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Abstract
Wick’s theorem, known for yielding normal ordered from time-ordered 
bosonic fields, may be generalized for a simple relationship between any two 
orderings that we define over canonical variables, in a broader sense than 
before. In this broad class of orderings, the general Wick theorem follows 
from the Baker–Campbell–Hausdorff identity. We point out that, generally, 
the characteristic function does not induce an unambigous scheme to order 
the multiple products of the canonical operators although the value of the 
ordered product is unique. We construct a manifold of different schemes for 
each value of s of s-orderings of Cahill and Glauber.

Keywords: operator orderings, bosonic operators, Wick’s theorem,  
Baker–Campbell–Hausdorff identity

1. Introduction

The problem of systematic ordering of canonical operators q̂, p̂ appeared first in canonical 
quantization [1] and also the other way around: in classical phase-space representations of 
canonically quantized systems [2]. In a different realm, ordering and reordering of quantized 
fields became central to S-matrix theory [3–5].

A particular phase-space quasi-distribution ρ(q, p) for a given density matrix ρ̂ ,

ρ(q, p) = tr[Oδ(q − q̂)δ( p − p̂)ρ̂], (1)

requires a particular ordering O of q̂ and p̂. The Weyl–Wigner [1, 2], normal [5] and anti-nor-
mal orderings are special cases of s-orderings proposed by Cahill and Glauber [6], reviewed 
together with QP- and PQ-orderings e.g. in [7].

An ordering O is traditionally defined by its action on the operator-valued characteristic 
function. In particular, the Weyl–Wigner ordering W  is defined by this relationship:

Weaq̂+bp̂ = eaq̂+bp̂, (2)
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with the arbitrary c-numbers a, b. The normal ordering N  is defined between the annihilation 
ĉ = (x̂ + ip̂)/

√
2  and creation ĉ† operators (we use units where � = 1):

N eλ
� ĉ+λĉ† = eλĉ†eλ

� ĉ, (3)

with an arbitrary complex number λ. The s-orderings are defined by

Oseλ
� ĉ+λĉ† = e−s|λ|2/2eλĉ†+λ� ĉ, s ∈ [−1, 1]. (4)

They interpolate between the normal ordering (s = 1) and anti-normal ordering (s = −1), 
with the Weyl–Wigner ordering in the middle (s = 0).

Time-ordering T  (also called chronological or path-ordering) was proposed first by Dyson 
[4] in relativistic quantum field theory. The S-matrix is a time-ordered functional of free 
quant um field operators. If we transform it into the normal ordered form first, the evalua-
tion of matrix elements becomes straightforward. Time- and normal orderings are related by 
Wick’s theorem [5]. For a free relativistic bosonic field ϕ̂(x) it can be written into the compact 
form, see [8]:

T e
∫

J(x)ϕ̂(x)dx = eCN e
∫

J(x)ϕ̂(x)dx, (5)

where J(x) is an arbitrary c-number field. The exponent in the pre-factor is a c-number:

C =

∫ ∫
J(x)C(x, y)J(y)dxdy, (6)

where C(x, y) is called the kernel of chronological contraction (or pairing):

C(x, y) = T ϕ̂(x)ϕ̂(y)−N ϕ̂(x)ϕ̂(y) ≡ (T − N )ϕ̂(x)ϕ̂(y). (7)

The above form of Wick’s theorem suggests that a generalized theorem of the same structure 
holds for any pair O and O′ of orderings.

In section 2 we define the notion of monomial and non-monomial orderings and we note 
that, in the latter class, the ordered characteristic function allows for ambiguous schemes 
of ordering. Section 3 suggests the general Wick theorem (GWT) for monomial orderings, 
with a tentative proof in section 4. Section 5 illustrates the theorem on simple applications in 
quantum mechanics and optics. Section 6 proves that an s-ordering of Cahill and Glauber is 
equivalent with a family of ‘redundant’ monomial path orderings, and we construct the corre-
sponding family of ordering schemes.

