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How to Teach and Think About Spontaneous Wave

Function Collapse Theories: Not Like Before

lajos diósi

A simple and natural introduction to the concept and formalism of spontaneous

wave function collapse can and should be based on textbook knowledge of stan-

dard quantum state collapse and monitoring. This approach explains the origin of

noise driving the paradigmatic stochastic Schrödinger equations of spontaneous

localization of the wave function �. It reveals, on the other hand, that these equa-

tions are empirically redundant and the master equations of the noise-averaged

state ρ̂ are the only empirically testable dynamics in current spontaneous collapse

theories.

1.1 Introduction

“We are being captured in the old castle of standard quantum mechanics. Some-

times we think that we have walked into a new wing. It belongs to the old one,

however.” [1]

The year 1986 marked the birth of two theories, prototypes of what we call

the theory of spontaneous wave function collapse. Both the GRW paper published

in Physical Review D [2] followed by Bell’s insightful work [3] and the author’s

thesis [4] constructed strict stochastic jump equations to explain unconditional

emergence of classical behavior in large quantum systems. Subsequently, both

theories obtained their time-continuous versions, driven by white noise rather than

by stochastic jumps. The corresponding refinement of the GRW proposal [5, 6, 7]

is the Continuous Spontaneous Localization (CSL) theory. The author’s gravity-

related spontaneous collapse theory [4, 8, 9] used to be called DP theory after

Penrose concluded to the same equation for the characteristic time of spontaneous

collapse in large bodies [10]. These theories modified the standard theory of

quantum mechanics in order to describe the irreversible process of wave function

collapse. The mathematical structure of modification surprised the proponents

themselves, and it looked strange and original for many of the interested as
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well. In fact, these theories were considered new physics with new mathematical

structures to replace standard equations like Schrödinger’s. The predicted effects

of spontaneous collapses are extremely small and have thus remained untestable

for the lack of experimental technique. After three decades, fortunately, tests on

nanomasses are now becoming gradually available. Theories like GRW, CSL, and

DP have not changed over the decades apart from their parameter ambiguities; see

reviews by Bassi et al. [11, 12]. But our understanding and teaching of spontaneous

collapse should be revised radically.

Personally, I knew that GRW’s random jumps looked like unsharp mea-

surements, but, in the late 1980s, I believed that unsharp measurements were

phenomenological modifications of von Neumann standard ones. My belief

extended also for the time-continuous limit of unsharp measurements [13] that DP

collapse equations [9] were based on. Finally in the 1990s I got rid of my ignorance

and learned that unsharp measurements and my time-continuous measurement

(monitoring) could have equally been derived from standard quantum theory

[14, 15].

That was disappointing [1]. Excitement about the radical novelty of our modi-

fied quantum mechanics evaporated. Novelty got reduced to the concept that tiny

collapses which get amplified for bulk degrees of freedom happen everywhere and

without measurement devices. That’s why we call them spontaneous. But they are

standard collapses otherwise. I have accordingly stressed their revised interpretation

recently [16], and the present work is arguing further toward such demand.

1.2 How to Teach GRW Spontaneous Collapse?

We should build as much as possible on standard knowledge, using standard con-

cepts, equations, and terminology. The key notion is unsharp generalized measure-

ment, which has been standard ever since von Neumann showed how inserting an

ancilla between object and measuring device will control measurement unsharpness

[17]. Hence we are in the best pedagogical position to explain GRW theory to edu-

cated physicists. No doubt, for old generations measurement means the projective

(sharp) one, but this has changed recently due to the boom in quantum information

science. For younger scientists, generalized measurements are the standard ones,

while projective measurements are the specific case [18, 19]. For the new genera-

tion, there is a natural way to get acquainted with spontaneous collapse. The correct

and efficient teaching goes like this.

GRW theory assumes that independent position measurements of unsharpness

(precision) rC/
√

2, with GRW choice rC = 10−5 cm, are happening randomly at

average frequency λ = 10−19 Hz on each (non-relativistic) particle in the Universe.

The two parameters rC, λ are considered new universal constants of Nature. The
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mathematical model of unsharp measurements is exactly the same as for indepen-

dent von Neumann detectors [17] where the Gaussian ancilla wave function has the

width σ = rC/
√

2 [1]. The difference from standard von Neumann detection is the

concept of being spontaneous: GRW are measurements supposed to happen without

the presence of detectors.

