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Abstract: Based on the assumption that the standard Schrödinger equation becomes gravitationally
modified for massive macroscopic objects, two independent proposals have survived from the 1980s.
The Schrödinger–Newton equation (1984) provides well-localized solitons for free macro-objects
but lacks the mechanism of how extended wave functions collapse on solitons. The gravity-related
stochastic Schrödinger equation (1989) provides the spontaneous collapse, but the resulting solitons
undergo a tiny diffusion, leading to an inconvenient steady increase in the kinetic energy. We
propose the stochastic Schrödinger–Newton equation, which contains the above two gravity-related
modifications together. Then, the wave functions of free macroscopic bodies will gradually and
stochastically collapse to solitons, which perform inertial motion without momentum diffusion:
conservation of momentum and energy is restored.

Keywords: Schrödinger–Newton equation; spontaneous wave function collapse; stochastic Schrödinger–
Newton equation; solitons; energy-momentum conservation

1. Introduction

The conjectured validity of quantum theory in the macroscopic world is famously
problematic. This is shown usually on the elementary example: the free motion of an
isolated macroscopic mass M. Its center of mass (c.o.m.) wave packet widens eternally,
while we would expect a certain stationary localization. The most spectacular paradox
concerns the Schrödinger cat states, which are superpositions of two distant wave packets,
legitimate in the microworld but problematic for a macroscopic body.

A Newtonian semiclassical (mean-field) modification of the Schrödinger equation
to ensure stationary localization was proposed first [1]. This Schrödinger–Newton equa-
tion (SNE) yields well-localized soliton wave packets for the mass M. However, the
Schrödinger cat states remain legitimate solutions, and an independent mechanism is
required to destroy them, as stated in ref. [1]. To this end, another Newton-gravity-related
(G-related) mechanism was proposed in two steps. The G-related master equation (G-ME)
decoheres the cat states [2]. Its unraveling, the G-related stochastic Schrödinger equation
(G-SSE) [3], collapses them spontaneously to one or the other wave packet and drives
this component into a soliton—however, with one annoying effect. The c.o.m. motion
of the soliton never becomes stationary; it remains subject to tiny stochastic fluctuations
generating kinetic energy at a constant rate.

Such spontaneous universal gain of energy from nothing, i.e., the robust violation of
energy conservation, denies the existence of stationary free motion under the G-SSE, while
it was possible for the solitons of the SNE. Our goal here is to show that the SNE and the
G-SSE together will facilitate the issue so as to conserve energy and momentum at least in
the free motion of massive objects.

Here, we propose the combination of the SNE and the G-SSE, obtaining the new
stochastic SNE (SSNE). We show that the momentum diffusion of solitons of massive
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isolated objects is canceled by the interplay between the stochasticity of the collapse mecha-
nism and the semiclassical Newtonian self-interaction. The remainder of the stochasticity
is merely an extreme small universal coordinate diffusion proportional to h̄/M. Our SSNE
partially realizes the concept of ref. [4], where the diffusion effects of a stereotypical collapse
equation (our Equation (11) below) were completely eliminated by imposing frame drag.
Additionally, a related vision of induced gravity was put forward.

Sections 2 and 3 recapitulate the basics of the SNE and the G-SSE, invoking the results
of refs. [1–3]. The combination of the two equations is introduced in Section 4. Then,
Section 5 proves that the soliton momenta of SSNE are constant, so their diffusion is
canceled. Section 6 contains final remarks.

2. Semiclassical Schrödinger–Newton Equation

Consider the standard Schrödinger equation d|Ψ〉/dt = −(i/h̄)Ĥ|Ψ〉 of a massive
non-relativistic many-body system, with the Hamiltonian Ĥ not including the Newtonian
pair potential. Let $̂(r) denote the operator of mass density at the location r, normalized to
the total mass M. Instead of the Newton pair potential, one postulates that the classical
gravitational field is sourced by the mean-field 〈$̂(r)〉 = 〈Ψ|$̂(r)|Ψ〉. The semiclassical SNE
reads

d|Ψ〉
dt

= − i
h̄

Ĥ|Ψ〉+ i
h̄

G
∫ ∫

$̂(r)〈$̂(s)〉drds
|r− s| |Ψ〉

≡ − i
h̄
(Ĥ + V̂Ψ)|Ψ〉, (1)

where V̂Ψ is the Ψ-dependent Newtonian semiclassical (mean-field) interaction.
The SNE possesses soliton solutions for the c.o.m. wave function of isolated bodies.

