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In this work the spontaneous electromagnetic radiation from atomic systems, induced by dynamical
wave-function collapse, is investigated in the x-ray domain. Strong departures are evidenced with respect to
the simple cases considered until now in the literature, in which the emission is either perfectly coherent
(protons in the same nuclei) or incoherent (electrons). In this low-energy regime the spontaneous radiation
rate strongly depends on the atomic species under investigation and, for the first time, is found to depend on
the specific collapse model.
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Introduction.—Quantum mechanics is our most success-
ful physical theory, allowing us to understand and predict a
large number of phenomena with extreme precision [1]. At
the core of the theory lies the superposition principle,
according to which systems are allowed to be in super-
position of different states. The theory does not set any
boundary on the limit of validity of this principle; yet, we
do not observe superpositions of macroscopic objects. This
well-known problem is exemplified by the Schrödinger’s
cat thought experiment [2].
It has been suggested that the linearity of quantum

mechanics, from which the superposition principle directly
follows, may break down at a certain scale [3–5]. This idea
has been extensively developed in the framework of
collapse models [6–9], which are phenomenological mod-
els that modify the Schrödinger equation by adding non-
linear and stochastic terms that naturally collapse the wave
function in space. According to these models, microscopic
systems are very weakly affected by the nonlinearities
which, however, become dominant when atoms glue
together to form larger and larger systems, this way solving
the measurement problem. Among the several collapse
models proposed, two are of particular relevance: the
continuous spontaneous localization (CSL) model [10]
and the so-called Diósi-Penrose (DP) model [11,12].
Spontaneous collapses must be random, in order to avoid

the possibility of faster than light signaling [13]; this

randomness manifests as a diffusive motion of the system
[14], which corresponds to a random acceleration of the
atoms and, hence, to the emission of radiation from their
charged constituents. The experimental search of this
spontaneous radiation was performed, for both CSL [15]
and DP [16], in the energy domain of the γ rays, by
comparing the measured radiation spectrum by high purity
germanium crystals with the spontaneous emission rate
predicted by the models for the atomic systems which
constitute the experimental setup. The obtained strong
bounds, combined with constraints provided by other
experimental tests and theoretical considerations, are lead-
ing to a progressive falsification of the models in their
Markovian formulation.
Theoretical efforts have being devoted to the develop-

ment of non-Markovian collapse models [17–21], in order
to counteract the runaway energy increase. These new
models require the introduction of a cutoff frequency in the
stochastic noise spectrum; for this reason, a systematic scan
of the spontaneous radiation phenomenon, as a function of
the decreasing energy, is mandatory.
The search for spontaneous radiation emitted by germa-

nium crystals was performed in the x-ray domain in [22]
[for E∈ ð15–50Þ keV], and more recently in [23] [for
E∈ ð19–100Þ keV]. In [22] a formula for the expected
spontaneous radiation rate from quasifree electrons was
applied: the expected radiation depends on the energy as
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1=E and is proportional to the number of quasifree
electrons [24]. This formula is not suitable to describe
the more complex phenomenology of the spontaneous
radiation emitted by the whole atomic system; more refined
calculations are presented in [15,16], where the CSL and
the DP rates are calculated for an atomic system, in the limit
in which the spontaneous photon wavelength λγ is between
the nuclear dimension and the mean radius of the lower
laying atomic orbit. Consistently, in [15,16] the data
analyses are performed for photons energies in the range
(1–3.8) MeV. The rate results to be proportional, for both
CSL and DP, to ðN2

p þ NeÞ=E, where Np and Ne are,
respectively, the number of protons and electrons of the
atom under study. In this regime, different collapse models
share the same expected shape for the energy distribution of
the spontaneous emission rate, the scaling factor being
proportional to combinations of constants of nature with the
characteristic parameters of the models, which are λ and rC
(strength and correlation length of the collapse noise)
for CSL and the correlation length R0 for DP (the role
of the strength being played by the gravitational constant
G in this case). The latter theoretical rates were also
assumed in the analysis [23], which set the strongest
bounds on the parameters of the Markovian models, i.e.,
λ=r2C < ð4.94� 0.15Þ × 10−1 s−1 m−2, assuming that the
white noise is coupled to the particle mass density, and
R0 > ð2.54� 0.03Þ × 10−10 m.
Given the importance of integrating the search of the