The merit of GRW is wave function localization in bulk degrees of freedom, e.g.,

the center of mass (c.o.m.) of large objects. Quantum theory allows for arbitrary

large quantum fluctuations of macroscopic degrees of freedom in large quantized

systems. The extreme example is a Schrödinger cat state in which two macro-

scopically different wave functions would be superposed. In GRW theory such

macroscopic superpositions or fluctuations become suppressed by GRW sponta-

neous measurements but the superpositions of microscopic degrees of freedom will

invariably survive. These complementary features are guaranteed by the chosen

values of parameters σ and λ. Due to the extreme low rate of measurements, indi-

vidual particles are almost never measured. But among an Avogadro number (A)

of constituents some N = Aλ ∼ 104 become spontaneously measured in each

second, meaning that their collective variables, e.g. center of mass, are measured

each second with a precision of σ/
√

N ∼ 10−7 cm, leading to extreme sharp c.o.m.

localization on the long run. That’s what we expect of spontaneous localization

theories.

The mathematical model is the following. We model the Universe or part of it by

a quantized N-body system satisfying the Schrödinger equation

d|�〉
dt

= − i

�
Ĥ|�〉 (1.1)

apart from instances of spontaneous position measurements that happen randomly

and independently at rate λ on every constituent. Spontaneous position measure-

ments are standard generalized measurements. Accordingly, when the kth coordi-

nate x̂k endures a measurement, the quantum state undergoes the following collapse:

|�〉 �⇒
√

G(xk − x̂k)|�〉
‖
√

G(xk − x̂k)|�〉‖
. (1.2)

The effects of unsharp position measurement take the Gaussian form:

G(xk − x̂k) = 1

(2πσ 2)3/2
exp

(

−(xk − x̂k)
2

2σ 2

)

, (1.3)

where xk is the random outcome of the unsharp position measurement on x̂k, and

σ sets the scale of unsharpness (precision). The probability of the outcomes xk is

defined by the standard rule:
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p(xk) = ‖
√

G(xk − x̂k)|�〉‖2. (1.4)

We have thus specified the mathematical model of GRW in terms of standard

unsharp position measurements targeting every constituent at rate λ and preci-

sion σ . These measurements are selective measurements if we assume that the mea-

surement outcomes xk are accessible. If they are not, we talk about non-selective

measurements, and the jump equation (1.2) should be averaged over the outcomes,

according to the probability distribution (1.4). The mathematical model of the GRW

theory reduces to the following master equation for the density matrix ρ̂:

dρ̂

dt
= − i

�
[Ĥ, ρ̂] + λ

∑

k

(∫

dxk

√

G(xk − x̂k)ρ̂
√

G(xk − x̂k)

)

− λρ̂

= − i

�
[Ĥ, ρ̂] + λ

∑

k

D[x̂k]ρ̂. (1.5)

The decoherence superoperator is defined by

D[x̂]ρ̂ =
∫

dx
√

G(x − x̂)ρ̂
√

G(x − x̂) − ρ̂. (1.6)

We can analytically calculate it in coordinate representation ρ(x, x′) of the

density matrix. Its contribution on the rhs of the master equation (1.5) shows

spatial decoherence, saturating for large separations:

dρ(x, x′)

dt
= · · · − λ

∑

k

(

1 − exp

(

−(xk − x′
k)

2

8σ 2

))

ρ(x, x′), (1.7)

where ellipsis stands for the Hamiltonian part.

The amplification mechanism is best illustrated in c.o.m. dynamics. As we said,

for the individual particles the decoherence term remains negligible, whereas for

bulk degrees of freedom, e.g. the c.o.m., it becomes crucial to damp Schrödinger

cats, as we desired. Assume, for simplicity, free spatial motion of a many-

body object. Then the non-selective GRW equation (1.5) yields the following

autonomous equation for the reduced c.o.m. density matrix ρ̂cm:

dρ̂cm

dt
= − i

�
[Ĥcm, ρ̂cm] + NλD[x̂cm]ρ̂cm. (1.8)

As we see, the decoherence term concerning the c.o.m. coordinate has been ampli-

fied by the number N of the constituents [2], ensuring the desired fast decay of

macroscopic superpositions:

dρcm(xcm, x′
cm)

dt
= · · · − Nλ

(

1 − exp

(

−(xcm − x′
cm)2

8σ 2

))

ρ(xcm, x′
cm). (1.9)
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In the selective evolution, the individual GRW measurements (1.2) entangle the

c.o.m., rotation and internal degrees of freedom; hence |�cm〉 does not exist in

general. It does exist in a limiting case of rigid many-body motion when the unitary

evolution of |�cm〉 is interrupted by spontaneous σ -precision measurements of the

c.o.m. coordinate x̂cm similar to (1.2), just the average rate of the measurements

becomes Nλ [20] instead of λ.

