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We show that the usual master equation formalism of markovian open quantum systems is completely equivalent to a certain 
state vector formalism. The state vector of the system satisfies a given frictional Schrodinger equation except for random 
instant transitions of discrete nature. Hasse's frictional hamiltonian is recovered for the damped harmonic oscillator. 

The incorporation of damping into the dynamics 
of quantized open systems is not a trivial task [1 ]. 
Actually, the master equation formalism operating 
with mixed states is being considered as the adequate 
apparatus in describing damped systems [2,3]. 

There have been, however, attempts to keep the 
pure state representation with a certain nonlinear 
effective Schr6dinger equation governing the state 
vector. For example, Hasse [4] found special solu- 
tions to his frictional Schr6dinger equation which are 
physically equivalent to the corresponding density 
operator solutions of the master equation for the 
quantized harmonic oscillator with weak damping. 

In our paper we propose a general pure state repre- 
sentation for markovian open quantum systems 
which is completely equivalent to the density opera- 
tor formalism. Hasse's result [4] will be recovered as 
a special case. 

In the mixed state formalism, the evolution of a 
given markovian open quantum system is character- 
ized by the master equation- 

3(0 = L [p(t)], (1) 

where p ( t )  is the density operator of the system and 
L Lo] is an operator-valued linear function of p. Since 
p ( t )  must be normalized and hermitian, L must be 
traceless and hermitian as well. 

For a given pure state p = ~ + ,  where ~0 stands 
for the state vector, it is useful to introduce the total 
decay rate w~__, by 
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w~,__, - - ~ + L  [ ~ + ] ~  _= - ( L  [ ~ + ] ) .  (2) 

Furthermore, the transition rates w¢_,~ from ~ to an- 
other orthogonal state ~ can be defined by 

w ~ _ ~ - ~ , + L [ ~ + l ~ ,  ~+~ = 0 .  (3) 

If a given set (~O, ~0 n ; n = 1,2, ..., N),  N ~< o% forms 
a complete orthonormal system of state vectors then 
the identity Tr L [ ~ + ]  = 0 leads to the following rela. 
tion: 

N 

w t~_~o n = w ~__, , (4) 
n = l  

i.e. the partial transition rates to the ~n sum up to the 
total decay rate of the state ~. 

Now we turn to develop the pure state equations 
equivalent to eq. (1). 

Let us introduce the frictional Schr6dinger equation 
for the state vector ~(t): 

= (L [ ~ + ]  - (L [~0~+]))~ - -( i /h)Hfr ~ . (5) 

Note that the frictional (non-hermitian and non-linear 
but norm conserving) hamiltonian Hfr is not fixed 
uniquely by the above formula. 

Let us assume now that at t = 0 the given open sys- 
tem is prepared in a certain pure state O(0) = 
~(0)~+(0). By an infinitesimal time dt -= e later the 
state of the system turns out to be the mixed state 

p(e) = ~(o)~+(o) + eL N,(o)~+(o)] (6) 
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according to the master equation (1). I f  the state ~(t)  
of  the system satisfied the frictional Schr6dinger 
equation (5) then the density operator p(e) would be 
equal to 

~(e)~+(e) = ~(0)~+(0) 

- ( i e /h )  [Hfr~k(0)ff+(0) - ~0(0)~O+(0)H~'r] 

= ~ (o )~+(o )  + e{L [~(o)~+(o)1 

- (L [~ (0)¢+(0) ] ) ,  ~ ( 0 ) ~ + ( 0 ) } ,  (7) 

which is a pure state of  course. Now, the true state (6) 
can be formally written as 

p(e)  = ff(e)~+(e) + e W ,  (8) 

if we introduce the hermitian operator W as the follow- 
ing function of the actual state ~: 

W-L - {L - (L), $$+}, (9) 

where the 0-dependence o f L  = L  [ ~ + ]  is understood. 
We shall call W the t ransi t ion rate opera tor  in the given 
state ff of  the system. Using definition (9), it is trivial 
to show that the transition rates (3) can equally be ex- 
pressed by W, too: 

w,_+~ - ~o+L~o = ~0+W~o, ~o+~ = 0  , 

w,_.  - - ( L >  = - ( W > .  (10) 

Observe that ~0 itself is the eigenvector of  I41 with 
the eigenvalue - w ~  ~:  

Wff = (L - {L - (L>, ,ff+})~O = (L>~k = -w,_~. 

(11) 

This genuine property of  the transition rate operator 
W is strongly correlated with the actual choice (5) of  
the frictional hamlltonian equation of motion. 

Let us suppose now that the transition rate opera- 
tor (9) has always a discrete spectrum. I f  {~k, ~o n ; n = 
1 ,2 ,  ..., N},  N ~< 0% is the complete orthonormal sys- 
tem of the eigenvectors of  W then we obtain the fol- 
lowing orthogonal expansion: 

N 

W = - w ~ t k  + + ~ w + (12) n=l q~ ~On ~On ~°n ' 

where the eigenvalues were replaced by  the corre- 
sponding transition rates (10). 

