FRICTIONAL SCHRÖDINGER-NEWTON EQ IN MODELS OF WAVEFUNCTION COLLAPSE
 Lajos Diósi, Budapest

CONTENT:

- Is Q or G the bottle-neck of Quantum Gravity?
- The 'rigid ball' Schrödinger cat and its Newtonian $U\left(x-x^{\prime}\right)$
- Decoherence
- Pointer states: SN-equation?
- Pointer states: frSN-equation!
- Matching decoherence with pointer states

PEOPLE:

- SN-equation: D.,Jones,Moroz,Penrose,Tod,Geszti,Elze,Carlip,...
- FrSN-equation: D.; FrS-equation: Hasse,D.,Gisin,Pearle,GRW,... ...,Halliwell,Adler,Bassi,Kiefer

BOTTLE-NECK OF QUANTUM GRAVITY: Q OR G?

- Mainstream opinion: concept of space time has to be changed
- Sidestream opinion: concept of q-measurement has to be changed
- Scheme of physics building

FIG. 1: $\boldsymbol{c}=$ velocity of light, $\boldsymbol{G}=$ Newton's gravitational constant, $\hbar=$ Planck constant. The corners of the triangle represent the three fundamental theories, the sides correspond to partially unified theories while the middle symbolises the fully unified theory.

The path upto a relativistic theory of a quantised Universe may go through the non-relativistic theory of Newtonian Quantum Gravity explaining the quantised motion of common macroscopic objects. One seeks for a gravity-related (but non-Hamiltonian) theory of spontaneous (i.e. nonenvironmental) collapse of macro-objects' wave function.

Traditionally, take the example of the rigid massive ball!

'RIGID BALL' SCHRÖDINGER CAT AND THE NEWTONIAN $U\left(\mathrm{x}-\mathrm{x}^{\prime}\right)$

- Distant initial superposition:

- Quick decoherence and random collapse leads, e.g., to:

- After longer time, a pointer state is formed:

- We need equations! Key expression: formal Newtonian interaction potential of two hypothetical interpenetrating copies of our rigid ball centered at x and x^{\prime} :

$$
U\left(\mathrm{x}-\mathrm{x}^{\prime}\right)=:-G \int \frac{f(\mathrm{r} \mid \mathrm{x}) f\left(\mathrm{r}^{\prime} \mid \mathrm{x}^{\prime}\right)}{\left|\mathrm{r}^{\prime}-\mathrm{r}\right|} d \mathrm{r} d \mathrm{r}^{\prime}
$$

where $f(\mathrm{r} \mid \mathrm{x})=\left(3 M / 4 \pi R^{3}\right) \theta(|\mathrm{r}-\mathrm{x}| \leq R)$ is the mass density at $\mathrm{r} ; M, R$ are ball mass and radius, resp.

$$
U\left(\mathrm{x}-\mathrm{x}^{\prime}\right) \sim\left\{\begin{array}{cl}
-G M^{2} /\left|\mathrm{x}-\mathrm{x}^{\prime}\right| & \text { for }\left|\mathrm{x}-\mathrm{x}^{\prime}\right| \gg R \\
U(0)+\frac{1}{2} M \omega_{G}^{2}\left|\mathrm{x}-\mathrm{x}^{\prime}\right|^{2} & \text { for }\left|\mathrm{x}-\mathrm{x}^{\prime}\right| \ll R
\end{array}\right.
$$

where $\omega_{G}^{2}=G M / R^{3}$.
What is the equation of the c.o.m. Decoherence?
What is the equation of the pointer state?
What is the equation of both?

THE EQUATION OF C.O.M. DECOHERENCE TIME

- Postulated 'gravitational' decoherence time:

$$
t_{G}=: \frac{\hbar}{U\left(\mathrm{x}-\mathrm{x}^{\prime}\right)-\boldsymbol{U}(0)}
$$

For distant superposition we get:

$$
t_{G} \sim-\hbar / \boldsymbol{U}(0) \sim \hbar \boldsymbol{R} / \boldsymbol{G} M^{2}
$$

For atomic masses, t_{G} is extremely long and the postulated effect is irrelevant. For nano-objects, t_{G} is shorter and the postulated effect may compete with the inevitable environmental decoherence. For macro-objects t_{G} is unrealisticly short.

