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Evolution of a qubit under the influence of a succession of weak measurements
with unitary feedback
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We investigate the evolution of a single qubit subject to a continuous unitary ‘‘free’’ dynamics and an
additional interrupting influence which occurs periodically. One may imagine a dynamically evolving closed
quantum system which becomes open at certain times. The interrupting influence is represented by an opera-
tion, which is assumed to equivalently describe a nonselective weak measurement. It may be decomposed into
the action of a positive operator, which in the case of a measurement represents the pure measurement part,
followed by a unitary backaction depending on the result of the measurement~feedback!. Equations of motion
for the state evolution are derived in the form of difference equations. In the lowest order, the stochastic
feedbacks cause a modification of the ‘‘free’’ Hamiltonian by an additional appropriately averaged Hamil-
tonian. The positive operator specifies a decoherence rate and results in a decoherence term. Two higher-order
terms are discussed. One shows decoherence induced by the stochastic feedbacks and the other represents
generalized friction. The selective evolution is investigated. In order to bridge the gap between sequential and
continuous measurements, the continuum limit to a master equation is performed. Additional correcting higher-
order terms are worked out in the Appendixes.

DOI: 10.1103/PhysRevA.66.022310 PACS number~s!: 03.67.2a, 03.65.Ta, 03.65.Yz
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I. INTRODUCTION

Experimental and theoretical studies of the dynamics
single two-level systems have become very important in
context of quantum computation and quantum informati
In this paper, we investigate the evolution of a single qu
subject to two influences. On the one hand, there is a c
tinuously acting unitary dynamics~undisturbed or ‘‘free’’ dy-
namics! with operatorU. On the other hand, the qubit i
affected by an interrupting additional influence, which
nonunitary and acts periodically at timestn5t01nt, n
51,2 . . . . Thedurationdt of this influence is assumed to b
much shorter thant, so that it can be neglected. One m
imagine a dynamically evolving closed quantum syst
which becomes open at timestn . The correspondingsingle
influenceis represented by anoperationE which transforms
the state of the qubit given by its reduced density operator
according to

r→E~r!5 (
k56

MkrMk
† ~1!

with operation elements Mk , which are sometimes als
called Kraus operators.E is assumed to be trace preservin
The representation~1! of the single operation is called th
operator-sum representationor Kraus representation.

Such a periodically occurring, nearly instantaneo
change can be caused by a recurring interaction with a
ond system provided that this system does not ‘‘rememb
the influence it may have experienced from the qubit
former times~Markov process!. Typically the second system
could be an environment or it could consist of a number
systems of the same kind which interact only once with
qubit, as is the case in a sequence of scattering process
1050-2947/2002/66~2!/022310~11!/$20.00 66 0223
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Let us determine the single influence further. According
Eq. ~1!, we are not dealing with the most general form
such an influence on a qubit, which would correspond to
operation with four operation elements, but we restrict o
selves to interactions which may be represented by only
elements,M 1 andM 2 . Pairs of operation elements can d
scribe such important operations as, for example, amplit
damping and phase damping, bit flips, and phase flips
well as projection measurements and weak measurem
The concept of a weak measurement will be explained
low. We will restrict ourselves to an operation which
equivalent, as far as the mapE is concerned, to a nonselec
tive weak measurement. For simplicity, we will speak abo
the operation and its elements in terms of generalized m
surements. Please note that this may still comprise m
physical processes which at first glance do not look like
weak measurement.

To specify the operation elements and to reveal the dif
ent physical effects which are caused by the operationE, it is
useful to decomposeM 6 . According to the polar decompo
sition theorem, each operation elementM 6 may be written
as a product of a unitary operator and a positive operato

M 65U6uM 6u. ~2!

We are dealing with a class of generalized measurem
with two outcomes1 and2. The unitary partU6 extracts
no information from the qubit.U6 can reflect the coupling o
the system with the meter~backaction of the meter! or can be
due to an external field which is applied depending on
outcome of the measurement~thusU1ÞU2). It then repre-
sents aninstantaneous feedback@1,2#. We will allow both
possibilities and speak uniformly of feedback. The caseU1

5U2 indicates an additional unitary evolution independe
of the measurement outcome.U651 implies the minimal
©2002 The American Physical Society10-1



-
s
on
re
e

f

t
b
la

ue
ld
flu

te
rm
-

nit
o
ic
or

,
ts

s
te

ol
b
u
f

th
ci
rt
tu
b

ts
re
ta
ly
t r
ng
n

lu
t

l

-
o

iz
er
a

of

tio

vels
ur

ter
-
.
ed-
rnal
the

era-
ro-
ing

f a
has

or-
ddi-
n.
ich
res
e
ose
e of

-
an
u-

ssian-
ack,
and

ject

sian

d the
we
on
t.
eak
sses

is-

ea-
se-

s we
tate

-

re-
ster
ce
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disturbance. The set$uM 2u2,uM 1u2% represents a positive
operator-valued measure~POVM!. The demand of weaknes
of the single influence is introduced below by conditions
U6 and uM 6u. A sequence of such generalized measu
ments are of practical importance because they can be
ployed to explore the original dynamics of the system@3,4#
or, not less important, to control its dynamics by means o
specific feedback@1,5#.

In the nonselective case of Eq.~1!, when the measuremen
results6 are not read off, our total physical setup defined
U, t, U6 , and M 6 may also be regarded as a particu
noisy channel. Below, the unitary operatorsU6 will not be
neglected because they form an important part of the seq
tial operations in realistic situations. In general, it wou
need a nontrivial feedback procedure to eliminate their in
ence; compare@3# for an example.

It is our goal to derive equations of motions for the sta
of the system subject to the periodical influence in the fo
of difference equations. Difference equations take into ac
count the discrete nature of the influence due to the fi
time t between its occurrences and grant therefore a m
exact description. In different orders of weakness, a r
structure of physical influences appears which furtherm
cannot be seen in the continuum limit.