1.3 Localization Is Not Testable, but Decoherence Is

The standard concept of selective measurement implies that we have access to the

measurement outcomes, which are the values xk in GRW. If they are accessible

variables, then the stochastic jump process of the GRW state vector |�〉 is testable;

otherwise it is not. If not, then the same spontaneous measurement is called non-

selective, and what is testable is the density operator ρ̂. The stochastic jump process

(1.1–1.4) becomes illusory, and the master equation (1.5) contains the whole GRW

physics.

This latter sentence holds in GRW where, as a matter of fact, the xks remain

inaccessible. Consider the conservative preparation-detection scenario. Assume we

prepare a well-defined pure initial state ρ̂0 = |�0〉〈�0| and after time t we desire

to test it for the presence of GRW collapses (1.2), but we perform no test prior

to this one. As a matter of fact, the relevant state is ρ̂t, being the solution of

the master equation (1.5), which does not know about GRW collapses but about

GRW decoherence. This is equally valid in the particular case of the macroscopic

Schrödinger cat initial state, i.e., a superposition of c.o.m. at two distant locations.

The c.o.m. GRW master equation (1.8) will exhaustively predict the results of all

subsequent tests on the c.o.m. (including the results and statistics of possible naked-

eye observations).

Obviously, inference on stochastic collapse assumes our access to the measure-

ment outcomes. In real laboratory quantum measurements it is the detector design

and operation that determine if we have full (or partial) access to the measurement

outcomes or we have no access at all. In the case of GRW collapse, accessibility

of outcomes is not a matter of postulation. It is useless to postulate that xks are

accessible without a prescription of how to access them.

1.4 Digression: Random Unitary Process Indistinguishable From GRW

Let us consider an alternative to GRW random process in which the stochastic non-

linear GRW jumps (1.2) are replaced by the following stochastic unitary jumps:

|�〉 �⇒ eikx̂k |�〉, (1.10)
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corresponding to the transfer of momentum �k to the kth constituent. The probabil-

ity distribution of momentum transfer is universal, independent of the particle and

of the state:

p(k) = 1

(2πσ−2)3/2
exp

(

− k2

2σ−2

)

. (1.11)

The decoherence superoperator acts as

D[x̂]ρ̂ =
∫

dk p(k)eikx̂ρ̂e−ikx̂ − ρ̂, (1.12)

which looks completely different from the GRW structure (1.6) but coincides with

it! Hence the master equation for the Schrödinger (1.1) dynamics with the averaged

unitary jumps (1.10) will be the the master equation (1.5) derived earlier for the

GRW theory. As we argued in Sec. 1.3, the GRW theory can only be tested at the

level of the density operator; no experiment could tell us whether the underlying

stochastic process of |�〉 was the GRW stochastic localizing process (1.1–1.4) or

the stochastic unitary process.

1.5 How to Think About CSL?

We could repeat what we said concerning correct and efficient teaching of GRW

in Section 1.2. This time the standard discipline of modern physics, relevant to

CSL, is time-continuous quantum measurement (monitoring), which is just the

time-continuous limit of unsharp sequential measurements similar to those under-

lying GRW in Section 1.2. Quantum monitoring theory was not yet conceived in

1986 (GRW). It was born in 1988, and it became widely known in the 1990s as

the standard theory of quantum monitoring in the laboratory [14, 15]. It played

an instrumental role for semiclassical gravity’s consistent introduction to sponta-

neous collapse theories [21, 22]. In what follows, I utilize the summary of standard

Markovian quantum monitoring theory from [21].

