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We discuss the Hamiltonian hybrid coupling between a classical and a quantum subsystem. If applicable
to classical gravity coupled to quantized matter, this hybrid theory might realize a captivating
“postquantum” alternative to full quantum gravity. We summarize the nonrelativistic hybrid dynamics
in improved formalism adequate to Hamiltonian systems. The mandatory decoherence and diffusion terms
become divergent in special and general relativistic extensions. It is not yet known if any renormalization
method might reconcile Markovian decoherence and diffusion with relativity. Postquantum gravity could
previously only be realized in the Newtonian approximation. We argue that pending problems of the
recently proposed general relativistic postquantum theory will not be solved if Markovian diffusion/
decoherence are truly incompatible with relativity.
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I. INTRODUCTION

The dynamical coupling between a classical and a
quantum subsystem is of multiple interests, e.g., in math-
ematical physics, in heuristic models, and particularly in
foundations. If gravity were fundamentally classical, then
its hybridized dynamics with quantized matter would
replace the mean-field (semiclassical) approximation
[1,2] and the famously inconclusive versions of quantum
gravity. Such a captivating idea has been kept alive from
an episodic suggestion [3,4]—based on incorrect non-
relativistic (NR) hybrid dynamics [5]—through works by
the present author and by others [6–12] until culminating
in the postquantum gravity of Oppenheim and coworkers
[13–16].
Parallel to the fundamental concept, the underlying

mathematical tool has been researched persistently along
important milestones [8–10,17–28]. The central technical
issue that has been solved nonrelativistically is the follow-
ing. Suppose the hybrid Hamiltonian contains in turn the
classical Hamilton function of the classical subsystem,
the Hamilton operator of the quantum subsystem, and the
coupling between them:

Ĥðq; pÞ ¼ HCðq; pÞ þ ĤQ þ ĤCQðq; pÞ: ð1Þ

The evolution equation of the state vector of the quantum
subsystem is the Schrödinger equation iℏjΨi=dt ¼
Ĥðq; pÞjΨi. The backaction of the quantum subsystem
on the classical one is nontrivial. Toward the solution

of interest, we introduce the hybrid state, represented by
the hybrid density ρ̂ðq; pÞ ≥ 0, which is a combination of
the density operator ρ̂Q ¼ R

ρ̂ðq; pÞdqdp of the quantum
subsystem and the phase-space density ρCðq; pÞ ¼
trρ̂ðq; pÞ of the classical one. Assume the following
combination of the classical and quantum dynamics [17]:

dρ̂ðq; pÞ
dt

¼ −
i
ℏ
½Ĥðq; pÞ; ρ̂� þ HfĤðq; pÞ; ρ̂ðq; pÞg

≡ fĤðq; pÞ; ρ̂ðq; pÞgA; ð2Þ

where f; g stands for the Poisson bracket. The term
HfĤCQðq; pÞ; ρ̂ðq; pÞg represents the backaction, and
the symbol H means the Hermitian part. If it is zero, we
get the standard classical and quantum dynamics separately
for the two subsystems, as we should. But the seemingly
plausible dynamics (2) is not yet mathematically correct; it
does not preserve the positivity of ρ̂ðq; pÞ. Additional
decoherence and diffusion mechanisms are mandatory, and
they are subject to trade-off: stronger decoherence allows
for weaker diffusion and vice versa [8]. The ultimate
general form of hybrid NR dynamics appeared in
Refs. [26–29].
Instead of a master equation for ρ̂ðq; pÞ, the stochastic

differential equations for the pure quantum state P̂ and the
classical variables ðq; pÞ offer an equivalent alternative. As
an analogy, remember, for example, that the classical
Fokker-Planck equation is equivalent to the Langevin
stochastic differential equation. In the hybrid case, the
backaction is realized by time-continuous quantum meas-
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feedback of the measured signal into the classical sub-
system. The importance of this formalism is emphasized
especially in Refs. [28,30]. Compared to the master
equation of hybrid canonical coupling, the modular mon-
itoring-plus-feedback construction gives better intuition as
observed in Ref. [30].
Undoubtedly, hybrid coupling is not possible without

compromises. For example, there are two fundamental
issues with the semiclassical approximation: fake action-at-
a-distance and breakdown of Born’s statistical interpreta-
tion (cf., e.g., notes [31] and references therein). These two
issues would be unacceptable in a fundamental theory. But,
it is crucial that they are NR effects absolutely unrelated to
relativity or gravity, related only to the nonlinearity of the
semiclassical hybrid equations. It was shown that linearity
can be maintained by assuming a well-defined minimum
noise in the hybrid coupling [8]. We thus have a linear NR
hybrid dynamics [26–29] with tractable compromise (noisi-
ness) instead of the two fundamental defects mentioned
above. The question now is whether there is a relativistic
extension of this hybrid dynamics.
Our goal is threefold: a convenient introduction to the

mathematics of NR hybrid canonical dynamics, the assess-
ment of its application in postquantum gravity, and a
discussion if it could have surpassed its old Newtonian
“forerunner.”
Section II recapitulates state-of-the-art knowledge of NR

hybrid canonical dynamics. Section III explains the locality
condition of relativistic invariance and the resulting diver-
gences. Section IV tests the special relativistic extension on
the simplest example of hybrid coupling between a
classical and a quantized scalar field. Section V revisits
the effort toward general relativistic postquantum gravity,
extending the NR hybrid dynamics for general relativity.
Section VI recapitulates the NR forerunner of postquantum
general relativity. Final remarks and our conclusion are
given in Sec. VII.

