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FRICTIONAL SCHRÖDINGER-NEWTON EQ
IN MODELS OF WAVEFUNCTION COLLAPSE

Lajos Diósi, Budapest
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BOTTLE-NECK OF QUANTUM GRAVITY: Q OR G?

•Mainstream opinion: concept of space time has to be changed

• Sidestream opinion: concept of q-measurement has to be changed

• Scheme of physics building
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FIG. 1: c =velocity of light, G =Newton’s gravitational constant, ~ =Planck constant. The corners of the triangle represent
the three fundamental theories, the sides correspond to partially unified theories while the middle symbolises the fully unified
theory.

The path upto a relativistic theory of a quantised Universe may go
through the non-relativistic theory of Newtonian Quantum Gravity ex-
plaining the quantised motion of common macroscopic objects. One seeks
for a gravity-related (but non-Hamiltonian) theory of spontaneous (i.e. non-
environmental) collapse of macro-objects’ wave function.

Traditionally, take the example of the rigid massive ball!
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‘RIGID BALL’ SCHRÖDINGER CAT AND THE NEWTONIAN
U(x− x′)

• Distant initial superposition:
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• Quick decoherence and random collapse leads, e.g., to:
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• After longer time, a pointer state is formed:
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• We need equations! Key expression: formal Newtonian interaction
potential of two hypothetical interpenetrating copies of our rigid ball
centered at x and x′:

U(x− x′) =: −G
∫
f(r|x)f(r′|x′)
|r′ − r|

drdr′

where f(r|x) = (3M/4πR3)θ(|r− x| ≤ R) is the mass density at r; M,R
are ball mass and radius, resp.

U(x− x′) ∼


−GM2/|x− x′| for |x− x′| � R

U(0) + 1
2
Mω2

G|x− x′|2 for |x− x′| � R

where ω2
G = GM/R3.

What is the equation of the c.o.m. decoherence?
What is the equation of the pointer state?
What is the equation of both?
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THE EQUATION OF C.O.M. DECOHERENCE TIME

• Postulated ‘gravitational’ decoherence time:

tG =:
~

U(x− x′)− U(0)

For distant superposition we get:

tG ∼ −~/U(0) ∼ ~R/GM2

For atomic masses, tG is extremely long and the postulated effect is irrel-
evant. For nano-objects, tG is shorter and the postulated effect may com-
pete with the inevitable environmental decoherence. For macro-objects
tG is unrealisticly short.

• Divergence Problem: for pointlike massive ball (R = 0) as well as for
any object containing pointlike massive constituents U(0) is∞ therefore
tG would be zero!
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POINTER STATES: SN-EQUATION?

• We postulate the SN-eq.:

dψ(x)

dt
= standard q.m. terms−

i

~

∫
U(x− x′)|ψ(x′)|2dx′ ψ(x)

Its ground state solution is a standing soliton of width ∆xG. Galilean
translations and boosts yield the overcomplet set of pointer states.

For atomic particles, ∆xG is extremely large and the localization effect
is irrelevant. For nano-objects, the localization effect becomes relevant.
For rigid ball of common density the approximation ∆xG � R is valid if
R � 10−5cm, M � 10−15g. Then, U(x − x′) ≈ U(0) + 1

2
Mω2

G|x − x′|2
and the SN-equation reduces to:

dψ(x)

dt
= standard q.m. terms−

i

2~
Mω2

G|x− 〈x〉|
2ψ(x)

Exact ground state solution is easy (if there is no external potential):

ψ(x) = Nexp
(
−

x2

4∆x2
G

)
, ∆x2

G =

√
~

MωG
=

( ~2

GM3

)1/4

R3/4

• Reversible non-linear eq, no divergence problem for R = 0!

• But: no interpretation for the rest of the solutions which are not simple
solitons.
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POINTER STATES: FRICTIONAL SN-EQUATION!

• Alternatively to the SN, we postulate the frSN-eq.:

dψ(x)

dt
= standard q.m. terms−

1

~

∫
U(x−x′)|ψ(x′)|2dx′ ψ(x)+

1

~
UGψ(x)

where UG =
∫∫
U(x′′ − x′)|ψ(x′)ψ(x′′)|2dx′dx′′.

Its ground state solution is a standing soliton of width ∆xG of the same
order like for the SN-equation. Similarily to SN, Galilean translations
and boosts yield the overcomplet set of pointer states.

For atomic particles ∆xG is extremely large and the localization effect
is irrelevant. For nano-objects the localization effect becomes relevant.
For rigid ball of common density the approximation ∆xG � R is valid if
R � 10−5cm, M � 10−15g. Then, U(x − x′) ≈ U(0) + 1

2
Mω2

G|x − x′|2
and the frSN-equation reduces to:

dψ(x)

dt
= standard q.m. terms−

1

2~
Mω2

G|x−〈x〉|
2ψ(x)+

1

2~
Mω2

G〈(∆x)2〉ψ(x)

where 〈(∆x)2〉 = 〈x2〉−〈x〉2. Exact ground state solution is easy (if there
is no external potential):

ψ(x) = Nexp
(
−
√
−i

x2

4∆x2
G

)
,

√
−i =

1− i
√

2

• Irreversible nonlinear eq., no divergence problem for R = 0!

• But: no interpretation for the rest of the solutions which are not simple
solitons.
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MATCHING DECOHERENCE WITH POINTER STATES

• Master Eq. that realizes decoherence at scale tG:

dρ(x, x′)

dt
= standard q.m. terms −

1

~
[U(x− x′)− U(0)]ρ(x, x′)

• Distinguished Stochastic ME, that realizes collapse to pointer states:
dρ(x, x′)

dt
= standard q.m. terms −

1

~
[U(x− x′)− U(0)]ρ(x, x′)

+
1

~
[Wt(x) +Wt(x

′)− 2〈Wt〉]ρ(x, x′)

where W is random field: M[Wt(x)Wt(x
′)] = −~U(x− x′)δ(t− t′).

For long time, this SME drives any initial state ρ(x, x′) into localized
pure state (pointer state) while the SME reduces to:

dψ(x)

dt
= standard q.m. terms −

1

~

∫
U(x− x′)|ψ(x′)|2dx′ ψ(x) +

1

~
UGψ(x)

+
1

~
[Wt(x)− 〈Wt〉]ψ(x)

Conjecture: the pointer state (in its co-moving system) is the ground
state solution of the frSN equation. Proof exists in the ∆Gx� R limit:

dψ(x)

dt
= standard q.m. terms−

1

2~
Mω2

G|x−〈x〉|
2ψ(x)+wt

√
M

~
ωG(x−〈x〉)ψ(x)

where wt is standard white-noise.

• The SME predicts the pointer states correctly even for R = 0.

• But: The process of collapse necessitates a cutoff.


