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Evolution of a qubit under the influence of a succession of weak measurements
with unitary feedback
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We investigate the evolution of a single qubit subject to a continuous unitary “free” dynamics and an
additional interrupting influence which occurs periodically. One may imagine a dynamically evolving closed
guantum system which becomes open at certain times. The interrupting influence is represented by an opera-
tion, which is assumed to equivalently describe a nonselective weak measurement. It may be decomposed into
the action of a positive operator, which in the case of a measurement represents the pure measurement part,
followed by a unitary backaction depending on the result of the measurdfeedback Equations of motion
for the state evolution are derived in the form of difference equations. In the lowest order, the stochastic
feedbacks cause a modification of the “free” Hamiltonian by an additional appropriately averaged Hamil-
tonian. The positive operator specifies a decoherence rate and results in a decoherence term. Two higher-order
terms are discussed. One shows decoherence induced by the stochastic feedbacks and the other represents
generalized friction. The selective evolution is investigated. In order to bridge the gap between sequential and
continuous measurements, the continuum limit to a master equation is performed. Additional correcting higher-
order terms are worked out in the Appendixes.
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[. INTRODUCTION Let us determine the single influence further. According to
Eqg. (1), we are not dealing with the most general form of
Experimental and theoretical studies of the dynamics ofuch an influence on a qubit, which would correspond to an
single two-level systems have become very important in th@peration with four operation elements, but we restrict our-
context of quantum computation and quantum informationselves to interactions which may be represented by only two
In this paper, we investigate the evolution of a single qubitelementsM , andM _ . Pairs of operation elements can de-
subject to two influences. On the one hand, there is a corscribe such important operations as, for example, amplitude
tinuously acting unitary dynamidsindisturbed or “free” dy- damping and phase damping, bit flips, and phase flips, as
namicg with operatorU. On the other hand, the qubit is well as projection measurements and weak measurements.
affected by an interrupting additional influence, which isThe concept of a weak measurement will be explained be-
nonunitary and acts periodically at timég=ty+nz, n low. We will restrict ourselves to an operation which is
=1,2....Thedurationé of this influence is assumed to be equivalent, as far as the mapis concerned, to a nonselec-
much shorter tharr, so that it can be neglected. One may tive weak measurement. For simplicity, we will speak about
imagine a dynamically evolving closed quantum systenthe operation and its elements in terms of generalized mea-
which becomes open at timés. The correspondingingle  surements. Please note that this may still comprise many
influenceis represented by aoperation€ which transforms  physical processes which at first glance do not look like a
the state of the qubit given by its reduced density operator weak measurement.
according to To specify the operation elements and to reveal the differ-
ent physical effects which are caused by the operatjanis
useful to decomposk! . . According to the polar decompo-

p—&(p)= Mkle (1) sition theorem, each operation elem&ht. may be written
k== as a product of a unitary operator and a positive operator
with operation elements M which are sometimes also M.=U.|M.]|. 2

called Kraus operatorg. is assumed to be trace preserving.
The representatiolil) of the single operation is called the We are dealing with a class of generalized measurements
operator-sum representatioor Kraus representation. with two outcomes+ and —. The unitary parU.. extracts
Such a periodically occurring, nearly instantaneousno information from the qubitJ . can reflect the coupling of
change can be caused by a recurring interaction with a sethe system with the metébackaction of the metgor can be
ond system provided that this system does not “remembertiue to an external field which is applied depending on the
the influence it may have experienced from the qubit abutcome of the measuremefiusU , #U _). It then repre-
former times(Markov procesp Typically the second system sents aninstantaneous feedbadi,2]. We will allow both
could be an environment or it could consist of a number ofpossibilities and speak uniformly of feedback. The cdse
systems of the same kind which interact only once with the=U _ indicates an additional unitary evolution independent
qubit, as is the case in a sequence of scattering processesof the measurement outcomé.. =1 implies the minimal
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disturbance. The s€{M_|%,|M_|?} represents a positive- like a change of the distance between the two energy levels
operator-valued measu(BOVM). The demand of weakness of the qubit. We find this effect as a special case of our
of the single influence is introduced below by conditions onstudies [U.. ,H]=0), cf. Eqg.(57) and the text below. Ko-
U. and |[M.|. A sequence of such generalized measurefotkov also derives a modification of the stochastic master
ments are of practical importance because they can be emquation(selective regimedue to the nonminimal distur-
ployed to explore the original dynamics of the systed] bance[ 7], which is averaged out in the nonselective case.
or, not less important, to control its dynamics by means of a Many examples of the application of instantaneous feed-
specific feedbackl,5]. back in continuous measurements by means of external
In the nonselective case of Ed), when the measurement changes of the Hamiltonian of the system can be found in the
results= are not read off, our total physical setup defined byliterature of quantum contrge.g.,[1,5]). They correspond to
U, r, U., andM. may also be regarded as a particularspecial choices of the unitary part of the measurement opera-
noisy channel. Below, the unitary operat&s will not be  tjon and obey the equations of motions derived here, pro-

neglected because they form an important part of the sequegided the measurements do not inflict finite changes during
tial operations in realistic situations. In general, it would yfinitesimal times.

