —2¢%) + 2iw2(/1 — (2, (3.88)
thus the last term of the right-hand side:
i(QS) — 7'8) = —C (WSt + w,,'Ss) +iy/1 — 2 (WSt — w,'Ss) . (3.89)

For positive 02, the characteristic frequency  is real and thus, the solution is purely
oscillatory. However, for Q2 < 0, ) contains an imaginary part, which corresponds to
a damped solution. Since the general solution is a superposition of damped modes, the
occurrence of a negative value of Q2 corresponds to a secular instability whose growth time
is long compared to the dynamical time of radial oscillations. The Harrison—Zel’dovich—
Novikov criterion [143] for static stability of compact stars states that the total mass of
such stars increases with the central density po, which implies that dM (py)/dpe > 0 for
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the stable region where M (py) is the function of total mass in terms of the central density.
For neutron stars this will, indeed, happen for py larger than the critical central density
perit at which the stellar mass M(pg) as a function of py has its maximum. In this case
the star will ultimately collapse to a black hole. For py = pei¢ there must be a neutral
mode with the corresponding eigenvalue w? = 0. [165]

3.6.1 Eigenfrequencies of radial pulsation

The real part of left-hand side of eq. (3.87) can be equated to the real part of right-hand
side, comparably to the imaginary parts. Intrinsically, one can recast it in the so-called
homogeneous Sturm-Liouville form

d dy
[ — A pum .
- [Pdr} +[Q+ AR x =0 (3.90)
with a free parameter
A, = (1-2C)w? (3.91)

that denotes the eigenvalues and with a set of coefficient functions
P(T) - 7«—26()\0+3V())/2F1ﬁo
i 4
Q(T) _ T—Qe()\o-l—?ﬂ/o)/Q { (poﬁ? - _ ;) ]56 + 87T6(>\()+3V0)/2]50(]30 + EO) (392)
R(r) = r~2eBot0)/2(50 1 &)

which hail from eq. (3.87), are specified at the outset. The function R(r) is referred to
as weighting function. The normalized Lagrangian displacement defined by

X =17e7¢ (3.93)

is a scalar-valued function of the variables (¢, r). Provided that y satisfies eq. (3.90), it
is called a solution. Solutions of (3.90) are subject to the boundary conditions

x=0atr=0 and dp=0atr=R. (3.94)

Together with the boundary condition (3.94), the pulsation equation (3.90) imposes a
Sturm-Liouville eigenvalue problem (SLEVP), which seeks non-trivial solutions only for
a countable set of real eigenvalues {Ay, As,..., A, }. The SLEVP is said to be regular if
P >0 and R > 0 for any r € [0, R], the functions (P, P’, Q, R, S) are continuous over
the finite interval [0, R], and the problem has separated boundary conditions of the form

a1x(0) + aox'(0) = 0 for of +a3>0 (3.95a)
Bix(R) + Box'(R) = 0 for (74 53>0. (3.95h)

The Sturm-Liouville theory states that the eigenvalues of the regular SLEVP are real and
can be arranged in ascending order such that

AN <A <A3<...<A,<... where lim A, = +o0. (3.96)

n—0o0
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Corresponding to each eigenvalue A,, is a unique (up to a normalization constant) eigen-
function x,(r) which has exactly n — 1 zeros in (0, R). Moreover, the normalized eigen-
functions form an orthonormal basis

/R X (T)Xon (1) RA7)dr = Sy, (3.97)

where 6,,, is the Kronecker delta and to each A, is associated with a single eigenfunction
Xn-

3.6.2 Characteristic relaxation time of radial pulsation

In the Newtonian limit, the kinetic energy contained in these oscillations is given by
1
E, = 5 /pévlévi‘dvo, (3.98)

an integral over an element of proper volume of fluid dVj (cf. eq. (3.43)), where o}
is the complex conjugate of the velocity perturbation dv;. Associated with the radial
displacement 0&; = or/r, the later is given for radial oscillations by eq. (3.51) as

dvy =i (551 - M {377%5% — <n - imT) (51/1}) : (3.99)

Do + €o

where, in accordance with second expression of (A.2), (§TNF)L was substituted for.
The total energy in an oscillating star consists of kinetic and potential energy which are
supposed to equally contribute to the total energy of harmonic oscillations, thus given by
E = 2F). On account of the density, p, is reasonably uniform in neutron stars [122], the
total energy contained in the oscillation is given as

E = pw,e’R° (3.100)

by evaluating the integral (3.98) explicitly for an average density p = 3M/47R3. Be-
ing bilinear in the fluid perturbations, E has a time-dependence exp[—2Im(Q)¢]. [133]
Subsequently, its time derivative implies that

dE

— =-2Im(Q)E 3.101
— = —2Im(Q)F, (3.101)
which together with the energy-dissipation rate for the stress—energy tensor (3.27) as
dE v * 2 K *
- (27750“ 50}, + C(00)? + V. 6TVH6T ) dVp, (3.102)

directly determines the dissipative time-scale of small perturbations of the fluid away from
the equilibrium state as .

T=-2E/E. (3.103)
An approximate formula for each dissipative time-scales can be given by evaluating the

corresponding dissipation integral (3.102). Cutler & Lindblom [122] have found that the
following propotionalities hold for the dissipative time-scales:

1 n 1 n 1 KT

~ ~ 3.104
m, pR* 1  pR®) 1, p’RY ( )
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which reveals that the time-scale of shear viscosity is much shorter than either that of bulk
viscosity or thermal conductivity. The imaginary part of the pulsation equation (3.87),
together with eqs. (3.88-3.89), yields

82 — wiSl

= /oo 3.105
2w3 (po + €0)&1 ( )

Gn

which implies that a unique damping ratio (, corresponds to each eigenfrequency w,
computed for undamped oscillations. From (3.105), it is evident that higher frequency
components die out first. These damping ratios are identical with those associated with
the dissipative time-scales (3.104) which, according with (3.69), are obtained from ¢, =
Tnln -

3.7 Summary of dissipation-damped stellar oscillations

A generic formulation of the dynamical equations governing small adiabatic radial oscilla-
tions of pulsating relativistic stars has been proposed in this paper through a perturbation
scheme that, combined with the equations of viscous thermally-conductive fluids, consti-
tutes an extension of radially pulsating perfect-fluid stellar models. 1T have proved that,
similarly to the regular perfect-fluid case, the stellar pulsation equation (3.87) expressed
by a set of effective variables (3.37) which involve dissipative terms, can be recast in a
homogenous Sturm-Liouville form (3.90) with separated boundary conditions (3.95). In
contrast to the regular perfect-fluid case, the associated eigenvalue problem is generalized
for a discrete set of eigenfunctions with complex eigenvalues where the real and imagi-
nary parts of the eigenvalues represent the squared natural frequency and relaxation time
(or decay rate) of the oscillation, respectively. In the absence of dissipation, the discrete
spectrum consists of real eigenvalues that form a complete set.