spontaneous radiation signal in the high-energy domain of
the γ rays to the one in the x rays, also in view of future
experimental studies, scanning the cutoff energy of the non-
Markovian models, we derive in this work the general
expression of the radiation emission rates, for both
Markovian and non-Markovian formulations of the CSL
and DP models. We adopt a semiclassical approach which
is valid above 1 keV (see, e.g., [17]), appropriate to the
current experimental surveys; for lower energies a fully
quantum mechanical analysis is required, which is under
development. The general rates are found to exhibit a
nontrivial energy dependence, which is strongly influenced
by the interplay between the photons wavelengths, the radii

of the electronic orbits, and the correlation length of the
model under study. Since the correct general spectra
strongly differ from the 1=E behavior in the x-ray range,
a reanalysis of the data in Refs. [22,23] should be
considered.
Interestingly, the spontaneous radiation energy spectrum

is found, at the atomic λγ scale, to depend on the specific
model of wave-function collapse under scrutiny. This
finding opens new scenarios in the experimental inves-
tigation of the spontaneous radiation: a measurement
sensitive to this signature of the collapse, would be able
to recognize the most probable pattern of dynamical wave-
function reduction.
CSL spontaneous emission rate, general expression.—

The rate of the spontaneous radiation emitted by an atomic
system, in the context of the Markovian CSL model, was
derived in [15]:

dΓ
dE

����
CSL

t
¼ ℏλ

6π2ϵ0c3m2
0E

X
i;j

qiqj
mimj

fij
sinðbijÞ
bij

; ð1Þ

where bij ¼ 2πjri − rjj=λγ , qj, and mj represent, respec-
tively, the charge and the mass of the jth particle, at
position rj. m0 denotes the nucleon mass, ϵ0 the vacuum
permittivity, ℏ and c are, as usual, the reduced Planck
constant and the speed of light, E is the energy of the
spontaneously emitted photon.
The term fij encodes the balance between the emitters’

distances and the correlation length rC. A generalized
expression for fij is provided in Sec. A of supplemental
material [25]:

fij ¼
mimj

2r2C
e
−
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4r2
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�
: ð2Þ

Using Eq. (2), and analyzing the contributions to the
spontaneous radiation by the protons in the nucleus, the
orbital electrons, and due to the combined electrons-protons
emission—see Sec. B of supplemental material [25]—
Eq. (1) turns to
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where the electron pair distances are parametrized in terms of the mean radii of the atomic orbits ρo (ρo0 ) by means of the
constants α and β which are given below. No represents the number of electrons in the oth orbit of the atom. Equation (3)
represents a generalization of the spontaneous emission rate which was derived in Ref. [15]:
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dΓ
dE

����
CSL

t
¼ ℏe2λ

4π2ϵ0c3r2Cm
2
0E

ðN2
p þ NeÞ; ð4Þ

under the condition that λγ is intermediate between the
nuclear and atomic dimensions, i.e., the energy range under
scrutiny belongs to the γ-ray domain. In that case, protons
emit coherently (proportionally to the square of their
number) and electrons emit independently (linear depend-
ence). More complex is the situation described by Eq. (3).
If rC exceeds the distance between the emitters (as

confirmed by radiation experiments for a Markovian CSL
[15,22]) then the stochastic field “shakes” them coherently.
If λγ becomes also of the order of the mean orbit radii of the
atom, then the electrons of the corresponding orbits start to
emit coherently, i.e., quadratically. Nonetheless, the corre-
sponding increase in the expected spontaneous emission
rate is counteracted by the cancellation, among oppositely
charged particles whose distance is smaller than λγ . In the
limit in which λγ is also much bigger than the atomic size,
Eq. (3) reduces to