- Divergence Problem: for pointlike massive ball $(R=0)$ as well as for any object containing pointlike massive constituents $U(0)$ is ∞ therefore t_{G} would be zero!

POINTER STATES: SN-EQUATION?

- We postulate the SN-eq.:

$$
\frac{d \psi(\mathrm{x})}{d t}=\text { standard q.m. terms }-\frac{i}{\hbar} \int U\left(\mathrm{x}-\mathrm{x}^{\prime}\right)\left|\psi\left(\mathrm{x}^{\prime}\right)\right|^{2} d \mathrm{x}^{\prime} \psi(\mathrm{x})
$$

Its ground state solution is a standing soliton of width $\Delta \mathrm{x}_{G}$. Galilean translations and boosts yield the overcomplet set of pointer states.

For atomic particles, $\Delta \mathrm{x}_{G}$ is extremely large and the localization effect is irrelevant. For nano-objects, the localization effect becomes relevant. For rigid ball of common density the approximation $\Delta \mathrm{x}_{G} \ll R$ is valid if $R \gg 10^{-5} c m, M \gg 10^{-15} g$. Then, $U\left(\mathrm{x}-\mathrm{x}^{\prime}\right) \approx U(0)+\frac{1}{2} M \omega_{G}^{2}\left|\mathrm{x}-\mathrm{x}^{\prime}\right|^{2}$ and the SN -equation reduces to:

$$
\frac{d \psi(\mathrm{x})}{d t}=\text { standard q.m. terms }-\frac{i}{2 \hbar} M \omega_{G}^{2}|\mathrm{x}-\langle\mathrm{x}\rangle|^{2} \psi(\mathrm{x})
$$

Exact ground state solution is easy (if there is no external potential):

$$
\psi(\mathrm{x})=\mathcal{N} \exp \left(-\frac{\mathrm{x}^{2}}{4 \Delta x_{G}^{2}}\right), \quad \Delta \mathrm{x}_{G}^{2}=\sqrt{\frac{\hbar}{M \omega_{G}}}=\left(\frac{\hbar^{2}}{G M^{3}}\right)^{1 / 4} R^{3 / 4}
$$

- Reversible non-linear eq, no divergence problem for $\boldsymbol{R}=0$!
- But: no interpretation for the rest of the solutions which are not simple solitons.
- Alternatively to the SN , we postulate the frSN-eq.:
$\frac{d \psi(\mathrm{x})}{d t}=$ standard q.m. terms $-\frac{1}{\hbar} \int \boldsymbol{U}\left(\mathrm{x}-\mathrm{x}^{\prime}\right)\left|\boldsymbol{\psi}\left(\mathrm{x}^{\prime}\right)\right|^{2} d \mathrm{x}^{\prime} \psi(\mathrm{x})+\frac{1}{\hbar} \boldsymbol{U}_{G} \boldsymbol{\psi}(\mathrm{x})$
where $\boldsymbol{U}_{G}=\iint \boldsymbol{U}\left(\mathrm{x}^{\prime \prime}-\mathrm{x}^{\prime}\right)\left|\psi\left(\mathrm{x}^{\prime}\right) \boldsymbol{\psi}\left(\mathrm{x}^{\prime \prime}\right)\right|^{2} d \mathrm{x}^{\prime} d \mathrm{x}^{\prime \prime}$.
Its ground state solution is a standing soliton of width $\Delta \mathrm{x}_{G}$ of the same order like for the SN -equation. Similarily to SN , Galilean translations and boosts yield the overcomplet set of pointer states.

For atomic particles $\Delta \mathrm{x}_{G}$ is extremely large and the localization effect is irrelevant. For nano-objects the localization effect becomes relevant. For rigid ball of common density the approximation $\Delta \mathrm{x}_{G} \ll R$ is valid if $R \gg 10^{-5} \mathrm{~cm}, M \gg 10^{-15} g$. Then, $U\left(\mathrm{x}-\mathrm{x}^{\prime}\right) \approx U(0)+\frac{1}{2} M \omega_{G}^{2}\left|\mathrm{x}-\mathrm{x}^{\prime}\right|^{2}$ and the frSN-equation reduces to:
$\frac{d \psi(\mathrm{x})}{d t}=$ standard q.m. terms $-\frac{1}{2 \hbar} M \omega_{G}^{2}|\mathrm{x}-\langle\mathrm{x}\rangle|^{2} \psi(\mathrm{x})+\frac{1}{2 \hbar} M \omega_{G}^{2}\left\langle(\Delta \mathrm{x})^{2}\right\rangle \psi(\mathrm{x})$
where $\left\langle(\Delta \mathrm{x})^{2}\right\rangle=\left\langle\mathrm{x}^{2}\right\rangle-\langle\mathrm{x}\rangle^{2}$. Exact ground state solution is easy (if there is no external potential):

