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Abstract 

In this short note we show that for a Markovian open quantum system it is always possible to construct a unique set of 
perfectly consistent Schmidt paths, supporting quasi-classicality. Our Schmidt process, elaborated several years ago, is the 
Ate0  limit of the Schmidt chain constructed very recently by Paz and Zurek. 

1. Introduction 

In a very recent work, Paz and Zurek [ 1 ] discussed 
Markovian open quantum systems and constructed 
Schmidt paths showing exact decoherence. The au- 
thors, however, noticed their Schmidt paths were 
quite unstable under, e.g., varying the number of  sub- 
sequent projections. They thought to eliminate the 
problem by tuning time intervals between subsequent 
projections larger than the typical decoherence time. 

In the present short note I propose the opposite. Let 
time intervals be infinitely short! It means that the fre- 
quency of  the subsequent projections is so high that 
the Schmidt path will be defined for any instant t in 
the period considered. This infinite frequency limit 
exists and provides a unique consistent set of  Schmidt 
paths. The issue was discussed [2] and completely 
solved [3] several years ago. Of  course, the above 
limit is only valid up to Markovian approximation. 
In fact, the "infinitesimal" repetition interval is still 
longer than the response time of  the reservoir. 

For the sake of  better distinction between ordi- 
nary [1] and hereinafter advocated [3] Schmidt 
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paths, let us call them Schmidt chain and Schmidt 
process, respectively. 

In the next section, Schmidt chains are briefly re- 
viewed. Sect. 3 will recall the earlier results available 
now for Schmidt processes. Subsequently, in Sect. 4, 
we propose an application of  Schmidt processes to the 
quantum Brownian motion where classicality might 
be demonstrated. 

2. Schmidt path-Markov chain 

Consider the reduced dynamics of  a given subsys- 
tem, 

p ( t ' )  = J ( t ' - t ) p ( t )  ( t ' > t ) ,  (1) 

where p is the reduced density operator, J is the 
Markovian evolution superoperator. For a given se- 
quence to < tt < . . .  < tn of  selection times, let us 
have the corresponding sequence of  pure state (Her- 
mitian) projectors: {p0, p~ . . . . .  P"} is a Schmidt 

chain if 

[pk+l, J (tk+t -- t k )P  k] = O, 

k = 0 ,  1 , 2  . . . . .  n - l ,  (2) 
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cf. Sect. 4 of  Ref. [ 1 ]. For  a fixed initial state pO = 
p (to), let the probabil i t ies 

l , . . , p ,  p ( P  , P - . .  ) 

= )p" t r[P~J( tn  [ n - I  . . .P I j ( l l  lo)p(lO)] 
(3) 

be assigned to Schmidt  chains. Schmidt chains satisfy 
the following sum rule, 

E p ( p I , p 2  . . . . .  p ~ ) p L @ p 2 E  . . . . .  :~: p,, 

Schrnidl  pa ths  

= p(t~) ® p( t2) ,~  . . . .  :c p ( t , )  (4) 

3. S e h m i d t  p a t h - M a r k o v  process  

In this section, we consider the limiting case of  the 
Schmidt chains when the separations tk+~ tk go tO 
zero. The pure state path { P (t):  t > to}, starting from 
the fixed initial state P (t0) = p (t0), is a Schmidt pro- 
tess if (for t > to and ~ - dt > 0) P( t  + ~) branches 
into an eigenstate projector P,, (t) of  J ( e  )P ( t )  while 
the branching probabil i ty is the corresponding eigen- 
value p, (t) .  Branching rates w,  (t) are worthwhile to 
introduce by p~, (t) = ew,  (t).  

We follow the general results obtained in Ref. [3]. 
Let us introduce the Liouville superoperator  L gener- 
ating the Markovian evolution I ), 

assuring the consisteno' [4] of  the probabil i ty assign- 
ments (3). 

Let us construct concrete Schmidt  chains. To satisfy 
Eq. (2) for k = 0, let us first diagonalize the positive 
definite operator  J (tin - to) pO 

1 1 
J (t~ - to)P ° = E p~P,,. (5) 

If our choice is p l  = p ~ ,  whose probabil i ty  is p,,,, 
consider Eq. (2) for k = 1 and diagonalize J(t2 
t,)PJ,, 

J ( t 2 - t l ) P , ~ ,  = E 2 2 p~P~. (6) 
c~ 

Single out p2 = p2  at random, with probabil i ty p[-,, 

etc. 
F o r t h e  Schmidt  chain {pO, p~,, /,22 . . . . .  p ,  ~n } one 

generates from the fixed initial state p 0  probabil i ty 
(3) takes the following factorized form, 

p ( P , I , P £ . . .  ~ p(al,(~2. 

= p l,pL..p%. (7) 

The Schmidt  chain is the Markov chain. Given p0 _- 
p(to) ,  it will branch at tl into P,~, i.e., into one of  
the eigenstate projectors of  J (tl - to )p0; the branch- 
ing probabil i ty  p~  is the corresponding eigenvalue. In 
the general case, P~k will branch into Pkk+l ~ , i.e., into a 

certain eigenstate of  J(tk+~ tk)P,~,, with branching 
~ k + l  probabil i ty  t,,,k+ ~ given by the corresponding eigen- 

value. 

J (e  ) = 1 + ~L. (8) 

Assume the Lindblad form [ 5 ] 

Lp = i [ H , p ]  

½y]<r/i,~.p +/'U~;, 2f~pU), <9> 
) 

where II  is the Hamil tonian and {P~ } are the Lind- 
blad generators. Following the method of  Ref. [3 ], in- 
troduce the frictional (i.e. nonl inear-non-Hermit ian)  
Hamiltonian 

1 
lip = H N ~_,((bk ')k~.-  h.c.) 