dΓ
dE

����
CSL

t
¼ ℏe2λ

4π2ϵ0c3m2
0r

2
CE

½N2
p − 2NpNe þ N2

e�; ð5Þ

which vanishes for neutral atoms.
Intermediate regimes for λγ and rC, in comparison with

jri − rjj, give rise to a new, interesting pattern, in which the
shape of the expected spontaneous radiation spectrum
exhibits a nontrivial energy dependence, which is influ-
enced by the atomic structure. This is exemplified in Fig. 1.
The top panel of Fig. 1 shows (dashed line) the general
spontaneous emission rate predicted by Eq. (3) compared to
the simple (solid line) case described by Eq. (4), for
germanium (Ge targets were indeed used in various experi-
ments, e.g., [15,23]). The grey-shaded area corresponds to
the values β ¼ 1.04 and α spanning in the range (1–1.5),
according to the literature [26,27], see Sec. B of supple-
mental material [25]. The same rates for a xenon target are
shown in the bottom panel of Fig. 1. In Eq. (3) the value of
rC is set to 1.15 × 10−8 m, consistently with the results of
Ref. [15], which are obtained by applying Eq. (4) in the
γ-ray regime [(1–3.8) MeV], where Eq. (4) is an excellent
approximation. rC ¼ 1.15 × 10−8 m corresponds to the
intersection among the experimental bound and the theo-
retical constraint (corresponding, respectively, to the
orange and gray lines in Fig. 4 of Ref. [15]). The mean
radii of the orbits are obtained based on a density functional
theory (DFT) [28] all-electron calculation, for an isolated
atom; the DFT code GPAW [29] is adopted. The distribu-
tions are normalized to the common constant prefactors to
evidence differences in shape. As expected, the simple
(solid line) and the general (dashed line) rates converge for
high energies (above 200 keV), where λγ becomes sizably
smaller than the lower atomic orbit radii. Since rC is much

greater than the size of the germanium atom, the x-ray
regime is, instead, characterized by a balance among
electrons and protons coherent emission and the cancella-
tion of their contributions. The analyses performed in
Refs. [22,23] should be reconsidered based on this low-
energy complex pattern. On one side the smaller expected
rate could result in less stringent bounds on the parameters
of the CSL model, which could require collecting more
statistics. On the other side, the sensitivity may be
enhanced by the new structure of the energy spectrum of
the spontaneous radiation, which could help to better
disentangle the expected signal from the background
components.
The general expression of the spontaneous emission

rate in Eq. (3) encodes the phenomenology for future
investigations of the spontaneous radiation at low energies
(x rays). Comparison of the theoretical expectation with the
measured spectra requires a recursive analysis: in the first
step, a suitable prior has to be assumed for rC, an updated
value for rC will be obtained, which will serve as input for

FIG. 1. The top panel of the figure shows (solid line) the 1=E
dependence Eq. (4), for the spontaneous radiation rate of a
Markovian CSL model, which is valid only in the high-
energy domain. This is compared to the general rate in Eq. (3)
(dashed line) for a prior value of the correlation length
rC ¼ 1.15 × 10−8 m. The distributions are calculated for a
germanium atom and normalized to the common constant
prefactors. The bottom panel of the figure shows the shapes of
the same rates, calculated for a xenon atom. The dotted and dash-
dotted curves in the top and bottom panels, represent the
corresponding spontaneous emission rates in Ge and Xe for a
non-Markovian CSL model Eq. (6), when Ec ¼ 10 keV (dotted)
and Ec ¼ 100 keV (dash-dotted).