Although it is only a byproduct and not our central aim
we also look at the limitt→0 of continuous measuremen
and compute the corresponding master equation~nonselec-
tive description!. The master equation can be understood a
means to compute approximately the dynamics of a sys
which is subject to a sequence of operations of the type~1!.
Since there are a lot more mathematical methods to s
differential equations than difference equations, it may
useful in some cases to approximate sequential meas
ments by continuous measurements as far as the study o
dominant physical influence is concerned.

To point out what is new in our approach, we describe
related literature in some detail: Master equations for spe
cases of measurements with a nonvanishing unitary pa
the operation elements have been considered in the litera
A master equation for general feedback was derived
Wiseman@6#. However, @6# does not comprise our resul
since it deals with a special kind of continuous measu
ments. They have Poissonian statistics and allow finite-s
changes during infinitesimal time intervals. More precise
this means that only very seldom a certain measuremen
sult occurs which is then connected to a finite-state cha
during an infinitesimal time while for other measureme
results the state changes only infinitesimally. We are exc
ing Poissonian statistics and require the state change in
continuum limit to be infinitesimal during infinitesima
times. Thus Wiseman’s and our studies do not overlap.

In a later paper, Wiseman@2# employed the operation for
malism to analyze a homodyne measurement in quantum
tics to apply instantaneous feedback in order to minim
disturbance, i.e., compensate the unitary part of the op
tion. Korotkov investigated a measurement with nonminim
disturbance in the context of continuous measurement
qubit by means of a single electron transistor@7,8#. He noted
that this nonminimal disturbance acts in the master equa
02231
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like a change of the distance between the two energy le
of the qubit. We find this effect as a special case of o
studies (@U6 ,H#50), cf. Eq. ~57! and the text below. Ko-
rotkov also derives a modification of the stochastic mas
equation~selective regime! due to the nonminimal distur
bance@7#, which is averaged out in the nonselective case

Many examples of the application of instantaneous fe
back in continuous measurements by means of exte
changes of the Hamiltonian of the system can be found in
literature of quantum control~e.g.,@1,5#!. They correspond to
special choices of the unitary part of the measurement op
tion and obey the equations of motions derived here, p
vided the measurements do not inflict finite changes dur
infinitesimal times.

In the context of quantum dissipation, the influence o
heat bath on an infinite-dimensional quantum system
been investigated by Caldeira and Leggett@9#. The coupling
was such that in terms of the operation formalism, the c
responding operation of the system had a unitary part a
tional to the one stemming from its free original evolutio
They derived a master equation for high temperatures wh
was later modified to also describe medium temperatu
@10#. Although we are looking at a qubit, we find in th
difference equation among others similar terms such as th
which represent decoherence and dissipation, but only on
them survives in the continuum limit.

Barchielli et al. @11# studied the continuum limit of se
quential measurements without unitary feedback in
infinite-dimensional Hilbert space. In the context of contin
ous position measurements, Caves and Milburn@12# pre-
sented a sequential measurement which possesses Gau
shaped effects. They also employed a special feedb
which served to compensate jumps in the mean position
mean momentum.

As compared to these papers, we study a quantum ob
in a two-dimensional Hilbert space~qubit! which is influ-
enced in a genuinely sequential manner. We discuss Gaus
statistics and we include a general feedback (U6Þ1). Our
focus on the discrete nature of the sequential process an
inclusion of general feedback are the points in which
differ from the literature. The related difference equati
shows physical effects which are lost in a continuum limi

As mentioned above, our results can be applied to w
influences. Examples are sequences of scattering proce
~cf. @13# the experimental setup of Brune, Harocheet al. @14#
cf. @3#!, and similar experiments which are usually not d
cussed in terms of generalized measurements.

We proceed as follows. We first consider the single m
surements of the sequence. Then we bundle the whole
quence in subsequences ofN measurements~‘‘ N series’’!.
The resulting operation has a Gaussian shape. Afterward
integrate over all outcomes to obtain the average s
change due to anN series~nonselective regime!. We then
discuss how to find the right continuum limit which con
serves the physical characteristics of theN series and derive
the master equation. Finally, we deal with the selective
gime of measurement and write down the stochastic ma
equation. The Appendixes serve to derive the differen
0-2
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EVOLUTION OF A QUBIT UNDER THE INFLUENCE OF . . . PHYSICAL REVIEW A 66, 022310 ~2002!
equation for the nonselective regime up to second orde
the occurring small parameters.

II. THE SINGLE QUANTUM OPERATION

An example for a physical realization of the operationE
from Eq. ~1! is given by a qubit which interacts at timestn
unitarily for a short durationdt with an environment and
thus becomes an open system. The resulting change o
reduced density operator may formally be expressed with
help of operation elementsM 6 as in Eq.~1!. Just the same
change of the reduced density operator results if~i! a projec-
tion measurement on the environment is performed with o
come1 or 2 transferring the qubit to the states

r→r65
M 6rM 6

†

tr@M 6rM 6
† #

~3!

respectively and~ii ! the outcome is not read off~nonselective
case!. In the generic case, Eq.~3! describes thereby a gene
alized measurement of the qubit. For simplicity reasons
terminology we are going to use will refer to measuremen
but the results apply equally to any operation with opera
sum representation~1! if the same specifications ofM 6 are
made. This is independent of how the operation is exp
mentally realized.

Because of the polar decomposition theorem, the op
tion elementsM 6 may be written as products of a unita
operator and a positive operator

M 65U6uM 6u. ~4!

We introduce the POVMeffects

E65uM 6u2, ~5!

which obey the completeness relation

E11E251. ~6!

