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Abstract

A systematic first-order correction to the standard Markov master equation for open quantum systems interacting with a
bosonic bath is presented. It extends the Markov Lindblad master equation to the more general case of non-Markovian
evolution. The meaning and applications of our ‘post’-Markov master equation are illustrated with several examples,
including a damped two-level atom, the spin-boson model and the quantum Brownian motion model. Limitations of the
Markov approximation, the problem of positivity violation and initial slips are also discussed. q 2000 Published by Elsevier
Science B.V. All rights reserved.

The fundamental approach to open quantum sys-
tems relies on a closed system-plus-reservoir model
whose time evolution is governed by the standard
Schrodinger or von-Neumann equation. Due to the¨
coupled dynamics of system and environment, effec-
tively, the evolution of the system’s reduced density
operator r depends on its past, it is non-MarkoÕian.t

For a quantum particle coupled to an environment of
harmonic oscillators, this is obvious from its path
integral propagator as derived by Feynman and Ver-

w xnon 1 . It is also apparent from Zwanzig’s projection
w xapproach 2 where the evolution equation for rt

takes the form of an integro-differential equation
involving an integral over the whole history of the
density operator. Exactly how far back the integra-
tion over the past has to be extended defines the
environmental ‘memory’ time scale t .

A finite memory time t leads to severe problems
for the treatment of open system dynamics which is
even more true for attempts to find numerical solu-
tions. Growing experimental advances on meso-

w xscopic scales 3 , however, demand an efficient the-
ory for open system dynamics beyond the standard
Markov approximation: these are experiments with
high-Q microwave cavities, investigations of the
spontaneous emission from atoms in a structured

Žradiation continuum e.g. ‘photonic band gap’ mate-
.rials or the output coupling from a Bose–Einstein

condensate to create an atom laser, to name a few.
Also, the important phenomenon of decoherence
which takes place on time scales that can be of the
same order as the correlation time of the environ-
ment requires theories beyond the standard Markov
approximation.
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There are a few derivations of exact non-
ŽMarkovian master equations for model systems see

w x.e.g. 4–7 . Remarkably, despite the underlying
non-Markovian dynamics, these exact evolution
equations may be cast into the form of a time-local
master equation involving the reduced density opera-
tor r at time t only. A finite memory time and thust

non-Markovian effects are exactly taken into account
by suitable time dependent coefficients entering the
resulting master equation.

The derivation of a useful master equation for
general open systems beyond the Markov regime
remains an outstanding open problem. In this Letter
we present a first order ‘post’-Markov master equa-
tion for an arbitrary quantum system coupled to an
environment of harmonic oscillators. As in the case
of the above-mentioned soluble models, our result
takes the form of a time-local master equation with
time dependent coefficients involving the bath corre-
lation function. To zeroth order in the memory time
Ž .ts0 we recover the standard Markov master equa-
tion.

To begin with, let us recall the Markov case.
w xFrom an axiomatic approach, Lindblad 8 derived

the most general Markov evolution equation for a
Ž .density operator "s1 :

1 † †w xr syi H ,r q L,r L q Lr , L , 1Ž .˙ Ž .t t t t2

where, for simplicity, we only consider the case of a
single Lindblad operator L representing the influence
of the environment. Such Markov Lindblad master

w xequations are widely used in quantum optics 9 . We
Ž .identify two ‘system’ time scales in 1 : the ordinary

dynamic time scale determined by the Hamiltonian
Ž y1 .H which we call v , and a damping or relaxation

Ž y1 .time scale which we call g determined by the
operator L†L. The true open system dynamics will be

Ž .well described by Eq. 1 as long as terms of the
order vt and gt can be neglected, where t is again
the environmental memory time.