PHYSICAL REVIEW LETTERS 132, 250203 (2024)

250203-3



the new prior. The analysis should then be iterated till
convergence of the rC values, within the experimental
sensitivity, is reached.
The dependence of the expected rate on the atomic

structure becomes evident comparing the top panel of Fig. 1
with the bottom one, which shows as a dashed line the
general spontaneous emission rate given by Eq. (3) for
xenon (high sensitivity bounds on the spontaneous collapse
could be set by the XENON experiment [30] by exploiting
a xenon target); the solid line describes again the simple
rate of Eq. (4). Equation (3) predicts a strong dependence of
the spontaneous radiation yield on the atomic number Z; as
such a survey of the spontaneous collapse induced emission
over Z would greatly improve the experimental sensitivity
on this, new physics, phenomenon.
The generalization of Eq. (3) to the non-Markovian case

requires to multiply the right-hand side by the Fourier
transform of the noise correlation function (see, e.g.,
[17,19–21,31] and the derivation of the colored DP model
emission rate below). Assuming, e.g., an exponentially
decaying noise correlation function [fðt − sÞ ¼
ðΩ=2Þe−Ωjt−sj], characterized by a correlation time Ω−1,
the rate becomes

dΓ
dE

����
cCSL

t
¼ dΓ

dE

����
CSL

t
×

E2
c

E2
c þ E2

; ð6Þ

where Ec ¼ ℏΩ and cCSL denote results for a colored
(non-Markovian) CSL model. The dotted and dash-dotted
curves in Fig. 1 represent the general spontaneous emission
rates for a non-Markovian CSL model Eq. (6), for Ec ¼
10 keV (dotted) and Ec ¼ 100 keV (dash-dotted).
DP spontaneous emission rate, general expression.—

The rate of the spontaneous radiation emitted by an atomic
system, according to a Markovian DP model, was derived
in Ref. [16]:

dΓ
dE

����
DP

t
¼ Ge2

12π5=2ϵ0c3R3
0E

ðN2
p þ NeÞ; ð7Þ

assuming a spontaneous photon wavelength which is much
bigger than the nuclear size and much smaller than the
lower lying atomic orbit mean radius. Note that Eq. (7)
differs from the result presented in [16] by a factor 8π. This
is because in [16] we adopted the convention introduced in
[12] while we refer here to the original model introduced by
Diósi [32], in which the factor 8π was not present.
The general structure of the rate is derived in Sec. C of

supplemental material [25], where the non-Markovianity of
the noise time correlation is also considered. For an
exponential time correlation we have

dΓ
dE

����
cDP

t
¼ G

6π2ϵ0c3E

X
i;j

qiqjfij
sinðbijÞ
bij

E2
c

E2
c þ E2

¼ dΓ
dE

����
DP

t

E2
c

E2
c þ E2

; ð8Þ

with G the Newton constant. The rate for the Markovian
model is recovered in the limit Ec → ∞. In analogy with
the expected rate for the CSL model [Eq. (1)], the interplay
between the particle mean distances and the wavelength of
the spontaneously emitted photon is contained in the terms
sinðbijÞ=bij. The dependence on the particle distances in
relation to the correlation length of the model R0 is instead
specified by the terms fij. As it is shown in Sec. D of
supplemental material [25], fij is a measure of the overlap
between the mass densities of the particles ith and jth (gi;j),
whose spatial resolution is measured by R0. In formula

fij ¼ 4π

Z
drgiðr − ri; R0Þgjðr − rj; R0Þ: ð9Þ

Assuming Gaussian mass density profiles (following,
e.g., [10,16] giðr − ri; R0Þ ¼ ð2πR2

0Þ−3=2e−½ðr−riÞ
2=2R2

0
�) and

specifying the rate for the mean radii of the atomic orbits
we obtain (see Sec. D of supplemental material [25]):
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;: ð10Þ