So, how should we interpret CSL? It derives from GRW. The discrete sequence

of spontaneous unsharp position measurements is replaced by spontaneous moni-

toring of the spatial number distribution of particles [6] (or, in a later version, of the

spatial mass distribution of particles [7]). Accordingly, CSL introduces the smeared

mass distribution

n̂(x) =
∑

k

G(x − x̂k), (1.13)

where, this time, the width of the Gaussian is rC. Monitoring yields the measured

signal in the form

nt(x) = 〈�t|n̂(x)|�t〉 + δnt(x), (1.14)
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where δnt(x) is the signal white noise, still depending on the spatial resolu-

tion/correlation of monitoring. The CSL signal noise is a spatially uncorrelated

white noise:

Eδnt(x)δns(y) = 1

4γ
δ(x − y)δ(t − s). (1.15)

Just like in the case of GRW sequential spontaneous measurements, the conditional

quantum state evolves stochastically, this time according to the following stochastic

Schrödinger equation, driven by the signal noise in the Ito-sense:

d|�〉
dt

=
{

− i

�
Ĥ − γ

2

∫

dx
(

n̂(x) − 〈n̂(x)〉
)2 + 4γ

∫

dx
(

n̂(x) − 〈n̂(x)〉
)

δn(x)

}

|�〉.
(1.16)

So far we have introduced the equations of selective spontaneous monitoring,

assuming that the signal (1.14) is accessible, which won’t be the case, similar to

GRW. In non-selective monitoring, the CSL physics reduces to the signal-averaged

evolution of the conditional state, i.e., to the CSL master equation:

dρ̂

dt
= − i

�
[Ĥ, ρ̂] − γ

2

∫

dx[n̂(x), [n̂(x), ρ̂]]. (1.17)

(Note γ = (4πr2
C)3/2λ would ensure the coincidence with GRW’s spatial decoher-

ence rate at the single-particle level, although CSL defined a slightly different γ

[6]).

The traditional CSL teaching differs in a single major point: it does not mention

the theory of monitoring. Hence it does not use the notion of signal nt(x), and the

equation (1.14) is not part of it. Instead, CSL’s traditional definition postulates the

stochastic Schrödinger equation:

d|�〉
dt

=
{

− i

�
Ĥ − γ

2

∫

dx
(

n̂(x) − 〈n̂(x)〉
)2 + √

γ

∫

dx
(

n̂(x) − 〈n̂(x)〉
)

w(x)

}

|�〉,
(1.18)

which would correspond to the replacement δnt(x) = 2
√

γ wt(x) had CSL derived

it from our (1.16). The traditional CSL dynamics is driven by the spatially uncorre-

lated standard white noise, satisfying

Eδwt(x)δws(y) = δ(x − y)δ(t − s). (1.19)

In CSL narrative (e.g. [12]) the origin of the noise field as well its anti-Hermitian

coupling to density n̂(x) are mentioned among theory elements yet to be justi-

fied, still without reference to the spontaneous monitoring interpretation available

already for a long enough time.
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From arguments of Section 1.3, it follows that all testable predictions follow

from the CSL master equation (1.17), the stochastic Schrödinger equation (1.18) is

empirically redundant, collapse in the claimed quantitative sense is an illusion.

1.6 Final Remarks

Disregarding that spontaneous collapse theories are rooted in standard quantum

mechanical collapse theories with hidden detectors has had too many drawbacks.

The principle one is the illusion that the quantitative models of spontaneous

collapse (localization) in their current forms are relevant empirically like master

equations of spontaneous decoherence are, which have already been under empiric

tests due to recent breakthroughs in technology. This illusion is surviving despite

no proposals having been ever made for a future experiment to test underlying

localization effects of |�〉 beyond decoherence of ρ̂; all proposals have so far

concerned the dynamical features (e.g. spontaneous decoherence) of the averaged

state ρ̂.

Secondary drawbacks concern illusions that teaching and interpretation of spon-

taneous collapse necessitate radical departure from standard quantum theory both

conceptually and mathematically. This may have kept philosophers excited and may

have prevented students from learning the subject faster and physicists from going

deeper into their fundational investigations.

Physics research will gradually adapt itself to the option that spontaneous col-

lapse fits better to standard quantum knowledge than we thought of it before. Mon-

itoring theory roots were revealed for DP spontaneous collapse from the beginning

and have been detailed and exploited for CSL, too, recently in [21, 22].
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[19] L. Diósi: Short course in quantum information theory (Berlin, Springer, 2011).
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