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In this paper we propose an efficient statistical method for estimating the moments of the secondary y multiplicity distribution 
in high energy bubble chamber processes. Our method requires relatively small statistics, even if the detection losses are con- 
siderable, as is demonstrated by calculating the dispersion of the secondary n ° multiplicity distribution from 1200 events with a 
detection probability of about 25% for y's. 

1. Introduction 

This work was stimulated by the methodical difficul- 
ties due to the low efficiency of  the measurements of 
neutral particles in bubble chambers1). 

The neutral secondary particles are mostly 7's 
emerging from the decays of  neutral pions. In order to 
take into account the detection losses, the probability 
09 of the e+e - pair creation in the fiducial volume has 
to be defined for each secondary 7 particle: 

0.7 = 1 -- e x p ( - - L m a x / L ) ,  (1) 

where L is the radiation length in the liquid of the 
chamber, Lmax is the distance between the interaction 
vertex and the boundary of the fiducial volume mea- 
sured in the direction of  the momentum of the y. In 
the literature, usually the conversion weight 

W = 1/to (2) 

is used instead of ~o. 
In this paper we will investigate, what kind of 

conclusions can be made concerning the original 
multiplicity distribution of V secondaries based on the 
conversion weights of the detected 7%. There are several 
works dealing with this problem, e.g. ref. 2, but 
their methods have not come into general use because 
of the particular conditions they require. Our method 
works without any unnatural assumption. 

In sect. 2 we consider a simplified model and show 
the possibility of estimating multiplicity moments even 
for considerable detection losses. In sect. 3 we present 
and prove a new method for estimating the binomial 
moments of the secondary y multiplicity distribution 
from the conversion weights. In sect. 4 some results 
on n ° multiplicity distribution are presented. It is the 
first time that these n ° multiplicity moments have been 
obtained in a model-independent way, merely analysing 

a sample of data of 1200 bubble chamber n - p  events 
at 40 GeV/c incident n -  momentum. 

2.  A simplified treatment: to = const 

In order to find a well estimable set of quantities 
characterizing the multiplicity distribution, in this 
section we investigate the simple case when co is 
constant. 

Let p ,  be the probability that a source of a certain 
kind emits n signals at a given instant. Let our detector 
system detect a single signal with probability to, 
independently of  the other n - 1  signals. Then the 
measured multiplicity ~ has a distribution ~n which is 
related to p ,  as follows: 

We can measure the distribution of ~, and in this 
way estimate the fin's. If  in N experiments the multi- 
plicity ~ is observed Nn times then 

/3~ = lim Nn/N. (4) 
N---~ oo 

Our aim is to determine the properties of the original 
distribution p ,  knowing the efficiency 09 of the detec- 
tion. By a simple algebraic inversion of eq. (3) we get: 

Using eq. (4) this can be written in terms of the directly 
measured quantities: 

P" = N-~olim --NI n~,- N~ ~n 1 1 - (6) 
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For n = 0 the above formula gives: 

Po = lira --1 N,  1 -  . (7) 

The formula (6) gives the distribution p ,  in the limit 
N ~ oo but we have to calculate the necessary minimal 
value of N for a fixed confidence level. 

As a well computable example let us consider the 
Poisson distribution: 

p, = e -~ 2"/n!. (8) 

Therefore the distribution of  ~ will again I~e a Poisson 
one but with an average value decreased by 09: 

Pn = e -  a" (26o)"/~!. (9) 

In this case we can compute the error of  the estimation 
of p0 to be 

(AP°)~ ~ ~ .=0  N~ 1 - 

l _~o z ((.0A)" ( 0~) 2" 

N 

If  we keep dpo fixed, the required statistics N varies 
with the efficiency (3) as follows: , 

N ~ ( P ° ) : e x p ( ~ ) .  (11) 
\ A po./ 

It  can be seen that eqs. (5)-(7) cannot be used for 
small values of  (3) because N depends exponentially 
o n  (3) -1 . 

However what could be said about the distribution 
of n if the statistics N is too small to derive the p. 
probabilities ? 

Let Bk denote the kth binomial moment  of  the 
distribution p,: 

Let BR be the same for the distribution p~: 

Using eq. (3) and the properties of  the binomial 
coefficients we obtain the following formulae: 

Bk = ~k Bk, (14) 

B, = Bk = u+~lim ~ ~ k  N, . (15) 

They relate the "measured"  and the " t rue"  moments 
Bk, Bk in a quite simple way. 

Let us discuss the error of the estimation of Bk. 
From eq. (! 5) the error of  the estimation can be written 
as: 

(ABk) z ~ ~" N~ ~ - - - -  x 
-~ N mZk 

(6o2)" ( ' / 2  (16) 
X~>~k h! \ k /  " 

Therefore we can conclude that the required statistics 
N has a power-like rise with co- ~ if 6o goes to 0: 

N ~ 016oY. (17) 

This fact makes it possible to obtain good estimation 
for the Bk's (if k is not too large) even if (3) is much 
less than unity and thus the p . ' s  cannot be estimated. 