2. Monomial and non-monomial orderings

Let us start with a collection {Âα,α ∈ Ω} of operators to be ordered, where Ω is a (partially) 
ordered set of labels. (If [Âα, Âβ ] = 0 for a certain pair α,β ∈ Ω then the order of α and β 
may be left unspecified.) Consider an ordered subset {α1,α2, . . . αn} = Ω′ ⊆ Ω of labels and 
define the corresponding ordered operator product:

O
∏
α∈Ω′

Âα = Âαn . . . Âα3 Âα2 Âα1

≡

[ ∏
α∈Ω′

Âα

]

P

 (8)

where O stands for the given operator ordering to adopt the ordering αn � · · · � α3 � α2 � α1 
of the labels; [. . . ]P  is alternative notation referring to the corresponding permutation P. The 
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collection of the operators may be redundant: a certain Âα may coincide with a certain Âβ 
even for α �= β. Let us call (8) monomial ordering (or permutation). Ordering, in general, can 
be the weighted mixture of different monomial orderings:

O
∏
α∈Ω′

Âα =
∑

P

wP

[ ∏
α∈Ω′

Âα

]

P

 (9)

where wP are non-negative weights that sum up to one.
Alternatively, orderings used to be defined by their exponential characteristic functions

F̂O(λ) = O
∏
α∈Ω

eλαÂα

 (10)

at arbitrary arguments λα. For monomial orderings (8) they factorize:

F̂O(λ) = . . . exp(λα3 Âα3) exp(λα2 Âα2) exp(λα1 Âα1), (11)

where · · · � α3 � α2 � α1 holds. As we see, the value of the characteristic function 
 determines the scheme (8) of monomial ordering (and vice versa). This is not so for non-
monomial orderings. The characteristic function does not determine the scheme (9) of 
ordering uniquely.

Typical non-monomial ordering is the Weyl–Wigner ordering W  defined by its char-
acteristic function (2). It turns a monomial into weighted sum of ordered monomials. For 
instance:

W q̂2p̂ =
q̂2p̂ + p̂q̂2 + q̂p̂q̂

3
=

q̂2p̂ + p̂q̂2 + 2q̂p̂q̂
4

 (12)

where we show two (of the many) schemes of weighted permutations (9) which correspond to 
the same non-monomial ordering W . Still, we anticipate a trick (from section 6) to show that 
the Weyl–Wigner ordering can be squeezed into the class of monomial orderings. The trick 
is that we introduce the redundant collection {q̂τ , p̂τ ; τ ∈ [0, 1]} of the canonical operators, 
where q̂τ = q̂ and p̂τ = p̂ for all τ ∈ [0, 1]., i.e.: we assign the time-label τ formally. Then 
time-ordering, which is typical monomial ordering, leads to Weyl–Wigner ordering:

T exp

(∫ 1

0
(aq̂τ + bp̂τ )dτ

)
= lim

ε→+0

(
eε(aq̂+bp̂)

)[1/ε]
= eaq̂+bp̂

= Weaq̂+bp̂.

 

(13)

This is simplest redefinition of W  as a particular monomial time-ordering, there are infinite 
many other choices which we shall detail and extend for all s-orderings in section 6.

We state our general Wick’s theorem (section 3) for monomial orderings of canonical 
operators, and construct a tentative proof in section 4. The theorem can not be extended for 
non-monomial orderings in general. There is, however, a backdoor for some of them, like the 
above example of Weyl–Wigner ordering, and all s-orderings, see in section 6.

