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Landau’s Density Matrix in Quantum
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This paper is devoted to Landau's concept of the problem of damping in quantum
mechanics. It shows that Landau’s density matrix formalism should survive in the
context of modern quantum electrodynamics. The correct generalized master equa-
tion has been derived for the reduced dynamics of the charges. The recent
relativistic theory of spontaneous emission becomes reproducible.

1. INTRODUCTION

In 1927 Landau published a paper'" on the “Problem of damping in wave
mechanics.” He had in mind the irreversibility of certain quantum mechani-
cal processes, typically the spontaneous decays of excited atomic states.
This irreversibility is not inherent in quantum mechanics, though; it must
be deduced from the reversible quantum dynamics of the larger system,
including the photonic variables also (cf. Ref. 2).

Landau then created the proper formalism to describe the reduced
dynamics of the electrons in contact with the electromagnetic fields, which
he integrated out. The state vector of the electron system had to be
replaced by a matrix, later called the density matrix. This matrix satisfies
a linear equation of motion (master equation), which, in contrast to
Schrodinger’s, contains irreversibility; cf. also in Pauli’s famous work.®
Since in 1927 the full theory of quantum electrodynamics was not within
reach, Landau did not elaborate on the exact equation of motion of the
electron density matgix. Nevertheless, he did find the proper approxima-
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tion, and he calculated the spontaneous decay rates in the electric dipole
approximation.

Sixty years later we see much progress in theory and technique. Many
years ago a systematic theory of quantum electrodynamics was construc-
ted, and Feynman was able to integrate it over virtual photon states."*’ On
the other hand, the density matrix formalism and the theory of master
equations have become the most common technique when dealing with
quantum damping (see, e.g., Refs. 5 and 6). However, in relativistic field
theory the density matrix formalism is still unconventional, and people
prefer hand-made calculi for irreversible processes. In spite of this, there
exists a very stimulating review'”" on unified treatment of irreversibility in
quantum field theory. We also mention some recent papers'® '°! advocating
the above technique, e.g., for tasks in cosmological particle physics, where
serious irreversibilities are expected.

In this paper we reproduce the original proposal of Landau. Having
the equation of quantum electrodynamics, we integrate over the photonic
variables and present the exact generalized master equation of the electron
system. Deriving an effective Markovian master equation, but not turning
to the dipole approximation, we will deduce the relativistic approximation
of the spontaneous decay rates, also obtained quite recently in Ref. 11.

2. GENERALIZED MASTER EQUATION

In interaction representation, let @(r) stand for the state vector of
the electron-photon system representing the subject of quantum electro-
dynamics. If one neglects the interactions with any other quantum fields,
the state @ evolves unitarily:

@(1) = U(t) (- 0) (1)

/(t)= Texp { —i J

xp<I

J(x) A(x) dx} (2)

where J represents the 4-current, 4 stands for the 4-potential, and T
denotes time ordering. According to the standard quantum electro-
dynamics, the operator J(x) equals the normal-ordered bilinear form
W (x) y¢(x) times the elementary charge e, where (x) is the field operator
of the electrons and 7 stands for the four Dirac matrices.

Following Landau,'"’ we introduce the density matrix p of the electron
subsystem by tracing the pure state projector @& over the photonic state
space:

pli)=tr @) @7 (1)] (3)
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We are going to show that Egs. (1)-(3) lead us to a closed form of
generalized master equation governing the time evolution of the electron
density matrix (3).

Throughout this paper we assume that at t= —co there were no
photons but only bare charges. Then we can take @(—o0) @ *(—o00) in the
form

P(—o0) P (—0)=10,) p(—0) (O, (4)

where |0, denotes the photonic vacuum state and p(— co) stands for the
initial (pure) state of the electron system. (Note that all results below
remain valid if p(—o0) is a mixed state.) By substituting Eqgs. (1) and (4)
into Eq. (3), we obtain

plt)=tr [U(1)] 0 > p(—20) 0, U™ (1)]
=0, U (1)=U() |04 p(—0) (3)

Here the super-operator U* - U is, by definition, the ordinary product of
U* and U on the photonic state space but a tensor product on the electron
state space. Generally, the word “super-operator” means any linear com-
bination of tensorial (direct) products of two ordinary operators. Conse-
quently, the expectation value (O, U*(1)-U(t)|0,) of the super-
operator U*» U is still a super-operator acting on the space of mixed
electron states p; cf. Eq. (5).