Consider the motion of a single spherical symmetric rigid mass M; the canonical position
and momentum operators are x̂, p̂, respectively. The mass density operator can be written as

$̂(r) = M f (r− x̂) (2)

where f is a normalized non-negative spherical symmetric function. Let us introduce the
frequency parameter ωG as defined in ref. [5]:

ω2
G =

4π

3
GM

∫
f 2(r)dr. (3)

This sets an effective strength of Newtonian self-attraction (of the G-related spontaneous
collapse, too, cf. Sections 3–5) when the position uncertainty ∆x in state |Ψ〉 is much smaller
than the characteristic length scale(s) of f (r) [6]. Then, ignoring higher (than 2nd) order
terms in x̂c = x̂− 〈x̂〉, we can write the SNE (1) into the simple form (cf. Appendix A):

d|Ψ〉
dt

= − i
h̄

Ĥ|Ψ〉 − i
2h̄

Mω2
G x̂2

c |Ψ〉. (4)

If Ĥ = p̂2/2M and 〈x̂〉 = 0, then the ground state coincides with the ground state of a
central harmonic oscillator of frequency ωG:

Ψ0(x) = N exp
(
−MωGx2

2h̄

)
. (5)

This is a soliton standing at the origin. The soliton and its inertially traveling versions are
suitably representing the stationary localization of free macro objects.

However, there is no mechanism that drives larger solitons and large macroscopically
extended wave functions toward the basic soliton states of shape (5). Consider, e.g., a
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Schrödinger cat state which is a superposition of two solitons at a large distance ` from
each other:

|Cat〉 = |left〉+ |right〉√
2

. (6)

They attract each other via V̂Ψ, can even form a Kepler system, but cannot collapse to a
single soliton. Ref. [1] emphasizes that collapse needs an additional mechanism not present
in the SNE.

3. Gravity-Related Wavefunction Collapse

Alternatively to the SNE (1), the G-SSE considers the following stochastic modification
of the standard Schrödinger equation:

d|Ψ〉
dt

= − i
h̄

Ĥ|Ψ〉 − G
2h̄

∫ ∫
$̂c(r)$̂c(s)drds
|r− s| |Ψ〉+ 1

h̄

∫
$̂c(r)Φ(r)dr|Ψ〉, (7)

where $̂c(r) = $̂(r)− 〈$̂(r)〉, and Φ(r, t) is a white-noise field of spatial correlation

MΦ(r, t)Φ(s, τ) =
Gh̄
|r− s| δ(t− τ), (8)

M stands for the stochastic mean. The white-noise is to be taken in terms of the Ito
differential calculus. This G-SSE yields the spontaneous collapse of massive macroscopic
spatial superpositions of the Schrödinger cat states in particular. The average state, i.e., the
density matrix ρ̂ = M|Ψ〉〈Ψ|, satisfies the G-ME:

dρ̂

dt
= − i

h̄
[Ĥ, ρ̂]− G

2h̄

∫ ∫
[$̂(r), [$̂(s), ρ̂]]drds

|r− s|

≡ − i
h̄
[Ĥ, ρ̂] +Dρ̂. (9)

This suppresses the coherence of macroscopically distinct superpositions of the mass
density, yielding their statistical mixture without the collapse. The G-SSE (7) also adds the
collapse to the decoherence. The two distant wave packets of the Schrödinger cat state (6)
collapse onto one of them randomly at the rate

∆EG
h̄

, (10)

where ∆EG denotes how much the collapse reduces the gravitational energy of the cat [7–9].
The G-SSE (7) becomes simple for a single mass in the regime of small ∆x

