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Abstract: We show that the minimum entropy production in near-reversible quantum
state transport along a path is a simple function of the path length measured according to
the Fisher–KMB metrics. Hence, for the sharp values of path lengths, also called statistical
lengths, we obtain the operational meaning to quantify the residual irreversibility in near-
reversible state transport. In the classical limit, the Bhattacharyya fidelity is found to have
a sharp operational meaning after eighty years.
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1. Introduction
A quantitative comparison between two probability distributions, pα and qα, can be

based on the Bhattacharyya coefficient published in 1945 [1]:

F(p, q) = ∑
α

√
pαqα ∈ [0, 1]. (1)

This function serves as a measure F ∈ [0, 1] of closeness between p and q. Fifty years after
the publication of the Bhattacharyya coefficient, to measure the closeness of two quantum
states, ρ̂ and σ̂, Jozsa borrowed an expression known in mathematics [2,3] and called it
fidelity [4]:

F(ρ̂, σ̂) = ∥
√

ρ̂
√

σ̂∥tr = tr

√√
σ̂ρ̂

√
σ̂ ∈ [0, 1]. (2)

Quantum fidelity is the central tool in modern quantum informatics [5]. In the spe-
cial (classical) case when [ρ̂, σ̂] = 0, we can write ρ̂ = diag[p1, p2, . . . , pα, . . . ] and
σ̂ = diag[q1, q2, . . . , qα, . . . ]. Quantum fidelity (2) coincides with classical fidelity (1).

One of our goals is the operational interpretation of F(q, p) because it is not known [5].
For quantum fidelity F(ρ̂, σ̂), a simple operational interpretation has already been pro-
posed [6], based on Uhlmann’s theorem [3], and it is as follows: Assume that ρ̂ and σ̂ are
reduced states of two pure states in a larger system. Assume that we have access to this larger
system. Then, the distinguishability of ρ̂ and σ̂ is at least as high as the distinguishability of two
arbitrary pure states whose overlap (modulus of the scalar product) is given by the fidelity F(ρ̂, σ̂).
This interpretation assumes operation on the larger system where both ρ̂ and σ̂ are pure.
Various theorems contain the sharp value of fidelity, but their meaning should always
include operations on the ‘environmental’ quantum system.

Fidelities are related to distances, also called statistical distances, on the underlying
Riemannian geometries. The infinitesimal distance dℓ defines the Fisher metrics [7] between
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the probability distributions p and p + dp and the Bures metrics [2] between the quantum
states dρ̂ and ρ̂ + dρ̂:

(dℓ)2
Fisher = 2 ∑

α

(d
√

pα)
2 = ∑

α

(dpα)2

pα
, (3)

(dℓ)2
Bures = 2tr(d

√
ρ̂)2 = tr

(
dρ̂

2
ρ̂L + ρ̂R

dρ̂

)
. (4)

The labels L/R mean ρ̂L acts from the left, as usual, while ρ̂R acts from the right. The local
Fisher metric is the special case of the local Bures metrics when [ρ̂, dρ̂] = 0. Consider the
geodesics between p and q or between ρ̂ and σ̂. The geodesic distances ℓ are functions of
the respective fidelities:

ℓ(p, q)Fisher = 2 arccos F(p, q) ∈ [0, π], (5)

ℓ(ρ̂, σ̂)Bures = 2
√

1 − F2(ρ̂, σ̂) ∈ [0, 2]. (6)

As we said, when ρ̂ and σ̂ commute, F(q, p) is the special case of F(ρ̂, σ̂) and the local Fisher
geometry (3) is the special case of the local Bures geometry (4). This is no longer the case
with the above global distances, since ℓBures = 2 sin( 1

2 ℓFisher). The Bures geodesic distance
is shorter than the Fisher geodesic distance. The latter is the minimum length of paths but
through the commuting states.

The infinitesimal distances, i.e., the local metrics, have exact meaning in metrology via
the famous Cramér-Rao [8,9] and quantum Cramér-Rao theorems [10]. Suppose an unknown
state—or probability distributions p in the classical case—at an unknown length ℓ measured from
one end of a known path. We perform N independent measurements on the unknown state to
estimate ℓ, i.e., to estimate the unknown state. If N → ∞, optimum measurements ensure that the
mean-squared error of estimation goes to zero as (∆ℓ)2 = 1/N. This interpretation concerns
the local geometry at one point and does not tell us anything about non-local features like
generic Fisher–Bures distances.