3. General Wick theorem

Consider a canonical system of n pairs of canonical variables x̂k = q̂k and x̂n+k = p̂k  respec-
tively, where [q̂k, p̂l] = i for k, l = 1, 2, . . . , n. We introduce the linear combinations of the 
canonical variables:
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X̂ =

2n∑
k=1

akx̂k, (14)

with arbitrary coefficients {ak}. Consider a collection of linear combinations

Âα =

2n∑
k=1

Aαkx̂k, α ∈ Ω, (15)

which form a complete (or overcomplete) basis in the linear space {X̂}. Let them be the opera-
tors to be ordered as given in section 2. If · · · � α3 � α2 � α1 holds then

OeX̂ = O
∏
α∈Ω

eλαÂα

= . . . exp(λα3 Âα3) exp(λα2 Âα2) exp(λα1 Âα1),
 (16)

where

X̂ =
∑
α∈Ω

λαÂα. (17)

It is important to anticipate that whenever we write OeX̂  or OX̂2, we understand the above 
linear combination in terms of the operators to be ordered. If {Âα} forms an overcomplete 
basis, it matters for the ordering that the coefficients {λα} are not unique. In the case of simple 
redundancy Âα = Âβ at α �= β we can, if we wish to, remove this ambiguity by collapsing the 
coefficients: λα = λβ .

To prepare our GWT, we consider another collection of operators to be ordered another 
way O′:

Âa =

2n∑
k=1

Aakx̂k, a ∈ O. (18)

If · · · � a3 � a2 � a1 holds then

O′eX̂ = O′
∏
a∈O

eλaÂa

= . . . exp(λa3 Âa3) exp(λa2 Âa2) exp(λa1 Âa1),
 

(19)

where

X̂ =
∑
a∈O

λaÂa. (20)

We propose the following relationship between the two orderings:

O′eX̂ = eCOeX̂ , (21)

where the pre-factor is a c-number because the exponent is c-number:

C =
1
2
(O′ −O)X̂2. (22)

We call it the general contraction between O′ and O. This is the GWT, our central result.
If we substitute O′ = W  and the identity WX̂2 = X̂2, we get a simple equivalent form of 

GWT:
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OeX̂ = eCeX̂ (23)

C =
1
2
(OX̂2 − X̂2), (24)

where C is a c-number, being the contraction between O and W . To express its detailed struc-
ture, we insert the decomposition (17) of X̂ :

C =
1
2

∑
α,β

λαλβ

(
OÂαÂβ − 1

2
{Âα, Âβ}

)

=
1
2

∑
α�β

λαλβ [Âα, Âβ ].
 

(25)

To further simplify the result, we use the expansion (15) of Âα, with the new notations 
Bαk = Aα,n+k  for the coefficients of the momenta, yielding:

C =
i
2

∑
α�β

λαλβ

n∑
k=1

(AαkBβk − AβkBαk). (26)

We note that in the special case when O′ and O are to order the same collection of opera-
tors (in two different ways, of course) then GWT (21) and (22) can be stated for the charac-
teristic functions as well:

F̂O′(λ) = exp


1

2

∑
α,β

Cαβλαλβ


 F̂O(λ)

Cαβ =
∂2

∂λα∂λβ

[
F̂O′(λ)− F̂O(λ)

]
λ=0

.

 

(27)

4. Tentative proof

Let us consider a given X̂ , as in (14), and its decompositions (17) and (20):

X̂ =

2n∑
k=1

akx̂k =
∑
α∈Ω

λαÂα =
∑
a∈O

λaÂa. (28)

The proof of GWT (21) and (22) simplifies if we restrict ourselves for the case when all coef-
ficients ak, Aαk, Aak are non-negative. Then we construct the asymptotic form of the maximally 
refined decomposition of X̂ :

X̂ = lim
ε→+0

2n∑
k=1

( εx̂k + εx̂k + · · ·+ εx̂k︸ ︷︷ ︸
[ak/ε]

). (29)

If we approach the limit ε → 0, the two orderings in question act on the same (yet unordered) 
product of exponentials:

OeX̂ = limε→+0 O
O′eX̂ = limε→+0 O′





2n∏
k=1

( eεx̂k × eεx̂k × · · · × eεx̂k︸ ︷︷ ︸
[ak/ε]

) , (30)
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where the number of factors eεx̂k  is [ak/ε] for all k. It will be the order of the factors, and noth-
ing else, that distinguishes O and O′. From one to the other, we can go by a finite sequence 
P1, P2, . . . , PK  of K switches between neighboring factors. (K → ∞ for ε → +0.) Namely,