The probability of the outcome1 or 2 is given by

p65^E6&r ~7!

with p11p251.
Equation~4! represents a decomposition of the operat

into a pure measurement partdescribed byuM 6u, followed
by a unitary feedbackgiven byU6 depending on the resu
1 or 2. These denominations are justified for the followin
reasons: All the information which can be read off from t
meter is related touM 6u, which therefore represents the u
avoidable minimal disturbance. The unitary operators le
the von Neumann entropy unchanged and therefore do
allow to export information to an observer. Because th
depend on the result1 or 2, they may be interpreted as
specific feedback caused by the measuring apparatus o
some other means inducing an additional Hamiltonian e
lution of the qubit. We formally introduce the correspondi
HamiltoniansH6 according to
02231
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U65:expS 2
i

\
H6t D . ~8!

This unitary feedback represents an important part of
quantum operation and appears naturally in the generic s
ation.

According to Eqs.~5! and ~6!, uM 1u2 and uM 2u2 com-
mute. Therefore, we can find orthonormal basis vectorsu1&
and u2& of the qubit Hilbert space with respect to whic
uM 6u2 are diagonal. We introduce the eigenvaluesp1 andp2
of uM 1u2, which are positive and because of Eq.~6! obey
0<p1,2<1. Without restriction of generality, we choosep2
>p1. Reading off the eigenvalues ofuM 2u2 from Eq.~6! and
taking the square root, we find

uM 1uªAp1 u1&^1u1Ap2 u2&^2u, ~9!

uM 2uªA12p1 u1&^1u1A12p2 u2&^2u.

p1 and p2 are the probabilities to measure the outcome1
when the system is, respectively, in the stateu1& or u2& im-
mediately before the measurement.

The elementsuM 1u and uM 2u commute. We will charac-
terize the operation later on by the parameters

p0ª
1

2
~p11p2!, Dpªp22p1, ~10!

with 0<Dp<1. Introducing

szªu1&^1u2u2&^2u, ~11!

the effectsE6 of Eq. ~5! are rewritten in the form

E15p012 1
2 Dpsz , E25~12p0!11 1

2 Dpsz . ~12!

In the limiting caseDp51, the pure part of the measure
ment ~9! results in a projection onu1& or u2& depending on
the measurement outcome1 or 2. We call this asharp
measurementof an observable with eigenvectorsu1& andu2&,
for examplesz . Note that also for a sharp measurement
result of the quantum operation~1! will in general not be the
state u1& or u2& because of the remaining influence of th
unitary feedback.

Up to now no approximation has been made. We ha
only rewritten the most general operation with two operat
elements. We now specify a weak single measuremen
having a weak influence on the state by demanding for
pure measurement part

Dp

2 min$p0 ,12p0%
!1 ~13!

and for the feedback

U6'1. ~14!

Because of Eq.~13!, the uM 1u and uM 2u are nearly pro-
portional to the identity operator. Accordingly, the pure me
surement part has only a weak influence on the state. E
tion ~12! shows that the probabilityp1 ~or p2) to obtain the
0-3
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measurement result1 ~or 2) is then nearly independent o
the initial state of the qubit. There is almost no state discri
nation. Because of this low sensitivity, we are also deal
with an unsharp measurement. Note that in this limit the
parametersp0 and 12p0 become, because of Eqs.~7! and
~12!, approximately the mean probabilities to obtain the m
surement results1 or 2, respectively. The constraint~14!
demands a weak feedback so that also this influence of
operation element is weak.

It may be instructive to see how, for example, amplitu
damping is excluded by the conditions above. The two-le
systems decay process~quantum jump! is described by the
operation

EAD~r!5M̃ 1rM̃ 1
† 1M̃ 2rM̃ 2

† ~15!

with

M̃ 15Ap u1&^2u, ~16!

M̃ 25u1&^1u1A12p u2&^2u. ~17!

The polar decomposition~4! leads to the diagonaluM 6u of
Eq. ~9! with

Ũ152 isx , Ũ251, ~18!

uM̃ 1u5Apu2&^2u, uM̃ 2u5M̃ 2 , ~19!

so thatp150, p25p, Dp5p, and p05p/2. Neither of the
weakness conditions~13! and ~14! are fulfilled for quantum
jumps even for arbitrarily smallp. The single jump, when it
occurs, has a strong influence on the state of the qubit. N
that U1 is not close to 1. This is a Poisson process t
contradicts our conditions.

We are mainly interested in the nonselective case wh
information about the results6 or the corresponding state
of the environment is not available. The influence on
qubit at timestn may then be written in the operator-su
representation as in Eq.~1!,

r→E~r!5 (
k56

MkrMk
† , ~20!

whereby

(
k56

Mk
†Mk51 ~21!

because of Eq.~6!. The quantum operationE is trace-
preserving.

III. N SERIES AND RELATED OPERATION

The time between consecutive measurements ist. We as-
sume that the durationdt of a measurement is much short
than t. The undisturbed or ‘‘free’’ dynamics of the syste
between the measurements is given by the HamiltonianH.
We bundleN consecutive measurements to anN seriesof
durationDt5Nt as we have done in@3# ~cf. also@15#!. This
02231
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procedure has several advantages: We will obtain effect
explicit Gaussian structure for theN series. This enables u
to work out the operator sum explicity. A comparison wi
the results in the literature regarding continuous meas
ments becomes more evident. And finally the discussion
the selective case is simpler.

We require

N@1. ~22!

We relateN to the unsharpness of the measurement by

NDp

2 min$p0 ,12p0%
!1 ~23!

and demand in addition

DtiHi!\ ~24!

and

DtiH6i!\. ~25!

This sharpens the conditions~13! and~14!. It means that the
influence of the undisturbed dynamics of the qubit and
unitary feedback dynamics due to the measurements are
small over the durationDt of an N series. WithDt5Nt we
have obtained the above restrictions forN,t,H, andH6 .