$$
\psi(\mathrm{x})=\mathcal{N} \exp \left(-\sqrt{-i} \frac{\mathrm{x}^{2}}{4 \Delta x_{G}^{2}}\right), \quad \sqrt{-i}=\frac{1-i}{\sqrt{2}}
$$

- Irreversible nonlinear eq., no divergence problem for $R=0$!
- But: no interpretation for the rest of the solutions which are not simple solitons.

MATCHING DECOHERENCE WITH POINTER STATES

- Master Eq. that realizes decoherence at scale t_{G} :

$$
\frac{d \rho\left(\mathrm{x}, \mathrm{x}^{\prime}\right)}{d t}=\text { standard q.m. terms }-\frac{1}{\hbar}\left[U\left(\mathrm{x}-\mathrm{x}^{\prime}\right)-U(0)\right] \rho\left(\mathrm{x}, \mathrm{x}^{\prime}\right)
$$

- Distinguished Stochastic ME, that realizes collapse to pointer states:

$$
\begin{aligned}
\frac{d \rho\left(\mathrm{x}, \mathrm{x}^{\prime}\right)}{d t}=\text { standard q.m. terms } & -\frac{1}{\hbar}\left[U\left(\mathrm{x}-\mathrm{x}^{\prime}\right)-U(0)\right] \rho\left(\mathrm{x}, \mathrm{x}^{\prime}\right) \\
& +\frac{1}{\hbar}\left[W_{t}(\mathrm{x})+W_{t}\left(\mathrm{x}^{\prime}\right)-2\left\langle W_{t}\right\rangle\right] \rho\left(\mathrm{x}, \mathrm{x}^{\prime}\right)
\end{aligned}
$$

where W is random field: $\mathrm{M}\left[\boldsymbol{W}_{t}(\mathrm{x}) \boldsymbol{W}_{t}\left(\mathrm{x}^{\prime}\right)\right]=-\hbar \boldsymbol{U}\left(\mathrm{x}-\mathrm{x}^{\prime}\right) \boldsymbol{\delta}\left(\boldsymbol{t}-\boldsymbol{t}^{\prime}\right)$.
For long time, this SME drives any initial state $\rho\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ into localized pure state (pointer state) while the SME reduces to:

$$
\begin{aligned}
\frac{d \psi(\mathrm{x})}{d t}=\text { standard q.m. terms } & -\frac{1}{\hbar} \int \boldsymbol{U}\left(\mathrm{x}-\mathrm{x}^{\prime}\right)\left|\psi\left(\mathrm{x}^{\prime}\right)\right|^{2} d \mathrm{x}^{\prime} \psi(\mathrm{x})+\frac{1}{\hbar} \boldsymbol{U}_{G} \psi(\mathrm{x}) \\
& +\frac{1}{\hbar}\left[\boldsymbol{W}_{t}(\mathrm{x})-\left\langle\boldsymbol{W}_{t}\right\rangle\right] \psi(\mathrm{x})
\end{aligned}
$$

Conjecture: the pointer state (in its co-moving system) is the ground state solution of the frSN equation. Proof exists in the $\Delta_{G} \mathrm{x} \ll R$ limit: $\frac{d \psi(\mathrm{x})}{d t}=$ standard q.m. terms $-\frac{1}{2 \hbar} M \omega_{G}^{2}|\mathrm{x}-\langle\mathrm{x}\rangle|^{2} \psi(\mathrm{x})+w_{t} \sqrt{\frac{M}{\hbar}} \omega_{G}(\mathrm{x}-\langle\mathrm{x}\rangle) \psi(\mathrm{x})$ where w_{t} is standard white-noise.

- The SME predicts the pointer states correctly even for $\boldsymbol{R}=0$.
- But: The process of collapse necessitates a cutoff.