Our next task is to evaluate this expectation value. From (2), we see
that U* - U is the direct product of a time-ordered exponential expression
and another anti-time-ordered one. In fact, one can generalize the time-
ordering convention and, as a result, obtain a single exponential form for
U* - U, which is evaluated easily between states {0 ,|, |0 ). We shall not
present the details of these calculations, which the reader can understand
from Ref. 7. We only summarize the result: Let us append a + or — index
to the operator field J to indicate whether J is to act from the left or from
the right. For example,

¢ J.p=Jp, J p=pJ (6)

Furthermore, let us introduce the symbol T which represents time-ordering
(T) for J, fields and anti-time-ordering (T) for J_ fields. Inserting Eq. (2)
into the RHS of (5) and applying the notations (6), we obtain the following
relation:
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i 1
p(:)=rexp{5fﬂ dx dy[ D" (x— y) 1, (x) 1. (7)

Xp. =1

+DP(x— ) J_(x)J_(y) =D x=y) I (x)J_(p)

—D"’[x—}'}J_{x}h(y}]}ﬂ{—om (7)

where

D'"(x)=i{0 4| TA(x) A(0) 0 4)=(2n)"* I dpe " [p*+ie]” "  (8a)

DF(x) =i 0, TA(x) A(0) 10> = —(2m)~* [ dpe=**[p*—ie]™" (8b)
D(x)= €0 A(0) A(x) 10,4

= (21)~* [ dp e~ [~ 27i(~py) 6(p%)] (8¢)
D'(x) =<0, A(x) A(0) 10,0

= (22)* [ dp e~ #*[ ~2mif(po) 8(p*)] (8d)

Equation (7) is the central point of our paper. Such generalized (i.e.,
not Markovian) master equations of the same mathematical structure are
well known from nonrelativistic quantum mechanics. In terms of the latter,
Eq. (7) is just the effective equation for the reduced dynamics of the
electrons and positrons surrounded by a natural reservoir (cf. Ref. 5),
which is, in our case, the fluctuating electromagnetic vacuum.

This generalized master equation is equivalent to the whole apparatus
of quantum electrodynamics if we suppose that our electrodynamical
experience is deduced, ad extremum, only from the motion of charges (J)
and we use the notion of electromagnetic field (4) merely for the con-
venience of locality.

It is instructive to observe that the J_J, and J_J_ combinations in
Eq. (7) correspond to tracing over virtual photon states, while J,J_ com-
binations account for inelastically produced real photons. Had we omitted
the J,J_ combinations, the RHS of (7) would factorize as follows:

p(t)= V(1) p(—o0) V*(2) (9a)
V(t)= Texp {—;:H dx dy D'P(x — y) J(x) J{y]} (9b)
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which is just Feynman’s famous result.’ Of course, Eq. (9a) does not take
into account the inelastically produced real photons, and it therefore will
not preserve the trace of p(t). The generalized master equation (7) does, by
construction, preserve the normalization and positivity of the density
matrix p; this fact would deserve an explicit demonstration also.

3. MARKOVIAN EFFECTIVE MASTER EQUATION

In this section, we approximate the exact master equation (7) of the
clectron system by an effective Markovian master equation® p(1)= Lp(t)
applicable at large enough time scales. The evolution (super-)operator L is
introduced by the definition

lim ur[p (37)-¢(-3 )|=2e0) (10)

We are going to find the evolution operator L perturbatively. Remem-
ber that J is proportional to the elementary charge e, which is a small
quantity. In the lowest nonvanishing order of e, the generalized master
equation (7) yields the approximation of the order of e’

p(w0) — p(~0) =3 [[ dx YLDV (x = ) T(x) J(3)) p( = o)
—D'")(x—p)J(x) p(—0) J(y)] + HC. (11)

When the Fourier transform (8a)—(8c) of the Green functions and of the
currents is applied, the above equation assumes the form

p(e0) —p(—c0) = (2n)"* [ dp 1/(2 Ip])

x [i(po+ 1) ™" [T*(p) J(p). p(— )]