The main novelty of this approach is the ability to directly relate the damping ratio
of oscillations to the expressions S; and Sy in (A.7-A.8), which stem from the viscous
and heat-conductive contributions to the stress—energy tensor, without relying on explicit
NR computations. An illustrative example set by [122] for neutron stars with uniform
density, allowed us in this paper to estimate the rate at which the viscosity and thermal
conductivity of the nuclear matter drains energy from the oscillations. In accordance
with the literature, the time-scale of shear viscosity is much shorter than either that of
bulk viscosity or thermal conductivity and the imaginary part of the pulsation equation
indicate that higher components vanish first from the frequency spectrum. The usefulness
of my analytical approximation method is evidently restricted to providing qualitative and
‘order-of-magnitude’ information about the dissipative time-scales in (3.104) rather than
a precise one.
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Chapter 4

Interaction of gravitational waves with
matter

The present piece of research is the result of a comprehensive study that aimed at inves-
tigating the dispersion of gravitational waves in interstellar medium. It is dedicated to
explore the dumping effect of GMC (Giant molecular cloud)s on GWs, and to provide
a more accurate picture of expected waveforms for direct detection. Most papers — re-
ferring to the weak interaction — neglect the dispersive character of GWs in a medium
as most of the estimates for detection are made under the assumption of GWs following
null geodesics even in the presence of matter. The interaction is weak indeed, moreover
even the densest nebule are extremely thin. Nonetheless, the currently detectable GWs
are expected to be of extragalactic origin, their sources are likely to be obscured by dust
or gas in addition to the Milky Way’s stellar halo through which the gravitational waves
have to pass on their way to our ground-based detectors. Following the discovery of a
total of 11 confirmed GW transient events (cf. Sec. 1.3.2) during observation runs O1 and
02 (between 2015 and 2017), and a long list of candidate events during O3 in 2019, we
witness a progressively dedicated search for new events from various astrophysical sources
where the interaction may prove to be relevant.

4.1 Chasing waves and their dispersive nature for half
a century

For half a century after Einstein predicted the existence of GWs in 1915, a thorough
examination of their dispersive nature seemed to be inconvenient and pointless for the
strong reasons above. In their pioneering 1966 papers [179, 180], Steven Hawking and
Steven Weinberg investigated the rate at which GWs are damped by a dissipative fluid in
the case of a Robertson—Walker background spacetime. They found that the amplitude
of a high-frequency gravitational wave is damped in a characteristic time n~!, where 7 is
the fluid’s shear viscosity. Although Isaacson [181] dealt with the high-frequency limit of
GWs, this work has been of great importance and motivated numerous researches.

In the 1970s several authors (cf. [180, 182-192]) were engaged in studying the propaga-
tion of GWs through matter under various simplifying assumptions with different methods
of approximations. Their primary concern was not the possible damping influence on the
amplitude, but the modification of dispersion relation. The most commonly used two
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distinct models were a medium composed of deformable molecules with internal structure
giving rise to anisotropic pressures or free particles with rare collisions described by ki-
netic theory. To describe the damping in kinetic theory, the rate of particle collisions has
to be addressed giving rise to the imaginary part of the complex index of refraction. The
refractive index turned out to be related to the viscosity response function in fluids and
crystals. [193] Anile & Breuer provided a formalism for a more accurate description of the
transfer equation [188] for polarized gravitational radiation in terms of the Stokes param-
eters. Anile & Pirronello obtained the transport equation for the amplitude of a GW in a
dispersive medium using high-frequency approximation [190]. Additionally, the design of
Weber bars and subsequent resonant-mass detectors was an engineering problem of con-
siderable importance since they were thought to be sensitive enough to measure the metric
deviations. This problem inspired many to focus on GW refraction in condensed matters.
The behaviour of an elastic medium under the influence of GWs was derived firstly in a
gauge-independent way in terms of relative strains, and secondly in terms of displacements
[189]. However, some authors like Gayer & Kennel in the case of Landau damping reached
contradictory conclusions, particularly with respect to the dispersion relation [191]. In the
case of a parabolic Friedmann background, Sacchetti & Trevese showed that the presence
of matter does not affect the GW propagation at low temperature in the geometrical-
optics limit O(n), however a second-order WKB (Wentzel-Kramers—Brillouin) — so-called
‘post-geometrical optics’ — approximation revealed a plasmalike dispersion relation in the
O(n?), where n was a small parameter [192]. The geometrical-optics description in this
chapter is based on that of Thorne who has shown [194] that in realistic astrophysical
situations the vacuum approximation to wave propagation is appropriate. He specialized
the geometrical-optics laws to propagation through vacuum for simplicity, but a propaga-
tion equation that describes the interaction of the waves with matter and with EM fields
was also derived. Recently, a study [195] of perfect-fluid perturbations of Kantowski—
Sachs models with a positive cosmological constant has concluded that in contrast with
the Friedmann case, one of the two gravitational degrees of freedom is coupled to the
matter density perturbations, and decouples only in the geometrical optics limit. There,
the dynamics is encompassed in six evolution equations, representing forced oscillations
and two uncoupled damped oscillator equations.

The most useful papers for the piece of research presentend in this chapter are a series
of studies [196-198| published by Ehlers, Prasanna and Breuer either in collaboration or
on their own. The first of these works which in some ways reviewed the results of [188], re-
vealed two degenerate modes of polarization (one represented GWs, whereas another one
described non-propagating density and vorticity perturbations) by the dispersion relation
for small-wavelength, small-amplitude GWs propagating through an arbitrary background
dust spacetime. The following paper [197] generalized the background to perfect fluids,
through which one more mode for sound waves was identified; all modes, but the doubly
degenerate zero-frequency matter mode exhibited propagation along the null geodesics of
the background. The work was further extended by Prasanna [198] to include dissipative
terms of shear and bulk viscosity in the stress—energy tensor. In order to avoid loss of
generality, assumption on symmetry of background had never been initiated. Generality
however also entails several disadvantages: due to the lack of specifically detailed back-
ground, alterations in the wave’s amplitude and frequency cannot be determined. The
procedure developed in [196-198] was generalized to curved backgrounds and is largely
similar to that of Svitek’s approach to the damping of GWs in dust cloud [199]. There the
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geodesic deviation equation stemmed from the periodic oscillations produced within the
molecules by the incoming waves. The oscillations themselves produce GWs that were
composed with the original waves propagating through the GMC from a distant source.