The density operator resulting at the end of anN series of
measurements with resultsm1 , . . . ,mN , each of which can
assume the values ‘‘1 ’’ and ‘‘ 2,’’ reads

r~ t1Dt !5MmN
U•••Mm1

Ur~ t !U†Mm1

†
•••U†MmN

†

~26!

with

UªexpH 2
i

\
HtJ . ~27!

The influences of the system’s dynamics and the meas
ment will in general not commute. The following relation
derived in Appendix A:

MmN
UMmN21

U•••Mm1
U5MmN

MmN21
•••Mm1

UN~11C1!

~28!

with

iC1i<O~NDpDtiHi /\!1O~Dt2iHimax$iH6i%/\2!.

~29!

Also the operationsM 6 will not commute. Based on the
decomposition~4!, we show in Appendix A that

UmN
uMmN

u•••Um1
uMm1

uUN

5U
1

N1U
2

N2N1uM 1uN1uM 2uN2N1UN~11C2!

~30!

with
0-4
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iC2i<O~NDpDtimax$iH6i%/\!

1O~Dt2iH1iiH2i /\2!. ~31!

N1 andN2N1 are the total numbers of measurement res
‘‘ 1 ’’ and ‘‘ 2 ’’ in the N series, respectively. Because of t
assumptions~23!, ~24!, and~25!, we may neglectC1 andC2.
The calculation which takes into accountC1 andC2 is given
in Appendix C.

In our approximation, the influence~26! of the N series
becomes a function ofN1 only, independent of the (N1

N )

different orderings of the ‘‘1 ’’ and ‘‘ 2 ’’ results @cf. Eq.
~30!#. Therefore, the totalN series of durationDt including
the ‘‘free’’ dynamics given byH corresponds to a quantum
operation with operation elements

M ~N1 ,N!5U
1

N1U
2

N2N1uM ~N1 ,N!uexpH 2
i

\
HDtJ

~32!

with

uM ~N1 ,N!u5AS N
N1

D uM 1uN1uM 2uN2N1

5AS N
N1

D @p1
N1/2

~12p1!(N2N1)/2u1&^1u

1p2
N1/2

~12p2!(N2N1)/2u2&^2u#. ~33!

The square root in front ensures the completeness relatio
the effects

(
N150

N

M ~N1 ,N!†M ~N1 ,N!51. ~34!

The unitary feedback part caused by theN-series measure
ments can be expressed as

U~N1 ,N!ªU
1

N1U
2

N2N1

5expH 2
i

\
@N1H11~N2N1!H2#tJ .

~35!

We now make use of the condition thatN is large, so that
uM (N1 ,N)u of Eq. ~33! may approximately be written in th
form of a Gaussian,

uM ~N1 ,N!u5
1

A4 2pNE1E2

expH 2
~NE12N1!2

4NE1E2
J ,

~36!

which contains the operatorsE6 of Eq. ~12!. Because we
assumed that the single measurements are unsharp and
fore Eq. ~13! is fulfilled, the ‘‘spread’’ of the Gaussian be
comes in lowest order ac number,

E1E25@p0~12p0!2 1
4 ~Dp!2#11Dp~p02 1

2 !sz

5p0~12p0!, ~37!
02231
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where we have ignored terms of orderDp and higher on the
right-hand side of Eq.~37!. The error thus committed in the
Gaussian in Eq.~36! is of orderNDp3, which can be seen by
inserting E1 from Eq. ~12! and N1 /N from Eq. ~38! and
expanding Gaussian~36! in powers ofDp. A more detailed
calculation can be found in Appendix C.

We introduce a new variables to replace the readou
N1 /N of the N series according to

N1

N
5:p02 1

2 Dps. ~38!

BecauseN is large, we may approximately regards as con-
tinuous. Its range is limited by

0<p02 1
2 Dps<1. ~39!

In addition, we introduce the new quantity

gª
~Dp!2

4p0~12p0!t
, ~40!

which will turn out to be thedecoherence ratein lowest
order. It contains apart fromDp andp0 also the time interval
t between two measurements. These three parameters
acterize completely the influence of the sequence of p
measurements.g increases when the pure measurements
come sharper and accordingly have a stronger influence
the qubit. A decreasing time differencet between two mea-
surements results as well in an increase ofg. This reflects a
Zeno-type effectwhich also happens for sequential we
measurements.

Installingg, we get from Eq.~36! the ultimate expression
for the pure measurement part, valid forDp/@p0(12p0)#
!t/Dt!1, which follows from Eq.~23!:

uMsu5
1

A4 2p/~gDt !
expH 2g

~sz2s!2

4
DtJ . ~41!

The resulting effectsEs5uMsu2 have Gaussian form. The
show the characteristics which are known, for instance, fr
an unsharp position measurement as investigated, e.g
@12#. Instead of a continuous observable, however, we
dealing here with a discrete observable.

With reference tos, the complete operation elements
theN series including the feedback and the ‘‘free’’ evolutio
are given by

Ms5UsuMsuexpH 2
i

\
HDtJ , ~42!

where, using Eqs.~35! and ~38!, we obtain forUs which
replacesU(N1 ,N) of Eq. ~35!

Us5expH 2
i

\
HAVDt2

i

2\
DHsDpDtJ . ~43!
0-5
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We have thereby introduced theaveraged feedback Hamil
tonian HAV and the differenceDH of the feedback Hamilto-
nians, respectively:

HAVªp0H11~12p0!H2 , ~44!

DHª~H22H1!. ~45!

Ms of Eq. ~42! replacesM (N1 ,N) of Eq. ~32! for the con-
tinuous variables.

The N-series operation elements above correspond
continuous set of effects with the Gaussian distribution fu
tion

ps5^Ms
†Ms&r . ~46!

The completeness relation is satisfied if we extend the ra
of s to the whole real axis:

E
2`

`

Ms
†Msds51. ~47!

