Gravity-related alterations of non-relativistic quantum theory

Lajos Diósi

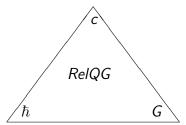
Wigner Center, Budapest

8 Dec 2016, Bangalore

Acknowledgements go to: Hungarian Scientific Research Fund under Grant No. 75129

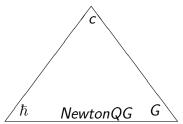
EU COST Action CA15220 'Quantum Technologies in Space'

Lajos Diósi (Wigner Center, Budapest) Gravity-related alterations of non-relativistic c



- 2 Spatial mass density $\hat{\varrho}(\mathbf{r})$, and resolution σ
- Standard Schrödinger Eq. with Newton gravity
- 4 Semiclassical Schrödinger-Newton Equation 1984
- 5 ω_G : Classical Newton oscillator frequency 2007
- 6 G-related spontaneous decoherence (DP) 1987
- LISA Pathfinder experiment 2016
- Quantum-gravity spontaneous decoherence? 1983
- Semiclassical gravity + DP collapse 2016
- 1980's-2010's-...

Why Newtonian Quantum Gravity? 1980's


Quantum or Gravity is bottle-neck of Quantum Gravity?

That's just Gravity!

perturbativ QFT Q- $\mathcal{G}^{(3)}$ dynamics loops, strings, ... ???

1980s-: That's Quantum!

Bottle-neck: Schrödinger Cat Let's go non-relativistic, first! Hope: new QM comes from NQG

3 / 12

Spatial mass density $\hat{\varrho}(\mathbf{r})$, and resolution σ

Forget full energy-momentum \hat{T}_{ab} ! Use $\hat{T}_{00}/c^2 = \hat{\varrho}$ Non-relativistic spatial mass distribution:

$$\hat{\varrho}(\mathbf{r}) = \sum_{k} m_k \delta_{\sigma}(\mathbf{r} - \hat{\mathbf{x}}_k)$$
mass density \nearrow spatial resolution σ
 δ_{σ} : Gaussian of width σ

What are the sources of gravity?					
	nuclei		bulk matter		
σ resolution	10 ⁻¹² cm		10 ⁻⁵ cm		

No evidence! Spatial resolution σ : burning and lasting issue

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うらの

Standard Schrödinger Eq. with Newton gravity

That's standard QM with standard Newtonian pair-potential:

$$|\dot{\Psi}
angle = -rac{i}{\hbar} \left(\hat{H} - rac{G}{2} \int rac{\hat{\varrho}(\mathbf{r})\hat{\varrho}(\mathbf{s})}{|\mathbf{r} - \mathbf{s}|} d\mathbf{r} d\mathbf{s}
ight) |\Psi
angle$$

Justified in classical limit only.

Quantum regime - tests are (currently) impossible:

G is too small, massive d.o.f. would be influenced.

But massive d.o.f. decohere immediately by environment.

Open issue:

		nuclei	 bulk matter
σ	resolution	10 ⁻¹² cm	 10 ⁻⁵ cm

Classical limit is insensitive to σ , quantum tests are missing. We are free to speculate: to alter QM, to choose σ .

Lajos Diósi (Wigner Center, Budapest) Gravity-related alterations of non-relativistic c 8 Dec 2016,

8 Dec 2016, Bangalore 5 / 12

Semiclassical Schrödinger-Newton Equation 1984

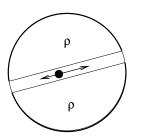
Quantized matter in classical Newton-potential:

$$|\dot{\Psi}
angle = -rac{i}{\hbar} \left(\hat{H} - G \int rac{\hat{\varrho}(\mathbf{r})\langle\!\!\langle \hat{\varrho}(\mathbf{s})
angle_{\Psi}}{|\mathbf{r} - \mathbf{s}|} d\mathbf{r} d\mathbf{s}
ight) |\Psi
angle$$

Non-linearity generates **self-interaction**. For c.o.m. $\hat{\mathbf{x}}$ (at $\Delta x \ll \sigma$):

$$|\dot{\Psi}
angle = -rac{i}{\hbar}\left(\hat{H}+rac{1}{2}M\omega_{G}^{2}(\hat{\mathbf{x}}-\langle\hat{\mathbf{x}}
angle_{\Psi})^{2}
ight)|\Psi
angle$$

Solitonic solutions: **localized stationary states for bulk c.o.m.! No decoherence, no wave function collapse**, of course!