need a nontrivial feedback procedure to eliminate their influ- |4 the context of quantum dissipation, the influence of a

ence, compargs3] for an examp'?- . heat bath on an infinite-dimensional quantum system has
Itis our goal to_denve equat|_on§ of f.“°“°”s fo_r the state, e investigated by Caldeira and Legd6it The coupling
of the system subject to the periodical influence in the fom\/vas such that in terms of the operation formalism, the cor-

of difference equationsDifference equations take into ac- : . : .
count the discrete nature of the influence due to the finitiesmndmg operation of the system had a unitary part addi

time 7 between its occurrences and grant therefore a mor c;‘nal (;O Fhedone stetmmlng f[romfltsr:reﬁ tonglnal tevolutlohri].h
exact description. In different orders of weakness, a rich' '©Y G€rved a master equation for high temperatures whic

structure of physical influences appears which furthermordV@s later modified to also describe medium temperatures
cannot be seen in the continuum limit. 10]. Although we are looking at a qubit, we find in the

Although it is only a byproduct and not our central aim, difference equation among others similar terms such as those
we also look at the limitr— 0 of continuous measurements Which represent decoherence and dissipation, but only one of
and compute the corresponding master equatimmselec- them survives in the continuum limit.
tive descriptio. The master equation can be understood as a Barchielli et al. [11] studied the continuum limit of se-
means to compute approximately the dynamics of a systerquentia| measurements without unitary feedback in an
which is subject to a sequence of operations of the tiipe  infinite-dimensional Hilbert space. In the context of continu-
Since there are a lot more mathematical methods to solveus position measurements, Caves and MilbLk8] pre-
differential equations than difference equations, it may besented a sequential measurement which possesses Gaussian-
useful in some cases to approximate sequential measurshaped effects. They also employed a special feedback,
ments by continuous measurements as far as the study of thehich served to compensate jumps in the mean position and
dominant physical influence is concerned. mean momentum.

To point out what is new in our approach, we describe the As compared to these papers, we study a quantum object
related literature in some detail: Master equations for speciah a two-dimensional Hilbert spac@ubit) which is influ-
cases of measurements with a nonvanishing unitary part efnced in a genuinely sequential manner. We discuss Gaussian
the operation elements have been considered in the literaturstatistics and we include a general feedbadk. ¢1). Our
A master equation for general feedback was derived byocus on the discrete nature of the sequential process and the
Wiseman[6]. However,[6] does not comprise our results inclusion of general feedback are the points in which we
since it deals with a special kind of continuous measurediffer from the literature. The related difference equation
ments. They have Poissonian statistics and allow finite-statehows physical effects which are lost in a continuum limit.
changes during infinitesimal time intervals. More precisely, As mentioned above, our results can be applied to weak
this means that only very seldom a certain measurement réafluences. Examples are sequences of scattering processes
sult occurs which is then connected to a finite-state changéf. [13] the experimental setup of Brune, Harodheal. [ 14]
during an infinitesimal time while for other measurementcf. [3]), and similar experiments which are usually not dis-
results the state changes only infinitesimally. We are excludeussed in terms of generalized measurements.
ing Poissonian statistics and require the state change in the We proceed as follows. We first consider the single mea-
continuum limit to be infinitesimal during infinitesimal surements of the sequence. Then we bundle the whole se-
times. Thus Wiseman'’s and our studies do not overlap.  quence in subsequences Mfmeasurement§’ N series”).

In a later paper, Wisemdr2] employed the operation for- The resulting operation has a Gaussian shape. Afterwards we
malism to analyze a homodyne measurement in quantum ojintegrate over all outcomes to obtain the average state
tics to apply instantaneous feedback in order to minimizechange due to alN series(nonselective regime We then
disturbance, i.e., compensate the unitary part of the operaliscuss how to find the right continuum limit which con-
tion. Korotkov investigated a measurement with nonminimalserves the physical characteristics of Meeries and derive
disturbance in the context of continuous measurement of the master equation. Finally, we deal with the selective re-
qubit by means of a single electron transi§to®8]. He noted gime of measurement and write down the stochastic master
that this nonminimal disturbance acts in the master equatioequation. The Appendixes serve to derive the difference
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equation for the nonselective regime up to second order in i
the occurring small parameters. U.=:exp — %Hir . (8
Il. THE SINGLE QUANTUM OPERATION This unitary feedback represents an important part of the

) o . quantum operation and appears naturally in the generic situ-
An example for a physical realization of the operaton 44jon.

from Eq. (1) is given by a qubit which interacts at times According to Egs.(5) and (6), |[M.|2 and |M_|? com-
unitarily for a short durations with an environment and |, te. Therefore, we can find orthonormal basis vectbys
thus becomes an open system. The resulting change of ifg,q |2) of the qubit Hilbert space with respect to which
reduced density operator may formally be expressed with thﬁ\/l .|? are diagonal. We introduce the eigenvalpgsand p,
help of operation eIemenrsl? as in Eq.(2). Ju.st.the same of |_M+|2, which are positive and because of Ef) obey
change of the reduced density operator resulfs & projec- 0=<p, ,<1. Without restriction of generality, we chooge

tion measurement on the environment is performed with out- p,. Reading off the eigenvalues [l _|2 from Eq.(6) and
come+ or — transferring the qubit to the states taking the square root, we find N

o = MepM . M J= P11+ VP2 [2)(2] ©)
B t
vIM-pM=] IM | s= V= py 1(1]+ VT= Pz [2)(2).