Our aim is a ‘post’-Markov master equation valid
to first order in vt , gt . In what follows, we explain
the main result and illustrate it with several promi-
nent physical problems, including a damped two-level
system, the spin-boson model and the quantum
Brownian motion model. We start with a quantum

system interacting with a bosonic oscillator environ-
ment with total Hamiltonian,

H sHq g La† qL†a q v a† a . 2Ž .Ž .Ý Ýtot l l l l l l

l l

Here, H is the Hamiltonian of the system and L a
system operator describing the coupling to the envi-
ronment. The standard zero temperature bath correla-

Ž .tion function of model 2 is

a t ,s s g 2eyi vlŽ tys. . 3Ž . Ž .Ý l

l

Its decay, as a function of the time delay tys,
defines the ‘memory’ or correlation time t of the
environment. We choose to normalize the coupling

Ž . Ž .constants g in 2 such that a t,s is normalizedl

Ž Ž . .Ha t,s dss1 which means that the overall cou-
pling strength is determined by a parameter hidden

Ž .in the coupling operator L in 2 .
w xA lengthy derivation 10 based on a non-

Markovian quantum trajectory approach developed
w xrecently 11 , shows that to first order in the memory

Ž .time t the reduced density operator of model 2
evolves according to the first-order ‘post’-Markov
master equation,

† ) †w xr syi H ,r qg t L,r L qg t Lr , LŽ . Ž .˙t t 0 t 0 t

† w xq ig t L , H , L rŽ .1 t

) †w xy ig t r L , H , LŽ .1 t

† †w xqg t L , L , L LrŽ .2 t

) † †w xqg t r L L , L , L , 4Ž . Ž .2 t

where

t
g t s a t ,s ds, 5Ž . Ž . Ž .H0

0

t
g t s a t ,s tys ds, 6Ž . Ž . Ž . Ž .H1

0

st
g t s a t ,s a s,u tys duds. 7Ž . Ž . Ž . Ž . Ž .HH2

0 0

Ž .The master Eq. 4 is the central theme of this paper.
Note first that according to our convention, the

Ž .function g t is of the order one. Therefore, as in0
Ž . Ž .1 , the first two lines in 4 define the time scales

y1 Ž . y1 Ž † . Ž .v H and g L L . The two functions g t1
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Ž .and g t , however, are of the order of the memory2
Ž .time t . Therefore, the third and fourth line in 4 are

smaller than the first and second line, respectively,
by a factor gt . As t™0, the third and forth line in
Ž . Ž .4 become negligible, the real part of g t tends to0
1 , and the contribution of the imaginary part of2

Ž .g t can be absorbed by a renormalized Hamilto-0
Ž .nian: our ‘post’-Markov master Eq. 4 reduces to

Ž .the Lindblad master Eq. 1 for vanishing memory
time t . The third and fourth lines, which arise due to
short but finite correlation time, represent the new
first-order non-Markovian corrections. The time-de-

Ž .pendent coefficients g t describe an important ini-i
w xtial slip on the time scale of the memory time t 4 .

Ž .Note that 4 , assuming that the initial state is fac-
torable, is valid for zero temperature and also for
finite temperature if LsL†. General finite tempera-
ture post-Markov master equation can be obtained
directly from the first order perturbation of the finite

Ž .temperature quantum state diffusion QSD equation
w x11 .

As a first example, we consider a damped two-
1 'level system: Hs vs , Ls g s . For the sakez y2

of simplicity, we phenomenologically choose an ex-
Ž .ponentially decaying correlation function a t,s

1 y< tys < rts e with memory time t . Since this model2t

w xcan be solved exactly 7,11 , we are able to compare
Ž .results from our post-Markov master Eq. 4 ,

v
w x w xr syi s ,r y iv g g t s s ,rŽ .Ž .˙t z t 1 q y t2

qg g t qg g tŽ . Ž .Ž .0 2

= � 42s r s y s s ,r , 8Ž .Ž .y t q q y t

with the exact result. It here happens that the post-
Ž . Ž .Markov master Eq. 8 is of Lindblad form 1 with

Ž Ž .time-dependent coefficients the real g t gives rise1
.to a time-dependent frequency shift . Therefore we

know that r remains a proper density operator fort

all times and all parameters. As seen in the next two
examples this property is not a generic feature of the

Ž .post-Markov master Eq. 4 . To illustrate the limits

Ž .Fig. 1. Illustration of the limit of the Markov approximation dotted curve for a damped two-level system. The dashed curve is our
< : < :post-Markov result, the solid curve is the exact result. The initial state is c s y . The parameters are vsg ,gts0.2.0
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of the Markov approximation we compare in Fig. 1
² :the average s obtained from the post-Markovy

Ž .master equation dashed curve , from the Markov
Ž .master equation dotted curve and from the exact
Ž .master equation solid curve for the parameters

vsg and gts0.2. We see that the post-Markov
master equation gives a much better result than the
Markov master equation as expected for a significant
memory time of gts0.2.