Localization heavily depends on gravity's spatial resolution σ :

		nuclei	 bulk matter
σ	resolution	10 ⁻¹² cm	 10 ⁻⁵ cm
ω_{G}		$10^{3}/s$	 $10^{-3}/s$

The strong-effect-edge may become falsifiable in coming years.

Lajos Diósi (Wigner Center, Budapest) Gravity-related alterations of non-relativistic c 8 I

ω_G : Classical Newton oscillator frequency 2007

[Named as "SN-frequency" (2013-): incorrect name, ω_G has no \hbar !]

$$\omega_{G} = \sqrt{\frac{4\pi}{3}G\varrho_{0}}$$

 $\frac{\omega_{\rm G}~{\rm in~nuclear~matter}}{\omega_{\rm G}~{\rm in~common~matter}} \sim 10^6$

7 / 12

		nuclei	 bulk matter
σ	resolution	10 ⁻¹² cm	 10 ⁻⁵ cm
ω_{G}		$10^{3}/s$	 $10^{-3}/s$

SN self-interaction $\frac{1}{2}M\omega_G^2(\hat{\mathbf{x}} - \langle \hat{\mathbf{x}} \rangle)^2$ becomes **10¹²-times stronger** if nucleus-size resolution is taken.

G-related spontaneous decoherence (DP) 1987

Master equation to decohere mass-density superpositions:

$$\dot{\hat{
ho}} = -rac{i}{\hbar}[\hat{H},\hat{
ho}] - rac{G}{2\hbar}\int [\hat{arrho}(\mathbf{r}),[\hat{arrho}(\mathbf{s}),\hat{
ho}]]rac{d\mathbf{r}d\mathbf{s}}{|\mathbf{r}-\mathbf{s}|}$$

Fast decoherence of bulk d.o.f.. For c.o.m. $\hat{\mathbf{x}}$ (at $\Delta x \ll \sigma$): $\dot{\hat{\rho}} = -\frac{i}{\hbar}[\hat{H},\hat{\rho}] - \frac{1}{2\hbar}M\omega_G^2[\hat{\mathbf{x}},[\hat{\mathbf{x}},\hat{\rho}]]$ \swarrow decoherence rate

Universal heating of all d.o.f.: $\dot{\epsilon} = \frac{1}{2}\hbar\omega_G^2/d.o.f.$

		nuclei		bulk matter
σ	resolution	10 ⁻¹² cm		10 ⁻⁵ cm
ω_{G}	decoh. rate	10 ³ /s		$10^{-3}/s$
$\dot{\epsilon}$	heating rate	10 ⁻²¹ erg/s/d.o.f.		$10^{-33} erg/s/d.o.f$.
At strong-effect-edge heating is 10μ K/s, much too high! Ruled out?				

LISA Pathfinder experiment 2016

$$\dot{\hat{
ho}} = -rac{i}{\hbar}[\hat{H},\hat{
ho}] - rac{1}{2\hbar}M\omega_{G}^{2}[\hat{\mathbf{x}},[\hat{\mathbf{x}},\hat{
ho}]]$$

 \swarrow decoherence rate

Two free falling test masses $M = 2 \times 2kg$ on satellite C.o.m. relative acceleration noise $\leq 5.2 fms^{-2}/\sqrt{Hz}$ in range .7–20mHz **Most precise control of c.o.m. ever!** A most direct test of spontaneous decoherence.

Seems to rule out DP strong-edge version (finest resolution 10^{-12} cm).

		nuclei		bulk matter
σ	resolution	10 ⁻¹² cm		10 ⁻⁵ cm
ω_{G}	decoh. rate	10 ³ /s		$10^{-3}/s$
$\dot{\epsilon}$	heating rate	$10^{-21} erg/s/d.o.f.$		$10^{-33} erg/s/d.o.f.$

LISA 2016: $\sigma \not< \mathbf{4} * 10^{-12} \text{ cm}.$

Helou-Slagmolen-McClelland-YanbeiChen, arXiv:1606.03637.