O′eX̂ = PK . . .P2P1OeX̂ , (31)

where we understand the same (redundant) factorization (30) for eX̂ . Let us consider the rhs of 
the above equation and suppose PK inverts the order of neighbors eεx̂k eεx̂l in PK−1 . . .P1OeX̂ :

PKeεx̂k eεx̂l = eεx̂l eεx̂k ≡ eε
2 [̂xl ,̂xk]eεx̂k eεx̂l , (32)

where we used the simple Baker–Campbell–Hausdorff [9] identity. We can write:

PK . . .P1OeX̂ = eε
2 [̂xl ,̂xk]PK−1 . . .P1OeX̂ . (33)

Observe that

PK . . .P1OX̂2 − PK−1 . . .P1OX̂2 = 2ε2[x̂l, x̂k]. (34)

Using this, the rhs of (33) reads:

e
1
2 (PK ...P1−PK−1...P1)OX̂2

PK−1 . . .P1OeX̂ . (35)

We repeat the same identity transformation on the factor PK−1 . . .P1OeX̂ , yielding

e
1
2 (PK ...P1−PK−2...P1)OX̂2

PK−2 . . .P1OeX̂ . (36)

After K steps, we get

e
1
2 (PK ...P1O−O)X̂2

OeX̂ = e
1
2 (O

′−O)X̂2
OeX̂ (37)

where we used O′ = PK . . .P1O from (31). This is our ultimate expression for the rhs of (21). 
Our GWT is confirmed.

Recall that we restricted the proof: the operators to be ordered had to be linear combina-
tions of the canonical variables with non-negative coefficients. The maximally refined decom-
position (29) contained terms with the unique positive coefficient ε. If we want to extend 
the proof for orderings of operators without the above restriction, we have to construct the 
maximally refined decomposition for all X̂ . There will be four types of coefficients: ±ε,±iε 
instead of the positive ones ε. Once we have constructed such a maximally refined decomposi-
tion to host both O and O′, the proof follows the same steps as before—and needs a definitely 
more intricate book-keeping of the four types of exponentials. Intuition says, nonetheless, that 
the validity of our theorem extends from positive parameters for all complex ones just by the 
theorem’s analytic form.

5. Examples: T  versus QP versus N  orderings

We are going to illustrate the flexibility of GWT in solving simple tasks in elementary quant um 
mechanics and quantum optics.

Consider the Schrödinger equation  ψ̇t = −Ĥtψt  of a mass m, where the Hamiltonian 
Ĥt = (p̂2/2m)− Ftq̂ contains a given time-dependent force. Let us find the solution 
ψI

t = Ûtψ0 in the interaction picture where q̂t = q̂ + p̂t/m and p̂t = p̂. (As is known, the 
solution ψt in Schrödinger picture is obtained if we solve the force-free Schrödinger equa-
tion with ψI

t  as the initial state.) The evolution operator in interaction picture is a T -ordered 
exponential:
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Ût = T eX̂t , (38)

where X̂t  is linear combination of the canonical variables:

X̂t = i
∫ t

0
Fτ q̂τdτ . (39)

The rhs is the chronological decomposition of X̂t : the summation label α ∈ Ω in (17) became 
the integral variable τ ∈ (0, t), the set {Âα} became {q̂τ}, the coefficients λα became iFτ . To 
evaluate Ût , we shall consider its QP-ordering, hence we need a canonical decomposition of 
X̂t :

X̂t = i
∫ t

0
Fτdτ q̂ +

i
m

∫ t

0
Fτ τdτ p̂ ≡ i∆ptq̂ − i∆qtp̂, (40)

where we introduced the momentum and coordinate shifts ∆pt,∆qt for notational conve-
nience. The label a in (20) takes two values only: Âa=1 = q̂ and Âa=2 = p̂, also λa=1 = i∆pt 
and λa=2 = −i∆qt. The QP-ordering OQP pushes all q̂ to the left of all p̂. Now we apply our 
GWT (21)–(38),