4.2 Equilibrium configuration of interstellar clouds

Let us consider an isolated interstellar nebula remote from any other matter, and assume
that the hydrostatic pressure is balanced by the GMC’s self-gravitation. As seen in eq.
(3.42), the ‘gravitational mass’ of the nebula within a distance r from its centre is given
by

m(r) = 4m /OT 2 p(r')dr’, (4.1)

where p denotes the rest-mass density. The most dense and heavy of among nebulae are
the GMCs composed by mostly gas and some dust. The typical physical values of cold
GMCs are listed in Table 4.1. For the sake of simplicity, assume that the considered
medium consists only of cold neutral gas. In this case collisions between these low-energy
particles are rare and weak, and have no significant effect on the system. Hence the
medium of nebula can be realistically regarded to be composed of an ideal gas. Since
the temperature is very small and nearly constant (10 — 20 K for a typical GMC), the
polytropic EOS (3.3) reduces to a linear relation of pressure p and density p, given by

p=cp. (4.2)

As I stated after eq. (3.3), ‘polytropic constant’ K for the degenerated matter may be
regarded as constant and it corresponds to ¢2, the squared isothermal speed of sound (3.6)
within the gaseous medium, and the adiabatic index I'y corresponds to 1. On the basis of
the isothermal EOS (4.2) and (4.1), the total mass of the GMC Mpy is expressed by the
average pressure p. By the comparsion of these with a given radial pressure distribution
p(r), the value of average pressure can be written as

R3 R

3/ p(r)ridr. (4.3)

=]l

It is important to state that the following criteria must be met for real physical systems:

Composition: neutral Hy

Radius: R =170 pc

Constant temperature: 7T =10 K

Average density: p = 3.3475 x 1071° kg/m3
Radius: R =70 pc

Total mass: M = 0.5433 x 10% M,

Table 4.1: Typical physical properties of cold GMCs, based on K. Ferriere’s results [200].

1. Mg < Mpgg where Mgg refers to the Bonnor-Ebert mass given by Mpg = cppclp™/2,
where cgg ~ 1.18 is a dimensionless constant (cf. in [201]). This is the largest mass
that an isothermal gas sphere embedded in a pressurized medium can have while
still remaining in hydrostatic equilibrium.
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2. p(r), p(r) > 0 and dp/dr, dp/dr < 0 everywhere in the GMC, the maximum of
the density and pressure are py and py in » = 0. On the border of the nebula, the
density and pressure distributions must satisfy the boundary conditions

dp dp
}1_1)1}1{p(7‘) rl_rg%p(r) }1—1311% dr }1—1311% dr 0 (44)
These conditions can be easily justified: the first one expresses the simple fact that
the density and pressure disappear, the second one says that they do not change on
the border of the GMC. So the matter does not suddenly vanish on the border, but
steadily aligns into the environment.

3. As seen in the causal requirement (3.6), the speed of sound ¢, in the medium must
be at most the speed of light, that is

A=-L<1 (4.5)

4.2.1 Field equations for the spherically symmetric static cloud

Let us recall the line element (4.24) for stationary spherically symmetric configurations
given by

ds? = —e’dt* 4 e dr? + r?(dv? + sin? ¥dy?), (4.6)
where the metric functions v and A were defined by (3.35). Let us consider a remote
and isolated GMC in a region of spacetime of metric tensor (4.6) which is filled with cold
perfect fluid. The perfect fluid that constitutes the GMC is described by the stress—energy
tensor 752 from (3.28) and obeys the gravitational-field equations (1.24) that are written

in a form
1

R, = k(p+p) (uuuu + §9W> — KDY (4.7)

where p, p > 0 are the density and pressure respectively. The normalized 4-velocity of
fluid elements u*, given in (4.35), satisfies the geodesic equation (1.19) of the form

u'V,u” =0 (4.8)
along with the continuity equation
u'Vyu(p +p)u” + g"Vup = 0. (4.9)

The field equations (4.7) yield a set of three ODEs for the rest-mass density p, for the
radial pressure p,, and for the angular pressure py as

8nrlp = e MrN —1)+1
8rrip, = —e M/ 4+1)+1 (4.10)
32mrpy = —e M2 —r XNV 4?20 - 2)),

where the prime denotates derivates with respect to the radial coordinate r. This set of
ODEs is the static limit of the more general, time-dependent the field equations (3.39).
Through the application and modification of the method originally established by Ref.
[202], I have shown in Ref. [1] that it is possible to replace eqs. (4.10) by a set of algebraic
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equations where the integration of one metric function is required, but not of the physical
variables p and p.

Due to the isotropic configuration, p = p, = py implies one can require one more field
equation

d
r(rv + 2)d—6_’\ + 2rt 4t — ) —4)e 4 =0 (4.11)
T
by extracting the last equation from the second one. Regarding the coefficient of de = /dr,
it turns out to be practical to introduce a pair of new variables

rv’

a=-Ne*B? and f= o + 1. (4.12)
Then the field equation (4.11) reduces to a second order algebric equation in 3, namely
2(a+1)% + (ra’ + 8a)B + 4a = 0. (4.13)

For any function « the quadratic equation (4.13) is solved by the real roots

_ Ba—rd/ £4/(ra/ +8a)? — 32a(o + 1)
B 4(a+1)
where the discriminant must be non-negative. The only physically relevant solution is 5,

since its non-positive counterpart always belongs to a non-positive, hence non-physical
mass density. The metric functions belonging to [ are formally given by the definitions

(4.12) as
2 T
A=In (5—) and v = / mdr + 1, (4.15)
0

B (4.14)

« r

where the constant 1y determines the scaling of the time coordinate t. One can also
calculate the pressure and density
(28 — Do — B

1—(ra/B?)
=~ 77 d p= 4.16
P 82 anc v 8m[32r? (4.16)
by substituting functions « and § into the first two field equations of Eq. (4.10). The
simple, but still realistic choice for the generating function « is the ratio of two polynomials
of the radial coordinate r. The lowest degree form which is physically valid for a compact
fluid or gaseous sphere is

A27’2
1+ Br?’
where A and B are positive constants associated by inverse first and second power of
distance dimensions. It is advisable to introduce a further new non-negative real constant
C? = 2B/A% — 2 and use it in place of constant B. In order to eliminate the square root
appeared in Eq. (4.14) while expressing /3, a new radial variable defined by

1+ Br?
3+ 4Br?
will be introduced. Then the centre gets into £. = arcsinh(2C'/3), and the spatial infinity

¢x = arcsinh(C'/2), and the new variable is restricted by 0 < £, < & < &. Through
(4.17), the generating functions a and § become
(C? — 4)sinh & + 4C

«= (C? 4 2)sinh ¢ p

a=1+ (4.17)

sinh§ = 2C (4.18)

~ Ccoth(§/2) -2
"~ 1+ Ctanh(£/2)

(4.19)
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The equations (4.15) provide the metric functions and the inner Schwarzschild metrics
appears to be

ds? = —evd2+ C2e* cosh? £d¢? (2C' — 3sinh &)(dv¥? + sin® ¥dy?)
B 4A2(C? +2)(2C — 3sinh &) (2sinh € — C)3 A2(C? +2)(2sinh € — O)
(4.20)

by using the charasteric £ as radial coordinate. The constant A corresponds to a constant
conformal transformation of the metrics. From eq. (4.10), both the density and the
pressure are expressable by a ratio of two polynomials of hyperbolic function of the radial
coordinate &.