respectively andii) the outcome is not read dffionselective

C"’_‘Se' In the generic case, E(B) Qescribgs thgr.eby a gener- \yhen the system is, respectively, in the stdte or |2) im-

alized measurement of the qubit. For simplicity reasons th‘?nediately before the measurement

terminology we are going to use will refer to measurements, The element$M , | and|M _| com'mute We will charac-
n _ .

but the results apply _equally to any operation with operatorygyi e he operation later on by the parameters
sum representatiofl) if the same specifications &fl .. are

made. This is independent of how the operation is experi- 1

mentally realized. Po=5(P1+P2), AP:=pa—Py, (10
Because of the polar decomposition theorem, the opera-

tion elementsM . may be written as products of a unitary with 0<Ap=1. Introducing

operator and a positive operator

p, and p, are the probabilities to measure the outcotne

o=[1)(1[-12)(2], (11
Mi:Ut|Mt|' (4)
the effectsE.. of Eq. (5) are rewritten in the form
We introduce the POVMeffects E.—pol—iApo,, E_=(1—po)l+iAps,. (12
E.=[M.[2, ®  nthe limii _
n the limiting caseAp=1, the pure part of the measure-
ment(9) results in a projection ohl) or |2) depending on
the measurement outcome or —. We call this asharp
E.+E =1 6) measurementf an observable with eigenvectdds and|2),
for exampleo,. Note that also for a sharp measurement the
result of the quantum operatidf) will in general not be the
state|1) or |2) because of the remaining influence of the
p.=(E.) ) unitary feedback.
- e Up to now no approximation has been made. We have
with p, +p_=1. only rewritten the most general operation with two operation

Equation(4) represents a decomposition of the operation€/éments. We now specify a weak single measurement as
into a pure measurement padescribed byM..|, followed having a weak influence on the state by demanding for the

by aunitary feedbackgiven by U. depending on the result PUré measurement part

which obey the completeness relation

The probability of the outcomeé- or — is given by

+ or —. These denominations are justified for the following Ap
reasons: All the information which can be read off from the S (13
meter is related tdM . |, which therefore represents the un- 2 min{pPo, 1~ Po}

avoidable minimal disturbance. The unitary operators Ieav%lnd for the feedback

the von Neumann entropy unchanged and therefore do not

allow to export information to an observer. Because they U.~1 (14)
depend on the result or —, they may be interpreted as a

specific feedback caused by the measuring apparatus or by Because of Eq(13), the M .| and|M _| are nearly pro-
some other means inducing an additional Hamiltonian evoportional to the identity operator. Accordingly, the pure mea-
lution of the qubit. We formally introduce the corresponding surement part has only a weak influence on the state. Equa-
HamiltoniansH .- according to tion (12) shows that the probabilitp, (or p_) to obtain the
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measurement result (or —) is then nearly independent of procedure has several advantages: We will obtain effects of
the initial state of the qubit. There is almost no state discrimi-explicit Gaussian structure for thHé series. This enables us
nation. Because of this low sensitivity, we are also dealingo work out the operator sum explicity. A comparison with

with an unsharp measuremenlote that in this limit the
parameterg, and 1-p, become, because of Eq¥) and

the results in the literature regarding continuous measure-
ments becomes more evident. And finally the discussion of

(12), approximately the mean probabilities to obtain the meathe selective case is simpler.

surement results- or —, respectively. The constrairii4)

We require

demands a weak feedback so that also this influence of the

operation element is weak.

It may be instructive to see how, for example, amplitude
damping is excluded by the conditions above. The two-leve

systems decay procegguantum jump is described by the
operation

Enn(p)=M . pML+M _pMT (15)

with
M. =p|1)(2], (16)
M_=[1)(1]+V1-p[2)(2|. 17

The polar decompositiofd) leads to the diagondM .| of
Eq. (9) with

U,=—iogy,, U_=],

M| =pl2)(2],

so thatp;=0, p,=p, Ap=p, andpy=p/2. Neither of the
weakness condition€l3) and (14) are fulfilled for quantum
jumps even for arbitrarily smaf. The single jump, when it

(18

M_|=M_, (19)

occurs, has a strong influence on the state of the qubit. Note
that U, is not close to 1. This is a Poisson process that

contradicts our conditions.

N>1. (22)

Y\/e relateN to the unsharpness of the measurement by

NAp
m<l (23
and demand in addition
At|H|| <A (29
and
At[[H .|| <. (25

This sharpens the conditioi$3) and(14). It means that the
influence of the undisturbed dynamics of the qubit and the
unitary feedback dynamics due to the measurements are both
small over the duratiodt of anN series. WithAt=Nr we
have obtained the above restrictions kbrr,H, andH.. .

The density operator resulting at the end of\ageries of
measurements with results;, ... ,my, each of which can
assume the values+" and “ —,” reads

p(t+At)=Mpy U--- Mmlup(t)uTM;l. . UTMTmN
(26)

with

We are mainly interested in the nonselective case where

information about the results or the corresponding states
of the environment is not available. The influence on the
qubit at timest,, may then be written in the operator-sum

representation as in EqL),

p—E&(p) MM/, (20)

=

whereby

MM, =1 (22)

k=

because of Eq(6). The quantum operatiorf is trace-
preserving.