Ût = T eX̂t = eCt ei∆ptq̂e−i∆qtp̂, (41)

with the contraction (22):

Ct ≡
1
2
(T − OQP)X̂2

t =
i
2

∫ t

0

∫ t

0
FτFσ|τ − σ|dτdσ. (42)

Ûtψ0 provides the following explicit solution for the wave function in the interaction picture:

ψI
t (q) = eCt ei∆ptqψ0(q −∆qt). (43)

A similar standard task is the electromagnetic cavity oscillator of frequency ω  under exter-
nal driving. The Hamiltonian reads: Ĥt = ωĉ†ĉ + (E∗

t ĉ − H.c.). In interaction picture, where 
ĉt = e−iωtĉ and ĉ†t = eiωt ĉ†, the evolution operator is (38) again, with

X̂t =

∫ t

0
(E∗

τ ĉτ − H.c.)dτ ≡ ∆c�t ĉ − H.c.. (44)

We can rewrite the evolution operator Ût  into the normal ordered form, applying the GWT 
(21) and (22):

Ût = e
1
2 (T −N )X̂2

t N eX̂t = eCt e−∆ct ĉ†e∆c�t ĉ, (45)

Ct = −
∫ t

0

∫ t

0
θ(τ − σ)E∗

τEσe−iω(τ−σ)dτdσ. (46)

In quantum optics, there is a spectacularly simple definition of the squeezing operator with 
squeezing parameter µ〉0:

Ŝ =
1
√
µ

∫
|q/µ〉〈q| dq = OPQei(1−1/µ)p̂q̂, (47)

where the first expression was proposed in [10] while the second compact form is our finding 
based on it. To achieve the normal ordered form, which was the task in [10] as well, we first 
unravel the bilinear form p̂q̂ in the exponent. Introduce κ = 1 − 1/µ and consider
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Ŝ = OPQeiκp̂q̂ =

∫
OPQeizp̂±z�q̂ exp

(
−|z|2

|κ|

)
d2z
π|κ|

, (48)

where the sign  ±  is the sign of κ. Now we can apply our GWT (21)–(22):

OPQeizp̂±z�q̂ = e
1
4 (z�)2− 1

4 z2± 1
2 |z|

2
N eizp̂±z�q̂. (49)

Inserting this in (48) and performing the complex integral, we obtain:

Ŝ =
√

2µ
1+µ2 N exp

{
−i(1−µ2)p̂q̂− 1

2 (1−µ)2(p̂2+q̂2)

1+µ2

}

=
√

2µ
1+µ2 N exp

{
− 1

2 (1−µ2)(ĉ2−ĉ†2)+(1−µ)2 ĉ† ĉ
1+µ2

}
.

 
(50)

6. s-Ordering

The s-orderings are defined by their characteristic function (4). Apart from the two marginal 
cases s = ±1 they are non-monomial and the induced scheme (9) of ordering is not unique. 
First we redefine a given s-ordering as a path (i.e.: monomial) ordering of a redundant col-
lection of the canonical operators, then we can construct the corresponding scheme of their 
s-ordering.

6.1. s-Ordering as path ordering

We are going to show that an s-ordering is equivalent with path-orderings T  of a (redundant) 
collection of operators {ĉτ , ĉ†τ ; τ ∈ [0, 1]} where we take ĉτ ≡ ĉ and ĉ†τ ≡ ĉ† after the path-
ordering only. To define a concrete ordering, we must first introduce a decomposition of the 
exponent X̂ = λ�ĉ + λĉ†. Let us choose the following structure:

X̂ =

∫ 1

0

(
λ�ĉτdτ + λĉ†τdχτ

)
, (51)

where χ0 = 0 and χ1 = 1, also χτ  must be monotonous. As we said, we cancel the label τ of 
ĉ, ĉ† after the path-ordering. Along the path, the rate of ĉ†’s versus the constant rate of ĉ’s is 
ruled by χτ . We prove below that this path-ordering is equivalent with s-ordering (4):