Moving away from the centre of the GMC due to the conditions (4.4), the pressure
monotonously tends to zero at r = R, on the border of the GMC. Any choice of constants
A and C satisfies the restriction (4.5) on the speed of sound in the medium. One takes
C? = 2B/A%* — 2 into consideration and assumes B < 1 < C, then p and p vanish
simultaneously at 7 = R if and only if B = 4/R?. This restriction implies A = 8¢2/R. By
eliminating the variable ¢ via the transformation (4.18), one can formulate the functions

of state
8Br? —3 2Br? —1

T 0B —1)0 T meraBr — 1)
in terms of polynomials of the natural radial coordinate r, c¢f. Fig. 4.la. As it was
required, if B < 1 < C then the EOS is nearly linear for every r < R, therefore

dp 1 1 9
IR ORI S N 4.2
dp 20( - ) G < (4.22)

p (4.21)

fixes the last constant as C' = 4/c2. Consequently, they differ from one another only by a
constant factor, thus verifying the legitimacy of the isothermal EOS (4.2). In accordance
with the literature (cf. Fig. 6. in [203] and [204]), the density and pressure profile is

expressed by
3c2 (1612 82
=2 == |—-1)(=—=-1]. 4.23
P=Gp o) = 15, ( R? ) (3R2 428)

Similarly, the metric functions v and A, shown in Fig. 4.1b, that are consistent with this
profile, are expressed as functions of the radial coordinate r. The line element
2 2 .2 2 .2
ds? = _% <1 + %%) dt2 + exp (—%%) dr? + r2(d? + sin? ¥dy?) (4.24)

is immediately obtaind by the insertion of the metric functions into the general form of
Schwarzschild metrics (4.6).

4.2.2 Lagrangian function and geodesics of the particles

In the following subsections, the behaviour of massive particles and photons in the
Schwarzschild geometry will be briefly reviewed, based on [34]). For the Schwarzschild
metrics (4.24) the relativistic Lagrangian function L = g,,@"&" of the particles in the
investigated nebula is

L= —e"i? + % + 12 (02 + sin® 0?) (4.25)
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(a) The pressure and density profile in the inter-  (b) The evolution of the normalized metric func-
val 0 < r/R < 1, normalized to the central values tions exp A and expr within the interval 0 <
pe and pe. r/R < 1.

Figure 4.1: The profiles of pressure and density consistent with the metric functions exp Ay
and exp v4 within the nebula.

where the dot denotates derivates with respect to the proper time coordinate 7. By

d (0L oL
substituting this form for L into the Euler-Lagrange equations — [ — | — — = 0,

dr \ 0+ Oxt
result the geodesics equations. Since the eqation for p = 3 is satisfied by ¥ = 7/2, it is
sufficient to keep only the set of three equations independent of ¥:

eyi:Lt
. 1dA., 1dv , . ) .9
- i = 4.26
r+2dr7’ +2dr6 re " 0 ( )
T2@:Lw

The two simplest equations are derived immediately since the Lagrangian is not an explicit
function of ¢ or ¢. The appearing constants L, and L, proportional to the total energy
and the angular momentum of the particles. It is expedient to replace the complicated
second equation of Eq. (4.26) by the first integral g, @*&" = —1 of the geodesics equations
(1.19), since the worldline of a massive partice is timelike. In this case, it takes the form

: 1
— e e §r2gb2 =—1. (4.27)
By substituting the two original expressions of (4.26) into (4.27), one obtain the combined

energy equation
2

L
i+ L= (Lie™ —1) e (4.28)
T

for the radial coordinate valid inside the GMC. Outside of the GMC the customary
equation 7% + (1 —2M/r)L% /r* —2M/r = (L} — 1) governs the motion of particles. Note
that the right-hand side is a constant of motion, L, o E as previously stated. The

84



constant of proportionality is fixed by requiring £ = mg for a particle at rest at » = oo
where mg denotes the mass of the particle at rest. Letting r — oo and 7 = 0 in the
equation, L? = 1 thus is required. Hence, one must has L; = E/mg, where E is the total
energy of the particle in its orbit.
The shape of a particle orbit is given by using the last equation of Eq. (4.26) to express
7 in the (4.28) as
dr _drdy Ly dr (4.29)
dr  dedr r2de

4\ 2
Furthermore, if one parametrizes Eq. (4.27) by 7 = 1/r, one obtains (d_r> 4iZe =
¥

1
I (Ltze_” — 1) e~ Finally, the differentiation with respect to ¢ provides the orbits
©
d?r v LI+ N)er=XN N
— +7e = N — —e” 4.30
az " o2 2° (4.30)

for a particle in the equatorial plane ¥ = 7/2 where the prime denotes derivates with
respect to the radial coordinate r. The particle orbits have two special cases, namely the
radial motion where ¢ = 0 and the circular motion where 7 = 0. Since the density of the
nebula is constant in time, one might ignore the radial motion and focus on investigating
the latter motion.

4.2.3 Circular motion on bounded and stabil orbits, velocity of
the gas particles

In the equatorial plain for circular motion, one has r = constant, and thus 7 = 7 = 0.
This restriction in accordance of (4.29) imposes 7 = 7/L,7* = 0; consequently 7 is
zero too. Setting 7 = 1/r = constant in the equation of orbits (4.30), one has L? =
1

§T3Lt2(u’ + XN)/'e7™”. Beside replacing the differentials of the metrics functions of Eq.
(4.24)

dx Ar dv Ar (1 c_g TQ)_I (4.31)

—=——= and — =— —
dr R? dr  2R? 4 R?
in the energy equation (4.28) in addition to the condition 7 = 0, one can identify the
constants of motion as
Cs

2,.2 2
L=2 (1 + o ) and L, =21 (4.32)

2 4R? 2R
It has been shown that £ = L;myg is the total energy of a particle of rest mass mg in a
circular of radius r. Subsequently one can circumscribe the bounded orbits by requiring
E < myg, so as long as L; = 1. The limits on r for the orbit to be bound is given by

2R [2
r=02 21 (4.33)
Cs Cs
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The first and third geodesics equations in Eq. (4.26) immediately show that the compo-
nents of 4-velocity of a particle are simply

[ut] = C%, 0,0, CS%{ sin v (4.34)
in the coordinate system (¢, 7,9, ¢). The geodesics equations specify the circular trajectory
(1) and the orbital period T" = 27/, which according to (4.32) is T = 4wR/cs by
substituting L, from (4.32). Although r is not the radius of the orbit, it is readily
conceivable that the spatial distance travelled in one complete revolution is 277, just as in
the Newtonian case. Instead of parametrizing ¢ in the proper time, one can alternatively
describe it by d¢/dt = ¢? /4R in terms of coordinate time t. The components of 4-velocity
of a particle in the equatorial plain ¢ = 7/2 are thus given by

2

W] = |1, 0,0, %% sin (4.35)

in the coordinate system (¢, 7,9, @) where ¥ = 7/2 in the equatorial plane. The continuity
equation (4.9) requires that

2
u, Ut = —%s +0(ct/c?) = ¢, (4.36)

where it is sufficient to keep only the leading order term. Due to symmetry, the connection
has only four non-zero components

2 2 - 2 4 2 2 2
0o _ Cs’f’ CST’ 1_087’ CST 1_087‘ 2
Fou = (“402@) R FOO——mc@exp(Qc@)’ bh="50p =
(4.37)