(cf. Appendices B and C):

d|Ψ〉
dt

= − i
h̄

Ĥ|Ψ〉 − 1
2h̄

Mω2
G x̂2

c |Ψ〉+
√

M
h̄

ωG x̂cw|Ψ〉, (11)

where w is the vector of three independent standard white noises. (The correspondence
with notations in ref. [3] is Γ = 2Mω2

G/h̄ and dξ =
√

M/h̄ωGw.) Note that the Hermitian
self-attracting potential in the SNE (4) becomes anti-Hermitian here. For free bodies
(Ĥ = p̂2/2M), the solutions converge to solitons of the steady shape

Ψ0(x) = N exp
(
−(1− i)

MωGx2

2h̄

)
. (12)

This is slightly different from (5) due to the new complex factor 1− i, which leaves the
spread ∆x =

√
(h̄/2MωG) unchanged, simply creating the correlation h̄/2 between x̂ and

p̂. However, the major difference is in the c.o.m. motion, which is plagued by a certain
correlated diffusion of both the position and the momentum:



Quantum Rep. 2022, 4 569

d
dt
〈x̂〉 =

〈p̂〉
M

+
√

h̄/Mw, (13)

d
dt
〈p̂〉 =

√
h̄MωGw. (14)

The momentum diffusion (14) increases the kinetic energy at the rate 1
2 h̄ω2

G, which is
probably an unphysical artifact of the collapse model. We dispose of it below.

4. Schrödinger–Newton Equation with Wave Function Collapse

We slightly alter the original 1989 version (7) of the G-SSE. We insert a factor
exp(−iπ/4) = (1− i)/

√
2 in front of the anti-Hermitian stochastic potential:

d|Ψ〉
dt

= − i
h̄

Ĥ|Ψ〉 − G
2h̄

∫ ∫
$̂c(r)$̂c(s)drds
|r− s| |Ψ〉+ e−iπ/4

h̄

∫
$̂c(r)Φ(r)dr|Ψ〉. (15)

This yields the same G-ME (9) for the density matrix and also encodes the collapse of
macroscopic superpositions. The novel feature is the appearance of the Hermitian stochastic
potential Φ(r)/

√
2, which will cancel the momentum diffusion (14) of the solitons, provided

we include the gravitational self-attraction contained in V̂Ψ of the SNE.
Our new proposal is the following combination of the SNE (1) and the modified

G-SSE (15):

d|Ψ〉
dt

= − i
h̄
(Ĥ+V̂Ψ)|Ψ〉 −

G
2h̄

∫ ∫
$̂c(r)$̂c(s)drds
|r− s| |Ψ〉+ e−iπ/4

h̄

∫
$̂c(r)Φ(r)dr|Ψ〉. (16)

The ME of the average state reads:

dρ̂

dt
= − i

h̄
[Ĥ + V̂Ψ, ρ̂] +Dρ̂. (17)

This is not a closed equation for ρ̂ since V̂Ψ depends on the pure state |Ψ〉. The lack of a
closed linear ME is the signature of anomalies [10] already troubling the SNE and inherited
by our SSNE (16). There is, however, a difference. The spontaneous collapse might shadow
the anomalies. One of them, the fake action-at-a-distance, is based on the attraction caused
by V̂Ψ between the two halves |left〉, |right〉 of the Schrödinger cat [11]. Unlike in the case
of the SNE, the cat now has the finite lifetime h̄/∆EG, which may be too short to reach
detectable shifts of the left or the right wave packets [12].

We do not mean that the collapse mechanism prevents the fake action-at-a-distance
exactly, yet we mean that this anomaly is relaxed compared to its robust presence in the SNE
itself. A systematic way out of the difficulties may come from the starting idea of ultimate
space-time indeterminacy [2,7] behind the scene. In a more advanced theory, the metric
indeterminacy may, e.g., exclude the observability of the anomalies of our gravity-related
quantum non-linearity.