3. Description of the general method for 
estimating the binomial moments (to 4: const) 

Considering N high energy events of  a given type, 
let ~(~) be the number of  the detected secondary y's 
in the ~th event ( ~ = 1 , 2  . . . . .  N), and W~ ( ~ ) ( r = l ,  
2 , . . . ,  ~(~)) the conversion weight of  the detected y's, 
see eqs. (1) and (2). 

The kth binomial moment  of  the true multiplicity 
distribution of the y's can be estimated by the following 
generalization of the formula (15): 

Bg = lim ' N ~  --N ~=1 ~ ((h(~k~)) W/(la) W'(~'/2 ... W/(k ~,), (18) 

where the symbol ~ stands for the summation for all 
(~,) /=\ 

t h e ( ~ ) d i f f e r e n t  set of  indices ir ( r =  1 ,2 , . . . ,~) .  
\ - /  

The meaning of the right-hand side of  eq. (18) is the 
following: for the ~th event with the measured values 
~(~), W~), W2(~), . . . ,  ,,u/(°'n,,), (ct = 1, 2, . . . ,  N) in which 

~(~)/> k sum up all the | different products of  the 
k 

W,'s of number k and average over the N events. 
Eq. (18) can be written in a more compact form: 

Bk =<(:~ Wi, Wi:... Wik), (19, 
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where the bracket denotes the sample mean. 
Proof:  Introduce a distribution function ~o of the 

multiplicity n and weights Wx, W2 , . . . ,  W, of  all 
secondary ~'s; these have either been actually detected 
or not. We choose the following normalization: 

f q~n(Wx, .. , 14",) dWx ... dWn p , .  n! (2O) 

Note that q~ is a symmetric function. 
Let us define the distribution function ~ of the 

multiplicity and weights of  the detected ~,'s and choose 
the normalization as follows: 

f (fin(Wx . . . .  , IV,) d W ,  ... d W  n = t~ n. fi ! (21) 

The relation between the two distributions is given by 

~-On ( W l '  " ' ' '  W n )  = Z 1 O n ( W l  . . . . .  W n )  X 
n>>.n (n- -~)!  

x o 1 ... O n ( l - -on+x)  dWn+x--. 

... (1 - o . )  dW.. (22) 

Introduce two further distribution functions, the 
so-called inclusive distributions of  order k (3): 

f k ( W  ' . . . .  , Wk ) = ~, I f ,>~k ( n - - k ) !  q~.(Wx . . . . .  IV,) x 

× dWk+ , ... dW,, (23) 

1 L ( w ,  . . . .  , wk) = Y~ / on (wx . . . .  , wn) x 
n~k ( ~ - k ) !  d 

x d W k + x ... d 14/~-. (24) 

4. Application for deriving the n ° multiplicity 
moments  

The method presented above seems to be adequate 
to determine the moments of  the neutral pion multi- 
plicity distribution in bubble chamber experiments. 
Starting with the assumption that all y's are coming 
from the decays n °---} y7 the n ° multiplicity moments 
can be related to those of  the y's. For example the 
dispersion D of the n ° multiplicity distribution can be 
obtained as follows: 

£ 2 O = {BE + ¼ex -- aB1. (27) 

The method has been tested on the data of  1200 n - p  
events at 40 GeV/c incident n -  momentum. In this 
experiment the mean efficiency of the y detection was 
25% and so the average value of conversion weights is 
about 4 (ref. 1). 

In ref. 5 we have derived the dispersion D of the n ° 
multiplicity distribution for all events and for the 
events of  fixed number of charged secondaries (rich): 

neh D 

2 1.30+0.25, 
4 1.50___ 0.20, 
6 1.65___ 0.25, 
8 1.40___0.35, 

all events 1.51 _+0.08. 

In spite of  the relatively poor statistics the accuracy 
achieved in calculating the second moments is saris- 
factory. This indicates that it would be worthwhile 
to apply our method on larger statistics of  events in 
order to obtain model selective results. 

Using eq. (22) the following relation between f k  and 
fk c a n  be proved(a): 

f k (W1 . . . . .  Wk) = W 1 W  2 ... Wk" f k ( W  ~ . . . .  Wk).  (25) 

Using the definition (12) of  the binomial moment  Bk 
and also eqs. (20), (23) and (25) we get for Bk: 

& = ~ L(wx . . . . .  w~) dw, ... d ~  

f Wi W2 Wk "fk(W, W k) dW1 dW k - -  . . .  , . .  , . . . .  
k~ J 

(26) 

This latter expression is nothing else but the experi- 
mental mean eq. (19). 

5. Conclusions 

An efficient statistical method for estimating the 
moments of  the secondary y multiplicty distribution 
in high energy processes has been proposed. Having 
tested the method on 1200 bubble chamber events it is 
the first time that the dispersion of the secondary n ° 
multiplicity distribution has been derived from ex- 
perimental data without any restrictions previously 
imposed. Using a larger statistics of  events, model- 
selective results could be obtained. 
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