The statistical weight of the unphysical values ofs will be
negligible, if condition~13! is satisfied. In fact, Eq.~13! was
designed to exclude that the binomial distributions in E
~33! do peak atN150 or N15N. This in turn leads to
negligible weights for the unphysical values ofs and thus
justifies the formal extension of the values ofs beyond their
physical range~39!.

IV. NONSELECTIVE EVOLUTION

In the nonselective case, the state change during aN
series can be expressed in the operator-sum representat

r~ t1Dt !5E
2`

`

MsrMs
†ds. ~48!

We are going to expand the right-hand side~r.h.s.! up to
linear terms inDt.

The unitary parts of the operationMs which are generated
by H, HAV , andDH lead to

Drªr~ t1Dt !2r~ t !

52
i

\
@H1HAV ,r~ t !#Dt1D„r~ t !…2r~ t !. ~49!

The integral

D~r!ªE
2`

`

expH 2
i

2\
DHsDpDtJ uMsuruMsu

3expH i

2\
DHsDpDtJ ds ~50!

over the parts which depend ons will first be calculated and
then expanded.

Introducing operators which act from the left and are d
noted withL ~e.g.,sz

Lrªszr) as well as operators which ac
02231
a
-

ge

.

as

-

from the right and are denoted withR ~e.g.,sz
Rrªr sz), we

rewrite the integrand ofD(r),

D~r!5
1

A2pg/Dt

3E
2`

`

expH 2
i

2\
~DHL2DHR!sDpDtJ

3expH 2
g

4
~~sz

L2s!21~sz
R2s!2!DtJ dsr.

~51!

It is important to take into account a further operator ord
ing for the integrand, namely thatDHL,DHR should remain
leftmost and rightmost, respectively. The resulting integra
Gaussian ins. It may be solved in a closed form,

D~r!5expH 2Fg

8
~sz

L2sz
R!21

Dp2

8g\2
~DHL2DHR!2

1 i
Dp

4\
~sz

L1sz
R!~DHL2DHR!GDtJ r. ~52!

Now we expand it up to the leading linear term inDt and
restore the usual operator formalism according to the ru
for L andR. This leads, for example, to

~sz
L2sz

R!2r5~sz
L2sz

R!~sz
L2sz

R!r5~sz
L2sz

R!@sz ,r#

5†sz ,@sz ,r#‡ ~53!

and all together to

D~r!2r5S 2
g

8
†sz ,@sz ,r#‡2

~Dp!2

8g\2
†DH,@DH,r#‡

2 i
Dp

4\
@DH,$sz ,r%# D Dt. ~54!

While the second and the third term on the r.h.s. are prop
tional to small quantities@cf. Eqs.~23!–~25!#, the first con-
tains the ratio of the two small quantitiesDp2 andt @cf. Eq.
~40!#. We assumeg not to be small. We thus obtain as a fin
result in lowest order for the state evolution during oneN
series the difference equation

Dr5S 2
i

\
@H1HAV ,r#2

g

8
†sz ,@sz ,r#‡DDt. ~55!

The first term on the r.h.s. represents the unitary dynam
evolution related to the ‘‘free’’ HamiltonianH and to the
averaged Hamiltonian HAV5p0H11(12p0)H2 . The
quantities p0 and 12p0 are approximately the state
independent probabilities that the single feedback caus
Hamiltonian development withH1 or H2 , respectively~cf.
Sec. II!. Thus the overall influence of the feedback has
lowest order an intuitive interpretation. The second term
0-6
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EVOLUTION OF A QUBIT UNDER THE INFLUENCE OF . . . PHYSICAL REVIEW A 66, 022310 ~2002!
the r.h.s. reflects a pure decoherence in the eigenbas
uM 6u, cf. Eq. ~9!. Since it also appears forU651, this de-
coherence is induced only by the pure measurement
uM 6u of the single operations.

Already in the next order of the difference equation
abundant physical structure appears. This is shown in App
dix C. To demonstrate what type of effects are typically to
expected, we pick out the two higher-order terms which
have already obtained in Eq.~54!. The second term on th
r.h.s. represents additional decoherence in the basis in w
DH is diagonal. This decoherence goes back to the fact
different feedbacksU1 andU2 are acting in a random pro
cess on the qubit and thus cause a dephasing.

The third term on the r.h.s. of Eq.~54! is induced by the
pure measurement partuM 6u and by feedbacks withU1

ÞU2 . We refer to its action as ‘‘generalized friction.’’ It i
of similar form as a friction-inducing term discovered
quantum Brownian motion@9#. Generalized friction can
comprise energy dissipation as well as energy absorption
in general it shifts the expectation value of all observab
which do not commute withuM 6u or with DH. This corre-
sponds to a translation of the Bloch sphere perpendicula
thez direction and the direction associated withDH, cf. Fig.
1. Equation~49! together with Eq.~54! or the lowest-order
approximation~55! describe the state change due to anN
series. It can be employed to a sequential measuremen
dividing the sequence of elementary measurements in
succession ofN series. Since the r.h.s. of Eq.~55! is propor-
tional to Dt, the given approximation is not sensitive to th
division as long asN fulfills the conditions stated above.