IlI. N SERIES AND RELATED OPERATION

The time between consecutive measurements We as-

sume that the duratiofr of a measurement is much shorter
than . The undisturbed or “free” dynamics of the system

between the measurements is given by the Hamiltorlan
We bundleN consecutive measurements to nseriesof
durationAt=Nr as we have done i8] (cf. also[15]). This

[
U:zexp[—gHr]. (27
The influences of the system’s dynamics and the measure-
ment will in general not commute. The following relation is
derived in Appendix A:
Mp UM

U.---MpU=Mp M My, UN(1+Cy)

(28)

my-1 my-—1

with

IC,|<O(NApAt|[H]/%) + O(At|H[max{[[H . [[}/7?).
(29)

Also the operationdM . will not commute. Based on the
decompositior{4), we show in Appendix A that

Uy M|+ U, [ Mgy, UM
=0 Ut M N MY UM+ Cy)
(30
with
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[Col<O(NApAt|maxX]|H-|}/#%) where we have ignored terms of ordep and higher on the
) 5 right-hand side of Eq(37). The error thus committed in the
+O(At?H . [[[[H_[/72). (3)  Gaussian in Eq36) is of orderNA p3, which can be seen by

inserting E,. from Eg. (12) and N, /N from Eq. (38) and
N_ andN—N. are the total numbers of measurement results ; . . .
“+"and “ —"in the N series, respectively. Because of the expanding Gaussiaf86) in powers ofAp. A more detailed

assumption$23), (24), and(25), we may neglect; andC,. calculation can be found in Appendix C.

° . ’ A We introduce a new variabls to replace the readout
The calculation which takes into accoudt andC, is given N, /N of the N series according to

in Appendix C.

In our approximation, the influenc@6) of the N series N
becomes a function oN, only, independent of theﬁg) ﬁzipo—%ApS- (39)
different orderings of the 4" and “ —" results [cf. Eq.

(30)]. Therefore, the totaN series of duratiom\t including
the “free” dynamics given byH corresponds to a quantum
operation with operation elements

BecauseN is large, we may approximately regasds con-
tinuous. Its range is limited by

B [ 0<po—3Aps=<1. (39
M(N, N)=U"uN "N MmN, ,N)|exp{—%HAt] 0z
(32) In addition, we introduce the new quantity
with (Ap)?

(40)

’y::—,
N 4po(1—po)7
MO = I

which will turn out to be thedecoherence ratén lowest

_ /[ N [ N*/Z(l— JN-N.) 11 order. It contains apart frolp andp, also the time interval
N, |LP1 P1 7 between two measurements. These three parameters char-
NI NN acterize completely the influence of the sequence of pure
+p, T (1=p) (NTND2)(2]]. (33 measurementsy increases when the pure measurements be-

) ~come sharper and accordingly have a stronger influence on
The square root in front ensures the completeness relation @he qubit. A decreasing time differeneebetween two mea-

the effects surements results as well in an increaseyoThis reflects a
N Zeno-type effectvhich also happens for sequential weak
2 M(N+ ,N)TM(N+ N)=1. (34) measure_ments. _ _
NT=0 Installing y, we get from Eq(36) the ultimate expression

for the pure measurement part, valid fap/ 1-
The unitary feedback part caused by fkeseries measure- <7/At<p1 which follows fror% Eq.(23): P/IPo(1=Po)]

ments can be expressed as

U(N, Ny =uN eyt (0,—9)*

1
M= ———exp —
M 27I(yAt) p[ 7

The resulting effect€,=|M|? have Gaussian form. They
(35  show the characteristics which are known, for instance, from
n ) an unsharp position measurement as investigated, e.g., in
We now make use of the condition thdtis large, so that  [12] |nstead of a continuous observable, however, we are
[M(N, ,N)| of Eg.(33) may approximately be written in the dealing here with a discrete observable.

At] . (41

=exp{ - %[N+H++(N—N+)H_]T].

form of a Gaussian, With reference tos, the complete operation elements of
1 (NE,—N, )2 the N series including the feedback and the “free” evolution
IM(N. ,N)|= 3 expl’_ T ] are given by
V27NELE_ 4ANE. E_
(36) i
M=U¢Mdexp — -HAt, (42)
which contains the operatois.. of Eq. (12). Because we h

assumed that the single measurements are unsharp and there- . . .
fore Eq.(13) is fulfilled, the “spread” of the Gaussian be- where, using Eqs(35) and (38), we obtain forUg which

comes in lowest order a number, replacesJ (N, ,N) of Eq. (35
E.E_=[Po(1—po)—5(Ap)*]1+Ap(po—3)0, p{ i i ]
Us=exp — 7 HavAt— - AHSApAt;. 43
~po(1-Po), 37 : i AVALT g7 ATSAP 3
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We have thereby introduced tteveraged feedback Hamil- from the right and are denoted Wim(e.g.,a§p==p 0,), we
tonian Hay and the differencé& H of the feedback Hamilto- rewrite the integrand ob(p),
nians, respectively:

1
Havi=poH; +(1—po)H_, (44) D(P):m
AH:=(H_—H.,). (45)

°° i
xf exp{——(AHL—AHR)sApAt]
Mg of Eq. (42) replacesM (N, ,N) of Eq. (32) for the con- - 2h
tinuous variables.