Let us substitute such an orthogonal expansion 

into the r.h.s, of  eq. (8): 

p(e )  = (1 - ew,(0)__,)~(e)~+(e) 

N 

+ e ~ w  + n= 1 qJ(O)-"S°n(O)~On-O-tPn-O( ) ( ) (13) 

And now, we propose the following statistical inter- 
pretation of the above orthogonal expansion of the 
mixed state p(e): Given the pure state ¢(0) at t = 0, 
for the infinitesimal period d t -  e the state vector 
~(t)  satisfies the frictional Schr6dinger equation (5) 
with probability 1 - ewe__, but, alternatively, ~(t)  
can decay into a given eigenvector ~n of the actual 
transition rate operator (9), with the transition rate 

+ 
w ~ o  n = ~nW~n  (10), for n = 1,2 ... . .  N respectively. 

It  is well known that for a mixed state like p(e) 
[eq. (13)] the statistical interpretation by a certain 
mixture of  pure states is never unique [5 ]. Neverthe- 
less, our choice (13) is distinguished by the mutual 
orthogonality of  the pure states which are the terms 
of the decomposition. This decomposition is highly 
preferred from the viewpoint [6] o f  measurement 
theory, too.  

In practice it will turn out that a slightly modified 
form W', instead of the transition rate operator W, 
will be more convenient to use: 

W'---L - {L, ~ + }  + ( L ) ~  + . (14) 

By comparing eq. (14) with eq. (9) one can see that 
W ' =  W -  (L)~0~ + = W + w,__,~ ~+, thus W' will oe 
positive semidefinite with the orthogonal expansion 
similar to (12): 

N 

w'= ~ w + (15) n= 1 qJ-"S°n ~On ~On " 

Recalling the statistical interpretation of the con- 
tinual state mixing expressed by eq. (13) we are going 
to formulate the stochastic pure state representation. 

We propose to characterize the state of  the given 
open quantum system by the state vector ¢(t) ,  which 
is, in this case, to be taken as stochastic variable with 
vector values from the Hilbert space of  states. Then 
the density operator O(t) is recovered by the stochastic 
mean of  the pure state density operator Lp(t)O+(t): 

p ( t )  = ((~( t )~ +( t ) ) ) ,  (16) 
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where the symbol ( ( ) )  stands for the stochastic mean. 
The state vector if(t) obeys the following markovian 

stochastic process: ~k(t) satisfies the continuous and 
deterministic Schr6dinger equation (5) with frictional 
hamiltonian but, at any instant, the state i ( t )  can 
promptly decay into a certain eigenvector ~On(t ) of the 
actual transition rate operator W' (14) with the transi- 
tion rate w~(t)_%On(t) which is equal to the corre- 
sponding eigenvalue of W' (cf. the expansion (15)). 

By the construction of this pure state representa- 
tion (and especially from eq. (13)) it follows that the 
density operator (16) will obey the original master 
equation (1) of the given system. Therefore the pure 
state representation yields identical physical predic- 
tions to the density operator formalism. 

Finally, we apply our pure state equations to the 
damped harmonic oscillator. This open system is 
understood relatively well and the corresponding 
literature is remarkably wide [1]. 

The master equation (1) has now the following 
form: 

b = L Lo] = - ( i /h )  [H 0, p] - (i/h)X Ix, {p, p}] 

- ( l ib  2) R e D a b  [Aa,  l a b ,  p] ] ,  (17) 

where H 0 is the free oscillator hamiltonian. For con- 
venience of notation the vector A stands for the pair 
of the canonical variables: A 1 = P and A 2 = X. Conse- 
quently, D is a given 2 X 2 positive [3,7] hermitian 
matrix: D 11, D22, Re D12 are the diffusion coeffi- 
cients, X = (2]/0 Im D12 is the constant of friction. In 
eq. (17) and henceforth we use Einstein's convention 
for summation over repeated indices. 

Applying formula (5) we are led to the following 
frictional Schr6dinger equation for the damped har- 
monic oscillator: 

= (L - ( L ) ) ¢  = - ( i / h ) ( H  0 - (H0))~ 

- ( i / 1 7 ) X ( x p  + x ( p )  - ( x ) p  - ( x p ) ) ~  

- (1/h 2) Re Dab [(A a - CAa)) (Ab  - CAb )) --  Oab ] , 

(18) 

where the positive hermitian 2 X 2 matrix o is de- 
fined by 

Crab =--- CAaAb ) -- (ha)  CAb ) . (18a) 

The above equation of motion is obviously consistent 

with the following choice for the frictional hamilto- 
nian Hfr : 

Hfr = H 0 + X[½ {x, p} - ½ ({x, p ) )  + x ( p )  - ( x ) p ]  

- ( i / h )  geD~b [ ( A ~  - C%>)(A b - CAb)) -- %0] .  