5. Solitons with Energy Conservation

We consider the soliton solutions of the new spontaneous collapse dynamics SSNE in
the small-∆x approximation. The single body special case of the SSNE (16) takes this form:

d|Ψ〉
dt

= − i
h̄

Ĥ|Ψ〉 − 1 + i
2h̄

Mω2
G x̂2

c |Ψ〉+ (1− i)

√
M
2h̄

ωG x̂cw|Ψ〉. (18)

Note the important complex factors (1 + i) and (1− i) compared to the small-∆x approx-
imation (11) of the G-SSE model. The ancestor of this equation is Equation (11) in [4]. It
eliminated both momentum and coordinate diffusion by construction. The basis of the
present work was the unexpected realization that the above small-∆x limit of the SSNE (16)
coincides with Equation (11) in the special case when R = 1/2 in the solitonic state and
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σ = 0 to remove the terms that would compensate coordinate diffusion as well. Below, we
show an independent proof that the the soliton’s momentum diffusion (14) cancels.

For the time-dependent wave function of the soliton, we take the following ansatz:

Ψt(x) = N exp

(
−(1− i)

|x− 〈x̂〉t|2
4∆x2 +

i
h̄
〈p̂〉x̂

)
,

∆x2 =
h̄√

2MωG
,

d
dt
〈x̂〉t =

p
M

+
√

h̄/Mwt. (19)

These solutions correspond to inertial c.o.m. motion at a constant momentum 〈p̂〉, apart
from a minuscule diffusion of the coordinate.

We still must show that the wave function Ψt(x) satisfies the Equation (18). It is
sufficient if we prove it for the soliton initially at rest at the origin, i.e., for 〈x̂〉0 = 0 and
〈p̂〉 = 0. First, we apply Equation (18) to Ψ0(x):

dΨ0(x)
dt

=

(
ih̄
∇2

2M
− 1 + i

2h̄
Mω2

Gx2+(1−i)

√
M
2h̄

ωGxw

)
Ψ0(x). (20)

Second, we derive dΨ0(x)/dt from the ansatz (19):

dΨ0(x)
dt

=

(
−
√

h̄/Mw∇+
h̄

2M
∇2
)

Ψ0(x), (21)

where the second term comes from the Ito correction (xwdt∇)2 = x2∇2dt. We substitute
the expression

∇Ψ0 = −(1− i)
x

2∆x2 Ψ0 = −(1− i)
x
2

√
2MωG

h̄
Ψ0

and then observe that the stochastic term coincides with that of (20). We also substitute
the expression

∇2Ψ0 =

(
−i

x2

2∆x4 − (1− i)
1

2∆x2

)
Ψ0

in both Equations (20) and (21). Then, after elementary algebraic steps, their deterministic
parts will also coincide.

6. Final Remarks

Penrose also proposed the spontaneous collapse rate (10) of the Schrödinger cat as well
as the SNE (1) to generate the stationary states after the collapse [7–9]. He is treating the
G-related spontaneous collapse and the SNE together. However, he has been in a holding
position regarding any concrete dynamics (such as the G-SSE or others) of the collapse.

With the goal of reaching a closed linear ME to avoid the anomalies of the SNE,
ref. [13] proposed a formal completion of the SNE by stochastic terms. Ref. [14] showed
that this goal can be achieved by combining the SNE with the G-SSE, of course differently
from the present proposal SSNE, which, contrary to refs. [13,14], sacrifices the closed ME
in favor of energy-momentum conservation—at least in the free c.o.m. motion of the
macroscopic body.

The advantage of the newly proposed SSNE (16) compared to the G-SSE (7) is this:
when the state of a free massive body is collapsing towards the localized soliton, the
spontaneous gain of kinetic energy is gradually disappearing, and in the soliton states,
the energy-momentum conservation becomes restored. The non-conservations by the
G-SSE (and by other collapse models) are probably warnings of the infancy of the models.
Yet, their related predictions are currently the only testable effects [15], since massive
Schrödinger cat states are not available in the laboratory to date. To test the G-SSE, ref. [16]
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searched for the predicted c.o.m. momentum diffusion in the super-precise data of the
Lisa Pathfinder experiment. Ref. [17] was hunting the spontaneous radiation predicted by
the momentum diffusion of the nuclei inside the detector in the super-low-background
Gran Sasso laboratory. Both works put an upper bound on the strength of the G-related
spontaneous collapse. If we adopt the new SSNE, the predicted c.o.m. momentum diffusion
drops to zero; hence, the strength of the G-related collapse could not be constrained by the
Lisa Pathfinder data. The upper bound obtained with the Gran Sasso data can be retained
because the new SSNE model predicts the same spontaneous radiation. The SSNE does
not remove the momentum diffusion of the microscopic constituents but of the c.o.m. of
the macro-objects.