Oseλ
� ĉ+λĉ† = T exp

{∫ 1

0

(
λ�ĉτdτ + λĉ†τdχτ

)}
∣∣∣∣∣
ĉτ=ĉ

, (52)

provided χτ  satisfies

s = 1 − 2
∫ 1

0
χτdτ . (53)

The proof goes like this. Considering the decomposition (51) of X̂ , we write the rhs of (52) 
as T eX̂ and apply (23) and (24) to it:

T eX̂ = eCeλ
� ĉ+λĉ† , (54)

where

C =
1
2

(
T X̂2 − X̂2

)
= |λ|2

(∫ 1

0
χτdτ − 1

2

)
. (55)
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The steps that led to this expression of C were the following.

T X̂2 =

∫ 1

0

∫ 1

0
T
(
λ�ĉτdτ + λĉ†τdχτ

) (
λ�ĉσdσ + λĉ†σdχσ

)
. (56)

Let us write X̂2 into the similar integral form:

X̂2 =

∫ 1

0

∫ 1

0

(
λ�ĉdτ + λĉ†dχτ

) (
λ�ĉdσ + λĉ†dχσ

)
. (57)

Then we get

2C = T X̂2 − X̂2

= |λ|2
∫ 1

0

∫ 1

0

{(
T ĉτ ĉ†σ − ĉĉ†

)
dτdχσ +

(
T ĉ†τ ĉσ − ĉ†ĉ

)
dχτdσ

}

= |λ|2
∫ 1

0

∫ 1

0
θ(σ − τ)(dχτdσ − dτdχσ)

= |λ|2
(

2
∫ 1

0
χσdσ − 1

)
.

 

(58)

Therefore (54), i.e. the rhs of (52), reads:

T eX̂ = exp

(
|λ|2

∫ 1

0
χτdτ − |λ|2

2

)
eλ

� ĉ+λĉ† . (59)

This, at the condition (53), becomes Oseλ
� ĉ+λĉ† as defined by (4).

6.2. Non-monomial schemes induced by s-ordering

Derivatives of the characteristic function (4) yield the s-ordered products of the canonical 
operators ĉ, ĉ†:

Osĉn(ĉ†)m =

(
∂

∂λ�

)n (
∂

∂λ

)m

Oseλ
� ĉ+λĉ†

∣∣∣
λ=0

=

(
∂

∂λ�

)n (
∂

∂λ

)m

e−s|λ|2/2eλĉ†+λ� ĉ
∣∣∣
λ=0

,
 

(60)

for n, m = 0, 1, 2, . . .. Beyond the value Osĉn(ĉ†)m, our point of interest is the scheme (9) of 
ordering:

Osĉn(ĉ†)m =

(n+m)!∑
P=1

wP[ĉn(ĉ†)m]P, (61)

where wP � 0 is the weight of the Pth permutation, the weights are normalized; [ĉn(ĉ†)m]P  
stands for the Pth permutation of the factors.

We shall consider Osĉn(ĉ†)m for n  =  m  =  1 first. If we wish to bring it into the form on the 
rhs of (61), we get the following unique result:

Osĉĉ† =
1 + s

2
ĉ†ĉ +

1 − s
2

ĉĉ†. (62)
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As expected, s ∈ [−1, 1] interpolates between normal and anti-normal orderings. Next, let 
us take n = 2, m = 1. It is easy to derive, e.g. the following two forms (out of an infinite 
family):

Osĉ2ĉ† = ĉ†ĉ2 + (1 − s)ĉ = ĉ2ĉ† − (1 + s)ĉ. (63)

Using the identity [ĉ, ĉ†] = 1, we could bring these two to two different forms, resp., both 
of them conform with the rhs of (61). But the issue grows unmanageable for higher powers 
n, m  unless we find a systematic way. Let us use our concept of orderings and the GTW 
(section 3).