II. THE NONRELATIVISTIC CANONICAL
HYBRID DYNAMICS

Our hybrid system of interest consists of a NR classical
canonical subsystem and a NR quantized subsystem. To
model their coupled dynamics we start from the naive
combination (2). In addition to the Dirac and Poisson
brackets, there are mandatory decoherence and diffusion
terms that will necessitate the postulation of a Riemann
metric on the phase-space manifold (or on its submanifold).
The resulting irreversible dynamics obtain the form of the
hybrid master equation (HME) which is the combination of
the classical Fokker-Planck and the quantum Lindblad
equations (Sec. II A). This irreversible dynamics is equiv-
alent with the coupled stochastic processes in the classical
phase space and the Hilbert space, respectively, and
represented by a couple of hybrid stochastic differential
equations (HSDEs) in Sec. II B. In physics, the special

case is of interest when the classical coordinates are
coupled to the quantum subsystem but the classical
momenta are not (Sec. II C). The material presented here
is based primarily on Refs. [26–29], deduced basically
from [28] (cf. Appendix A), and improved by the Riemann
metric interpretation of the decoherence and diffusion
kernels. It is important that we treat the HME and
HSDE formalisms as equivalent; both have their own
conceptual universality.

A. Hybrid master equation

Let ĤðxÞ≡ Ĥðq; pÞ be our hybrid Hamiltonian where
the classical subsystem is canonical. The first N canonical
variables fxn; n ¼ 1;…; Ng are the coordinates and the
second N ones fxn; n ¼ N þ 1;…; 2Ng are the momenta:

xn ¼
�
qn; n ¼ 1; 2;…N

pn; n ¼ N þ 1; N þ 2;…; 2N:
ð3Þ

The HME of the hybrid density ρ̂ðq; pÞ ¼ ρ̂ðxÞ takes this
form:

dρ̂
dt

¼ −
i
ℏ
½Ĥ; ρ̂� þ HfĤ; ρ̂g þDρ̂≡ fĤ; ρ̂gA þDρ̂; ð4Þ

where f; gA is the Aleksandrov hybrid bracket, D is
the superoperator of decoherence and diffusion (D&D).
The notation of x-dependences of Ĥ; ρ̂;D are spared. The
classical canonical Poisson bracket is defined by

fÂ; B̂g ¼ Â;nϵ
nmB̂;m ¼ ðÂϵnmB̂;mÞ;n ¼ ðÂ;nϵ

nmB̂Þ;m; ð5Þ

where ϵnm is the 2N × 2N symplectic matrix. We intro-
duced the shorthand notation for partial derivatives such as
∂Â=∂xn ¼ Â;n as well as Einstein’s convention for the
summation of repeated indices. If we define the canonical
velocity operators

v̂n ¼ fxn; Ĥg ¼ −ϵnmĤ;m; ð6Þ

then the Poisson bracket will have the useful equivalent
expression

HfĤ; ρ̂g ¼ Hv̂nρ̂;n: ð7Þ

To construct the canonical HME we impose a Riemann
metric structure in addition to the symplectic structure of
the phase space, via the arbitrary choice of the 2N × 2N
covariant metric tensor γnmðxÞ. The D&D terms are the
following:

Dρ̂ ¼ −
γnm
8

½v̂n; ½v̂m; ρ̂�� þ 1

2
ðγnmρ̂Þ;nm

≡DQρ̂þDCρ̂; ð8Þ
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where we assume that the velocities v̂nðxÞ are linearly
independent operators, also independent from any
c-number functions. That is, we assume the equation

λnðxÞv̂nðxÞ ¼ φðxÞ ð9Þ

is satisfied only for vanishing λn and φ.

B. Hybrid stochastic differential equations

The canonical HME (4) with D&D (8) is equivalent to
two coupled stochastic processes, one for the diffusion of
the pure state P̂t ≡ jΨtihΨtj in the Hilbert space, the other
one for the diffusion of xt in the phase space, meaning in
fact the statistical interpretation of the HME. Also called
stochastic unraveling of the HME, the processes are
defined by the coupled HSDEs:

dP̂
dt

¼−
i
ℏ
½ĤðxÞ;P̂�þDQðxÞP̂þHðv̂nðxÞ−hv̂nðxÞiÞP̂wnðxÞ;

ð10Þ

dxn

dt
¼ hv̂nðxÞi þ wnðxÞ; ð11Þ

where hv̂nðxÞi ¼ trðv̂nðxÞP̂Þ. Both SDEs are driven by the
same white noise wn ¼ γnmwm whose correlations are
determined by the metric

Mwnðx; tÞwmðx; τÞ ¼ γnmðxÞδðt − τÞ;
Mwnðx; tÞwmðx; τÞ ¼ γnmðxÞδðt − τÞ;
Mwnðx; tÞwmðx; τÞ ¼ δnmδðt − τÞ: ð12Þ

The symbol M stands for the stochastic mean.
In this formalism of the hybrid dynamics the back-

action follows from the monitoring-plus-feedback
mechanism. Equation (10) coincides with the stochastic
master equation of time-continuous simultaneous quantum
measurements—monitoring—of the observables v̂n. The
measured signal hv̂ni þ wn will then control feedback in the
equation of motion (11) of the classical phase-space
variables xn. Note that this SDE can be written as

dxn

dt
¼ fxn; hĤðxÞig þ wn; ð13Þ

which is the mean-field (semiclassical) backaction plus our
mandatory white noise. Observe that unlike white noises,
the phase-space coordinates xnðtÞ are continuous functions,
containing the integrals of the white noises wnðtÞ. The path
in phase space is a (generalized) Wiener process.