Quantum-gravity spontaneous decoherence? 1983

Hawking 1983: unitarity is lost due to space-time fluctuations (instantons) on Planck scale

$$\hat{
ho}
ightarrow \widehat{\$} \hat{
ho}
eq \hat{\$} \hat{
ho}
eq \hat{\$} \hat{
ho} \hat{\†$

Banks-Susskind-Peskin 1984: master equation to detail Hawking's $\hat{\$}$. Violation of conservations laws (cf. **heating**):

$$\dot{\hat{
ho}} = -rac{i}{\hbar}[\hat{H},\hat{
ho}] - \int [\hat{Q}(\mathbf{r}),[\hat{Q}(\mathbf{s}),\hat{
ho}]]h(\mathbf{r}-\mathbf{s})d\mathbf{r}d\mathbf{s}$$

D 1987: unitarity is lost due to gravitational fluctations much before the Planck scale, same strucure as BSP's:

$$\dot{\hat{
ho}} = -rac{i}{\hbar}[\hat{H},\hat{
ho}] - rac{G}{2\hbar}\int [\hat{arrho}(\mathbf{r}),[\hat{arrho}(\mathbf{s}),\hat{
ho}]]rac{d\mathbf{r}d\mathbf{s}}{|\mathbf{r}-\mathbf{s}|}$$

Reznik&Oppenheim 2009: to conserve total momentum, decohere relational variables: ; 1

$$\hat{\hat{\rho}} = -\frac{i}{\hbar}[\hat{H}, \hat{\rho}] - \frac{1}{2} \sum_{k,l} \gamma_{kl} [\hat{\mathbf{x}}_k - \hat{\mathbf{x}}_l, [\hat{\mathbf{x}}_k - \hat{\mathbf{x}}_l, \hat{\rho}]]$$

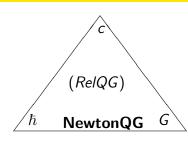
10 / 12

Semiclassical gravity + DP collapse 2016 Master equation to decohere mass-density superpositions: $i = \int_{a}^{b} f_{a} dr ds$

$$\dot{\hat{\rho}} = -\frac{\prime}{\hbar} [\hat{H}, \hat{\rho}] - \frac{G}{2\hbar} \int [\hat{\varrho}(\mathbf{r}), [\hat{\varrho}(\mathbf{s}), \hat{\rho}]] \frac{d\mathbf{r} d\mathbf{s}}{|\mathbf{r} - \mathbf{s}|}$$

Straightforward underlying mechanism: spontaneous monitoring of $\hat{\varrho}$:

$$\begin{array}{l} \text{monitoring of} \quad \hat{\varrho} \Rightarrow \left\{ \begin{array}{l} \text{stochastic Q-trajectory } \Psi(t) \\ \text{measured signal } \varrho(\mathbf{r},t) \end{array} \right\} \\ \\ \varrho(\mathbf{r},t) = \langle \hat{\varrho}(\mathbf{r}) \rangle_{\Psi(t)} + \text{noise} \end{array}$$


Let's source Newton field by $\rho(\mathbf{r}, t)$! Tilloy&D 2016 (cf. D 1990):

$$\dot{\hat{\rho}} = -\frac{i}{\hbar} \big[\hat{H} - \frac{G}{2} \int \hat{\varrho}(\mathbf{r}) \hat{\varrho}(\mathbf{s}) \frac{d\mathbf{r}d\mathbf{s}}{|\mathbf{r} - \mathbf{s}|} , \hat{\rho} \big] - \frac{G}{\hbar} \int [\hat{\varrho}(\mathbf{r}), [\hat{\varrho}(\mathbf{s}), \hat{\rho}]] \frac{d\mathbf{r}d\mathbf{s}}{|\mathbf{r} - \mathbf{s}|}$$

Newtonian pair-potential emerges, self-interaction & non-linearity gone, DP decoherence doubles.

Lajos Diósi (Wigner Center, Budapest) Gravity-related alterations of non-relativistic c 8 Dec 2016, Bangalore

Why Newtonian Quantum Gravity? 1980's-2010's-...

- **Standard QM with pair-potential:** too small, far from testability.
- Non-standard SNE, DP, ...: New effects depend heavily on σ . In strong-effect regime $\sigma \sim 10^{-12} cm$ SN self-attraction, DP-heating become testable in coming years.

If Schrödinger Cats are **bottle-neck** of Quantum Gravity: Newtonian Quantum Gravity might be the key first. G-related Newtonian alterations of QM are still uncomplete. They can yet encode a piece of truth. Experiments will decide if NQG concerns new physics at all.