Again, the simple rate described by Eq. (7) is a good
approximation of Eq. (10) for energies belonging to the
γ-ray domain. Figure 2 compares the general expression of
the Markovian DP spontaneous emission rate [Eq. (10)]

given by the dashed curve, with the simple expression in
Eq. (7) given by the solid curve. The prior value
R0 ¼ 0.54 Å is chosen, consistently with the result [16],
which is obtained by applying Eq. (7) in the γ-ray regime
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[(1–3.8) MeV], where Eq. (4) is an excellent approxima-
tion. A strong departure from the approximate expression is
evident, at low energy, for both germanium (top panel) and
xenon (bottom panel) atoms. A significant dependence of
the generalized rate on the atomic number is evident for the
DP model as well. The dotted and dash-dotted curves in
Fig. 2 represent the general spontaneous emission rates for
a non-Markovian DP model Eq. (8), for Ec ¼ 10 keV
(dotted) and Ec ¼ 100 keV (dash-dotted).
Discussion.—Figures 1 and 2 summarize our findings

and unveil the most interesting consequence of the can-
cellation phenomenon, for which the contribution to the
spontaneous radiation emission from oppositely charged
particles, whose distance is exceeded by the model’s
correlation length and by the observed photon wavelength,
cancels. In the low-energy regime, for correlation lengths of
the models of the order, or bigger, than the atomic orbits
radii, the shapes predicted for the spontaneous emission
rates distributions of the CSL and DP models strongly

differ. This is due to both the different mathematical
structure of the terms fij and the different values of the
correlation lengths, rC and R0, of the two models. In the
simple scenario in which λγ is much smaller than the atomic
size, any difference is washed out and the shapes of the
spontaneous radiation rates of the two models just differ by
a scaling factor.
The energy ranges analyzed in Refs. [22,23] do not

allow to unveil differences among the spontaneous emis-
sion spectra of the CSL and the DP. Recent experimental
works [33,34] present data in the ranges E∈ ð5–30Þ keV
(with lower statistics with respect to Ref. [23]) and
E∈ ð1–140Þ, respectively. The analysis of these data, based
on the predicted rates Eqs. (3) and (10), would provide a
first test of this prediction for a Ge target [33] and a Xe
target [34]. A measurement complementary to [33], with
improved statistics, and including the energy interval
E∈ ð1–5Þ keV, would be important. Moreover, the pre-
diction of a strong dependence of the spontaneous emission
rate on the atomic structure should be exploited by
performing a dedicated experiment, performing a search
for spontaneous radiation signal by scanning over several
targets (under the same experimental conditions) in the
energy ranges in which the CSL and DP rates differ for the
considered targets. Such a measurement would further
improve the sensitivity and would allow us to distinguish
an eventual signal detection from systematic effects.
In this Letter, we derived the fundamental theoretical

formulas for these future investigations, both for the white
noise models and their non-Markovian generalizations.

This work was made possible through the support of
Grant No. 62099 from the John Templeton Foundation. We
acknowledge support from the Foundational Questions
Institute and Fetzer Franklin Fund, a donor advised fund
of Silicon Valley Community Foundation (Grants
No. FQXi-RFP-CPW-2008 and FQXi-MGA-2102). We
thank the INFN Institute, for supporting the research
presented in this article and, in particular, the Gran
Sasso underground laboratory of INFN, INFN-LNGS,
and its Director, Ezio Previtali, the LNGS staff, and the
Low Radioactivity laboratory for the experimental activ-
ities dedicated to the search for spontaneous radiation. We
thank the Austrian Science Foundation (FWF) which
supports the VIP2 project with Grants No. P25529-N20,
Projects No. P30635-N36 and No. W1252-N27 (doctoral
college particles and interactions). K. P. acknowledges
support from the Centro Ricerche Enrico Fermi–Museo
Storico della Fisica e Centro Studi e Ricerche “Enrico
Fermi” (Open Problems in Quantum Mechanics project).
S. D. acknowledges support from the UKRI through Grant
No. EP/X021505/1. A. B. acknowledges financial support
from the University of Trieste, INFN, the PNRR MUR
Project No. PE0000023-NQSTI, and the EIC Pathfinder

FIG. 2. Top panel of the figure shows (solid line) the 1=E
dependence Eq. (7), for the spontaneous radiation rate of the
Markovian DP model, which is valid only in the high-energy do-
main. This is compared to the general rate Eq. (10) (dashed line)
for a prior value of the correlation length R0 ¼ 0.54 Å. The
distributions are calculated for a germanium atom and normalized
to the common constant prefactors. The bottom panel of the
figure shows the shapes of the same rates, calculated for a xenon
atom. The dotted and dash-dotted curves in the top and bottom
panels, represent the corresponding spontaneous emission rates in
Ge and Xe for a non-Markovian DP model, Eq. (8), when Ec ¼
10 keV (dotted) and Ec ¼ 100 keV (dash-dotted).