C. Coordinate coupling

The D&D terms (8) correspond to the minimum noise
dynamics if the 2N velocities v̂nðxÞ are independent

operator fields on the phase space. However, they are
not so in many concrete hybrid systems. Suppose K is the
maximum number of independent constraints (9):

λanðxÞv̂nðxÞ ¼ φaðxÞ ða ¼ 1; 2;…; KÞ ð14Þ

withK linear independent vector fields λan ≠ 0. Then we can
always find a coordinate transformation xn ⇒ fnðxÞ such
that the first 2N − K velocities v̂n become independent
operators and the rest of them are c-numbers: v̂n ¼ vnÎ
for ni2N − K. Then the minimum noise D&D corresponds
to the same structure (8) but the indices run from 1 to
2N − K. The ð2N − KÞ × ð2N − KÞ metric tensor γnm
defines a Riemann structure on the first 2N − K coordinates
while it depends parametrically on the rest of them.
An important special case is coordinate coupling when

∂Ĥ=∂qn are independent operators but ∂Ĥ=∂pn are zeros
or c-number functions. We impose the Riemann metric
structure on the subspace of canonical coordinates only.
The N × N metric tensor γnmðq; pÞ will be the metric for
the coordinates q; still it may parametrically depend on the
momenta p as well. With the hybrid part of momentum
velocity operators

v̂n ¼ −
∂ĤCQ

∂qn
; ð15Þ

the D&D terms take this form:

Dρ̂ ¼ −
γnm
8

�
∂ĤCQ

∂qn
;

�
∂ĤCQ

∂qm
; ρ̂

��
þ 1

2

∂
2ðγnmρ̂Þ
∂pn

∂pm : ð16Þ

As we see, momentum velocity operators v̂n are actors of
decoherence and classical momenta pn are subjects of
diffusion.
The HSDEs (11) and (10) of the equivalent stochastic

processes become the following:

dP̂
dt

¼ −
i
ℏ
½Ĥðq; pÞ; P̂� þDðq; pÞP̂

þ Hðv̂nðq; pÞ − hv̂nðq; pÞiÞP̂wnðq; pÞ; ð17Þ

dqn
dt

¼ ∂hĤðq; pÞi
∂pn ; ð18Þ

dpn dt ¼ −
∂hĤðq; pÞi

∂qn
þ wnðq; pÞ: ð19Þ

As in Eq. (12), the noise wn ¼ γnmwm satisfies

Mwnðq; p; tÞwmðq; p; τÞ ¼ γnmðq; pÞδðt − τÞ;
Mwnðq; p; tÞwmðq; p; τÞ ¼ γnmðq; pÞδðt − τÞ;
Mwnðq; p; tÞwmðq; p; τÞ ¼ δnmδðt − τÞ: ð20Þ
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This is the minimum-noise D&D term of general coor-
dinate coupling provided the derivatives ∂Ĥ=∂qn are N
independent operators.

III. LOCALITY CONDITION OF RELATIVISTIC
CONTINUUM DYNAMICS

Let us consider the Markovian dynamics dρ=dt ¼ Lρ
where ρ is classical, quantum, or hybrid state, and L is the
generator of time evolution, respectively, of Fokker-Planck,
Lindblad, or hybrid field dynamics. For relativistic invari-
ance, Lmust be the zeroth component of a four-vector. This
condition on L is, however, not sufficient [32]. It must be
the spatial integral of the generator density LðrÞ:

L ¼
Z

LðrÞdr; ð21Þ

and LðrÞ must satisfy the locality condition

½LðrÞ;LðsÞ� ¼ 0: ð22Þ

Then, given the state on the hypersurface σ1, it maps to
another hypersurface as follows:

ρðσ2Þ ¼ exp

�Z
σ2≻ðt;rÞ≻σ1

LðrÞdrdt
�
ρðσ1Þ: ð23Þ

Without the locality condition, this relationship does not
exist, and we miss the map between states on two different
hypersurfaces. Of course, the map between Lorentz frames
is also impossible.
In standard relativistic field theories, classical or quantum,

the generator field reads L ¼ fH; g or L ¼ −ði=ℏÞ½Ĥ; �,
respectively, and is local since the Hamiltonian densities
H; Ĥ are local. Locality of the generator L survives in
effective field theories. If, however, the effective theory
contains diffusion (or decoherence), then we face difficulties.
To retain locality of the generator L the diffusion
(decoherence) kernel must be local, i.e., proportional to
δðr − sÞ, and then, unfortunately, the theory yields infinities.
Take, for instance, the Fokker-Planck equation of a scalar
field with the local diffusion kernel γδðr − sÞ. It yields an
infinite rate kinetic energy production at each point r. It is not
known whether relativistic Fokker-Planck field equations are
renormalizable or are not. The same concern applies to the
Lindblad and hybrid dynamics.