The N-series operation elements above correspond to a Xexp[ — Z((cr'z‘—s)2+(crzR—s)2)At]dSp.
continuous set of effects with the Gaussian distribution func- 4
tion (51)
I05=<M;rMs>p- (46) It is important to take into account a further operator order-

o S ing for the integrand, namely thatH", AHR should remain
The completeness relation is satisfied if we extend the rang@ftmost and rightmost, respectively. The resulting integral is

of s to the whole real axis: Gaussian irs. It may be solved in a closed form,
Jmimgs=1 @0 D(p)=exp) —| 2ok (AW - AHRY?
8 8vyh?
The statistical weight of the unphysical valuessoiill be A
negligible, if condition(13) is satisfied. In fact, Eq.13) was 4 _p(0;+g§)(AHL_AHR) At} p. (52)
designed to exclude that the binomial distributions in Eg. 4h
(33) do peak atN, =0 or N, =N. This in turn leads to ) S ]
negligible weights for the unphysical values fand thus Now we expand it up to the leading linear termAn and
justifies the formal extension of the valuessibeyond their ~ restore the usual operator formalism according to the rules
physical range39). for L andR. This leads, for example, to
L_ R2 _ L_ Ry, L_ R __, L R
IV. NONSELECTIVE EVOLUTION (0;=07)°p=(0;=03)(0;—0;)p=(0;—03)[07.p]
In the nonselective case, the state change duringlan =[o;,[02.p]] (53
series can be expressed in the operator-sum representationggy | together to
t+At :fw MpM{ds. 48 Y (Ap)?
pUTAD= ] MspMs 49 D<p>—p=( ~ gloz[onpll= S IAH AR 1]

We are going to expand the right-hand si@é.s) up to Ap
linear terms inAt. ' . i —[AH,{O'Z,p}]> At. (54)
The unitary parts of the operatidvig which are generated 4h

by H, Hay, andAH lead to
While the second and the third term on the r.h.s. are propor-

Ap:=p(t+At)—p(t) tional to small quantitiegcf. Egs.(23)—(25)], the first con-
) tains the ratio of the two small quantitiagp? and 7 [cf. Eq.
| . .
= — _[H+Hay.p(1)JAt+D(p(t))—p(t). (49 (40)]. We assumey not to be small. We thus obtain as a final
ﬁ[ av:p(D] (p()=p(1). (49 result in lowest order for the state evolution during dwe

_ series the difference equation
The integral

i Y
o i Ap: _%[H—FHAVip]_g[O—Z![o—Zip]] At. (55)
D(p)= | expl — 5 AHsApAL|[M.Jo|M,

The first term on the r.h.s. represents the unitary dynamical
evolution related to the “free” Hamiltoniard and to the
averaged Hamiltonian Hay=poH +(1—pg)H_. The
quantities p, and 1-p, are approximately the state-
over the parts which depend swill first be calculated and independent probabilities that the single feedback causes a
then expanded. Hamiltonian development withl . or H_ , respectively(cf.
Introducing operators which act from the left and are de-Sec. I). Thus the overall influence of the feedback has in
noted withL (e.g.,a§p==azp) as well as operators which act lowest order an intuitive interpretation. The second term on

i
Xexp{ﬁAHsApAt}ds (50)
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surement where the difference equation can be applied is
given in[4]. There an experiment is suggested to measure
the oscillation of a photon between two coupled cavities. The
energy of Rydberg atoms which pass through one of the cavi-
ties is detected. The detections constitute a sequence of weak
measurements of the number of photons in the cavity which
is passed by the Rydberg atoms. If the unitary phartof the
backaction is not compensated by a special feedback mecha-
nism, effects like the modification of the unitary dynamics,
generalized friction, and decoherence induced by the positive
measurement paitM .| as well as the unitary part).
should be reflected in the outcome of the measurements.

V. CONTINUUM LIMIT

FIG. 1. Translation of the Bloch sphere in thalirection. The There are elaborated schemes for the treatment of perma-
translation is generated by generalized frictisee text which is  nently open quantum systems by continuous-time descrip-
connected to the feedback of the single measurements. In order tipns. Master equations are an example. One may profit from
clearly demonstrate the effect, we have chosen the following pathese schemes as approximations in the sequentially open
rameters. Feedbackl . =exp{+ioym/40}, pure measurement part: case too, if a physically reasonable continuum limit 0 is
Ap=—2/25 andp,= 3. TheN series which leads to the translation carried out. The corresponding demand for such a limit is
containsN=10 measurements. We assumeer 1. Along with the  that the physical characteristics of the sequential situation as
translation, there comes a contraction of the Bloch sphere ix the they are found in the lowest-order difference equatisb)
and z directions which reflects the dephasing caused by the feedh;ye to be taken over. Evidently we will lose all physical
back and an additional contraction in tkendy directions due to  otfacts which only show up in higher order as, for example,
the unsharpr, measurement. In order to recognize translation ande feedhack-induced decoherence and generalized friction.
contractions, consider the different scalings on the axes. This limits the usefulness of the continuum limit in our case.
of On the other hand, the continuum limit connects sequen-
tial to continuous measurements. While this connection has
een established for measurements of systems with infinite-
imensional Hilbert space without feedbafkl| or with