4.3 Linear perturbation of equilibrium configuration

Let some smooth, non-degenerate, symmetrical metric tensor g,,, associated with the line
element (4.24), be given on some differentiable mainfold M which existed before the train
of GWs came. Let the ‘background’ field variables (g,., u*, p, p), as described above, be
disturbed by small linear perturbations, denoted with overhead hat as (g,., 4", p, p).
According to linearization stability, (g, + €, u* +ct”, p+ep, p+ep) will approximate
a solution of the linearized equations (4.7-4.8) at the background field. At least in a
compact part of spacetime, provided the constant numerical factor ¢ < 1 is sufficiently
small.[2] Let £ denote a small ratio between the scale of variation of the perturbed variables
and that of the background. Let us associate the strain amplitude of the radiation in with
a small linear perturbation €g,, .
Consequently, the contravariant notions of perturbed quantities of different tensorial
order are
0 = g0 G, 0 = g1 + G us. (4.38)

Let V be the covariant derivative associated with some torsionless and metric-compatible

connection I, then the perturbation of this connection is a tensor I'}, given by

. 1 X A A
szﬁ - 5975(Vﬁ96a + Vabss — VisGas)- (4.39)
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Based on this scheme of work, the Ricci identity implies

A

Ras = = (V2385 + Viias — Viiap — Vaplsrg”) - (4.40)

N | —

Likewise, by retaining only terms of the first order in the linear approximations of eqs.
(4.7) and (4.36), one obtains

1

~ R R 1 R R R
Rog = K(p+ P) <ucﬂw + 5%5) — KPgap + K(p + p) (2%% + §gaﬁ) (4.41)

and
2u g = Japuu’, (4.42)

respectively. From these last two equations the perturbation of the remaining quantities
can be expressed as

p+p=— (2&‘1}?&5 +(p+ p)ga/g) e, 2uu” (4.43)
and R
1 2R —p)§
o = = | Gy — 220 +4“(p D)3 pi | 7, (4.44)
2 keg(p + p)

Up to this point, my results entirely corresponded to that of Refs. [196, 197]. Now,
however, I shall define not a single, but a pair of appropriate tensors

Pl=cgl+un’, Q) =gl — ugu’ (4.45)

which significantly simplify expressions to appear later on. P projects onto the subspaces
of the tangent spaces that are orthogonal to wu, whilst to the auxiliary tensor Q may
not carry such evident geometrical meaning. The set of eqs. (4.41-4.44) yields the key
equation that drives the spatio-temporal evolution of linearized perturbations. Making
use of the preceding notation (4.45), it can be appreciably simplified to

~ 1 R ) A )
[P;Pg — Qa,gu”uﬂ R+ zk(p—p)Gys| = kek(c?p — 3D)Gas + 2/<o(cipu7u7 — D) Gap-

2
(4.46)
It is important to highlight two noteworthy details about the equation:

1. In flat spacetime c, is equal to 1, thus the last term in the right-hand side would
perish.

2. If the GMC is assumed to be made of only dust, such terms would vanish just as
well where the pressure or its perturbation appear.

In consequence, my result in the flat dust-filled spacetime limit would be identical to the
formula (21) in [196]. By its very nature, eq. (4.46) inherently satisfies the conditions
(4.8-4.9). However, in deriving (4.46), no restriction on the perturbations has been im-
posed. In order to eliminate redundant components, one can take the liberty to impose a
gauge condition. Conventionally, either the ‘de Donder gauge’ (as in [192]) or the ‘Landau
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gauge’ (as in [196]) have been favoured. The former — also known as harmonic coordi-
nate condition — ultimately requires the product Ffj,yg}ag to vanish whereas the latter one
imposes

Gapu” = 0. (4.47)

This latter gauge condition is particularly suitable for the fact that the metric perturbation
contracts to the unperturbed 4-velocity in several terms of the perturbed field equation.
By requiring (4.47) to hold, (4.46) reduces to the form

[PAP; — Qapu'u’] [922%”) — G5V = "V 5| G = KCL(p—5D)Jas—4KC,PYap, (4.48)

where the operator on the left-hand side of this formula maps the space of symmetric ‘spa-
tial’ tensor field into itself. This basic equation restricted by (4.47) is an unconstrained
system of six coupled ODEs of second order for six unknown variables. A solution is
therefore specified by twelve functions of three variables. Since the restricted gauge free-
dom consists of four functions, the intrinsic freedom of the perturbation amounts to eight
functions corresponding to four degrees of freedom.

4.4 WKB expansions of geometrical optics

4.4.1 WKB approximation for monochromatic high-frequency field
perturbations

The set of field equations (4.48) for metric perturbations results a system of coupled
linear first-order PDEs. A strategy for finding a unique closed-form analytical solution
for arbitrary initial data is based on decoupling the set order by order by small parameter
e. Let a linear parabolic PDE

D(x, V) = (D" (x)Vas + D (%) Va + Do(x)) g = 0 (4.49)

in x = (t,Z) be given for some function g,, : R™*" — R"™*™ where Dy, Dy, Dy € R™*™
are matrix-valued, smooth functions with real entries which act on the six-dimensional
space of metric perturbations. [2] Geometrical optics emerges as a short-wavelength limit
for solutions to the PDE (4.49). Accordingly, let us specialize metric perturbations g,
to locally plane, monochromatic, high-frequency fields. Assuming formal solutions can be
locally approximated in a successive procedure by plane wave

Guv(x,6) = A, (x,€) explie "(x, €)], (4.50)

a WKB ansatz can be constructed, provided that for any n € N, amplitude A,, and phase
e~11) take the form of asymptotic series expansions

Ao~ Y (5) AW
0 (4.51)

w(x’ 5) ~ Z 5n¢(n) (X)
n=0
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in the limit ¢ — 0. It is evidently expressed that as long as the parameter ¢ is small, the
amplitude varies slowly in comparison with the rapid oscillation of the phase. On account
of the gauge-fixing condition (4.47)
(n),,v —
Aju” =0 (4.52)
is required to hold for any non-negative n; in other words, any n-order wave amplitude

is transversal to the direction of propagation. The wave covector is defined to be e7'l,,
where

L=V, ky=Pul” (4.53)

and the angular frequency relative to the unperturbed matter flow is —e'u#l, which
itself would be denoted by
w=2f=—utl, = —ko. (4.54)

One may re-arrange the expression D (A, explit)/e]) after having the ansatz (4.50-4.51)
inserted into (4.48) and taken into account the choice of gauge (4.52) by requiring the

terms of order 1,¢,2, ... of the resulting formal series
0aB | € p1)ep E\? ~(2)aB 0, € 4 _
<£< il 2L+ (;) L >W) (49 + “Al+.) =0 (4.55)

to vanish separately. The £ linear differential operators of order j, called the symbols
of D are given by the field equations (4.48) and eq. (4.49) as
LO = 9P 1Pk, + PePIIE + g% (kuky, — w?* Q)

puv
LS = —4P) POV, + VL) + 2Pk, ) VD) + 2P (TP (V1 + 0/2)
+20Q,, VPu® = P3| PP Vsl + P (ki) Uy = Qo (20V = 10Vl

LA = PIPI2059° Vo)V + 9595 VaV?) — dwclbgpgl — rel(p — 5p)gig)
—g*P(PYP) — Quuu’) Vs,

(4.56)
where, in addition to the abbreviations 0 = V*{,,V, = u*V,, V| = [*V,, the identities
(4.53-4.54) were applied. The method of characteristics discovers characteristic curves
along which the PDEs in eq. (4.55) reduce to ODEs. Once the ODE for the respective
L£Y) symbol is found, it can be solved for the corresponding amplitude A((jﬁ) along the
characteristic curves and transformed into a solution for the original PDE.