IV. ON SPECIAL RELATIVISTIC HYBRID FIELD
DYNAMICS

We test the NR hybrid classical-quantum theory (Sec. II)
in coordinate coupling (Sec. II C) of special relativistic
fields. The coordinates and momenta become functions
qðrÞ; pðrÞ, and the discrete labels n, m become the
continuous spatial vectors r, s, respectively. Sums over

indices become spatial integrals, Kronecker deltas become
Dirac deltas, derivations, e.g., ∂=∂qn, become functional
derivations δ=δqðrÞ.
Consider the coupling of the free classical scalar field

qðrÞ [with canonical momentum pðrÞ] to the free quantized
boson field ϕ̂ðrÞ [with canonical momentum π̂ðrÞ]:

ĤCQ½q� ¼ κ

Z
qðrÞϕ̂ðrÞdr: ð24Þ

This coupling is independent of the classical canonical
momentum pðrÞ, and we can apply Eq. (16) with

δĤCQ

δqðrÞ ¼ −κϕ̂ðrÞ: ð25Þ

The D&D terms depend on the metric that can in general be
a functional kernel γ½q;q0�. At the same time, we should
damp remote correlation in decoherence as well as in
diffusion. The metric must have a spatial damping factor. In
the simplest case, we choose a flat metric γrr0 without the
functional dependencies. The covariant and contravariant
kernels are inverses of each other:

Z
γrs0γ

s0sds0 ¼ δðr − sÞ: ð26Þ

Then the D&D terms (16) take the following form:

Dρ̂ ¼ −
κ2

8

Z Z
γrs½ϕ̂ðrÞ; ½ϕ̂ðsÞ; ρ̂��drds

þ 1

2

Z Z
γrs

δ2ðρ̂Þ
δpðrÞδpðsÞ drds: ð27Þ

Both D&D terms violate the special relativistic invari-
ance unless the kernel itself is invariant. It is easy to ensure
Galilean invariance if γrs is a function of jr − sj. The only
kernels that ensure relativistic invariance are the singular
local ones:

γrs ¼ γδðr − sÞ; γrs ¼ γ−1δðr − sÞ: ð28Þ

But they lead to untractable divergences of the kinetic
energy density K ¼ 1

2
ðπ̂2 þ p2Þ:

dKðrÞ
dt

¼1

2
D†

Qπ
2ðrÞþ1

2
D†

Cp
2ðrÞ¼

�
γ

4ℏ2
þ1

γ

�
δð0Þ: ð29Þ

The D&D terms (27) yield an infinite rate of heating at each
location in the quantized bosonic as well as in the classical
scalar field subsystems. Allowing functional dependence of
the metric does not help since the relativistic invariance of
spatial damping requires the presence of the spatial δ
function singularity.
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These divergences are different from the usual diver-
gences in relativistic field theory. Either we invent their
renormalization, if it is possible at all, or we are losing
special relativistic invariance, and we are left with the NR
hybrid calculus.

V. ON HYBRID GENERAL RELATIVITY

Instead of full quantum gravity, it would be of great
simplification if we could keep the spacetime classical.
Accordingly, we take a chance to extend the NR hybrid
dynamics of Sec. II for coupling between a classical
canonical form of general relativity and quantized relativ-
istic matter. In the canonical form of Einstein’s general
relativity, (3þ 1)-dimensional diffeomorphism invariance
is encoded by the combination of three-dimensional spatial
diffeomorphism (sDM) invariance and time-reparametriza-
tion (tRP) invariance. Following Refs. [15,16], we build up
the formal sDM and tRP invariant hybrid equations
(Sec. VA). We are going to the wall to ensure both these
invariances but that remains a problem (Sec. V B).

A. Equivalent formalisms: HME and HSDE

The canonical coordinates are the configurations of the
3 × 3 metric tensor field gikðrÞ, satisfying the canonical
commutation relationship with the canonical momenta
πikðrÞ:

fgijðrÞ; πklðsÞg ¼ δklijδðr; sÞ; ð30Þ

where δklij ¼ 1
2
ðδki δlj þ δliδ

k
jÞ and we use the covariant delta

function

δðr; sÞ ¼ 1ffiffiffiffiffiffiffiffiffi
gðrÞp δðr − sÞ; ð31Þ

where g ¼ det gij. The covariant Poisson bracket is
defined by

fÂ; B̂g ¼
Z �

δÂ
δgijðrÞ

δB̂
δπijðrÞ −

δÂ
δπijðrÞ

δB̂
δgijðrÞ

�
dV; ð32Þ

where dV ¼ dVr ¼
ffiffiffiffiffiffiffiffiffi
gðrÞp

dr. Through this section, the
functional derivatives are the covariant ones, i.e., 1=

ffiffiffi
g

p
times the common ones.
The hybrid Hamiltonian reads

Ĥ½g; π;N; N⃗� ¼ HG½g; π;N; N⃗� þ ĤM½g;N; N⃗�; ð33Þ

where HG½g; π;N; N⃗� is the classical Hamilton function of
gravity and ĤM½g;N; N⃗� is the Hamiltonian of the quan-
tized matter fields, coupled only to gik and not to πik. They
depend on the freely chosen lapse N and shift Ni:

HG½g;π;N;N⃗�¼
Z

ðNðrÞHGðrÞþNiðrÞPi
GðrÞÞdV; ð34Þ

ĤM½g;N; N⃗� ¼
Z

ðNðrÞĤMðrÞ þ NiPi
MðrÞÞdV: ð35Þ

HGðrÞ and ĤMðrÞ are the Hamiltonian densities of
gravity and matter, respectively, and Pi

G is the momentum
density of gravity:

Pi
G ¼ −2∇iπ

ijðrÞ; ð36Þ

where ∇j denotes covariant derivation. The gravity’s
Hamiltonian density reads

HG ¼ 16πG
c2

1

g

�
πijπij −

1

2
ðπiiÞ2

�
−

c4

16πG
R; ð37Þ

with the scalar curvature R. The matter’s Hamiltonian
ĤMðrÞ and momentum density Pi

M depend on the matter
fields. Remember that they should not depend on πik.
In the hybrid Hamiltonian (33), the lapse N multiplies

the Hamiltonian constraint, the shift Ni multiplies the
diffeomorphism constraint which we impose on the hybrid
state:

ðHGðrÞ þ ĤMðrÞÞρ̂½g; π� ¼ 0; ð38Þ

ðPi
GðrÞ þ P̂i

MðrÞÞρ̂½g; π� ¼ 0: ð39Þ

These might ensure tRP and sDM invariances, respectively.
The conditional phrase is of reason. If both gravity and
matter were quantized (or classical), then the above con-
straints would guarantee the said invariances under pure
classical canonical (or pure unitary) dynamics. Their
compatibility and applicability in hybrid dynamics are
not yet clear. Moreover, hybrid dynamics are not neces-
sarily compatible with tRP and sDM invariances, as we
see below.
To construct the hybrid coupling and the D&D terms, we

need the momentum velocity operators (15):

v̂ikðrÞ ¼ −
δĤM

δgikðrÞ
¼ −NðrÞ

�
∂ĤMðrÞ
∂gikðrÞ

þ 1

2
gikðrÞĤMðrÞ

�
:

ð40Þ

The HME (4) of the state ρ̂½g; π� takes this form:

dρ̂
dt

¼−
i
ℏ
½ĤM; ρ̂�þfHG; ρ̂g−H

Z
v̂ik

δρ̂

δπik
dVþDρ̂: ð41Þ

While the hybrid Hamiltonian parts are unique, the D&D
term Dρ̂ is not, and its consistent choice is nontrivial (see
Sec. V B).
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The HME (41) has its alternative stochastic representa-
tion in terms of SHDEs. We apply Eqs. (18)–(20):

dP̂
dt

¼ −
i
ℏ
½ĤM; P̂� þDQP̂þ H

Z
ðv̂ij − hv̂ijiÞP̂wijdV;

ð42Þ

dgij
dt

¼ δHG

δπij
; ð43Þ

dπij

dt
¼ −

δHG

δgij
þ hv̂iji þ wij; ð44Þ

where the noises satisfy

Mwijðr; tÞwklðs; τÞ ¼ γijjklðrjsÞδðt − τÞ;
Mwijðr; tÞwklðs; τÞ ¼ γijjklðrjsÞδðt − τÞ;
Mwijðr; tÞwklðs; τÞ ¼ δijklδðt − τÞ; ð45Þ

and DQ will be discussed in Sec. V B.
As we said in Sec. II B, Eq. (42) corresponds to

the quantum monitoring of the velocity operators
v̂ij ¼ −δĤM=δgij, and the noisy measured signal hv̂iji þ
wij is fed back on the right-hand side (rhs) of Eq. (44)
of dπij=dt.

B. The decoherence-diffusion kernels

Recall that the hybrid dynamics (Sec. II C) assumes a
certain metric on the space of canonical coordinates, which
is a functional metric on the function space of 3 × 3 metric
tensor fields gijðrÞ. We restrict ourselves to the metrics

ðdgÞ2 ¼
Z Z

γijjklðrjsÞdgijðrÞdgklðsÞdVrdVs; ð46Þ

where the functional metric tensor γ contains explicit
coordinate dependence on ðr; sÞ to damp remote correla-
tions; also it may depend on gijðrÞ and gklðsÞ (meaning
nonflat functional geometry). Accordingly, the D&D terms
take this form:

DQ ¼ −
1

8

Z Z
γ−1ijjklðrjsÞ½v̂ijðrÞ; ½v̂klðsÞ; ρ̂��dVrdVs; ð47Þ

DC ¼ 1

2

Z Z
δ2ðγijjklðrjsÞρ̂Þ
δπijðrÞδπklðsÞ dVrdVs; ð48Þ

where the covariant and contravariant metrics satisfy the
functional relationship

Z Z
γijjk0l0 ðrjs0Þγk0l0jklðs0jsÞdVs0 ¼ δklijδðr; sÞ: ð49Þ

It is instructive to consider the simple special case when the
kernels are local. Then their structure is perfectly deter-
mined by covariance:

γijjklðrjsÞ ¼
γðRÞ
NðrÞG

ðαÞ
ijjklðrÞδðr; sÞ;

GðαÞ
ijjkl ¼

1

2
gikgjl þ

1

2
gilgjk þ αgijgkl; ð50Þ

γijjklðrjsÞ ¼ NðrÞ
γðRÞG

ijjkl
ðβÞ ðrÞδðr; sÞ;

Gijjkl
ðβÞ ¼ 1

2
gikgjl þ 1

2
gilgjk þ βgijgkl: ð51Þ

These kernels are positive if α; βi − 1=3. If 3αβ þ αþ
β ¼ 0, then the kernels are each other’s inverses as they
should be, according to Eq. (49).
With the above kernels, unfortunately, both the D&D

terms in Eqs. (47) and (48), respectively, become divergent
because of the δ-functions, just as in Sec. IV. However, a
rescue procedure seems to be on offer.
We could try the sDM invariant regularization.