Inserting (52) into (60), we obtain the general expression

Osĉn(ĉ†)m = T

(∫ 1

0
ĉτdτ

)n (∫ 1

0
ĉ†τdχτ

)m∣∣∣∣∣
ĉτ=ĉ

=

∫ 1

0
dτ1· · ·

∫ 1

0
dτn

∫ 1

0
dχσ1 · · ·

∫ 1

0
dχσm T ĉτ1 . . . ĉτn ĉ†σ1

. . . ĉ†σm

∣∣
ĉτ=ĉ ,

 

(64)

which is already conform with the structure on the rhs of (61). Here we work out the special 
case n = 2, m = 1 only:

Osĉ2ĉ† =
∫ 1

0
dχτ

∫ 1

0
dσ1

∫ 1

0
dσ2 T ĉ†τ ĉσ1 ĉσ2

∣∣
ĉτ=ĉ

= w1ĉ†ĉĉ + w2ĉĉ†ĉ + w3ĉĉĉ†,
 

(65)

with

w1 =

∫ 1

0
dχτ

∫ 1

0
dσ1

∫ 1

0
dσ2θ(τ − σ1)θ(τ − σ2)

=

∫ 1

0
dχτ τ

2,

w2 = 2
∫ 1

0
dχτ

∫ 1

0
dσ1

∫ 1

0
dσ2θ(σ1 − τ)θ(τ − σ2)

= 2
∫ 1

0
dτ

∫ τ

0
dχτ τ ,

w3 =

∫ 1

0
dχτ

∫ 1

0
dσ1

∫ 1

0
dσ2θ(σ1 − τ)θ(σ2 − τ)

= 2
∫ 1

0
dτ

∫ τ

0
dτχτ .

 

(66)

The constraint w1 + w2 + w3 = 1 is satisfied by construction. The three integrals (66) depend 
on the choice of χτ . If we take a simplest function χτ = τκ with κ = 1+s

1−s � 1, covering the 
values s ∈ [0, 1), we get

Osĉ†ĉ2 =
(1 − s)ĉ†ĉĉ + (1 − s2)ĉĉ†ĉ + (1 + s)2ĉĉĉ†

3 + s
. (67)

Obviously, other functions χτ  would have resulted in different weights w1, w2, w3, i.e. in dif-
ferent schemes (61) of the same non-monomial s-ordering.
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7. Concluding remarks

In 1950, Wick’s theorem between normal and chronological orderings of relativistic quantum 
fields was invented for and became the robust tool of S-matrix theory of interactions. The pres-
ent work started from the recognition that Wick’s theorem, at least the bosonic one, is the spe-
cific case of a simple relationship between operator orderings in general. That is our general 
Wick theorem (GWT). Wick’s original contraction is replaced by the general contraction, a form 
which is fairly straightforward and transparent. A little more involved, yet plausible, is the pro-
posed definition of operator orderings. It covers all common orderings, typical in quantum optics 
and quantum field theory, and opens a wide perspective toward new ones. The general Wick 
theorem (GWT) clarifies the universal structure of orderings. Contrary to naive expectations, 
the general Wick theorem (GWT) seems to hold for monomial orderings (permutations) only. 
Fortunately, we could show that s-orderings of Cahill and Glauber (including the Weyl–Wigner 
ordering) are reductions of redundant monomial path orderings, hence the general Wick theorem 
(GWT) extends for them.

Simple form of the general Wick theorem (GWT) facilitates analytic calculations. We 
showed plain explanatory applications in forced quantum mechanical motion, a short deri-
vation of the normal-ordered squeezing operator and a less trivial application to elucidate 
s-orderings of Cahill and Glauber. The power of general orderings and their Wick theorem 
would get confirmed further by their future non-trivial utilizations.

It should be admitted on one hand that our proof of the general Wick theorem (GWT) is 
tentative. On the other hand, more important is the non-triviality of this proof which tells us 
about the theorem’s depths unless a simpler proof strategy pops up in the future.
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