4.4.2 Geometrical optics and transport equation for amplitudes

It has been shown by Thorne [194] that in realistic astrophysical situations the vacuum
approximation to wave propagation is appropriate. Here, the geometrical optics is for-
mulated in terms of ray tracing, i.e. an ODE model. Provided that [* is smooth, it
corresponds to locally solving the eikonal equation through the method of bicharacter-
istics. Bicharacteristics of (4.48) or so-called rays along which the amplitudes A are
transported are spacetime projections of the solutions of Hamilton’s system of ODEs

oM oM

Pt = W

— . 4.
al,’ ox,, (4.57)
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The method is discussed in great detail in Refs. [196, 197]. A lengthy calculation, which
I do not repeat here, finally yields the zeroth-order amplitude that shall consist of the
following linear combinations of basis vectors e,

af)ejy + a(xo)elfy (Mode I: Gravitational wave)
AQ) = b\”(Q,, + ) (Mode II: Sound wave) (4.58)
C e’ (Mode III: Pressure wave),

where C, = c(o)e + cg )e + cé) 3. To put eq. (4.58) in context, one can recognize that

the first mode corresponds to an arbltrary plane-wave solution in the standard transverse
traceless (TT) gauge, where (af), © )) are the amplitudes (polarization states) of the two
independent components with linear polarization, and (ejy,ew) are the corresponding
polarization tensors. The second mode partly, and the third mode fully are in the frame
orthogonal to u* and k*. They correspond to sound waves and pressure waves, respec-
tively. For the particular case of dust (p = 0) or in case ¢; = 0, there are no sound waves
and second mode degenerates into the longitudinal part of the third one. In case of stiff
matter (p = p), ¢s = 1, sound waves propagate with the speed of light.

The first-order WKB equation acquired from (4.55) imposes
(0% 1 a 0
LOeB AN 4+ LMes A0 = ¢ (4.59)

to hold for zeroth- and first-order amplitudes. Applying the expressions from (4.56), £©
is annulled upon being transvected with either one of polarization tensors given in (4.58).
After some manipulation, one gets the pair

(V1+0/2) 1’“’( Ve*—l—a Vle ) =0
(Vi+60/2)a +16“V( Wit +al! Vle ) =0,

pv

(4.60)

which assert that the pair of polarization states (af), a(xo)) are transported along rays

bended by the background field. Along each null geodesic ray z* with tangent z# = [*
given in (4.57), the vectors [*, u* span a timelike two-plane, and basis vectors span its
spacelike orthogonal complement. Assuming the basis vectors (ef, e}) are such that they
are transported quasi-parallel along the rays, the transport of the amplitudes will be
bounded by

O
(Vi+6/2) ( (+0) ) =0, (4.61)

ax

testifying that the change of complex vector (af), a(XO)) along the ray consists solely of

a rescaling the two ‘T'T’ polarization modes of GWs (1.63) travelling in empty space.
Making use of the expression for £ from (4.56), the transport equation for the first-
order amplitudes yields

1 1
(V1 +6/2)al’) = §n(p—5p)a$) + §e+ [2(V1V o + Vo V9 g4 — gt g V>

(4.62)
—c; 2PV Vg] [a+ e+ —i—a(o) )

o 1
and a similar one for a(x).
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4.5 Numerical solution and application for data analy-
Sis

In this section the transport equation is converted into a PDE which is numerically solved
and where the first-order amplitudes are assumed to change in a sinusoidal manner over
retarded time. However extremely small in value, the frequency shows a decreasing be-
haviour that can be traced back to the nature of dissipative interaction of the GW with
the surrounding matter. From the decomposition of any given signal into varying sinu-
soidal components by Fourier analysis, I construct the changes in frequency of all the
sinusoids for all the frequencies. I shall use the well-established concept of match-filtering
technique to correlate the unaltered signal with the signal affected by crossing through
the medium. For its importance, the reconstructed time series of the transient GW signal
‘GW150914’ (cf. Sec. 1.3.2) as a known template is taken into examination. [69, 205] My
first priority is to measure the deviation of this signal by an overlap function. Secondly,
it is to bring to light in what types of possible GW-sources the effect of interaction is
expected to be powerful enough to be taken into account for future examination.

w (Hz)

0.5 1. 1.5

7T (sec)

Figure 4.2: Retarded-time dependence of frequency shift @ for plain waves of several discrete
values of initial frequency. Higher initial frequencies approach the limiting wnax exponentially
faster.

4.5.1 Numerical solution for the transport equation

Assuming the real part of the zeroth-order amplitude of the plane wave (4.50) travelling
in the equatorial plain ¢ = /2 in z-direction to be

AO = (aPet +allex,)sinft,w], (4.63)
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with the retarded time obtained from eq. (1.51) as

t, = —e"Pt 4 232/, (4.64)
with the metric potentials €, e* correspond to the ones in the line element (4.24), the
transport equation (4.62) reduces to the form of

([6402(1)2 + Cw —2X]a? + ng)a(xo)> cos (t,w)
(4.65)
+ (4[5200 + Sﬂd)agf) + 3)\'2a(xo)> sin (t,w) = 2k(p — 5p)e3’\a$),

where primes denote partial differentiation with respect to coordinate z and

Co= M1+ 2N)? +12e*V? — MV (1 + 2Vt [1 + 2)N])

Cp= e[V + N9+ 112X + 2/) + 82\

Co= 24X [eM1+ 2X) — t/e”] — 24te3 (3N + 92 + 81) (4.66)
SQ — 65)‘(1 + Z/\’)2 _ 2t64)\+u(1 + Z/\/)V/ + 63)\+2u<1 + t2yl2)

Sy = 162\ + 2\? + 2)\) — 16te’ (V2 — V")

are functions of (¢, z) alone. For the sake of the simpler representation of the following
results, the coordinate time ¢ is to be replaced by the retarded time ¢,. The numerical
solution for @ given by (4.65) for any possible values of (¢, w) is expected to be nega-
tive, owing to the energy dissipation, and to be extremely small compared to the initial
frequency w. Having the eqs. (4.24-4.23) applied for a nebula of radius R = 50 pc [1],
the maximal decrease in frequency is found to be Q. = —6.3956 x 107! Hz. Here and
thereafter the order of magnitude of amplitudes (af), a(xo)) is set to O(1072). All the
frequency components that constitute the waveform suffer a tiny, gradually decreasing
‘redshift-like’ change in frequency, denoted by w, that depends on the initial frequency
and the position of wavefront. Fig. 4.2 displays the frequency shift @ on a log scale for

t (sec)

W1 (10411 HZ)

maxw; = —6.3956 x 1071 Hz

Figure 4.3: Frequency shift in the low-frequency regime. The horizontal lines represent the
first three initial frequency values (32 Hz, 128 Hz, 512 Hz) shown in Fig. 4.2 with respective
colours.

several discrete values of initial frequency for an arbitrary plane wave (4.63) that lasts
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for t, = 2 sec. The figure reveals a characteristic distinctive feature of self-similarity of
the frequency-shift curves for different initial frequencies. A more detailed figure, Fig. 4.3
demonstrates the frequency shifts that belong to any initial frequency in the (¢,, w) do-
main. For the gravitational-wave transient GW150914, the effect is the greatest in the
frequency range 100-250 Hz.