For instance, we replace the δðr; sÞ in the decoherence
kernel (50) by

N ϵðr; sÞ exp
�
−
l2ðr; sÞ

2ϵ

�
; ð52Þ

where N ϵðr; sÞ is for normalization, lðr; sÞ is the geodesic
distance between r and s, and ϵ is the small parameter to go
to þ0. To keep covariance, the index factor, too, should go
nonlocal:

GðαÞ
ijjklðrjsÞ ¼

1

2
Pj0
j P̄

k0
k gik0 ðrÞgj0lðsÞ þ

1

2
Pj0
j P̄

l0
l gil0 ðrÞgkj0 ðsÞ

þ αgijðrÞgklðsÞ: ð53Þ

Here Pi
j is a geodesic parallel transport of covariant vectors

from s to r and P̄i
j is the same from r to s.

So far so good. The problem is the factor 1=NðrÞ, which
ensures the tRP invariance. We should keep it but we
cannot. It cannot be split for the two locations r and s. The
same problem would come along with the factor NðrÞ if we
regularized the decoherence kernel (51) first.
The lesson goes beyond the example. Any nonlocal

generalization of the kernels will necessarily violate the
tRP invariance. Local kernels, on the other hand, generate
divergences whose removal may or may not be possible.
Hence, for the time being, a compromise seems inevitable.
We give up tRP invariance and retain sDM invariance that
allows regular nonlocal kernels. Just losing tRP invariance
means losing relativistic invariance. We are left with NR
slow motions in a distinguished frame: sDM is pointless.
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Also the spacetime must be nearly flat. That is the
Newtonian limit.

VI. NEWTONIAN HYBRID CLASSICAL-
QUANTUM GRAVITY

When recapitulating the results of Refs. [11,12], we use a
particular approach. These works used the NR HSDE
representation of hybrid dynamics. Not for deduction but
for comparison, we guide our derivation by the HSDEs
(42)–(44) that promised general relativistic postquantum
gravity in Sec. V. We present the HSDEs of Newtonian
hybrid theory first.
What is the closest NR dynamics to the HSDEs (42)–

(45)? The matter Hamiltonian with the hybrid coupling
reads

ĤM½Φ� ¼ Ĥ0 þ
Z

μ̂ΦdV; ð54Þ

where Φ is the Newton potential and μ̂ is the NR quantum
field of mass density. The quantum monitoring of v̂ij

corresponds to the quantum monitoring of μ̂ðrÞ since the
nonrelativistic limit of v̂ij is ∝ μ̂. Hence, the NR counter-
part of the SDE (42) is

dP̂
dt

¼ −
i
ℏ
½ĤM½Φ�; P̂� þDQP̂þ 1

ℏ
H
Z

ðμ̂ − hμ̂iÞP̂wdV;

ð55Þ

with

DQP̂ ¼ −
1

8ℏ2

Z Z
γrs½μ̂ðrÞ; ½μ̂ðsÞ; P̂��drds: ð56Þ

The measurement signal is of the standard form

hμ̂i þ w̃; ð57Þ

where w̃ðr; tÞ ¼ R
γrswðs; tÞds. The covariant and contra-

variant components (w; w̃) of the same noise satisfy

Mwðr; tÞwðs; τÞ ¼ γrsδðt − τÞ;
Mw̃ðr; tÞw̃ðs; τ� ¼ ℏ2γrsδðt − τÞ;
Mwðr; tÞw̃ðs; τ� ¼ ℏδðr − sÞδðt − τÞ: ð58Þ

Since gravity has no self-dynamics, HG ¼ 0, the back-
action (43) and (44) reduces to the Poisson equation
sourced by the signal (57), and we can solve it:

Φðr; tÞ ¼ 4πG
∇2

ðhμ̂ðrÞit þ w̃ðr; tÞÞ
≡Φmfðr; tÞ þ δΦðr; tÞ: ð59Þ

The deterministic term Φmf is the mean-field (semiclass-
ical) part, the stochastic term is a white noise of correlation

MδΦðr; tÞδΦðs; τÞ ¼ 4πG
∇2

r

4πG
∇2

s
ℏ2γrsδðt − τÞ: ð60Þ

When Φ is fed back in Eq. (55), the Hamiltonian ĤM½Φ�
generates the Newtonian pair potential

V̂G ¼ −
G
2

Z Z
μ̂ðrÞμ̂ðsÞ
jr − sj drds: ð61Þ

Unlike the general relativistic ĤM½g�, where g is a Wiener
process, Φ is not, it is the time derivative of a Wiener
process. The feedback of the white-noise term in ĤM½Φ�,
proportional to δΦ, will contribute to a new decoherence
term:

Dfb
Q P̂ ¼ −

1

2ℏ2

Z Z �
4πG
∇2

r

4πG
∇2

s
γrs

�
½μ̂ðrÞ; ½μ̂ðsÞ; P̂��drds:

ð62Þ

This backaction makes a remarkable difference compared
to the general relativistic case in Sec. V B. The ambiguity of
the D&D kernels can be removed by the principle of
least decoherence. Since γrs ¼ γ−1rs , the total decoherence
DQ þDfb

Q possesses a minimum when

γrs ¼
2ℏG
jr − sj ;