Already in the next order of the difference equation anVe"y special feedbackl2], in the case of a qubit the con-

abundant physical structure appears. This is shown in Apperg?sl‘étrgsgamt for our broad class o). has not yet been
dix C. To demonstrate what type of effects are typically to be ) L
x " yb ypicaly We proceed as follows: The quantiby is the mean prob-

expected, we pick out the two higher-order terms which we .
have already obtained in E¢54). The second term on the ability to obtain the measurement resu}t. .We leave the
r.h.s. represents additional decoherence in the basis in whi lue ofp, unchanged in the continuum limit. In order_no"[ to
AH is diagonal. This decoherence goes back to the fact th&12N9e the decoherence behavior in the continuum limit, we
different feedback&) , andU _ are acting in a random pro- next demand for the decoherence rate

the r.h.s. reflects a pure decoherence in the eigenbasis
M. |, cf. Eq.(9). Since it also appears fdJ. =1, this de-

coherence is induced only by the pure measurement pa
M| of the single operations.

cess on the qubit and thus cause a dephasing. (Ap)?
The third term on the r.h.s. of E¢54) is induced by the "m—p: y=const. (56)
pure measurement pajM.| and by feedbacks withJ —04Po(1—Po)7

#U_. We refer to its action as “generalized friction.” It is

of similar form as a friction-inducing term discovered in The smaller isAp, the weaker is the single measurement.

quantum Brownian motior[9]. Generalized friction can With 7—0 and the strengtiAp of the single measurement

comprise energy dissipation as well as energy absorption, buthchanged, a Zeno effect would be obtained. This is pre-

in general it shifts the expectation value of all observabley/ented by appropriately diminishing the strengtp of the

which do not commute withiM .| or with AH. This corre- measurement according to H§6). This demand can also be

sponds to a translation of the Bloch sphere perpendicular tépund in the literaturg11].

the z direction and the direction associated witk, cf. Fig. If in a given sequential physical situation thi,y is non-

1. Equation(49) together with Eq(54) or the lowest-order Vvanishing, then the total Hamiltonian dynamics is, according

approximation(55) describe the state change due tohn to Eq.(55), governed by the Hamiltoniad +Hy . We want

series. It can be employed to a sequential measurement ¢ keep this dynamics in the continuum limit on physical

dividing the sequence of elementary measurements into @rounds and demand, therefore, thdt, remains un-

succession oN series. Since the r.h.s. of EG5) is propor-  changed. Performing the limit—0 as specified above re-

tional to At, the given approximation is not sensitive to the sults in the master equation

division as long ad fulfills the conditions stated above. i
This discrete-time analysis is the most natural approach to - 4

sequential measurements. An example of a sequential mea- P= ﬁ[H+HAV’p] 8[02’[02”)]]' (57

022310-7
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which describes approximately the discontinuous situation imhe continuous limit(56) of s exists. As follows from Eq.
the noisy channel characterized above. In the special case (89), it is centered around a state-dependent pay} and
[Hav,H]=0, the modification of the Hamiltonian b,  superposed by the white-noise of constant intensity 1/
reflects an effective shift of the energy levels.

VII. CONCLUSIONS

VI SELECTIVE EVOLUTION We have derived in an approximation scheme the differ-

In Sec. I, we calculated the Gaussian fotai) of effec-  ence equation for the evolution of a qubit under the follow-
tive operation element@2) valid for anN series. In Sec. V, ing circumstances: A continuously acting “free” unitary dy-
we derived the master equatiéiv) valid exactly in the con- namics is periodically interrupted by a disturbance of
tinuous limit (56). As a matter of fact, the master equation negligible duration which acts weakly on the qubit. It may
describes the nonselective evolution. Selective evolution iSor example be caused by the scattering of a photon. The
on the contrary, conditioned on the random measurement réespective single influence can be described in terms of gen-
sults (readout and described by stochastic equations. In oureralized measurements as a weak pure measurement with an
case, the readout is It is the continuously measured un- additional unitary feedback. Turning to the sequence of in-
sharp value of the observabie obtained in theN series in ~ fluences, we have shown that the underlying statistics is ap-
the limit (56). proximately Gaussian. In lowest order, the nonselective evo-

The theory of the selective evolution has been availabldution is governedin addition to the “free” Hamiltonian by
since |ong ag(i16] From the Gaussian operation e|ementsb0th an averaged Hamiltonian originating from the feedback
(41) in the limit At—O0, it has been proved that the selective @and decoherence caused by the pure measurement part only.
evolution of the quantum state, conditioned on the measurethis decoherence depends also on the shortness of the time
ment resu“& satisfies the conditional master equation: interval between the influences. Two higher-order terms are

analyzed. One term shows that the randomly acting feed-
i y backs cause decoherence as well, although with respect to a
p=——[H+Hay,pl— =[o,.[0,.p]] different basis. The second term represents generalized fric-
h 8 tion. The master equation, which is obtained in an appropri-
Sy ate continuum limit, reflects only the influences of lowest
+W—y{0'z—<az>,p}. (58  order. It establishes the connection between sequential and
2 continuous measurements of a qubit with unitary feedback. It
is worth mentioning that in our discrete quantum systgm
The functionw(t) is the standard white-noise and the equa-bit), contrary to continuous ond4.0], feedback will only
tion should be understood in the Ito-stochastic sense. Thgenerate a new Hamiltonian terkh,, and no friction will
state evolution couples to the readauty survive in the continuum limit. Master equations without a
modified Hamiltonian describe a very restricted class of con-
tinuous measurements. In order to complete the study, the

s=(o,)+ —W. (59)  selective evolution is discussed on the basis of the Gaussian
\/; structure obtained for the effective operation.
Obviously the stochastic mean of the conditional master ACKNOWLEDGMENTS

equation(58) reduces to the unconditional master equation . )