So far, our results assume a zero temperature
w xenvironment. As stated before, it turns out 11 , that

for a selfadjoint coupling operator LsL† the same
Ž . Ž .analysis holds, with a t,s in 3 replaced by the

finite temperature expression

vl2a t ,s s g coth cosv tysŽ . Ž .Ý l lž /2kT
l

yisinv tys "s1 .Ž . Ž .l

A finite temperature introduces an additional time
scale 1rkT but we here focus on the high-tempera-
ture limit kT4ty1, thus disregarding the new time
scale. For an Ohmic bath we obtain the standard
correlation function

˙a t ,s s2kTD tys q iD tys , 9Ž . Ž . Ž . Ž .

Ž .where D t is a smeared out delta function, decaying
Žon the memory time scale t the inverse of the cutoff

˙.frequency , and D is its time derivative. The precise
Ž .shape of D t depends on the type of high-frequency

Ž .cutoff chosen in the sum 3 . Due to the somewhat
˙Ž . Ž . Ž . Ž .singular D t term in 9 , the coefficient g t in 61

is no longer of the order of the memory time t but
turns out to be of the same order as the zero order

Ž .term g , and both terms in 4 are relevant in the0
Ž .t™0 limit. The forth line in 4 involving the

Ž . †function g t vanishes for LsL . Note that we2

have slightly changed our convention in order to be
in line with standard notation: the correlation func-

Ž .tion 9 is here normalized such that the coefficient
of the imaginary part, relevant for the damping, is
unity.

Let us consider the high-temperature spin-boson
1w xmodel 12 . The system Hamiltonian is Hsy vsx2

1q Vs , where v is the tunneling matrix elementz2

and V depicts the bias of the system. The coupling

'operator is Ls g s . The ‘post’-Markov masterz
Ž .equation can be obtained directly from 4 :

w xr syi H ,r qg g t s r s yg g t rŽ . Ž .˙t t 0 z t z 0 t

qH.c.y ivg g t s r yvg g t s r sŽ . Ž .1 x t 1 y t z

qH.c. 10Ž .

Ž . Ž .After an initial slip t4t , the g t approach theiri

asymptotic values and the density operator evolves
according to

w xr syi H ,r q2kTgs r s y2kTgr˙t t z t z t

� 4qvg s ,r y ivgs r s q ivgs r s .x t y t z z t y

11Ž .

Ž .Obviously, both Eq. 10 and its asymptotic form
Ž . Ž .11 are not of Lindblad form 1 due to the presence
of the last three terms. Therefore, as a Markov
equation with constant coefficients, we cannot expect
Ž .11 to preserve the positivity of r if applied to ant

arbitrary initial density operator. Our derivation
Ž .shows that for the asymptotic Eq. 11 to be mean-

ingful, one has to use an effectiÕe initial condition
w x4 obtained by fully determining the initial slip

Ž .arising from the time dependent coefficients g t ini
Ž .the true master Eq. 10 .

Ž .We show numerically that 10 preserves the posi-
tivity of the density matrix while the asymptotic Eq.
Ž .11 applied to the same initial condition fails to do
so. The positivity of r is equivalent to the conditiont
< <² : < < ² : Ž .s F1, where s sTr sr is the Bloch vec-
tor. In Fig. 2 we plot the norm of the Bloch vector

Ž . Žusing the time-dependent master Eq. 10 solid
. Ž .curve and using its asymptotic form 11 right from

Ž .the start dotted curve . Clearly, the latter loses
positivity for some initial states on short time scales,

Ž .whereas the full post-Markov master Eq. 10 pre-
serves it for all times as numerically confirmed for a
wide range of parameters in the region kT4Ls
ty1, where L is the cut-off frequency of the heat
bath. Note however that if the correlation time is too
large, then the post-Markov master equation can also
produce non-positive results as should be expected
from its derivation.