PHYSICAL REVIEW LETTERS 132, 250203 (2024)

250203-5



project QuCoM (GA No. 101046973). L. D. acknowledges
support from NRDIO (Hungary) “Frontline” Research
Excellence Program (Grant No. KKP133827).

The opinions expressed are those of the authors and do
not necessarily reflect the views of the John Templeton
Foundation.

*Corresponding author: s.donadi@qub.ac.uk
†Corresponding author: Simone.Manti@lnf.infn.it

[1] X. Fan, T. G. Myers, B. A. D. Sukra, and G. Gabrielse, Phys.
Rev. Lett. 130, 071801 (2023).

[2] E. Schrödinger, Naturwissenschaften 23, 844 (1935).
[3] A. J. Leggett, Prog. Theor. Phys. Suppl. 69, 80 (1980).
[4] S. Weinberg, Phys. Rev. Lett. 62, 485 (1989).
[5] J. S. Bell, Speakable and Unspeakable in Quantum

Mechanics: Collected Papers on Quantum Philosophy
(Cambridge University Press, Cambridge, England, 2004).

[6] P. Pearle, Phys. Rev. D 13, 857 (1976).
[7] G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34,

470 (1986).
[8] A. Bassi and G. Ghirardi, Phys. Rep. 379, 257 (2003).
[9] A. Bassi, K. Lochan, S. Satin, T. P. Singh, and H. Ulbricht,

Rev. Mod. Phys. 85, 471 (2013).
[10] G. C. Ghirardi, R. Grassi, and A. Rimini, Phys. Rev. A 42,

1057 (1990).
[11] L. Diósi, Phys. Rev. A 40, 1165 (1989).
[12] R. Penrose, Gen. Relativ. Gravit. 28, 581 (1996).
[13] N. Gisin, Helv. Phys. Acta 62, 363 (1989).
[14] S. Donadi, L. Ferialdi, and A. Bassi, Phys. Rev. Lett. 130,

230202 (2023).
[15] S. Donadi, K. Piscicchia, R. Del Grande, C. Curceanu, M.

Laubenstein, and A. Bassi, Eur. Phys. J. C 81, 773 (2021).
[16] S. Donadi, K. Piscicchia, C. Curceanu, L. Diósi, M.

Laubenstein, and A. Bassi, Nat. Phys. 17, 74 (2021).

[17] S. L. Adler and F. M. Ramazanoğlu, J. Phys. A 40, 13395
(2007).

[18] A. Bassi and D. Dürr, J. Phys. A 42, 485302 (2009).
[19] S. L. Adler, A. Bassi, and S. Donadi, J. Phys. A 46, 245304

(2013).
[20] A. Bassi and S. Donadi, Phys. Lett. A 378, 761 (2014).
[21] S. Donadi, D.-A. Deckert, and A. Bassi, Ann. Phys.

(Amsterdam) 340, 70 (2014).
[22] K. Piscicchia, A. Bassi, C. Curceanu, R. D. Grande, S.

Donadi, B. C. Hiesmayr, and A. Pichler, Entropy 19, 319
(2017).

[23] I. J. Arnquist et al. (Majorana Collaboration), Phys. Rev.
Lett. 129, 080401 (2022).

[24] Q. Fu, Phys. Rev. A 56, 1806 (1997).
[25] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.132.250203 for deriva-
tions of the rate formula for CSL and DP.

[26] P. M. Gill, D. P. O’Neill, and N. A. Besley, Theor. Chem.
Acc. 109, 241 (2003).