While in metrology and informatics, the natural quantum generalization of the Fisher
metrics is the Bures metric, in irreversible processes, it is the Kubo–Mori–Bogoliubov (KMB)
metrics (cf., e.g., ref. [11]):

(dℓ)2
KMB = tr(dρ̂dlog ρ̂) = tr

(
dρ̂

log ρ̂L − log ρ̂R
ρ̂L − ρ̂R

dρ̂

)
. (7)

Unlike the expression of geodesic distance in terms of fidelity in Fisher–Bures metrics,
no such closed expression is known in the Fisher–KMB geometry. Both geometries have
been missing their global interpretations, but the close relationship of the KMB metrics
with von Neumann entropies will help us. The present work proposes the operational
meaning of path lengths in the Fisher–KMB metrics, which could determine the meaning
of the geodesics. In the special case, we obtain the operational meaning of the classical
Bhattacharyya fidelity as well. The concept is that in near-reversible transport along a path
γ between two predefined states ρ̂, σ̂, the minimum entropy production is quantified by
the length ℓγ(ρ̂, σ̂).

2. State Transport by Equilibrating Reservoirs
In preparation, we define the transport of the system’s initial state ρ̂ into the final state

σ̂ in contact with a single reservoir. We use the reservoir model of ref. [12] and the theorem
therein (cf. [13] for the rigorous proof).
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The reservoir consists initially of n independent systems each in the state σ̂, and we
start from the composite system–reservoir state ρ̂ ⊗ σ̂⊗n.The contact of the system and the
reservoir represents a reversible step, a swap between the system’s state ρ̂ and one (e.g., the
first) of the reservoir’s states σ̂:

ρ̂ ⊗ σ̂⊗n ⇒ σ̂ ⊗ ρ̂ ⊗ σ̂⊗(n−1). (8)

The second step, concerning the reservoir only, is the irreversible relaxation of the reservoir
to a homogeneous state, modeled by the following twirl over the permutation group:

ρ̂ ⊗ σ̂⊗(n−1) ⇒ 1
n

n−1

∑
k=0

σ̂⊗k ⊗ ρ̂ ⊗ σ̂⊗(n−k−1). (9)

According to this model, the transport ρ̂ → σ̂ of the system state leads to irreversible
relaxation inside the reservoir. In the infinite reservoir limit n → ∞, fortunately, the entropy
production of relaxation can be expressed as the relative entropy S(ρ̂∥σ̂) = tr(ρ̂ ln ρ̂ − ρ̂ ln σ̂):

S

(
1
n

n−1

∑
k=0

σ̂⊗k ⊗ ρ̂ ⊗ σ̂⊗(n−k−1)

)
− S
(

ρ̂ ⊗ σ̂⊗(n−1)
)

−−−→
n→∞

S(ρ̂∥σ̂). (10)

This is the entropy production of the single-step state transport as well:

∆S = S(ρ̂∥σ̂). (11)

The entropy production can be smaller and can even go to zero if we apply sequential
equilibration with intermediate reservoirs along a path, such that the step sizes go to zero.
The following feature of relative entropy will be important [14]:

S(ρ̂|ρ̂ + dρ̂) =
1
2
(dℓ)2, (12)

where dℓ is defined by the Fisher metrics (3) in the classical limit, and in the general
quantum case, it corresponds to the Fisher–KMB (7) and not to the Fisher–Bures (4) metrics.
Consider a smooth (not necessarily geodesic) path γ from ρ̂ to σ̂. We use N reservoirs to
transport ρ̂ into σ̂ in N steps. Consider a monotone sequence of intermediate states ρ̂i along
the path, such that ρ̂ = ρ̂0 and ρ̂N = σ̂. Perform the transportation ρ̂ ⇒ ρ̂1 ⇒ ρ̂2 ⇒ · · · ⇒
ρ̂N−1 ⇒ σ̂. The total entropy production is the sum of the N yields:

∆S =
N−1

∑
i=0

S(ρ̂i∥ρ̂i+1). (13)

In the limit N → ∞, each step ∆ℓi between ρ̂i and ρ̂i+1 can go to zero. In this asymptotic
regime, applying Equation (12), we can thus write

∆S =
1
2

N−1

∑
i=0

(∆ℓi)
2. (14)