4.5.2 Matched filtering techniques for gravitational-wave data
analysis

Putative frequency modulated GW signals (also known as ‘chirps’) from CBC inspirals will
be buried in the noisy data streams of the advanced detectors. Data analysis of targeted
search extract any possible signal from the white Gaussian noise by cross-correlating the
discrete-time sequences of the detector data against a large set of theoretical waveform
templates as filters. [110] In signal processing, this technique allows us to efficiently
extract faint gravitational-wave signals of known form from a noise-dominated data and
the matched filter is obtained as the optimal linear filter for maximizing the SNR in the
presence of additive stochastic noise. In a similar way, I investigate the correlation of a
theoretically given template waveform (k) with the one that have been alterated (hs) by
the interaction with the medium. The technique is based on correlating the output of
detectors with waveform templates. The noise-weighted inner product of two time-domain
waveforms hy(t) and hy(t) is defined by

fmax,,

i (f)ha(f)
(o) _4§Rf m/ —) af, (4.67)

where the limits of integration (fmin, fmax) correspond to the upper and lower sidebands
of the detector. The S, (f) is the power-spectral density due to instrument noise[205] and
ﬁ*( f) is the Fourier transform of the respective time series h(t). The expectation value
of the optimal matched filtering to examine differences in waveforms is to measure their
overlap O, which is

O = max {af o) =
to,%o <h1‘h1><h2|h2>

The overlap is maximalized over the initial time tq and phase 1)y of the template wave-
form. It is also related to the mismatch M between signal and template. For a straight
forward derivation of eqs. (4.67-4.68) cf. [206]. The S,(f) is the power-spectral density
due to instrument noise[205] and h*(f) is the Fourier transform of the respective time
series h(t). The expectation value of the optimal linear filter (or matched filter) is by
measure the overlap (4.68) to examine differences in waveforms. The power-spectral den-
sity S, (f) of the detector noise was taken from the average-measured strain-equivalent
noise, or sensitivity, of the aLIGO detectors at Hanford (H1) and Livingston (L1) sites
(within bandwidth 0.125-8192 Hz) at the time the gravitational-wave event designated
‘GW150914" was observed. The template hy(f) represents the reconstructed time series of
the gravitational-wave transient signal that was released for event GW150914 by the L.SC
and Virgo Collaboration [69, 205]. hy(f) = hi(f + f) denotes the signal hy(f) altered by
the small frequency change f where f = w/2n. The deviation of the altered frequency
f=r+ f from the original frequency f is most prominently observed in the interval

(4.68)
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Figure 4.4: The dashed blue line represents the identity map, whereas the solid orange line
shows the expected deviation in frequency for transient event GW150914 after it crossed the
medium. The frequency shift is very small for the specific system examined here, therefore f
was amplified by a factor of 10'2 to better illustrate the nature of this phenomenon.

of 110-380 Hz in the frequency domain, known as super-low frequency. The change of
frequency in the entire frequency band, specific for transient event GW150914 is shown
in Fig. 4.4. The change is very small for the specific system I examined, therefore f was
amplified by a factor of 102 to better illustrate its nature in Fig. 4.4. The rapid growth
of f starting at f = 110 Hz comes to a standstill at a major low peak at f = 220 Hz.
From that point on, f approaches Wy /27 at a much slower rate. It also comes to one’s
attention that in the kHz regime, the deviation is nearly comparable with the original
frequency f. Due to the non-linear change in frequency, the signal distortion exhibits a
complex behaviour. Fig. 4.5 shows the magnitude of the original and the altered signal
— where f was amplified by a factor of 102 — from GW150914 (h1 and hg, respectively)
versus the frequency in the band 100-250 Hz.

To measure the actual difference between the original signal and the frequency-altered
counterpart, I calculated the overlap (4.68) for Hanford detector’s PSD (due to its better
sensitivity in low-frequencies compared to L1). Consequently, the overlap is Oy =
0.970995 for a signal hy(f) in which the contribution of f was amplified by a factor of
10'2.  Apart from demonstrational purposes (cf. Figs. 4.4, 4.5) the amplification was
required to appropriately increase the numeric working precision which would not have
been large enough to suppress numerical errors otherwise. Fig. 4.6 shows the UPEs of
hi(f) and he(f) (same as in Fig. 4.5) projected onto sensitivity curves of aLIGO detectors.

4.6 Summary of GW—-matter interaction

In order to provide a more accurate picture of expected waveforms for direct detection,
I have carried out a general study on the interaction of gravitational waves with mat-
ter. I have considered the wave passing through a vast spherical assemblage of cold,
compressible gas, called a GMC. Gravitational waves were treated as linearized metric
perturbations embedded in an interior Schwarzschild spacetime that belongs to nebula.
The perturbed quantities lead to the field equations governing the gas dynamics and de-
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Figure 4.5: The upper peak envelope of the coincident signal in GW150914 hy(f) (dashed blue
line) and its frequency-altered counterpart hao(f) (solid orange line) in frequency regime above
100 Hz. As in Fig. 4.3, the frequency shift f in the argument of hy has been amplified by 10'2.
Both curves are fitted on maxima points by cubic spline interpolation.

scribe the interaction of gravitational waves with matter. The field equations decoupled
to a set of PDEs of different orders of magnitude by WKB approximation, assuming the
GW-amplitude to relatively slowly vary compared to the rapid oscillation of the phase.
In the frame of WKB approximation, the dispersion relation indicates three distinct de-
generate modes of polarization. Two of them are regular and correspond to gravitational
and sound waves obeying the transport equations along rays (determined via Hamilton’s
ODEs on characteristic hypersurfaces), whereas the zero-frequency one is singular and
represents non-propagating density and vorticity perturbations of the dispersive medium.
See corresponding result in Refs. [196-198|. In regular case, the primary amplitudes
follow null-characteristics (cf. Sec. 4.4.2), whereas the obtained transport equation of
secondary amplitudes depends upon gas density in geometrical-optics limit.

The principal result established in this chapter is the demonstration that in the frame-
work of post-geometrical optics, the transport equation of secondary amplitudes provides
numerical solutions for the frequency shift f . On the grounds that the energy dissipating
process is responsible for decreasing frequency, f is bound to be negative, yet extremely
small compared to the unaltered frequency f.