[27] C. Coulson and A. Neilson, Proc. Phys. Soc. (1958–1967)
78, 831 (1961).

[28] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[29] J. Enkovaara et al., J. Phys. Condens. Matter 22, 253202

(2010).
[30] E. Aprile, J. Aalbers, F. Agostini, M. Alfonsi, L. Althueser,

F. Amaro, V. C. Antochi, F. Arneodo, D. Barge, L. Baudis
et al., J. Instrum. 14, P07016 (2019).

[31] M. Carlesso, L. Ferialdi, and A. Bassi, Eur. Phys. J. D 72,
159 (2018).

[32] L. Diosi, Phys. Lett. 120A, 377 (1987).
[33] N. Abgrall, I. Arnquist, F. Avignone III, A. Barabash, F.

Bertrand, A. Bradley, V. Brudanin, M. Busch, M. Buuck, T.
Caldwell et al., Phys. Rev. Lett. 118, 161801 (2017).

[34] E. Aprile, K. Abe, F. Agostini, S. A. Maouloud, L.
Althueser, B. Andrieu, E. Angelino, J. Angevaare, V. C.
Antochi, D. A. Martin et al., Phys. Rev. Lett. 129, 161805
(2022).

PHYSICAL REVIEW LETTERS 132, 250203 (2024)

250203-6

https://doi.org/10.1103/PhysRevLett.130.071801
https://doi.org/10.1103/PhysRevLett.130.071801
https://doi.org/10.1007/BF01491987
https://doi.org/10.1143/PTP.69.80
https://doi.org/10.1103/PhysRevLett.62.485
https://doi.org/10.1103/PhysRevD.13.857
https://doi.org/10.1103/PhysRevD.34.470
https://doi.org/10.1103/PhysRevD.34.470
https://doi.org/10.1016/S0370-1573(03)00103-0
https://doi.org/10.1103/RevModPhys.85.471
https://doi.org/10.1103/PhysRevA.42.1057
https://doi.org/10.1103/PhysRevA.42.1057
https://doi.org/10.1103/PhysRevA.40.1165
https://doi.org/10.1007/BF02105068
https://doi.org/10.1103/PhysRevLett.130.230202
https://doi.org/10.1103/PhysRevLett.130.230202
https://doi.org/10.1140/epjc/s10052-021-09556-0
https://doi.org/10.1038/s41567-020-1008-4
https://doi.org/10.1088/1751-8113/40/44/017
https://doi.org/10.1088/1751-8113/40/44/017
https://doi.org/10.1088/1751-8113/42/48/485302
https://doi.org/10.1088/1751-8113/46/24/245304
https://doi.org/10.1088/1751-8113/46/24/245304
https://doi.org/10.1016/j.physleta.2014.01.002
https://doi.org/10.1016/j.aop.2013.10.009
https://doi.org/10.1016/j.aop.2013.10.009
https://doi.org/10.3390/e19070319
https://doi.org/10.3390/e19070319
https://doi.org/10.1103/PhysRevLett.129.080401
https://doi.org/10.1103/PhysRevLett.129.080401
https://doi.org/10.1103/PhysRevA.56.1806
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250203
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250203
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250203
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250203
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250203
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250203
http://link.aps.org/supplemental/10.1103/PhysRevLett.132.250203
https://doi.org/10.1007/s00214-002-0411-5
https://doi.org/10.1007/s00214-002-0411-5
https://doi.org/10.1088/0370-1328/78/5/328
https://doi.org/10.1088/0370-1328/78/5/328
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1088/1748-0221/14/07/P07016
https://doi.org/10.1140/epjd/e2018-90248-x
https://doi.org/10.1140/epjd/e2018-90248-x
https://doi.org/10.1016/0375-9601(87)90681-5
https://doi.org/10.1103/PhysRevLett.118.161801
https://doi.org/10.1103/PhysRevLett.129.161805
https://doi.org/10.1103/PhysRevLett.129.161805