+18(pe+ 1) {T*(p) T (p), p(—0)}

—2n8(po— Ipl) T+ (p) p(— 0) J(p)] (12)
From now on, we assume that the unperturbed Hamiltonian of the

electron system is time independent and the eigenstates are labelled by
small Latin indices. Then, in the energy representation, the time
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dependence of the matrix elements J,
trivial:

of the current operator will be

FiF

Jonlx) = explion,,, xg) Sl X) (13a)
jﬂ”!(p} = znatpﬂ + w"i") jnm(p] ( ljb}

where w,,, is the relative energy E, — £, between the mth and nth
stationary states; J(x), J(p) are the current operator and its Fourier trans-
form, respectively, in the Schrodinger picture. From Eq. (13b), one can
derive the following useful relation for the product of two currents, which
1s nceded on the RHS of Eq. (12):

}:m[p) j”l:p] = 4H2[5{P0 + 'mm-w}]2 5ur5ma‘}:m[p] ‘Trx(p}
t EHT{S{. .U['.! + w!lﬂl] (in!(im.(‘}:!nl’p] jrr{p) [ 14}

The substitution in the second line (well known from the elements of quan-
tum mechanical perturbation theory) is valid in the limit T—oc, T
representing the time interval for which the electron—photon interactions
are switched on.

Now, by exploiting the asymptotic formula (14), we evaluate the RHS
of Eq. (12) and take the time average (10). Then T cancels, and one obtains
the following Markovian master equation for the density matrix elements
of the electron system:

.(}m] = _'r.npma + Z rr -.nﬂ'rr (151’:1)

1
;'J,,,,,=L——E(AE,,-—AE,H}—E[FR+FMJ] D oiiis n#EmM (15b)

For the energy shifts A4E, and for the transition rates I
respectively, the following expressions:”

AE,= —(2n) > T [ L2 pl(Ipl —©,,)] ' T5(0) T(B)  (16)

we obtain,

F—§

I, .w=—(2n) | dp(n/lpl) 8(Ip| = ,,) T(p) T..(P) (17)

and the full decay rate of the nth level is defined by

=Y F, _ (18)

* Equations (16) and (17) were given previously by A. O. Barut in Quantum Theory and the
Structure of Space and Time, L. Castelland C. F. von Weiszicker, eds. (Hanser, Munich,
1986).
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Notice that the transition rates (17) are nonzero only in the case in
which the final state possesses a lower energy than the initial one.

The master equation (15) was first derived in Landau’s paper,'"! but
he calculated the coefficients in the dipole approximation. Recently Barut
and Salamin''" calculated the spontancous emission rate, without using
the dipole approximation, and our result is identical to theirs.

The reader may notice that the Lorentz indices have been supressed
everywhere. If one restore them, it is straightforward to see that, due to the
current conservation ﬂ#}”[‘p}Eﬂ, one can eliminate the Oth component of
the current from all of the above formulas. In this special gauge, the
positivity of the transition rate (17) can be explicitly seen: )

‘Fr—-u = {EH} - J dp[nﬂpl] ll§[|p| - mm] J::-(P](i —no “} }rn(p] {19]

where n=p/|p|. Restricting this formula to the dipole approximation

J.p)=J,(0)= —iw,, /4n D,,, we can evaluate the integral on the RHS
of Eq. (19):

r_,=0@3)e, D, i o0,>0 (20)

This is the classical result'® for the spontaneous emission rate. Although it
was known to Landau, its illuminating derivation from the first principles
of the quantum theory is due to him.'"

4, CONCLUDING REMARKS

In this paper we have reconsidered Landau’s concept of the problem
of damping in quantum mechanics. We have shown that Landau’s density-
matnx formalism can be generalized by using the technique of modern
quantum electrodynamics. We have derived the generalized master equa-
tion for the reduced dynamics of the charges. It would be interesting to dis-
cuss whether such a formalism may provide essential help to treat strong
irreversibilities in other branches of field theory. One would consider, for
example, cosmological particle creation, relativistic heavy ion physics, and
especially hadronization processes in quantum chromodynamics.
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