This discrete-time analysis is the most natural approac
sequential measurements. An example of a sequential m

FIG. 1. Translation of the Bloch sphere in thex direction. The
translation is generated by generalized friction~see text!, which is
connected to the feedback of the single measurements. In ord
clearly demonstrate the effect, we have chosen the following
rameters. Feedback:U65exp$7isyp/40%, pure measurement par
Dp522/25 andp05

1
2 . TheN series which leads to the translatio

containsN510 measurements. We assumedU51. Along with the
translation, there comes a contraction of the Bloch sphere in tx
and z directions which reflects the dephasing caused by the fe
back and an additional contraction in thex andy directions due to
the unsharpsz measurement. In order to recognize translation a
contractions, consider the different scalings on the axes.
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surement where the difference equation can be applie
given in @4#. There an experiment is suggested to meas
the oscillation of a photon between two coupled cavities. T
energy of Rydberg atoms which pass through one of the c
ties is detected. The detections constitute a sequence of w
measurements of the number of photons in the cavity wh
is passed by the Rydberg atoms. If the unitary partU6 of the
backaction is not compensated by a special feedback me
nism, effects like the modification of the unitary dynamic
generalized friction, and decoherence induced by the pos
measurement partuM 6u as well as the unitary partU6

should be reflected in the outcome of the measurements

V. CONTINUUM LIMIT

There are elaborated schemes for the treatment of pe
nently open quantum systems by continuous-time desc
tions. Master equations are an example. One may profit f
these schemes as approximations in the sequentially o
case too, if a physically reasonable continuum limitt→0 is
carried out. The corresponding demand for such a limi
that the physical characteristics of the sequential situation
they are found in the lowest-order difference equation~55!
have to be taken over. Evidently we will lose all physic
effects which only show up in higher order as, for examp
the feedback-induced decoherence and generalized fric
This limits the usefulness of the continuum limit in our cas

On the other hand, the continuum limit connects sequ
tial to continuous measurements. While this connection
been established for measurements of systems with infin
dimensional Hilbert space without feedback@11# or with
very special feedback@12#, in the case of a qubit the con
tinuum limit for our broad class ofU6 has not yet been
discussed.

We proceed as follows: The quantityp0 is the mean prob-
ability to obtain the measurement result1. We leave the
value ofp0 unchanged in the continuum limit. In order not
change the decoherence behavior in the continuum limit,
next demand for the decoherence rate

lim
t→0

~Dp!2

4p0~12p0!t
5g5const. ~56!

The smaller isDp, the weaker is the single measureme
With t→0 and the strengthDp of the single measuremen
unchanged, a Zeno effect would be obtained. This is p
vented by appropriately diminishing the strengthDp of the
measurement according to Eq.~56!. This demand can also b
found in the literature@11#.

If in a given sequential physical situation theHAV is non-
vanishing, then the total Hamiltonian dynamics is, accord
to Eq.~55!, governed by the HamiltonianH1HAV . We want
to keep this dynamics in the continuum limit on physic
grounds and demand, therefore, thatHAV remains un-
changed. Performing the limitt→0 as specified above re
sults in the master equation

ṙ52
i

\
@H1HAV ,r#2

g

8
†sz ,@sz ,r#‡, ~57!

to
a-

d-

d
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AUDRETSCH, DIÓSI, AND KONRAD PHYSICAL REVIEW A 66, 022310 ~2002!
which describes approximately the discontinuous situatio
the noisy channel characterized above. In the special cas
@HAV ,H#50, the modification of the Hamiltonian byHAV
reflects an effective shift of the energy levels.

VI. SELECTIVE EVOLUTION

In Sec. III, we calculated the Gaussian form~41! of effec-
tive operation elements~42! valid for anN series. In Sec. V,
we derived the master equation~57! valid exactly in the con-
tinuous limit ~56!. As a matter of fact, the master equatio
describes the nonselective evolution. Selective evolution
on the contrary, conditioned on the random measuremen
sults ~readout! and described by stochastic equations. In o
case, the readout iss. It is the continuously measured un
sharp value of the observablesz obtained in theN series in
the limit ~56!.

The theory of the selective evolution has been availa
since long ago@16#. From the Gaussian operation elemen
~41! in the limit Dt→0, it has been proved that the selecti
evolution of the quantum state, conditioned on the meas
ment results, satisfies the conditional master equation:

ṙ52
i

\
@H1HAV ,r#2

g

8
†sz ,@sz ,r#‡

1w
Ag

2
$sz2^sz&,r%. ~58!

The functionw(t) is the standard white-noise and the equ
tion should be understood in the Ito-stochastic sense.
state evolution couples to the readouts by

s5^sz&1
1

Ag
w. ~59!

Obviously the stochastic mean of the conditional mas
equation~58! reduces to the unconditional master equat
~57!, as it should. Of course Eq.~58! applies to pure initial
states as well. Then the pure state propertyr25r is pre-
served. The derivation may be completely identical to tha
Ref. @16#. In the continuum limit~56! the value ofDp must
vanish and the feedbackUs is thus deterministic, given by
HAV alone.

The above equations of selective evolution are exac
the following sense. Elementary operations are being app
with frequency growing to infinity and strength decreasing
zero as given by Eq.~56!, i.e., at fixedg. We read out the
rateN1 /N averaged over timeDt which should go to zero in
such a way thatN5Dt/t still goes to infinity. The elemen
tary timet goes ‘‘faster’’ to zero than the timeDt to calcu-
late the rateN1 /N. The calculated current rateN1 /N is
related tos by Eq. ~38!:

s5
p02N1 /N

Agp0~12p0!t
. ~60!
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The continuous limit~56! of s exists. As follows from Eq.
~59!, it is centered around a state-dependent part^sz& and
superposed by the white-noise of constant intensity 1/g.