γrs ¼ −
1

8πℏG
∇2δðr − sÞ: ð63Þ

Accordingly, the least decoherence reads

DDP
Q ¼ −

G
2ℏ

Z Z ½μ̂ðrÞ; ½μ̂ðsÞ; P̂��drds
jr − sj ; ð64Þ

and the correlation of the gravitational fluctuations become

MδΦðr; tÞδΦðs; τÞ ¼ ℏG=2
jr − sj δðt − τÞ: ð65Þ

We obtain the HSDEs of the Newtonian NR postquan-
tum gravity:

dP̂
dt

¼ −
i
ℏ
½Ĥ0 þ V̂G; P̂�

þDDP
Q P̂þ H

1þ i
ℏ

Z
ðμ̂ − hμ̂iÞP̂wdV; ð66Þ

Φ ¼ 4πG
∇2

hμ̂i − 1

2
w ¼ Φmf −

1

2
w; ð67Þ

where Φmf is the mean-field (semiclassical) Newton
potential, and
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Mwðr; tÞwðs; τÞ ¼ 2ℏG
jr − sj δðt − τÞ: ð68Þ

For pointlike particles the theory is divergent and
predicts a kinetic energy increase at an infinite rate.
Therefore, μ̂ðrÞ must be smoothened by a short length
cutoff parameter, the only free parameter of the theory
(see [33] for its experimental limit).
Observe that due to the simple structure of the

Newtonian postquantum dynamics the reduced dynamics
of the quantized matter is autonomous. Take the stochastic
mean of both sides of Eq. (66), and then the following
Lindblad master equation is obtained for ρ̂Q ¼ MP̂:

dρ̂Q
dt

¼−
i
ℏ
½Ĥ0þ V̂G; ρ̂Q�−

G
2ℏ

Z Z
½μ̂ðrÞ;½μ̂ðsÞ; ρ̂Q��

drds
jr−sj :

ð69Þ

The full HME, equivalent to the HSDE formalism (66)–
(68), is derived in Appendix B.

VII. REMARKS AND CONCLUSIONS

The issues of hybrid dynamics relativistic extensions that
Secs. IVand V claim are unsolved were carefully discussed
by the authors of Refs. [15,16], highlighting some per-
spectives toward solutions. These are assessed with
certain reservations in Ref. [30]. We add that the literature
offers no support for hybrid constraints, and little or no
support for renormalizability of relativistic effective field
theories whether they are classical, quantum, or hybrid.
Toward fixing infinities predicted by relativistic Lindblad
and Fokker-Planck equations, conclusive research is
missing even for the simple special relativistic D&D
in Sec. IV.
Some additional details about the nonrelativistic “post-

quantum” theory (Sec. VI) are to be recalled. It all started in
foundations (reviewed in [34,35]), with a gravity-related
nonrelativistic model of the quantum-classical transition [6]
and a naive formalism of relativistic monitoring-plus-
feedback [7]. Recognizing the difficulties of relativistic
monitoring, only the Newtonian limit of monitoring-plus-
feedback was briefly presented. Much later, the concept of
postquantum gravity, called a “conceptually healthier semi-
classical theory,” was stated literally in [11]: monitoring the
quantized energy-momentum tensor T̂ab and its measured
value fed back into the Einstein equation of classical general
relativity. After two and a half decades, this work and its
follow-up [12] must still have adhered to the Newtonian
limit. The reason has remained the same: the missing theory
of relativistic monitoring. The concrete technical obstacles
are the D&D kernels that must be time local for
Markovianity. If the suitably covariant kernels exist at all,
they generate divergences whose treatment is unknown.
Without these difficulties, the monitoring-plus-feedback

form (equivalent to the hybrid master equation form) of
postquantum general relativity would have been a straight-
forward step. Vice versa, if the hybrid master equation form
of postquantum gravity got rid of its difficulties with the
D&D kernels, it would contain a module of relativistic
quantum monitoring. This matches with the assessment
in Ref. [30].
The pending issues of the recent proposal [15,16] of

postquantum gravity are the known old difficulties that
have been hindering the relativistic extension of the
Newtonian forerunner [6,7,11,12]. The difficulties are
rooted in difficulties of Lindblad as well as of Fokker-
Planck dynamics of relativistic fields; both dynamics are
obligatory parts of postquantum gravity. Although these
issues might become fixed later, the contrary is equally
likely: relativity and Markovianity of decoherence (or
diffusion) may turn out to be just inconsistent [32].
In contrast to the relativistic postquantum gravity, the

Newtonian precursor [6,11,12] is a consistent model with a
single free parameter. The predicted violation of the
superposition principle and the presence of the tiny noise
have been looked for by various experiments reviewed,
e.g., in [36]. The model, also called the Diósi-Penrose
model, is currently neither confirmed nor ruled out.
For a conclusive test, the quantum control of the test
mass motional states must be improved. Even higher
improvement will be requested in the proposed nonrela-
tivistic tests to rule out the classicality of gravity [37–39].
Such tests might or might not rule out unquantized
gravity theories. As yet, this is at worst a period of grace
for them.
The present author expects that the hybrid of classical

gravity and quantized matter is hiding more secrets already
in the Newtonian limit, both in theory and in experiments.
We should continue to reveal them in the simple non-
relativistic realm before we would cross the bridge toward a
certain postquantum general relativity.