This is an important expression, but the r.h.s. is not yet the function of the total path length
ℓγ(ρ̂, σ̂), while the length’s elements are constrained by it:

N−1

∑
i=0

∆ℓi = ℓγ(ρ̂, σ̂). (15)
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Keeping this constraint, let us minimize the entropy production (14). It is trivial that each
term on the r.h.s. must have the same value, i.e., ∆ℓi = ℓγ(ρ̂, σ̂)/N for all i. This means
that the dense sequence ρ̂i must be evenly distributed along the path, and the entropy
production will be evenly distributed over the steps. The minimum of the total entropy
production along the given path γ takes this form:

∆Sγ =
ℓ2

γ(ρ̂, σ̂)

2N
. (16)

The fastest approach to reversible transport is achieved on geodesics. In the classical case,
inserting the geodesic length (5) in (16), the ultimate lower bound on entropy produc-
tion reads

∆S =
2
N
(arccos F)2. (17)

This expresses the desired sharp operational meaning of the classical Bhattacharyya fi-
delity (1). The bounds are attainable in the limit N → ∞ by operations on the system plus
the reservoirs.

We find the simple meaning of the Fisher–KMB length if we introduce the number ν

of equilibrations per unit length, i.e., the density ν = N/ℓγ. Then, the entropy production
becomes the following linear function of the path length:

∆Sγ(ℓ) =
ℓγ

2ν
. (18)

This suggests the following operational meaning of the Fisher–KMB length. Consider the
near-reversible state transport via sequential equilibrations along a smooth path. If ν ≫ 1 is the
density of equilibrations per unit path length, then the entropy production is (1/2ν) per unit length.

3. Remarks and Summary
Paths in Fisher geometries are perhaps the simplest non-local objects and, as such,

they can be interpreted as state transport processes. It therefore seemed logical here to look
for the meaning of the geometries. One should note the standard Kantorovich–Wasserstein
theory [15,16], where the transport from distribution p to q happens via direct relocation
of populations from pα into qβ. The transport of quantum state ρ̂ into σ̂, too, can work
similarly after a single unitary rotation of ρ̂ that makes it commute with σ̂. This may seem
much simpler than sequential equilibration. But the simple method assumes detailed
control of the states in question. If it is not possible because, e.g., the states are complicated
many-body states, then the method of equilibration becomes more valuable.

Thermodynamic systems are typical examples. The Weinhold–Ruppeiner geome-
try [17,18] defines the thermodynamic distances between thermodynamic states and ther-
modynamic path lengths in general. It has long been known that thermodynamic lengths
coincide with statistical lengths [19] and they are rooted in the Fisher geometry of Gibbs
states [20]. In thermodynamics, the expression (∆ℓ)2/V quantifies how the statistical
fluctuations in the thermodynamic parameters tend to zero in the thermodynamic limit of
infinite volume V → ∞. This does not interpret the global thermodynamic lengths ℓ but
the local metrics. Studies of thermodynamic state transport [21–24] have investigated the
relationship between thermodynamic path length and thermodynamic entropy production.
Salamon and Nulton [21] recognized that in discrete sequential equilibration, the equilibra-
tion rates are canceled due to the expression of entropy production, and they found the
thermodynamic predecessor of Equation (16). Scandi and Perernau-Llobet derived similar
results in quantum thermodynamics using the Fisher–KMB geometry of quantum Gibbs
states [25]. Ref. [23] was the first attempt at constructing an underlying classical micro-
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scopic mechanism of specific irreversible state transport. The present work constructed
an abstract microscopic generalization valid in the Fisher–KMB geometries of arbitrary
quantum states, including the Fisher geometry special case of probability distributions.
For this construction, the analytically tractable microscopic reservoir model and the related
theorem, both proposed in ref. [12], were instrumental.

The global Fisher statistical distance, both in the space of probability distributions and
in the space of density matrices with the KMB metrics, underwent operational interpretation
for the first time. We obtained the sharp, not just qualitative, operational (physical) meaning
of the classical Bhattacharyya fidelity. (Similar interpretation of the quantum fidelity and
the global Fisher–Bures geometry can be the subject of future study). The concrete choice
of the reservoir and the equilibration protocol are not likely to be critical, and alternative
microscopic models should lead to the same relationships between entropy production and
the Fisher–KMB geometry. Future investigations may replace our stepwise transport with
a continuous protocol.
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