VII. CONCLUSIONS

We have derived in an approximation scheme the diff
ence equation for the evolution of a qubit under the follo
ing circumstances: A continuously acting ‘‘free’’ unitary dy
namics is periodically interrupted by a disturbance
negligible duration which acts weakly on the qubit. It ma
for example be caused by the scattering of a photon.
respective single influence can be described in terms of g
eralized measurements as a weak pure measurement wi
additional unitary feedback. Turning to the sequence of
fluences, we have shown that the underlying statistics is
proximately Gaussian. In lowest order, the nonselective e
lution is governed~in addition to the ‘‘free’’ Hamiltonian! by
both an averaged Hamiltonian originating from the feedba
and decoherence caused by the pure measurement part
This decoherence depends also on the shortness of the
interval between the influences. Two higher-order terms
analyzed. One term shows that the randomly acting fe
backs cause decoherence as well, although with respect
different basis. The second term represents generalized
tion. The master equation, which is obtained in an appro
ate continuum limit, reflects only the influences of lowe
order. It establishes the connection between sequential
continuous measurements of a qubit with unitary feedbac
is worth mentioning that in our discrete quantum system~qu-
bit!, contrary to continuous ones@10#, feedback will only
generate a new Hamiltonian termHAV and no friction will
survive in the continuum limit. Master equations without
modified Hamiltonian describe a very restricted class of c
tinuous measurements. In order to complete the study,
selective evolution is discussed on the basis of the Gaus
structure obtained for the effective operation.
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APPENDIX A

In the Appendixes we sketch the calculation of the chan
of state in the nonselective regime including all terms up
orderO(DtDp2) andO(Dt2), whereDt occurs in products
with eitherH/\,H6 /\, or g.

We start with the exact operation elementV for an N
series with unitary developmentU between consecutive mea
surements,

V (mi )
ªUmN

•••Um1
uMmN

u•••uMm1
uUN1R11R2 ,

~A1!

whereR1 andR2 are the terms which arise from commutin
out the evolution operatorsU and the feedback operator
0-8
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U6 , respectively, cf. Eqs.~28! and~30!. The relation ofR1 andR2 to C1 andC2 and an estimation of the order of magnitud
of C1 and C2 is described below. Since the commutatorsKmi

ª@U,Mmi
# occurring in R1 are of orderO(DptiHi /\)

1O(t2iHimax$iH6i%/\2), we can neglect terms containing products of two such commutators,

R15MmN
KmN21

•••Mm1
UN2112MmN

MmN21
KmN22

•••Mm1
UN211•••1~N21!MmN

•••Km1
UN21

5
iDpt

\
@H,sz#UmN

•••Um1 (n51

N21
n

amN2n

uMmN
u•••uMm1

uUN21

2
t2

\2 (
n51

N21

n@H,HmN2n
#UmN

•••Um1
uMmN

u•••uMmN2n
u•••uMm1

uUN21, ~A2!

wherea1ª24Ap0 anda2ª4A12p0. Please note that in Eq.~A2! behind the sum sign the products ofuM u ’s andU ’s are
meant to not containMmN2n

and UmN2n
, except if explicitly mentioned. In the last two lines we have commuted out

feedbackU6 . The resulting error is of higher order and can be neglected.
Also in R2 we only take into account the terms containing one commutatorKk,lª@Mmk

,Uml
#, which is of order

O(Dpt max$iH6i%/\),

R25UmN
•••Um2

K2,1uMmN
u•••uMm3

uuMm1
uUN1•••1~UmN

•••Um2
KN,11UmN

•••Um3
Um1

KN,21•••

1UmN
UmN22

•••Um1
KN,N21!uMmN21

u•••uMm1
uUN

52
iDpt

\ (
k52

N

(
l 51

k21
1

amk

@sz ,Hml
#UmN

•••Uml 11
Uml 21

•••Um1
uMmN

u•••uMmk11
uuMmk21

u•••uMm1
uUN21

2
t2

\2 (
k52

N

(
l 51

k21

@Hmk
,Hml

#UmN
•••Umk11

Umk21
•••Uml 11

Uml 21
•••Um1

uMmN
u•••uMm1

uUN21. ~A3!

Let us briefly motivate the estimation of the order of magnitude ofC1 andC2 given in Eqs.~29! and ~31!. First we observe
that R15Mmn

•••Mm1
UNC1 and R25U

1

N1U
2

N2N1uM 1uN1uM 2uN2N1UNC2. A moment’s thought shows that the order

magnitude of the summands contained inCi is equal to the order of the commutatorsKmi
and Kk,l in Ri . Since there are

approximatelyN2 such summands inCi , the norm ofCi can be estimated to be less than or equal toN2 times the order of the
commutators inRi which leads to the claims~29! and ~31!.

APPENDIX B

The state change due to anN series in the nonselective regime reads

r~ t1Dt !5( V (mi )
rV (mi )

† 5 (
m1•••mN

UmN
•••Um1

uMmN
u•••uMm1

uU~Dt !rU†~Dt !uMm1
u•••uMmN

uUm1

†
•••UmN

† 1R̃11R̃2

1O~R1
2!1O~R2

2!1O~R1R2! ~B1!

with

R̃iª (
m1•••mN

$RirU†~Dt !uMm1
u•••uMmN

uUm1

†
•••UmN

† 1H.c.%, i 51,2. ~B2!

In order to carry out the summation in Eq.~B1!, its terms can be expressed by means of binomial distributions. The latte
be approximated by integrals over Gaussians. For the first term in Eq.~B1! this recipe has already been demonstrated in S
III and IV. R̃1 can be written in binomial form by observing that
022310-9
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AUDRETSCH, DIÓSI, AND KONRAD PHYSICAL REVIEW A 66, 022310 ~2002!
(
m1•••mN

(
n51

N21

nbmN2n
UmN

•••Um1
uMmN

u•••uMmN2n11
uuMmN2n21

u•••uMm1
uruMm1

u•••uMmN
uUm1

†
•••UmN

†

5
~N21!~N22!

2 S (
m

bmUm
L uMmuR~Um

† !RD (
N150

N21 S N21
N1

DU
1

N1U
2

N2N121

3uM 1uN1uM 2u
2

N2N121
ruM 1uN1uM 2u

2

N2N121
~U1

† !N1~U2
† !N2N121, ~B3!

where we have again used the notation that operators with uppercaseL andR act from the left and from the right, respectivel
A similar formula is obtained when instead ofuMmN2n

u in the first lineUmN2n11
is missing. Then onlyUm

L has to be replaced

by uMmuL.
R̃2 can be simplified employing

(
m1•••mN

(
k52

N

(
l 51

k21

Cmk ,ml
UmN

•••Umk11
Umk21

•••Um1
uMmN

u•••uMml 11
uuMml 21

u•••uMm1
uruMm1

u•••uMmN
uUm1

†
•••UmN

†

5
~N21!~N22!