(57), as it should. Of course E@58) applies to pure initial This work has been supported by the Optik-Zentrum Kon-
states as well. Then the pure state propery:p is pre- stanz. L.D. also acknowledges the support of the Hungarian
served. The derivation may be completely identical to that ifO TKA Grant No. 32640.

Ref.[16]. In the continuum limit(56) the value ofAp must

vanish and the feedbadl{; is thus deterministic, given by APPENDIX A

H v alone.

A¥he above equations of selective evolution are exact in " the Appendixes we sketch the calculation of the change
the following sense. Elementary operations are being applie@f Stat€ in theznonselecthe regime including all terms up to
with frequency growing to infinity and strength decreasing torder O(AtAp?) and O(At®), whereAt occurs in products
zero as given by Eq56), i.e., at fixedy. We read out the With eitherH/A,H.. /%, or y. _
rateN, /N averaged over timAt which should go to zero in We start with the exact operation element for an N
such a way thaN=At/7 still goes to infinity. The elemen- S€ries with unitary developmebltbetween consecutive mea-
tary time 7 goes “faster” to zero than the timat to calcu- ~ Surements,
late the rateN, /N. The calculated current ratd, /N is

related tos by Eq. (39): Qmy=Umy - -Um M |- M [UN+ Ry + Ry,
(A1)
po_ N+ /N . . .
S=— (60)  whereR; andR, are the terms which arise from commuting
VyYPo(l—pg) 7 out the evolution operatortl and the feedback operators
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U. , respectively, cf. Eq9428) and(30). The relation ofR; andR, to C; andC, and an estimation of the order of magnitude
of C, and C, is described below. Since the commutatéts :=[U,M ] occurring inR, are of orderO(Apr{H|/%)

+ O(7?|H||max{||H-|[}/#?), we can neglect terms containing products of two such commutators,

R1=MmNKmel--~MmUN‘1+2MmNMmN71KmN72--~MmlUN‘1+---+(N—l)MmN-~~Km1UN‘1
IApT . B
——1[H, Uz]UmN c = mN |Mml|UN !
2 N—-1
-— 2 N[H,Hm, JUmy - Um M [ M [ Mg [UNT, (A2)

wherea, :=—4p, anda_:=4\1—p,. Please note that in E¢A2) behind the sum sign the products|M|’s andU’s are
meant to not contairMmen and Umen, except if explicitly mentioned. In the last two lines we have commuted out the
feedbackU .. . The resulting error is of higher order and can be neglected.

Also in R, we only take into account the terms containing one commutb(ﬁgr:[Mmk,Uml], which is of order

O(Ap7max]|H.}/#),

RZZUmN' : 'Um2K2,1|MmN|' : '|Mm3||Mm1|UN+ T +(UmN' : 'UmZKN,1+UmN' . 'Um3Um1KN,2+ e

+Um U, - UnKnn-1)IM M, [UN

My-2 mN—1|”
. N k-1
iApr _
- E 2 _[UzaHm|]UmN"'Um| 1Um|71"'Um1|MmN|"'|Mmk+1l|Mmk,1|'"|Mm1|UN .
ho (=2 =1 A, *

k—

, 2 [ Hin U+ U

=

7_2

M =

Uml|MmN|"'|Mml|UNil- (A3)

mk+1Umk—1' ’ 'Um|+1Um|—1' o

SN

k

Let us briefly motivate the estimation of the order of magnitud€ plandC, given in Eqgs.(29) and(31). First we observe
that Ry=Mp, ---Mp, UNC, and R,=U"*U" "M |N+|M _[N"N+UNC,. A moment's thought shows that the order of
magnitude of the summands containeddnis equal to the order of the commutatdfs, andKy, in R;. Since there are

approximatelyN? such summands i6; , the norm ofC; can be estimated to be less than or equalidimes the order of the
commutators irR; which leads to the claim&@9) and (31).

APPENDIX B

The state change due to &hseries in the nonselective regime reads

pt+AD=2 QmypQfmy= 2 Upo-Un My [+ M [UADpUT(AD M [ [Mpy JUF - UL+ Ry +R,
my---my
O(R?) +O(R3) + O(R;Ry) (B1)

with

Ri= 2 {RpUTADMy [ [Mp [UT - UL +H.c}, i=12. (B2)

my---my

In order to carry out the summation in E@®1), its terms can be expressed by means of binomial distributions. The latter can
be approximated by integrals over Gaussians. For the first term itBEythis recipe has already been demonstrated in Secs.