As an illustrative example, I considered a nebula with a mass assigned to an average-
sized GMC, namely 10° My, and a diameter of 100 parsecs (typically ranges 5-200 parsecs).
Whereas the average density in the solar vicinity is one particle per cubic centimeter, the
average density of a GMC is a hundred to a thousand times as great. (See, e.g. Table 1
and the Appendix of [207].) In fact, even in such a dense environment, for any unaltered
frequency that falls within the bandwidth of current advanced ground-based detectors
the frequency shift still remains so small (ca. 107" Hz) that its influence is practically
untraceable: the resulting mismatch M between measurement and expectation was barely
2.9005 x 10714, Despite the fact that the frequency-shift pattern exhibits a power-law
relationship between f and f , such small changes in the frequency will still remain far
below the frequency resolution of third-generation detectors.

For sources in the 1-2 kHz frequency range, the influence of the interaction on the
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Figure 4.6: The upper peak envelope of GW strain amplitude of the coincident signal in
GW150914 h;(f) (solid red line) and its frequency-altered counterpart ha(f) (solid green line)
are projected onto the sensitivity curve of LIGO detector at Hanford (thin light blue line) in the
full bandwidth of the detector. As in Figures 4.4 and 4.5, the frequency change f amplified by
10'2 in the argument of ho.

signal may increase significantly compared to that of the value on initial frequency of
100-200 Hz. Such high-frequency signals are expected to be emitted from the post-
merger phase of low-mass NS mergers such as the GW event GW170817, which originated
from a BNS system. [73] The dominant frequency of the post-merger signal from two
NSs (each with mass 1.2 My and with the EOS LS220) was computed at 2.56 kHz by
relativistic simulations. [208] It is also noteworthy that mergers of the above-mentioned
sources are detectable over much greater distances than those of stellar-mass BBHs such
as GW150914, which was emitted from a BBH system of chirp mass M = 28.2718 M
(cf. definition in (1.6)) at a luminosity distance dy, = 440715 Mpc. Moreover, even higher
frequencies (3-4 kHz) of quasi-periodic signals are expected from the formation of the
hypermassive NSs. [68]

Another possibility to significantly ‘boost’ the effect is to increase the density of the
environment by taking AGN into consideration. Suppose that an event of dynamical
merger occurs in the central region of an AGN and it is observed over its dissipative ac-
cretion disk. In this extremely favorable but rare angular position, f might be sufficiently
large to be measured.
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Appendix A

Appendix

A.1 Components of the stress—energy tensor for non-
perfect fluids

[ will enumerate the non-vanishing components of the NPF stress—energy tensor (Txpr)*,
referred in eq. (3.53b). To explicitly evaluate them, the arithmetic operations in eqs.
(3.30-3.27) have to performed. The non-vanishing components of the zeroth-order are

1
(TFT)ly = =0 (7Y, = eV T + (12— k1)), (A)

those of the first-order are

(TP + (TY7F), — 2(TY7))

e vo/2 .
= <A0U1 +7))\1>

r

1 (A.2)
() = = (T = e s — (- e ) ]
with an only radial-dependent coefficient
2
Ag=n|(1+ 3€V0_>\0) vy — 9N, — —e/\o} + K [Ty, — 8T"]. (A.3)
r

In view of (A.2), it is evident that to abide by the nature of harmonic time-dependence,

a relation of the form Q
() = i (1)) (A1)

is implied. According to the definition (3.51), this implication requires

@ @),
= gy — il )0 A5
=S T T (A.5)

to hold. In regard to to eq. (A.5), the expression e’ (TNPF)L is combined with T given
by eq. (3.60) to compose

(TF)% + (TRF)% — 2(17)4
T

1 .
S| = —§(T0NPF)01(>\1 + 1) + (A.6)
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which first appears in eq. (3.71). Substituted with the set of eqs. (A.1-A.5), the expres-
sion unfolds as

6—1/0/2

S =

(1) L NpFy1
nA1 + Ao — Aom — §(T0 VoA +11). (A7)

Next to the Sp, another quantity, expressed by

y oo\ -1
Sy = e_(>\0+21’0)/2£ —6/\0+2 i —aNO i T26_(>‘0+2V0)/2N0—(TlNPF)IO . (A.8)
dr r2 8}50 dr ]5() + €

appears in different forms the pulsation equation, namely in eqs. (3.87) and (3.84).
Together, they constitute the expression i(QS; — 27'S,) which represents the source of
inhomogenity of the SL equation.

A.2 Geometrized units

Throughout the dissertation, I adopt a system of so-called ‘geometrized’ units, often used
in general relativity, in which the base physical units are chosen so that

the speed of light: c=2.9979 x 10° m/s,

the reduced Planck constant: A = 1.0546 x 103* J s,

the electric constant: € = 8.8542 x 102 A% s* kg™' m3, (4.9)
the Boltzmann constant: kp = 1.3806 x 102 J K}

are all set equal to unity. In this system, every time interval is interpreted as the distance
travelled by light during that given time interval. Consequently, physical quantities such
as mass, energy, and momentum are identified with the magnitude of a timelike vector
and acquire the geometric dimension of length, whereas velocity, force, and power are di-
mensionless. The desired ST unit of (kg® m” s7) can always be recovered from geometrized
units of (m®*#*7) by multiplying with the conversion factor G=*c?*~7. Table A.1 provides
conversion factors for some commonly used kinematical variables are listed below where
SI units are expressed in corresponding geometrized units.

Variable SI unit Geometrized unit Factor Geometrized unit — SI unit

mass kg m G'¢? 1m — 1.3466 x 10°" kg

length m m 1 Ilm — 1m

time s m ¢! Im — 3.3356 x 107 s

energy kgm?s? m G'¢d 1m — 1.2102 x 10" kg m? s72
energy density kgm™!s? m2 Gl¢t 1m™2 — 1.2102 x 10* kg m~! 572
momentum kg m st m G'¢* 1m — 4.0370 x 10*° kg m s~!
angular momen. kg m?s ! m? G '¢ 1m? — 4.037 x 10% kg m? 57!
velocity m st dimensionless c 1 — 2.9979 x 10® m s~!
acceleration m s~ 2 m~! c? I m™! — 89875 x 106 m 52

Table A.1: Geometrized units for some commonly used kinematical variables. To convert
geometrized unit to SI unit, multiply by the factor (G~%c?*~7) with appropriate exponents to
obtain the units desired. And for the reverse conversion, from SI unit to geometrized unit, divide
by the same factor. (For reference, cf. Ref. [209])

98



Fig. (3.3) exposes that the radius of neutron stars typically varies from about 10
to 14 kilometres. In fact, if kilometres are chosen as the characteristic length scale in
the discretized stellar structure models, the total mass, energy-density, and pressure of
neutron stars become comparable in geometrized units. For polytropic equations of state
(3.3) with arbitrarily chosen value of polytropic index

n= (-1 (A.10)
the corresponding ‘polytropic constant’ K is given by

K =2x102Gh 1A (A.11)

in units of m?'"'=2 where I'; is the adiabatic index 3.7. In particular, I evaluate models
for the following values of K and n: (n = 1, K = 100 km?), (n = 0.8, K = 700 km*®),

(n=0.5,, K =2x 10° km*).
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