ACKNOWLEDGMENTS

I thank Isaac Layton, Jonathan Oppenheim, Andrea
Russo, and Antoine Tilloy for illuminating discussions.
This research was funded by the Foundational Questions
Institute and Fetzer Franklin Fund, a donor-advised fund of
the Silicon Valley Community Foundation (Grant
No. FQXi-RFPCPW-2008), the National Research,
Development and Innovation Office (Hungary)
“Frontline” Research Excellence Program (Grant
No. KKP133827), and the John Templeton Foundation
(Grant No. 62099).

APPENDIX A: DEDUCTION OF HME (4)

We show that our canonical HME (4) with the D&D
term (8) is the special case of the general diffusive
HME [26–29]:
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dρ̂
dt

¼ −i½Ĥ; ρ̂� þ 2Hð½ḠCQ�nαL̂αρ̂Þ;n þDρ̂; ðA1Þ

D ¼ DQ
βαðL̂αρ̂L̂β − HL̂βL̂αρ̂Þ þ 1

2
ðDnm

C ρ̂Þnm; ðA2Þ

where, compared to Eq. (36) in [28], we assumed
Hermitian Lindblad generators L̂α and changed the
upper/lower greek indices for the lower/upper ones. This
HME is valid for any classical subsystem, and the classical
coordinates x are not necessarily canonical. When the
Lindblad generators L̂αðxÞ are independent operators, then
minimum noise is achieved if the positive D&D matrices
DQ and DC, respectively, are constrained by the matrix of
backaction GCQ:

GCQ
1

DQ G†
CQ ¼ DC: ðA3Þ

Let us first identify the classical variables xn by our
canonical ones. Second, identify the Lindblad generators
L̂α by our velocity operators v̂n, the greek indices will
become the latin ones accordingly. Let us equate the
backaction terms in (4) and (A1):

Hðv̂nρ̂Þ;n ¼ −2Hð½ḠCQ�nmv̂nρ̂Þ;n: ðA4Þ

They coincide if ½ḠCQ�nm ¼ − 1
2
δnm. The D&D terms (8) and

(A2) coincide if DQ
nm ¼ 1

4
γnm and Dnm

C ¼ γnm. The said
choicesDC; DQ, andGCQ satisfy the general condition (A3)
of minimum noise.

APPENDIX B: DERIVATION OF HME FROM
HSDES (66)–(68)

It is incorrect to take the form ρ̂½Φ� for the hybrid state
since Φ is a white noise. The correct form is ρ̂t½χ�; i.e.,
the configuration of classical gravity is represented by the
Wiener process χ defined by Φ ¼ dχ=dt. We define the
hybrid density as follows:

ρ̂t½χ� ¼ MP̂tδ½χ − χt�: ðB1Þ

The differentials of both sides read

dρ̂t½χ� ¼ MðdP̂tδ½χ − χt� þ P̂tdδ½χ − χt� þ dP̂tdδ½χ − χt�Þ;
ðB2Þ

where the last term on the rhs is the Ito correction to the
Leibnitz rule. According to Ito calculus, using the
HSDEs (66) and (67) and the white-noise correlation
(68) yield

dP̂ ¼ −
i
ℏ
½Ĥ0 þ V̂G; P̂�dtþDDP

Q P̂dt

þ H
1þ i
ℏ

Z
ðμ̂ðrÞ − hμ̂ðrÞiÞP̂wðr; tÞdrdt; ðB3Þ

dδ½χ−χt�¼−
Z �

ΦmfðrÞ−
1

2
wðr;tÞ

�
δ

δχðrÞδ½χ−χt�drdt

þ1

4

Z Z
ℏG

jr−sj
δ2

δχðrÞδχðsÞδ½χ−χt�drdsdt;

ðB4Þ

dP̂dδ½χ − χt� ¼ Hð1þ iÞ
Z Z

G
jr − sj ðμ̂ðsÞ − hμ̂ðsÞiÞP̂

×
δ

δχðrÞ δ½χ − χt�drdsdt: ðB5Þ

Now we insert these three expressions into Eq. (B2), set
w ¼ 0 since Mw ¼ 0, and use the definition (B1) of ρ̂½χ�,
yielding, after dividing both sides by dt,

dρ̂½χ�
dt

¼ −
i
ℏ
½Ĥ0 þ V̂G; ρ̂½χ�� þDDP

Q ρ̂½χ�

−
Z

ΦmfðrÞ
δρ̂½χ�
δχðrÞdr

þ 1

4

Z Z
ℏG

jr− sj
δ2ρ̂½χ�

δχðrÞδχðsÞdrds

þHð1þ iÞ
Z Z

G
jr− sj ðμ̂ðsÞ− hμ̂ðsÞiÞ δρ̂½χ�

δχðrÞdrds:

ðB6Þ

The nonlinear terms on the rhs cancel as they should, and
we write the HME in the following form:

dρ̂
dt

¼−
i
ℏ
½Ĥ0þ V̂G; ρ̂�

þG
Z Z �

−
1

2ℏ
½μ̂ðrÞ; ½μ̂ðsÞ; ρ̂��þHð1þ iÞμ̂ðrÞ δρ̂

δχðsÞ

þℏ
4

δ2ρ̂

δχðrÞδχðsÞ
�
drds
jr−sj : ðB7Þ

The HME yields the mean-field (semiclassical) gravity:

MΦðrÞ¼ tr
Z

dχðrÞ
dt

ρ̂½χ�d½χ�¼−G
Z hμ̂ðsÞi

jr−sj ds¼ΦmfðrÞ;

as well as the “spacetime” diffusion (65) where
δΦ ¼ dχ=dt −Φmf.
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