2 S (
m,ḿ51,2

Cm,ḿUm
L uMḿuL~Um

† !RuMmuR~Uḿ
† !RuMḿuRD

3 (
N150

N22 S N22
N1

DU
1

N1U
2

N2N122uM 1uN1uM 2uN2N122ruM 1uN1uM 2uN2N122~U1
† !N1~U2

† !N2N122. ~B4!

Formulas~B3! and ~B4! neglect commutators between the operators they contain. In our case, corrections containin
commutators would be of higher order and therefore too small.

Applying formulas~B3!, ~B4! to R̃1 ,R̃2, respectively, and expressingN1 /N in terms of variables according to Eq.~38!, we
obtain

R̃15
2 i ~N23!DpDt

2\ H @H,sz#(
m

Um

am
D̃~r!uMmuUm

† 1H.c.J 2
~N23!tDt

2\2 (
m

$@H,Hm#uMmuD̃~r!uMmuUm
† 1H.c.%,

~B5!

whereD̃(r)5*2`
` MsrMs

†ds with Ms as given by Eq.~42! with Dt replaced by (N21)t. R̃2 now reads

R̃252
i ~N23!DpDt

2\ (
m,ḿ

H @sz ,Hḿ#

am
UmuMḿuD̃~r!uMḿuUḿ

† uMmuUm
† 1H.c.J

2
~N23!tDt

2\2 (
mÞḿ

$@Hm ,Hḿ#uMmuuMḿuD̃~r!uMḿuUḿ
† uMmuUm

† 1H.c.%. ~B6!

In R̃2, when insertingMs from Eq. ~42! in D̃(r), Dt has to be replaced by (N22)t. The second sum in Eq.~B6! vanishes
since the summand withm51,ḿ52 and the summand withm52,ḿ51 add to zero. Inserting the lowest order ofD̃(r),
namelyD̃(r)'r, it is easy to find the contributions ofR̃1 and R̃2 to the change of state in the last two lines of Eq.~C6!.

APPENDIX C

Having calculatedR̃1 and R̃2, we want to sketch how to process the main contribution to the state change, wh
represented by the first term in Eq.~B1!. As mentioned above, this part of the operation can be written by means of a bin
distribution and can then be expressed with operation elements whose modulusuM (N1 ,N)u is the square root of Gaussian
cf. Eq. ~36!. In contrast to Secs. III and IV, we now take into account the fullq-number denominators of the modulu
uM (N1 ,N)u in Eq. ~36!. Expressing the operation elements in terms of variables @cf. Eq. ~38!#, we obtain for their modulus

uMsu5
1

A4 2p/~ ĝDt !
expH 2ĝ

~sz2s!2

4
DtJ , ~C1!

with
022310-10
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ĝª
~Dp!2

4E1E2t
. ~C2!

Expanding the unitary part of the operation up to orderDt2 leads to the state change~without the contribution fromR1 andR2)

r~ t1Dt !5D~r!2
iDt

\
@H1HAV ,D~r!#2

Dt2

2\2
$~H1HAV!2,r%1

Dt2

\2
~H1HAV!r~H1HAV! ~C3!

with

D~r!5E
2`

`

expH i

2\
~DHL2DHR!sDpDtJ expH 2

ĝL

4
~sz

L2s!2DtJ expH 2
ĝR

4
~sz

R2s!2DtJ ds
A4 ĝLĝR

A2p/Dt
r. ~C4!

We note that in Eq.~C3!, H is meant to act in operator products directly onr. This is due to the order of operators in th
operation elements@cf. Eq. ~43!#. The integralD(r) has a closed-form solution which can be expanded in powers ofDt and
Dp. g without a hat is given by Eq.~40!,

D~r!5X12DtH g

8
~sz

L2sz
R!2F12

1

2 S Dp~p021/2!

p0p̃0
D 2

~12Ap0p̃0@p0p̃0132221/4# !G1
Dp2

8g\2
~DHL2DHR!2

1 i
Dp

4\
~DHL2DHR!~sz

L1sz
R!J 1Dt2

g2

32
~sz

L2sz
R!21O~DpDt2!1O~Dp2Dt2!1O~Dt3!Cr. ~C5!

Collecting all terms up to orderO(Dt2) andO(DtDp2) we obtain the following difference equation:

Dr5DtH 2
i

\
@H1HAV ,r#2

g

8 F12
1

2 S Dp~p021/2!

p0p̃0
D 2

~12Ap0p̃0@p0p̃0132221/4# !G †sz ,@sz ,r#‡2
Dp2

8g\2
†DH,@DH,r#‡

2
iDp

4\
@DH,$sz ,r%#J 1Dt2S 2

ig

8\
~@sz ,†sz ,@H,r#‡#1@HAV ,†sz ,@sz ,r#‡# !2

1

2\2
$~H1HAV!2,r%

1
1

\2
~H1HAV!r~H1HAV!1

g2

32
†sz ,@sz ,r#‡D 1S 2

iDt2g

8\
1

3iDtDp2

32\p0p̃0
D S $@H,sz#rsz1H.c.%2

4i

\G
†@H,HAV#,r‡

1 $@sz ,p̃0H11p0H2#rsz1H.c.% DO~NDpDt2!1O~DpDt2!1O~Dp2Dt2!1O~Dt3! ~C6!

with p̃0ª12p0. In the order termsDt occurs in products with one of the three:H/\,H6 /\, or g.
in
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