Il and IV. R, can be written in binomial form by observing that
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N—-1
2 Z nmefnUmN' ’ 'Um1|MmN|' : '|MmN,n+1||MmN,n,l|' : '|Mm1|P|Mm1|' : '|MmN|UI11' ’ 'ULN

my---my n=1

N—-1

(N=1)(N—-2) N—1 N
= | 2 baUiIMRUDR| X [T T Julrul
m N, =0 +
LY L VI e [ VIR L Y B L (VI L (VA Ll S (B3)

where we have again used the notation that operators with uppéreestR act from the left and from the right, respectively.
A similar formula is obtained when instead |df men| in the first IineUmMn+l is missing. Then onI)Uh1 has to be replaced

bylM mlt
R, can be simplified employing

N —
mzm kz_: 2 my, mI : Umk+1umk71"'um1|MmN|"'|Mm|+1||Mm|,l|'"|Mm1|P|Mm1|"'|MmN|U;11"'UTmN
Ty k=2 1=

_ W( S CoUSIMAlSUDRIM G RUDRIM AR

2

m,m=+,—
& (N-2
X >, ( N )UN+UN NeT2IM L N M NN 20 M [N M NN 2 N g T NN -2, (B4)
N,=0 +

Formulas(B3) and (B4) neglect commutators between the operators they contain. In our case, corrections containing these
commutators would be of higher order and therefore too small.

Applying formulas(B3), (B4) to R, ,R,, respectively, and expressiig, /N in terms of variables according to Eq(38), we
obtain

_ —i(N-3)ApAt U (N—3)7At _
Ri=—————{[H,0]2 —"D(p)Mn|Uf+H.c.t - ———— > {[H,Hp]Mu[D(p)|M Ul +H.c},
(B5)
whereD(p)=J" . M¢pM!ds with Mg as given by Eq(42) with At replaced by K—1)7. R, now reads
~ i(N=3)ApAt « ([oy.Hrl -
Ro=- o5 2 [;—m’“umlMmlD(p)leIUIHIMmIUMH-c-
~(N—3)rAt
———— 2 A[Hn HalMalIMaD(p) Mgl UM UL+ H.c). (B6)
2h? m=m

In R,, when insertingVl from Eq. (42) in D(p), At has to be replaced byN(—2)7. The second sum in E4B6) vanishes
since the summand witin= +,m= — and the summand witm= —,m=+ add to zero. Inserting the lowest orderd(p),
namelyD(p)~p, it is easy to find the contributions &; andR, to the change of state in the last two lines of Eg6).

APPENDIX C

Having calculatedR, and R,, we want to sketch how to process the main contribution to the state change, which is
represented by the first term in E®1). As mentioned above, this part of the operation can be written by means of a binomial
distribution and can then be expressed with operation elements whose mgdNs ,N)| is the square root of Gaussians,
cf. Eq. (36). In contrast to Secs. lll and IV, we now take into account the giumber denominators of the modulus
[M(N, ,N)| in Eq. (36). Expressing the operation elements in terms of varialjté. Eq. (38)], we obtain for their modulus

|Ms|:

A(UZ_S)Z ]
— Aty (C1

1 4
—————exp — vy
V2ml(yAt)
with
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. (Ap)?

Y IE.E 7 €2

Expanding the unitary part of the operation up to orfief leads to the state chan@githout the contribution froniR; andR,)

iAt At? ) At?
p(t+At)=D(p)— — [H+HAV1D(p)]__{(H+HAV) vP}"‘_(H"'HAv)P(H"‘HAv) (Cy

with

; oL R 4/7 LR
* I Y Y Y
— - L_ R _ L_ )2 _ R_ «\2
D(p) f_wexp‘%(AH AH )sApAt]exp{ 7 (0;—9) At]exp{ 7 (0;—9) At}d\/sﬁp. (C4
We note that in Eq(C3), H is meant to act in operator products directly @nThis is due to the order of operators in the
operation elementxf. Eq. (43)]. The integralD(p) has a closed-form solution which can be expanded in powefs @ind
Ap. y without a hat is given by Eq40),

A 1/2) p?
D(p)=(1—At[§<a§—a§>2 2(—p(p°~ ) 1= VpoPol PoPo+3—27 1)) | + (AHL AHR)?
PoPo
+|—(AH'- AHR)(UL+UR)]+MZ (0% —oR)2+0(ApAt2)+0(Ap2At2)+0(At3)) (C5)

Collecting all terms up to ordeD(At?) and O(AtAp?) we obtain the following difference equation:

1__(Ap(po 1/2))
2 PoPo

2

Ap
S AH,[AH p]]

(1= \poPol PoPo+3—2~ 1/4])][%,[0‘247]]

AP:M{ —[H+Hav.p]—

! 1
_ IS_;([O—Z’[UZ’[H1p]]]+[HAVv[0'za[U'z,P]]])— ﬁ{(H—FHAV)ZaP}

—hp[AH,{O'Z,p}]] +At?

2

1 0% iAt?y 3BiAtAp?
+ﬁ(H_FHAV)p(HJ'—HAV)_F3_2[0-21[0.Z!p]] + +

8h 32h poBo

.
[((HordporHe) - 2 TH Hale)

+{[o,,poH+ +PoH_lpo,+ H.c.}) O(NApPAt?)+ O(ApAt?) +O(Ap2At?) + O(At3) (C6)

with Pg:=1—p,. In the order terma\t occurs in products with one of the thretéi%,H . /%, or y.
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