Our proposal is the first dynamical model of spontaneous collapse with the partial
restoration of energy-momentum conservation at the price of typical anomalies of semiclas-
sical theories, which might become partially masked by the collapse mechanism. Future
works should aim at a more complete restoration of energy-momentum conservation and at
a better understanding of whether the said anomalies would become completely neutralized.
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Appendix A

To derive V̂Ψ of Equation (1) for small ∆x, we start from

V̂Ψ = −GM2
∫ ∫ f (r− x̂)〈 f (s− x̂)〉drds

|r− s| , (A1)

and consider the expansions

f (r− x̂) =

(
1− (x̂c∇) +

1
2
(x̂c∇)2

)
f (r− 〈x̂〉) (A2)

〈 f (r− x̂)〉 =

(
1 +

1
2
(x̂c∇)2

)
f (r− 〈x̂〉) (A3)

omitting higher-order terms in x̂c. Translation invariance of V̂Ψ allows us to set 〈x̂〉 = 0.

f (r− x̂)〈 f (s− x̂)〉 =
[

1− x̂c∇r +
1
2
(x̂c∇r)

2
]

f (r)
[

1 +
1
2
(x̂c∇s)

2
]

f (s). (A4)

Rotational invariance of V̂Ψ cancels the linear term and yields the identity
(x̂c∇)2 = (1/3)x̂2

c ∆; hence,

f (r− x̂)〈 f (s− x̂)〉= f (r) f (s)+
1
6

x̂2
c [ f (s)∆ f (r)+ f (r)∆ f (s)], (A5)

ignoring higher orders of x̂c. Using this in Equation (A1), we obtain:

V̂Ψ = −GM2
∫ ∫ f (r) f (s)drds

|r− s| +
GM2x̂2

c
6

∫ ∫ f (s)∆ f (r) + f (r)∆ f (s)
|r− s| drds

= 2EG +
4πGM2

3
x̂2

c

∫
f 2(r)dr = 2EG +

1
2

Mω2
G x̂2

c , (A6)
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where partial integrations and the indentity ∆|r− s|−1 = −4πδ(r− s) have been used. The
constant EG stands for the gravitational self-energy.

Appendix B

To derive the double integral in Equation (7) for small ∆x, we start from

GM2

2

∫ ∫ fc(r− x̂) fc(s− x̂c)drds
|r− s| , (A7)

and substitute the expansion

fc(r− x̂) = f (r− x̂)− 〈 f (r− x̂)〉 = −(x̂c∇) f (r− 〈x̂〉). (A8)

Again, we can take 〈x̂〉 = 0, yielding

GM2x̂2
c

6

∫ ∫ ∇r f (r)∇s f (s)drds
|r− s| =

4πGM2x̂2
c

6

∫
f 2(r)dr =

1
2

Mω2
G x̂2

c . (A9)

Appendix C

To derive the stochastic term in Equation (7) for small ∆x, we write

1
h̄

∫
$̂c(r)Φ(r)dr =

M
h̄

x̂c

∫
∇ f (r)Φ(r)dr (A10)

and introduce the new stochastic variable, linear in the old stochastic field Φ(r):

w =

√
M
h̄

ω−1
G

∫
∇ f (r− 〈x̂〉)Φ(r)dr. (A11)

For the correlation function, we obtain the following:

Mwt ◦wτ =
M
h̄

ω−2
G

∫ ∫
(∇ f (r) ◦ ∇ f (s))MΦ(r, t)Φ(s, τ)drds

=
M
h̄

ω−2
G

∫ ∫
f (r) f (s)∇r ◦ ∇s)

h̄G
|r− s|drdsδ(t− τ)

= ω−2
G

4π

3
I3×3GM

∫
f 2(r)drδ(t− τ) = I3×3δ(t− τ) (A12)

where MΦ(r, t)Φ(s, τ) has been substituted by the expression (8).
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