2 

~i~--~(.v)* (k ;* ) ) (£  (£.))  + ~i.u, (lO) 

and the nonlinear positive definite transition rate op- 
erator 

14"e = E ( f i .  (ki.))P(Y'~* (k~t!), (11) 

where, e.g., (F~) = t r (F~P) .  We need the unit expan- 
sion of  the transit ion rate operator.  

We = Z w,,P,. (12) 

Observe that, due to the identity WpP =~ O, each P~, is 
orthogonal to P. The w~ are called transition (branch- 
ing) rates. The total transit ion (branching) rate then 
follows from Eqs. ( 11 ) and ( l 2 ). 

{F~t} (F~)). (13) 
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How to generate Schmidt processes? Given the initial 
pure state p (t0) = P (t0), the pure state P (t) evolves 
according to the deterministic frictional Schr6dinger- 
yon Neumann equation, 

d p = - i  (HpP - PHtp ) 
dt  

(14) 

except for discrete or thogonal jumps  (branches) 

P ( t  + O) = P~(t)  (15) 

occurring from time to time at random with P ( t ) -  

dependent partial transition rates wo (t). It is worth- 
while to note that neither Hp nor Wp depend on the 
concrete Lindblad representation (9) of  L, as it is 
clear in Ref. [ 3 ]. 

Mathematically, the above Schmidt path is the 
pure-state-valued Markov process of  generalized 
Poissonian type. During a given infinitesimal period 
(t, t + dt), the probability of  the branch-free (i.e., 

jump-free, continuous) evolution is 1 - w  (t) dt. Con- 
sequently, one obtains [6] the a priori probability of  
continuous evolution for an arbitrarily given period 
(tl, t2) as 

12 

 16, 

l I 

4. C l a s s i c a l i t y  

Schmidt processes assure maximum classicality 
in "measurement situations". It has been shown in 
Ref. [6] that for large enough t, the Schmidt pro- 
cess converges to one of  the pointer states while the 
overall probability of  further branches tends to zero. 
Convergence is then dominated by the asymptotic 
solutions of  the deterministic frictional Schr6dinger- 
yon Neumann equation (14). 

To test classicality of  Schmidt processes in less ar- 
tificial situations, let us start with the (modified [7] ) 
Caldeira-Leggett [ 8 ] master equation 

d . l -~ p = L p  = -l~--~ [p2, p ] _ i7 [q, {p, p} ] 

_ 172d2[q, [q ,p ] ]  _ 1 2 ~ ~:Y2dB [P, [P,P] ], (17) 

where y is (two times) the friction constant, 2dB stands 
for the thermal de Broglie length of  the Brownian par- 
ticle of  mass M. In Ref. [ 7 ] the value x = 4 has been 

suggested. For simplicity, we have omitted the usual 
renormalized potential term in the Hamiltonian, as- 
suming it is zero or small enough. Hence we can model 
the quantum counterpart of  pure frictional motion. 

To cast Eq. (17) into the Lindblad form (9), two 
Lindblad generators F~, F2 have to be introduced in 
the general case. Then, applying mechanically Eqs. 
(10) and ( 11 ) calculate both the frictional Hamilto- 
nian and the transition rate operator. In Ref. [ 3 ], the 
following expressions are directly derived from the 
Liouville superoperator L, 

1 2 
Hp = ~ - ~ p  + ½ 7 { q - { q } , P - ( P ) }  

1 • --2 ) 2  2 
- W { ~ d B  [ (q  - ( q )  - -  aqq] 
+ K22B[ (p _ (p))2 _ aZp 1}, (18) 

Wp = ),2~2 (q - ( q } ) P ( q  - (q)) 

+ Xy22dB(p -- ( p ) ) P ( p  - (p}) 

- i y [ ( q -  (q} ) P ( p -  (p} ) - (p - (p} ) P ( q -  (q})], 

(19) 

where a2q = (q2} _ (q)2 and a2p = (p2) _ (p)z. The 

total transition (branching) rate (13) takes the simple 
form 

- 2  2 2 2 w = 7(2daa~q + X~dBapp- 1) (20) 

as can be easily verified by observing w = tr Wp. 
For most of  the time the Schmidt process is gov- 

erned by the frictional Hamiltonian ( 18 ), via the non- 
linear equation (14). This equation i tself  possesses 
a stationary solution P ( w )  with a simple Gaussian 
wave function representing a standing particle. In 
the high temperature limit k T  >>  hy the stationary 
wave function is ,,~ exp [ -  ½ ( 1 - i) V/2~,k T M 2 h  - 3 q2 ] 
where the h = 1 convention has been released in 
the notations. One can heuristically guess that the 
non-Hermitian terms of  the frictional Hamiltonian 
establish quasi-classicality for arbitrarily given ini- 
tial states. Obviously, the random jumps (15) will 
interrupt the deterministic evolution of  the Schmidt 
process. Their overall rate (20), e.g. in the high tem- 
perature limit, is w = 2yx/2x/2x/2x/2x/2x/~f/h. It is, nevertheless, 
not excluded that the jumps would only cause slight 
random walk and breathing to the otherwise quasi- 
classical wave function. This issue needs further 
investigations. 



8 L. Diosi/Physics Letters A 185 (1994) 5-~ 

5. Conclusion References 

Schmidt processes offer a certain solution to the pre- 
ferred basis problem of quantum mechanics, at least 
when the subsystem's reduced dynamics can be con- 
sidered Markovian. It will be interesting to carD' on 
analytic or numeric calculations for the Schmidt pro- 

cess of the Brownian motion, not at all exhausted in 
Sect. 4. 
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