Note that this simple model is the 2-level analog
of the quantum Brownian motion model where we
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Ž . Ž .Fig. 2. Norm of the Bloch vector for the spin-boson model evolved with the post-Markov Eq. 10 solid curve and evolved with the
Ž . Ž .asymptotic Eq. 11 dotted curve . As the latter leads to a norm greater than one, it violates the positivity of r . The initial state ist

< : < :c s q and the parameters are Vs0,vts0.01,kTts20,gs0.3v.0

1 2 Ž . 'have Hs p qV q and Ls g q. The post-2

Ž .Markov master Eq. 4 for this case reads

w x w xr syi H ,r yg g t q , q ,rŽ .˙t t 0 R t

2 w xy ig g t q ,r qg g t q , p ,rŽ . Ž .0 I t 1 R t

� 4q ig g t q , p ,r , 12Ž . Ž .1 I t

Ž . Ž .where the coefficients g t , g t are the real andi R i I
Ž . Ž .imaginary parts of g t , is0,1 , respectively. Ini
Ž .the special case when V q is a quadratic potential, it

Ž .is reassuring that our master Eq. 12 coincides with
the first order expansion of the exact Hu–Paz–Zhang

w xmaster equation 5 .
As in the previous example, for the high tempera-

Ž .ture Ohmic correlation function 9 , the functions gi

approach their asymptotic values after an initial slip
Ž .on the time scale t and 12 becomes the standard

Ž w x.quantum Brownian motion Caldeira–Leggett 13
master equation

g
Xw x � 4r syi H ,r y i q , p ,r˙t t t2

w xyg kT q , q ,r , 13Ž .t

where H X is a cutoff-dependent renormalized Hamil-
tonian and where we dropped a term involving t p
with respect to a similar term proportional to q.

Ž .It is known that the non-Lindblad master Eq. 13
may violate the positivity of the density operator.

Ž .Our full post-Markov master Eq. 12 is also a
non-Lindblad equation but with time-dependent co-
efficients. As in the case of the spin-boson model,
their time dependence can assure the preservation of
the state’s positivity for a wide range of parameters

Ž . Ž .in the validity region of Eq. 10 . In 12 , the coeffi-
Ž .cient g t of the dissipative term is zero at ts01 I
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and its time derivative vanishes, too. The diffusion
Ž .coefficient g t also vanishes but its initial deriva-0 R

tive is positive. Thus the initial phase of the evolu-
tion is dominated by diffusion. This mechanism, as

w xis well known in the exact model of Ref. 5 , may
guarantee the positivity of the density matrix for
short times as well as at later times when the dissipa-

Ž .tion enters. In contrast, the asymptotic t4t

Ž .Caldeira–Leggett master Eq. 13 , if used right from
Ž .the start tG0 , will immediately violate the positiv-

ity of a distinguished class of initial density matrices
due to the constant dissipative term.

It is interesting to stress the close connection
Ž .between the post-Markov master Eq. 4 and the

Ž . Ž w x.QSD equation corresponding to 2 see 10 . In-
deed, the former was derived from the first order
perturbation of the latter. Consequently, the post-

Ž .Markov master Eq. 4 can be simulated by using the
powerfull quantum trajectory techniques provided by

w xQSD 10,14 .
To sum up, we have presented a post-Markov

master equation for the evolution of open quantum
systems. We have illustrated its great potential using
several examples and we have further shown numeri-
cally that, for a wide range of parameters, the post-
Markov master equation preserves the positivity of
the density operator while its asymptotic version,
disregarding the initial slip, fails to do so. This opens
the road to applications of the post-Markov master

Ž .Eq. 4 to phenomena, such as quantum decoherence
and dissipation, photonic bandgaps, atom laser and
more generally atom-field interactions in the weakly
non-Markovian regimes.
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