(19) 

The antihermitian term of this hamiltonian differs 
from Hasse's hamiltonian [1,4]. Recall however, that 
Hasse's derivation requires an additional constraint 
for the state ~(t), namely 

Re Dab  Oab = lh2x .  (20) 

If this condition is fulfilled our hamiltonian (19)will 
be identical to that of Hasse's theory. 

Now, applying the definition (14) to the operator 
L in the master equation (17), we obtain the modi- 
fied transition rate operator of the damped oscillator 
in the following compact form: 

W'  = (2 /?12)Dab(A  a - C A a ) ) f ~ + ( A b  -- C A b ) ) ,  (21) 

which is explicitly positive semidefinite. The rank of 
W' is 2, thus its decomposition (15) contains only two 
states ~01 and ~02 which are orthogonal to each other 
and to the state ~ of the system: 

W r = W  + + . qj__,~ol~Ol~01 + wqj_+~2tP2~02 (22) 

The total decay rate of the actual state i is given 
by the trace of the modified transition rate operator 
W':  

w ~_~ = w ~ o  1 + w o__,so 2 = (2 / l~2)Dab  Oab 

= (2/~ 2) Re Dab Oab -- X .  (23) 

It is interesting to recognize that w¢~ vanishes if 
and only if Hasse's condition (20) is fulfilled for the 
state ~ of the system. For such states there are no 
stochastic transitions and thus the frictional 
Schr6dinger equation (18) is satisfied exactly. 

In general, the diagonalization (22) of W' is trivial, 
and the eigenvectors are of the form ~0 a = Car(Ar  - 

(,4r))q/with coefficients C depending on the matrices 
D and o. 

For brevity, however, we shall consider the sim- 
plest but still interesting damped oscillator where D 11 

= D12 = D21 = 0, D22 > 0. The frictional hamiltonian 
(19) is then the following: 
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Hfr = H 0 - ( i / h ) D 2 2 [ ( x  - (x)) 2 - a22 ] . (24) 

The transition rate operator (21) is now degenerate 
and equal to a single diad: 

W' = 2h-2D22(x  - ( x ) ) t ~  + ( x  - ( x ) )  = w q~__,so~o + , 

where 

~O = ( 0 2 2 ) - 1 / 2 ( X  -- ( X ) ) ~  (25) 

is normalized and orthogonal to ~. The corresponding 
transition rate is then equal to 

w ~ _ ~  = ( 2 f f i 2 ) D 2 2 o 2 2  . (26) 

Now, we claimed that, on the one hand, the state 
vector if(t) satisfies the Schr6dinger equation with the 
frictional hamiltonian (24); on the other hand, ~(t) 
can jump stochastically into the state ~ t )  (25) accord- 
ing to the time-dependent transition rate (26). We are 
going to prove that the stochastic mean p ( t )  = 

((~(t)~+(t))) (16) satisfies the corresponding master 
equation (17). 

If  we suppose ~(0) - ~ is fixed, then, by dt --- e 
later, the state ~(e) equals ~ - ( i e / ~ ) H f r t p  , with prob- 
ability 1 - e w~__,so; and, alternatively, ~(e) = 
(022)-  1/2(x _ (x)) ~O = ~0, with probability ew¢ ~o.  
Therefore the density operator is 

p(e) ip (o)=~+ = (1 - ew~__,so) 

X [ ~  - ( i e / h ) g f r ~ ]  [~+ + ( i e / l O ~ + H ~ ]  

+ ew¢__,so~xp + . (27) 

From eqs. (24)--(26) we can substitute Hfr, ~0 and 
w¢__,so, respectively, into the r.h.s, of  eq. (27). Recall- 
ing that e is infinitesimal, eq. (27) can be written as 

p(e) ]o(0)= ~ ~+ = ff if+ - (ie//~) [H0, ~k if+] 

- - ( e f f i 2 ) D 2 2 [ x ,  [x, ~ + ] ]  . (28) 

Remember that this is the density operator at t = e, 
with the condition that p(0) was a given pure state 
~ + .  It is easy to remove this condition because the 
r.h.s, of  eq. (28) is linear in ~tO +. By averaging for all 
stochastically possible states ~(0) we can replace ~ ~b + 
by p(0), via eq. (16); then eq. (28) will be equivalent 
to the corresponding master equation (17): 

p(e)  = p(O) - ( i e / h ) [ H o ,  p(O) ]  

- ( e l h 2 ) D 2 2  [x ,  [x ,  p(0)] ] .  (29) 

Thus, for the simple damped harmonic oscillator 
we have directly shown the equivalence of  the master 
equation formalism and the stochastic pure state for- 
malism proposed in the present paper. Note the first 
simple example was given in our previous work [8] on 
systems with white-noise potentials. That proposal has 
now been generalized and extended for all markovian 
open quantum systems. 

I wish to thank Dr. P. Hrask6 for the illuminating 
discussions and remarks. 
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